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A calculation of Pin* bordism groups

R. C. KirBY! and L. R. TAYLOR!

We begin by recalling the definition of the Pin and Spin-bordism groups. For each
integer n = 1 there are compact Lie groups, Spin(n), Pin~—(n) and Pin™*(n). Atiyah,
Bott and Shapiro [ABS], described the groups Spin(n) and Pin ~(n) in terms of the
Clifford algebra associated to the negative definite form on R”. Lam [L], describes
these as well as Pin*(n), the group coming from the Clifford algebra associated to
the positive definite form on R”. Another definition is the following. The group
Spin(n) is the double cover of the group SO(n). It is a Z/2 central extension of SO(n)
and is classified by w, € HX(BSO(n); Z/2): indeed it is the unique non-trivial Z/2
central extension. The two groups Pin* are double covers of O(n). They are also Z/2
central extensions: Pin~ is classified by w, +w?e H*(BO(n); Z/2) and Pin* is
classified by w,.

There is a bordism theory of manifolds with Spin, Pin —, or Pin™* structure, and
we use the term bordism groups for the bordism groups of a point. Anderson, Brown
and Peterson calculated the Spin-bordism groups, [ABP1], and the Pin ~-bordism
groups, [ABP2]. We complete the story by calculating the Pin*-bordism groups.

Both the Pin *-bordism groups are 2-torsion, and they have cyclic summands of
order equal to an arbitrarily high power of 2. Both bordism groups are modules over
the Spin bordism ring. Of the real projective spaces, the RP*’s have Pin* structures
and the RP**2s have Pin~ structures. The other result in this paper is that
Pin *-bordism, modulo the Spin bordism submodule generated by the real projective
spaces, is a Z/2 vector space.

To describe our results in more detail, recall the 2-local decomposition of the
spectrum MSpin from [ABPI1].

MSpin— \/ n(2k)bo(8k) \/ n(2k + 1)bo{8k +2) \/ a(k)K(Z/2, k)
k=0 k>0 k>0
where bo{r) denotes the spectrum obtained from the usual BO spectrum by killing
all the homotopy groups in dimensions less than r, and K(4, r) denotes the
Eilenberg—MacLane spectrum with one non-zero homotopy group isomorphic to A4

'Partially supported by the N.S.F.
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in dimension r. Furthermore, n(k) denotes the number of partitions of k with
all the pieces greater than 1. If p(k) denotes the usual partition function, then
n(k) = p(k) — p(k — 1). The numbers a(k) in principle can be computed. Since the
cohomologies of MSpin, bo{r) and K(Z/2, r) are known, as are the n(k), the a(k)
are the unique numbers which give equality of cohomologies.

The decomposition above is not unique, but we choose one such decomposition
and fix it for the rest of the paper.

The Anderson, Brown and Peterson calculations of Spin and Pin~ bordism are
similar. The homotopy groups of the bo{r) and the K(Z/2, r) are known, so once
they prove the decomposition formula, they can easily calculate Spin bordism. For
Pin~ bordism, they argue that MPin~ is homotopy equivalent to the spectrum
MSpin A X T (), where T(&) denotes the suspension spectrum of the Thom space
of the canonical bundle over RP*. They apply the decomposition formula and
compute (via Adams spectral sequence methods) n,(bo{(8k) A Z~'T(&)) and
7. (bo(8k + 2> A £ ~'T(&)). We describe our answer in a similar fashion. We will
show that MPin* is homotopy equivalent to the spectrum MSpin A X ~3T(3¢), where
T (s&) will denote the suspension spectrum of the Whitney sum of s copies of the
canonical bundle over RP*. We record our answer in the theorem below along with
the results of the Anderson, Brown and Peterson calculation for MPin—, which we
will need later. Here are some well-known formulae which will simplify what follows.

(i) For any spectrum X,
T.(X AK(Z/2,r) =7,_ (X AK(Z/2,0)).
(i1) For any spectrum X,
,(X A bo(8k)) = m, _ 5 (X A bo{0))
(X Abo(8k + 2)) =7, _ g (X A bo(2)).
Hence we only describe the answers below. In the sequel, we let M(r) denote the
spectrum X ~"T(rf).
THEOREM 1.
;(M(1) AK(Z/2,0)) =7,(M(3) AK(Z/2,0)) =Z/2 for all i 20.

Mgy i = 8n 8n+1 8n+2 8n+3 8n+4 8n+5 8n+6 8n+7
M(1) A bo(0) Z/2 Zi2 Z2%+3 0 0 0 Zjyatt 0
M(3) Abo0) Z/24+1 0 Z2 Z]2 Z[2%+4 0 0 0

for 0<i<8andn =0.
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Ry + § = 8n 8n+1 8n+2 8n+3 81+4 8+5S 8n+6 8n+7
M(1) Abo{2) Z2Z)2 Zj2 Zprel Z/2 Z[2 0 Z/2%+2 Z)2
M(3) Abo(2) Z)2%-! Z2 ZRBZ)2 Z[2 Z]R%+r Z)2 Z|2 0

for0<i<8, n=20and 8n+i=3. In the case n=0,i=0 or 1,
m;(M(1) A bo(2)) =n,(M(3) A bo{2)) =0.

In the case n =0, i =2,
T,(M(1) A bo(2)) = n,(M(3) A bo(2)) =Z/2.

COROLLARY 2. The top line of the first table, with n =0, gives the Pin~
bordism groups through dimension 7, the second line of the first table, with n =0,
gives the Pin™* bordism groups through dimension 7.

An alternate calculation of these bordism groups through dimension 4 is given
in [KT]. While trying to understand these low-dimensional calculations, we were
led to the general results presented here. The proofs will be given in the second
section and a short table of the bordism groups is included at the end of the
paper.

Notice that Pin~ bordism is a Z/2 vector space except in dimensions congru-
ent to 2 mod 4. Moreover, RP" has a Pin~ structure if n is congruent to 2 mod 4.
Likewise, Pin* bordism is a Z/2 vector space except in dimensions congruent to
0 mod 4 and RP" has a Pin* structure if n is congruent to 0 mod 4.

Recall some facts about the structure of the Spin bordism ring. The bo( )
factors are indexed by partitions. For a fixed n = 8k we have a different bo(8k)
for each partition, J, of 2k such that J has no 1’s in it. For any partition, let n(J)
denote the sum of the elements of J, or in other words, n(J) is the integer for
which J is a partition. The bo(8k + 2)’s are indexed by the partitions, J, with no
I’s for which n(J) =2k + 1. In the sequel, let bo{J) denote bo(4n(J)) if n(J) is
even or bo(4n(J) —2) if n(J) is odd. There is also a copy of bo{0)>. There are
elements M, in dimensions 4n(J), where J is a partition of n(J) with no 1’s. These
manifolds satisfy the condition that in our fixed decomposition of MSpin, the
bordism class of M, is a generator of 7, ;,bo{J) and maps to zero in m,,,, of all
the other summands.

Let X(J,n) = RP" x M, if n(J) is even. If n is even, fix a Pin* structure on
RP" and consider X(J,n) as an element of Pin* bordism. If n(J) is odd,
RP" x M, will be divisible by 2 in the corresponding Pin bordism group, so let
X(J, n) denote an element in Pin* bordism such that 2X(J, n) = RP" x M,. Note
that for Pin* bordism we are asserting that M, = M, x RP° is divisible by 2. Let
C(J, 2n) denote a cyclic group whose order is the order of the element X(J, 2n) in
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the appropriate Pin bordism group. There are natural maps C(J, 4n) - MPing, sy, 4n
and C(J,4n +2) > MPing, sy, an42-

THEOREM 3. The order of X(J, 2n) is given as follows:

2n=8 2n=8k+2 2n=8k+4 2n=8k+6
n(J) even 2%k +1 D%k +3 24k + 4 D4k +4
n(J) odd 2% +2 93k +2 24k +3 2%k +5

The sum of the natural maps
@ C(J, 4n) - MPin}
J.n

is injective with image a summand: the complementary summand is a Z[2 vector
space. The sum of the natural maps

,® C(J, 4n +2) - MPin

is injective with image a summand: the complementary summand is a Z|2 vector
space. In both sums, n 2 0 and J runs over all partitions with no 1’s.

COROLLARY 4. The Pin™* bordism groups, modulo the Spin bordism submod-
ule generated by the RP*", are Z[2 vector spaces. The Pin~ bordism groups, modulo
the Spin bordism submodule generated by the RP*"*2, are Z |2 vector spaces.

Finally, we pause to consider the standard question of the image of Pin*
bordism in unoriented bordism, denoted .4#"x. Using the techniques of Anderson,
Brown and Peterson [ABP2], we show

COROLLARY 5. The image of the natural map MPing§ — A« equals all
bordism classes all of whose Stiefel — Whitney numbers involving w,(t) vanish, where
T denotes the tangent bundle.

After this paper was submitted, we learned of the paper of Giambalvo [G],
which also calculates MPin* bordism. Giambalvo does the calculation via the
Adams’ spectral sequence and arrives at the same answer we do. He also attempted
to analyse the role of the RP*’s in Pin* and Pin~ bordism, using the map y
described below, but his results differ considerably from ours. Specifically, we claim
that the order of RP® ** in Pin* bordism is 2" ** and that his Corollary 3.5 is



438 R. C. KIRBY AND L. R. TAYLOR

wrong (see the discussion preceding Theorem 3). The table on page 399 is also
incorrect: the factor corresponding to M(2) A bo{8) is missing and the Z3 should
be Z/28.

We would like to thank S. Stolz for numerous conversations on the subject of
Pin bordism.

Proofs
We begin with two lemmas to reduce the calculation to a diagram chase.
LEMMA 6. The ith Pin* bordism group is isomorphic to
n,(MSpin A M(4k + 3)) for any k = 0.
The ith Pin~ bordism group is isomorphic to
n,(MSpin A M(4k + 1)) for any k =2 0.

In both cases, the usual transversality construction gives the isomorphism.

Proof. Let us begin with the Pin* case. Standard transversality constructions
identify n;(MSpin A M(4k + 3)) with the bordism theory of i-dimensional mani-
folds with a Spin structure on the bundle 7 @ (4k + 3) det (1), where 7 is the
tangent bundle to the manifold and det (1) is the determinant line bundle. It is
easy to check that for any bundle n, 4y has a canonical Spin structure, so the
above bordism theory is equivalent to the bordism theory of i-dimensional mani-
folds with a Spin structure on the bundle 7 @ 3 det (7). Next one can compute that
any bundle n has a Pin ™ structure iff n @ 3 det () has a Spin structure, and, since
this is a universal relation, one can set up a one-to-one correspondence between
Spin structures on n @3 det(n) and Pin* structures on n. Hence our bordism
theory is equivalent to the bordism theory of i-dimensional manifolds with a Pin*
structure on the tangent bundle.

The Pin~ case is entirely similar. O

Let M(Z/2,0) =¢e’ue' with attaching map of degree 2 and denote the
homotopy ith group of MSpin A M(Z/2,0) by (MSpin A Z/2),. These groups
can largely be calculated by applying Spin bordism to the cofibration sequence
5022 S°—>M(Z/2,0), since the degree 2 map on S° induces multiplication by 2
on the Spin bordism groups.
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These groups have an interpretation as Z/2-Spin bordism. This is the bordism
theory consisting of a manifold M with a codimension-one submanifold N; an
orientation on M — N which does not extend across any component of N; an
orientation of the normal bundle of N in M; a Spin structure on M — N; a Spin
structure on N; and diffeomorphisms which preserve the Spin structures from N to
the boundary components of M — N. We do not need this interpretation in the
sequel.

LEMMA 7. There exists a cofibration sequence
M(Z/2,0) >M(2r — 1) > 2°M(2r + 1) (8)
Hence we get long exact sequences
<+ —= (MSpin A Z/2), > MPin; —LMPin,‘,z—»- .
. (MSpin A Z/2). = MPin- —— MPin* ,—-- -

In both cases, the map  is defined by starting with a manifold M, finding a
submanifold N ¢ M dual to w,, and then forming the transverse intersection, N N\ N.
Notice that  can also be described by taking the natural map
Y: M(r) > Z*M(r + 2) and smashing it with MSpin. In particular, the two exact
sequences above decompose in the same way that MSpin does.

Proof. Recall that T(ré) = RP*/RP"~'. Indeed, RP" = RP"*’" with normal
bundle ré|zp.. Hence we have a map RP"*"— T(rf|gp-) and the composite
RP" < RP"*"— T(ré|gpn) is the zero-section. Hence a copy of RP"~' disjoint
from RP" in RP"*’ is null-homotopic in T(ré|gps), so we get a map RP"*’/
RP™ ' > T(r&|gpn) which is easily checked to be a homotopy equivalence.

The cofibration sequence is now clear since RP¥/RP* ~? is homotopy equiva-
lent to T((2r — 1)¢|gp1) and this is 2~ 'M(Z/2, 0).

The description of the map y also follows. Consider a Spin boundary
M™+2 =1 and a map f: M — T((2r — 1)¢). The map ¢ sends f to the composite
M - T((2r + 3)¢) of f and the map g: T((2r + 1)¢) - T((2r + 3)¢). To see what
happens to the underlying Pin manifolds, we can assume that f lands in
T((2r — 1)¢|gpn~) for some large N, and we get a cofibration sequence like (8) but
taking place inside of RPY*#*! instead of RP™. We make the new map trans-
verse to the zero-section to get out Pin manifold, P. The map g becomes a map
g: T((2r + 1)¢|gpn) = T((2r + 3)E|gpn-2), SO to get Y(P) we make the map
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P — RP" transverse to RPY~2 But this is the same as making it transverse to
RPY-' which gives a dual to w, in P and then intersecting this dual with
itself. OJ

PROPOSITION 9. The two tables below are obtained by smashing bo{0) with
the cofibration sequence (8) and taking homotopy groups. The first table takes
2r — 1 =4k + 1 and the second takes 2r — 1 = 4k + 3.

Tenr: M(Z/2,0) AboCO>  M(4k +1) Abo{0>  Z2M(4k + 3) A bo<0)

0 Z)2 Z2 0

1 Z/2 Z)2 0

2 2/4 2/24n+3 2/24n+1
3 Z)2 0 0

4 Z2 0 Z2

5 0 0 Z/2

6 0 Z/24n+4 Z/z4n+4
7 0 0 0

Mgnr: M(Z/2,0) Abo{0)  M(4k + 3) A bo(0) Z*M(4k + 5) A bo{0)

0 Z2 Z[24n+1 Z/2

1 Z)2 0 0

2 Z/4 Z)2 Z2
3 Z2 Z2 Z2
4 Z/2 2/24n+4 2/24n+3
5 0 0 0

6 0 0 0

7 0 0 0

Proof. The groups in the first columns follow from Bott periodicity and
the work on coefficients of Araki and Toda, [AT1] [AT2]. Note that all the
groups follow easily from the cofibration sequence S° ——x—2>S°—>M(Z /2,0) except
the extension for =m,. The groups in the column for M(4k + 1) are taken
from Anderson, Brown and Peterson, [ABP2]. From the second table
bo{0)> A M(3)s, .7 =b0{0> A M(3)s,,, 6 =b0{0> A M(3)g,,5s=0. From the first
table bo{0) A M(3)g, 4= Z/2*** and bo<0)> A M(3), 3 =b0{0) A M(3)g, > =
Z/2. An easy diagram chase using the second table shows that
bo(0> AM(3),,.,1=0 and that 0-Z/2-bo0> A M(3)3, = Z/2*" >0 is
exact. An easy diagram chase using the first table shows that bo<{0) A M(3)s, = Z/
24n +: 1_ D
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PROPOSITION 10. The two tables below are obtained by smashing bo{2)> with
the cofibration sequence (8) and taking homotopy groups. The first table takes

2r — 1 =4k + 1 and the second takes 2r — 1 = 4k + 3.

Mensi  M(Z/2,0) Abo(2)  M(4k +1) AboC2)  Z?M(4k +3) A bo(2)
4 Z/2 Z2 ZROZ2
5 0 0 Z)2
6 0 Z/24n+2 Z/24n+2
7 0 Z2 Z2
8 Z/2 Z20Z/2 Z[2
9 Z2 Z2 0
10 2/4 Z/24n+5 Z/24n+3
11 Z2 Z2 Z2
Tgntri  M(Z/2,0) Abo{2) M(4k +3) Abo(2) Z*M(4k + 5) A bo(2)
4 Z/2 Z/z4n+2 Z/24n+l
5 0 Z2 Z)2
6 0 Z2 Z/2
7 0 0 0
8 Z/Z 2/24n+3 2/24n+2
9 Z/2 Z/2 Z/2
10 Z/4 ZR®Z)2 ZRDZ2
11 Z/2 Z/2 Z[2

The groups mg,.; for n=0 and i =0 or 1 vanish for dimensional reasons. For
n=0 and i=2 or 3, ng,, (M(4k + 3) A bo{2)) =mn,,, (M(Z/2,0) Abo(2)) =
Mgn + i(M(4k + 1) A b0C2)) = Z /2.

Proof. The first columns follow just as above. Indeed, =;,(M(Z/2,0) A
bo{2)>) =n,(M(Z/2, 0) A bo{0)) unless i =0, 1 or 2, in which case n;(M(Z/2,0) A
bo{2>) =0if i =0, or 1, and n,(M(Z/2, 0) A bo{2>) = Z/2. (This is why we have
started our rows with 4 and gone to 11.) From the second table
bo(2> AM(3)s,,,=0 and bo(2> AM(3)s,,c=Z/2. From the first table
bo{2> A M(3)g,,4=2Z/2*"*? and bo{2) A M(3)s,, s = Z/2. Feeding these values
back into the second table, we see that bo(2) A M(3),,,, has order at least 2
and at most 4. From the first table, it is a subgroup of Z/2, and so
bo{2> A M(3)s, . 9= Z/2. From the first table, bo{2> A M(3)s, . s is cyclic of order
at least 2**3 and at most 2**3 Feeding this into the second table,
bo{2> A M(3)s, .5 =Z/2*"*3 and bo{2) A M(3)s, ., 1o has order at least 2 and at
most 8. From the first table, bo(2> A M(3)s, . 1, is a subgroup of Z/2, whereas
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from the second table it has order at least 2. Hence bo{2> A M(3)s, ., 1; = Z/2, and
from either table bo{2) A M(3);,. 10 has order 4. Indeed, the tenth row of the
second table is Z/4 ->bo{(2)> A M(3)s,, 10> Z/2 @ Z/2. These sequences are mod-
ules over n,(bo{0)), and the product with the non-zero class in m,(bo{0)) induces
an epimorphism 7y, , 10(M(Z/2,0) A bo{2)) - 7g, ., 1,(M(Z/2,0) A bo{2)). This
shows that bo(2> A M(3)s,,10=2/2 @ Z/2 since the map =g, ,,(M(Z/2,0) A
bo(2)) - ng, . 1, (M(4k + 3) A bo(2)) is an isomorphism. To see the required
product relation, first of all observe that it is an equally valid relation in =, (M(Z/
2,0) A bo<0)). In = (bo(0)) it is a well-known relation that ng,, ,(bo{0)) -
Tg, 4+ 2(b0C0)) is an isomorphism. The required relation is an easy diagram chase.

The case 8n + i = 2 or 3 can be dealt with similarly, and it is not hard to see that
bo(2) A M(3); =bo(2)> A M(3),=Z/2. Note that =n,(bo(2> A M(Z/2,0)) = Z/2,
not the Z/4 one might have expected, and that n;(Z>M(r) A bo{2)) =0, as does =,
since X°M(r) A bo{2) is 3-connected. O

The reader can easily deduce Theorem 1 from Propositions 9 and 10.

LEMMA 11. There exists a positive integer valued function, ¢(r), such that, for
any integer s such that s>r and s = —(r +1) mod 2%, there exists a map
¢ : 8" > T(s&) which is transverse to the zero section with inverse image RP’.

Proof. The reduced K-theory of RP’ is cyclic of order a power of 2 and
generated by &, the canonical line bundle. The power of 2 is the number ¢(r), where
¢(r) is the number of integers, ¢, with 0 <t <r and 1t =0, 1, 2, 4 mod 8. Since the
tangent bundle of RP’ is well-known to be (r + 1)¢, if we choose s as above, s¢ is
a stable bundle which is a normal bundle for an embedding of RP" into S"*°.
Apply the Pontrjagin—-Thom construction to this embedding to produce the map c.

O

Remark. The map c, or even its homotopy class, is not unique. Indeed, since the
r +s sphere above has a unique Spin structure, ¢ endows RP* with a Pin*
structure and RP*'*2 with a Pin~ structure. It is not hard to see that ¢ may be
chosen to get either of the two Pin* structures that exist on an RP?™.

We conclude this section with the proof of Theorem 3.

It will be convenient in what follows to fix a Pin* structure on RP?". Begin by
noticing that MPin; = Z/8 and RP? is a generator. Finally, if we switch the Pin~
structure on RP?, we get the negative of our previous element. Fix a Pin ~ structure
on RP? It is easy to calculate our map y from above in this case:
Y(RP?*) = RP?"~2 and if we switch Pin structure on RP?* we also switch Pin
structure on RP?"~2, Hence, having fixed a Pin~ structure on RP?, we can use
iterations of the y’s to pick out a Pin structure on all the RP?"’s.
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Recall another result on the decomposition of MSpin from [ABP1]. The bo{ )
factors are index by partitions J with no 1’s in them. If we set bo(J) = bo(4n(J))
if n(J) is even and bo(J) =be{4n(J) — 2 if n(J) is odd, then, localized at 2, MSpin
is a wedge of some K(Z/2,)’s and bo{J)’s where we have one factor for each
partition J with no 1’s. For each partition J with no 1’s select a Spin manifold, M,.
The class represented by M, is a generator of n,,,,(bo{(J)) and maps to zero in the
other factors in our fixed decomposition of MSpin localized at 2.

Define Y(J, 4n) = M, x RP*" as a Pin* manifold using our fixed Pin* structure
on RP*. Define Y(J,4n +2) = M, x RP**? as a Pin~ manifold using our fixed
Pin~ structure on RP*'*2, Note y(Y(J, 2n)) = Y(J, 2n —2). By Lemma 11 we can
identify the image of Y(J, 2n) rather well in =, (MSpin A M(s)) where s is any
integer so that RP?" comes from n,,(M(s)). With our fixed decomposition of
MSpin, Y(J, 2n) vanishes in all components of the decomposition except for the
Jth.

To proceed further, we need to analyze cases. Begin with the 8k case. If £k =0,
then we just have M, which is a generator of n,,,,(bo(4n(J))) localized at 2, and
hence a generator of my,,(bo{4n(J)) A M(Z/2,0)). From the second table in
Proposition 9, we see that this element continues to have order 2 in Pin* bordism.
Fix any s as in Lemma 11 for r =8k, and note that this s also satsifies the
hypotheses of Lemma 11 for r=8k —8. Consider Pin* bordism as
n,(MSpin A M(s)). Under our decomposition of MSpin, Y(J, 8k) goes to 0 in all
the pieces except for m,(bo(J) A M(s)). We claim that in this summand it is a
generator of order 2***'. Notice first that by Proposition 9 the element lives in a
cyclic group of order 2* *!. The four-fold iterate of ¥ defines a homomorphism
from this group to the corresponding one for 8k — 8, and Y(J, 8k) goes to
Y(J, 8k — 8). If we assume by induction that Y(J, 8k — 8) is a generator, then it
follows that Y(J, 8k) is also a generator and has the desired order.

Now suppose that n(J) is odd. The manifold M, still represents a generator of
Tansy(D04n(J) — 2> A M(Z/2, 0)), but this time, consulting table two in Proposi-
tion 10, we see that M, is divisible by 2. Let s = 3 mod 4 and identify Pin* bordism
with 7 (MSpin A M(s)). Let X(s, J, 0) denote a choice of element in Pin* bordism
which lives in the bo{J) A M(s) summand so that 2X(s, J, 0) = Y(J,0) = M,. Fix
any s as in Lemma 11 for r = 8k, and suppose that we defined X(s, J, 8k — 8) which
lives in the bo{J) A M(s) summand of MSpin A M(s) and which satisfies
2X(s, J, 8k — 8) = Y(J, 8k — 8) and X(s, J, 8k — 8) is a generator. From Proposition
10 this means that X(s, J, 8k — 8) has order 2* ~ 2. As above, consider the four-fold
iteration of . Restricted to the bo{J) A M(s) factor, the map is just the epimor-
phism Z/2%+2 5 Z /2% -2 and Y(J, 8k) goes to Y(J, 8k — 8). It is now easy to select
X(s, J, 8k) satisfying the required conditions. (Note that there are always two
choices.)
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The other cases are similar so we only discuss the key points. Begin with
the next case, 8k + 2 and start with k = 0. This means we are trying to identify RP?
in MPin; = Z/8. Applying ¥ and consulting the first table from Proposition 9, we
see that it is a generator. We can now use induction and the four-fold iterate of y
to handle the case n(J) even. In the case n(J) is odd, we need to identify M, x RP2.
It lives in a group of order 4, and table one of Proposition 10, shows that y is an
isomorphism, so M, x RP? is of order 2 in Pin~ bordism, since M, has order 2 in
Pin* bordism. Hence we define X(s, J, 8k + 2) as above using the four-fold iterate
of Y. The cases 8k + 4 and 8k + 6 are done in the same way.

Now let us define X(J,2n) = Y(J, 2n) if n(J) is even; for n(J) odd, define
X(J,2n) = X(2%@?"+!' —(2n 4+ 1), J, 2n). From the above discussion, we know
the orders of each of the X(J, 2n)’s: let C(J, 2n) denote a cyclic group of this
order with a fixed generator and map C(J,2n) to MPin* by sending the fixed
generator to X(J, 2n). We get maps

®,,C(J,4n) > MPin} and @ ,,C(J, 4n+2) - MPin; .

For n fixed we see from above that @,,C(J,4n) > MPin] and
®,,C(J,4n +2) - MPin_ are split injective. Theorem 3 asserts that these maps
are still split injective when we also sum over the n.

We do the Pin* case. Fix a dimension r = 8k. Note that C(J, 4n) lands in
dimension r iff r = 4n(J) + 4n. If n(J) is even, then C(J, 4n) has order 2"+ ! and if
n(J) is odd, C(J, 4n) has order 22"* 2. In particular, two C(J, 4n)’s which land in
the same dimension and have the same order have the same » and the same n(J).
If r =8k + 4 we get different numbers but the same conclusion. Finally note that
both @, _ 4ns)+ 4nC(J, 4n) and Mpin} have the same number of Z/2* summands
for all k> 1, and if we restrict the map @, _ 4,s)+ 4.C(J, 4n) > MPin to the
summands of order 2* we get a split injection. It is an elementary algebra exercise
to verify that this means that the map is a split injection and the complementary
summand is a Z/2 vector space.

The Pin~ case is entirely similar.

The proof of Corollary §

We begin with a general discussion of characteristic numbers. Let BG be a space
such as BSO, BPin*, etc. equipped with a map to BO. Let M be a manifold with
a G structure; i.e. the tangent bundle map M — BO has a fixed lift to a map
7 : M — BG. Then M” determines a homomorphism H"(BG; Z/2) —» Z/2 given by
sending x € H'(BG; Z/2) to t*(x) evaluated on the fundamental class of M. This
defines a homomorphism T : Q¢ - Hom (H*(BG; Z/2), Z/2). If we let M(G) denote
the Thom spectrum for the inverse to the universal bundle over BO pulled-back to
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BG, the Thom isomorphism shows that we can equally regard T as a homomor-
phism T :Q¢ - Hom (H"(M(G); Z/2), Z/2). If a homomorphism b&: H*(M(G);
Z[2) - Z/2 is to be in the image of T, then b(ax) =0 for any a in the mod 2
Steenrod algebra of dimension at least 1 and any x € H*(M(G); Z/2). If we let o
denote the mod 2 Steenrod algebra, we can turn Z/2 into an &/ module by letting
all the Sq' act trivially. Then Hom, (H*(M(G); Z/2), Z/2) c Hom (H"(M(G);
Z/2), Z/2) is precisely the set of homomorphisms satisfying our condition and
Condition P of [ABP2] merely says that the image of T is precisely
Hom, (H"(M(G); Z/2), Z/2). (It is also true that Hom_, (H*(M(G); Z/2), Z/2) =
EY"(M(G)) in the Adams spectral sequence for n,(M(G)). Moreover,
EY%(M(G)) < E3"(M(G)) is precisely the image of T. Hence the collapse of the
Adams spectral sequence is sufficient for M(G) to have Property P.)

Now Hom, (H"(M(G); Z/2), Z/2) behaves like any other Hom, so we can
apply it to the short exact sequences of cohomology groups coming from (8).
It is not hard to see directly that E9"(M(Z/2,0) Abo{0>) =Z/2 if r=0;
E}"(M(Z/2,0) Abo{2)) = Z/2 if r =2 and both groups are 0 otherwise. Theorem
4.4 of [ABP2] says that EY"(M(1) Abo{0>) =Z/2 if r=0 or r=2 (mod4);
E3"(M(1) Abo{2)) =Z/2 if r =2 or r =0 (mod 4) and both groups are 0 other-
wise. One can also check by hand that E3"(M(3) Abo{0>) =Z/2if r =0 and is 0
for r <3 and that EY"(M(3) A bo{2>) = Z/2 if r =2 and is 0 otherwise for r < S.
By comparing the two exact sequences coming from (8) we can compute
E3"(M(3) A bo{0)) and E(M(3) Abo{2)). More importantly, we can see
that ¢: E3"(M(1) A bo<0)) = ES" ~2(M(3) A bo{0>) and ¥ : ES"(M(1) A bo{2}) —»
E%"~2(M(3) A bo{2)) are both epic. Since M(1) A bo<{0)) and y : ES"(M(1) A
bo(2)) = E$"~%(M(3) A bo{2)) are both epic. Since M(1) Abo{0) and
M(1) A bo(2) satisfy Property P by [ABP2], this shows that M(3) A bo<0) and
M(3) A bo{2) also satisfy Property P. The Eilenberg—MacLane summands also
satisfy Property P, hence so does MPin™.

Since H*(BO; Z/2) - H*(BPin™*; Z/2) is onto, it follows formally that a mani-
fold, M", is unoriented bordant to a Pin* manifold iff all the characteristic
numbers in the kernel of H"(BO; Z/2) - H"(BPin*; Z/2) vanish on M. This
kernel is the ideal in H*(BO; Z/2) generated by w, and its images under the
Steenrod algebra: e.g. w, is in the kernel. It is always the case however that, if all
the characteristic BO-numbers of a manifold which involve x € H'(BO; Z/2) van-
ish, then all the numbers involving a(x) for any a € &/ also vanish. Hence M is
bordant to a Pin* manifold iff all tangential characteristic numbers involving w,
vanish.

We may as well finish by remarking that MSpin A Z/2 satisfies Property P and
that a manifold is unoriented bordant to an element in MSpin A Z/2 iff all the
numbers involving w, and w? vanish.



446 R. C. KIRBY AND L. R. TAYLOR
The tables

Here are the promised Pin* bordism groups through dimension 95, arranged in
two tables. The second table gives A(n), the number of Z/2 summands in MPin,}.
The first table gives numbers n(n) which enable us to find the other summands in
dimensions congruent to 0 mod 4. For MPing, , ,, the summands of order greater
than 2 are @n(i)Z/2****~-? beginning with i=0 and continuing until
4n +4 — 2i = 2. For MPing, , 3, the summands of order greater than 2 are @n(i)Z/
2%+ 52 peginning with i = 0 and continuing until 4n + 4 — 2/ = 3. As an example,
28=8-3+4 50 MPin};=4Z2 ® (1Z2'"® 0Z2"“ @ 1Z2"2 ® 1Z]2"° @ 2Z/28
@2Z2° D AZ/2* @ 4Z/2%)

n n(n)
1 4 2 8 1 12 21 16 ss 20 137
0 52 9 3 13 24 17 66 21 165
1 6 4 10 12 14 34 18 88 22 210
1 7 4 11 14 15 41 19 105 23 253

n Am
12 o 24 36 17 48 113 60 394 72 1556 84 4965

01
1o 131 25 s 37 34 49 130 61 52 73 1764 85 5843
21 14 1 26 20 38 4 50 244 62 606 74 2440 86 6541
31 150 27 11 39 27 51 22 63 548 75 2423 87 6605
40 16 2 28 4 40 43 52 152 64 o673 76 2224 88 7536
S50 17 1 29 12 41 4 53 22 65 m 77 2694 89 8412
60 18 8 30 15 42 109 54 258 66 1150 78 3041 90 10515
70 19 7 31 8 43 9 55 28 67 1114 79 2995 91 10814
20 1 32 16 44 s4 56 281 68 959 80 3475 92 10730
4

O o0
o -

21 33 17 45 389 57 324 69 1209 81 3907 93 12365
10 3 22 5 34 a8 46 106 58 534 70 1378 82 5103 94 13750
11 3 23 2 35 4 47 81 59 503 71 1310 83 5168 95 14135
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