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An obstruction for smoothing of Gorenstein surface singularities

ANATOLY LIBGOBER AND STEPHEN S.-T. YAU

§0. Introduction

An isolated singularity of a complex analytic space V is called smoothable if
there is a flat family ¢ : ¥" — D over the unit disk D such that ¢ ~'(0) is isomorphic
to V and the generic fibre of ¢ is non-singular. The first example of a non-smooth-
able singularity was due to R. Thom (cf. is a cone over P! x P2 embedded in P’ by
Segre embedding). The proof uses complex cobordism theory and is based on the
fact that the link of a smoothable singularity of V" having dimension say k (which
is the intersection of V and the boundary S?¥ —! of a small ball about the singular
point of ¥V embedded in CV) defines the trivial element of m,y_ ,(MU(N —k))
where MU(N — k) is the Thom space of the universal (N — k)-bundle. Hartshorne
used the Barth—Ogus type theorem to prove non-smoothability of cones over
some algebraic varieties (cf. [Ha] which contains good overview of the subject
around that period). E. Rees and E. Thomas [RT] made detailed calculation
of the homotopy groups of the Thom spaces in question and used them to con-
struct more examples of non-smoothable singularities. J. Wahl [W] constructed
additional examples based on a new idea. His methods of detecting non-smooth-
ability of Gorenstein surface singularities used the formula for the length g of
Coker (0,r®0, > 6,):

B =h'(©@p) + 10p, + 2K?

under the hypothesis of the existence of globalizing smoothing of ¥V which was
proven only recently by Looijenga [Lo]. Here @ (resp. &, resp. ©,,) denotes the
tangent sheaf of the desingularization V of V, (resp. V, resp. relative derivations),
P, is the geometric genus h'(0p) and K is the canonical class of V. The equivalent
formula was also proved independently by the second author [Y2]. The example of
Wahl [W] depends on the fact that under further hypothesis (cf. Theorem 4.3 of
[W]) B is the dimension of the smoothing component. Hence singularities for which
the expression is negative automatically cannot be smoothable. Using this, he
proved that cusp with multiplicity m with r exceptional curves in the minimal
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resolution and m > r + 9 is non-smoothable. The point is that cusp singularities are
taut by Laufer [Lal]. Therefore h'(@;) can be computed easily for cusp singulari-
ties. However, in general, it is difficult to compute h'(@;). Recently Wahl and
Looijenga [LW] pointed out that invariants of the linking pairing on the link of
singularity can be used to detect non-smoothability although calculations of these
invariants are not obvious.

The purpose of this work is to show that Rohlin’s u-invariant can be used to
detect non-smoothability as well. The use is rather similar to the use of the
signature defects by A. Durfee [D] to obtain a formula for the signature of the
Milnor fibre. Under certain circumstances (cf. Proposition 2 below), the link of
singularity has the same Z, homology as S* and hence has a unique spin structure.
It can be calculated from a resolution or from a smoothing. For example compari-
son of these two expressions leads to the congruence K* + 8p, = 0(mod 16) which
is a necessary condition for smoothability if K =0(mod 2). The main purpose of
this paper is to prove the following theorem:

THEOREM 1. Let (V,0) be a 2-dimensional smoothable Gorenstein singularity.
Let V be a resolution, K the canonical class and S be a smooth (real) surface in V dual
to K mod 2. Then there is a Z,-quadratic form on H,(S, Z,) with Arf invariant Arf S
such that

K*+8p, =S*+8ArfS (mod 16).

As the corollary, one obtains the following result which in application is easier
to use than Theorem 1.

THEOREM 2. Let (V, 0) be a 2-dimensional smoothable Gorenstein singularity.
Let V be a resolution of V and E = \), E; be the irreducible decomposition of the
exceptional set E in V. Define S to be such a union of exceptional curves that
S - E; = E; (mod 2) for all exceptional curves E;. Assume that

(a) The first betti number of the exceptional set E of V is zero, i.e. weighted dual

graph of V is a tree and all exceptional curves are rational.

(b) The determinant of the intersection form of the exceptional set E is odd.
Then

K*+8p,= ) (E}) (mod 16).

EcS

We give examples of Gorenstein surface singularities violating the congruence
and hence non-smoothable. These examples also provide a negative answer to the
question of Seade ([S1]) on Arf invariant of quadratic form associated to the
surface dual to the canonical class of resolution (cf. Remark 2.5). It seems that
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non-smoothability of these singularities cannot be detected by previously used
means. For example, the Thom obstruction pointed out earlier is in group
Tyn — 1 (MU(N — k)) where N is the complex dimension of the ambient space and k
is the codimension of singular subspace. As pointed out in [RT] n,5 _ ,(MU(N — k))
is isomorphic, for 2k < N, to Q% _, which is the unitary cobordism group of
dimension 2k — 1 and the latter group is trivial (cf. [RT] for the references). The
inequality 2k < N is satisfied in our examples and hence the Thom obstruction for
smoothability is trivial.

We would like to thank Professor M. Benson for his help on computer
programs.

§1. Rohlin’s u-invariant

In this section, we shall collect the various definitions needed in this paper.
Recall first that a Spin structure on a manifold M. is a double cover P of the
principal SO-bundle P associated with the tangent bundle of M such that its
restriction on any fibre of the canonical projection P — M is isomorphic to the
non-trivial cover Spin — SO. Spin manifolds M, and M, are Spin cobordant if there
exist Spin manifold W such that 0W = M, U M, and Spin structure on W restrict to
given Spin structures on M, and M,, Spin structures on a manifold M exist if and
only if w,(M) =0 and the set of Spin structures on M has a structure of an affine
space over H'(M, Z,) (cf. [Mi]). This follows from the exact sequence (low degree
terms of the spectral sequence of fibration P — M).

0~ H'(M, Z,) > H'(P, Z,) 5 H'\(SO(n), Z,) » HX(M, Z,).

The image of the right homomorphism is w,(M). The homomorphism f is onto if
and only if M admits a Spin structure and the set of Spin structures is the inverse
image of the nontrivial element in H'(SO(n), Z,). In particular if M is a 3-dimen-
sional Z,-homology sphere (H,(M, Z,) = H,(M, Z,) = 0), then M admits a unique
Spin structure. Alternatively one can describe a Spin structure on M as a lifting of
the classifying map M — BSO(n) to the map M — B Spin (n)

B Spin (n)
/Sl
M < BSO(n)

so that the diagram commutes.
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Recall the definition of Rohlin’s invariant. Let M be a closed oriented Spin 3-
manifold. The group of Spin cobordism in dimension 3 is trivial. Hence there
is a Spin 4-manifold W such that 0W =M and such that the Spin structure
of W restricts to the given Spin structure on M. The Rohlin invariant u is
(c(W)/16) mod Z (cf. [HNK] §7). Now let W be a 4-manifold which bounds
a manifold 0W which has a fixed Spin structure . The obstruction to extending
o to a Spin structure on W is an obstruction to extending to W given
lifting OW — B Spin (n — 1) — B Spin (n). This obstruction is an element of
H*(W,0W, Z,), (a relative Steifel Whitney class w,(W, g)). Note that if S is a
closed nonsingular surface in W then W — S admits a Spin structure extending a
given Spin structure ¢ on the boundary dW if and only if S is dual to w,(W, o) i.e.
under Poincare duality homomorphism HX(W, oW, Z,) — H,(W, Z,) the image
of w,(W) is the image of the fundamental class of S in H,(W, Z,). Indeed the
obstruction for existence of a Spin structure on W — § extending the given one on
OW is an element of H(W — S, 0W, Z,) which is the image of w,(W, o) under the
inclusion map i*: HXW, 0W) - H¥(W — S, 0W). Under Poincare duality homo-
morphism i* corresponds to the restriction map H,(W) - H,(W,S) where
H*(W — S,0W) is identified with H,(W —S) via isomorphisms H*(W — S,
OW) —— H¥ (W — T(S), 0W) - Hy(W — T(S), 0T(S)) — H,(W, S). (T(S)) is a
tubular neighborhood of S.) The kernel of H,(W) — H,(W, S) is generated by the
fundamental class of S and our claim follows. Recall that for S « W which is dual
to w,(W) corresponds to Z,-quadratic form on H,(S, Z,) defined as follows.
Perform, if necessary, surgery on W to assure that every element a € H,(S, Z,) can
be represented by a closed curve for which there exists a surface D, = W such that
0D, =a and D, is transversal to S along a. Then g(«) is the sum mod 2 of the
obstruction to extending the normal vector field to « in S to a normal in W vector
field to D, and the number of intersections of D, and S. g(«) is independent of the
choice of the surgery on W, a« mod 2 and D, ([FK] Cor. 1) and is quadratic in a.
The Arf invariant of S is defined to be the Arf invariant of q.

LEMMA. If S is dual to w,(W) mod 2 and the Spin structure on 0W is the
restriction of Spin structure on W — S, then

o(W)— S?

uow) = 3

=ArfS mod2

where o(W) denotes the signature of W.

Proof: Let W be a 4-manifold with a Spin structure such that W = oW and
such that the restriction of the Spin structure from W on W is the same as the
restriction of the Spin structure from W — S on 0W. Then (W — S) u(W) inherits
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a Spin structure and hence S is dual to w,(W u W). By Rohlin’s theorem and the
additivity of the signature

o(W) —a(W) - S§?

A =ArfS mod 2.
Hence
- Q2
W) _ o) =S* | At mod?2
8 8
and the left side of this congruence is the u-invariant. Q.E.D.

Finally recall the analytic method to compute Arf S from [L] assuming that W
is a complex manifold with boundary W and S is a complex curve. Let K be the
canonical divisor. Let S = K mod 2 and D be such divisor that K + S = 2D. Then
Arf S = dim H°(S, O05(D)) mod 2. For example if W is resolution of the singularity
224234+ 25=0 which is a bundle over torus S, then K= -8, D=0 and
Arf S =dim H°(S, Og) =1 (cf. [S2] example 4.4).

§2. A congruence for invariants of smoothable Gorenstein singularities with link
a Z,-sphere

In this section we prove Theorem 1 and derive the corollaries on which the
examples of non-smoothable singularities are based.

Proof of Theorem 1. A non-vanishing holomorphic form @ on ¥V — {0} defines
a subbundle in the principle bundle associated to the tangent bundle consisting of
the frames (v,, v,) such that w(v,, v,) =1, which is a SU(2) subbundle, i.e. a SU
(2)-structure on ¥ — {0}. Nonvanishing form on ¥ — {0} extends to a non-vanishing
form on a nearby Milnor fibre (cf. [S1]) and produces a SU (2) structure on it as
well. The boundary of the Milnor fibre and the boundary of ¥V — {0} which is
identified with the boundary of the resolution have equivalent SU (2) = Spin (3)
structures. Let S be a smooth surface dual to K. Then according to the lemma from
the previous section, the u-invariant calculated from the resolution is

—5— 52

3 +Arf S mod?2

because the signature of the resolution is —s where s is the number of exceptional
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curves in the resolution. On the other hand the u-invariant calculated from the
Milnor fibre is

s(—K*—5—8p,) mod2

as follows from the second author’s work [Y] because as pointed out earlier the
Milnor fiber admits a Spin structure. Equating these two expressions leads to
Theorem 1.

Proof of Theorem 2. The proof uses the following.

PROPOSITION 2. Let (V,0) be a normal 2-dimensional singularity with link L.
Let V be a resolution of V. Then L is a Z, homology sphere if and only if the
following conditions are satisfied:

(a) The first betti number of the exceptional set E of V is zero i.e. weighted dual

graph of V is a tree and all exceptional curves are rational.

(b) The determinant of the intersection form of the exceptional set E is odd.

Proof. (cf. [NR]) Recall that H,(V,L;Z,) is isomorphic to the dual of
H\(V, L; Z,). By Lefschetz duality H'(V, L; Z,) isomorphic to H,(V; Z,). Since ¥
is homotopy equivalent to E, we have Hy(V; Z,) = H,(E; Z,) = 0. Hence we have
H,(V,L;Z,) =0. Consider the long homology exact sequence

Hy(L; Z,) » Hy(V; Z,) 5 Hy(V, L; Z,) » Hy(L; Z,)
-~ H,(V, Z,) 0.

Notice that the matrix of i is the intersection matrix of the exceptional set E. If L
is a Z,-homology sphere, then H,(L; Z,) = 0= H,(L; Z,). It follows from the exact
sequence that b,(¥, Z,) =0 (hence condition (a) is satisfied) and the matrix of i is
invertible (hence condition (b) is satisfied). Conversely if conditions (a) and (b) are
satisfied, then H,(L; Z,) is zero by the above exact sequence. Poincare duality tells
us that H,(L; Z,) is also zero. So L is a Z,-homology sphere. Q.E.D.

Now let us note that if the resolution graph of the singularity is assumed to be
a tree, then S is a disjoint union of smooth curves. Indeed (S - E;) is equal to the
sum of E? and the number of vertices in the graph of resolution which are adjacent
to E; and belong to S. Hence the latter number should be even. But the end point
of subgraph S is adjacent to one point. Hence S does not have end points, i.e. S is
a disjoint union of points. Therefore S? =X E? and Arf S = 0 because all curves are
rational i.e. H,(S, Z,) =0 and Theorem 2 follows. (Q.ED)
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REMARK 2.1. S consists of those exceptional curves on which K has odd
multiplicity. This follows from the facts that w,= K(mod 2) and Wu formula
E} =w, - E;(mod 2) for all exceptional curves E; (adjunction formula: K - E; =
2—2g,+ E}). In fact the proof of Theorem 2 asserts that under the hypothesis of

Theorem 2, exceptional curves on which K has odd multiplicity cannot intersect
each other.

REMARK 2.2. On page 483 of [S1], Seade poses the question if
Arf K = p,(mod 2) where p, = h'(0p) is the geometric genus and Arf X is the Arf
invariant of Rohlin’s form associated with a smooth surface dual to the w,(¥). This
congruence is equivalent to the congruence from Theorem 1. Indeed taking S dual
to K as an integral class, Theorem 1 reduces to Seade’s congruence. Conversely, let
us apply Theorem 2 of Seade [S2] in the case W = K and W = S. By considering the
Adam’s invariant we have

S?—8AIfS

K?* -8 ArfK
16 '

LAV + T

AW) +

Hence S2—8 Arf S = K? — 8 Arf K (16) and equivalence of Theorem 1 and Seade
congruence follows.

§3. Examples of non-smoothable singularities

In the following examples, we shall construct resolution ¥ explicitly. V is
obtained by blowing down the exceptional set in ¥ by Grauet-Mumford criterion
[Mu]. We shall first write down the weighted dual graph. Then we shall use the
plumbing construction to write down the complex manifold with the exceptional set
having the same weighted dual graph as the prescribed one.

EXAMPLE 1. The weighted dual graph of the exceptional set is given as
follows:

E; -22
Eq
-6

E, By E, E Ey By Ey E)
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We use the convention that the vertex without a specified weight has the self-
intersection number —2 and the genera of all vertices are zeros. Notice that this is
a Gorenstein graph. It is easy to check that the determinant of the intersection
matrix is odd and the canonical divisor K is given by

-20
—420
K=-164 -328 —-492 —-656 —820 —-564 -—308 -—52 (3.1)

The manifold ¥ consists of coordinate patches glued as follows:

B i’ '
, futo
: Ea
7] u3 ve ur vy 1 vs jve
u; Es T'a ug Er . . Ey uy
E, Eq E's
vy Eq
E,
! v Uy va Es us
o u
i

The coordinate transformations are given by

_1 s
Up = Vyo = Uglyg
9
— 1 _ 2
Ug = — Ug = Uglyg
Ug
1
- — 2
Ug = ] vg = usvs(1 — us)
us(1 — us)
1
u7 = U7 = u6v%2
Vg
1
_- _ 2
Ug = ve = usvs(1 — us)
UsUs
— 1 _ 2
Us = — Us == UaUy
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1 2

Uy = — V4 = U3V3
U3

1 2

Uy = — U3 = UpU3
%]

1 2

u2 - U2 = u,vl
Uy

1 2

U =— U = Uplyg
Vo
A function

x = ulvd(l —us)*
_uga—b a(1+u8v8)b—a~—c
___uga—vaga-b(l+ugvg)b—-a—-c
= ulfelg (1 +ulfolo)
_u%c—b c(l+u6v6)b_a-c
=u;3c——22bv_2,c—b(1 +u¢_}3v_2’)b—a—c
___ub 2b — C(U _l)c

_— 2b—a—c¢,,3b—2a— 2c 2 c
Uj U3 (w303 —1)

4,36 —2a— 2c¢,,4b — 3a — 3¢¢(,,2,,3 c
= U3 5] (usv;— 1)

—_ ulltb— 3a - 3cv?b——4a—4c(u?v? _ l)c
— ugb—4a—4cvgb—5a—5c(ugv(5) _ l)c
is holomorphic in ¥ if and only if

(aZO, b20, ¢c=20
16a — 116 20

43¢ —22b 20
L6b—-5a-—-5020

421

(3.2)
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The divisor of x is (x) =

2c —b
c
Sb—4a —4c 4b—3a—3c 3b—-2a—-2¢c 2b—a-—-c b a 2a—b 3a—-2b

(3.3)

With the help of Max Benson’s computer program, we find that the integral
semi-group of (3.2) has seven generators. Therefore the minimal embedding dimen-
sion of ¥ (the blown-down of ¥) is seven. By abusing the notation, we shall denote
the divisor (x) of a holomorphic function x by (a, b, ¢). The actual formula for (x)
is given by (3.3). The seven coordinate functions are as follows:

(x,) = (148,215, 110)
(x,) = (473, 688, 352)
(x3) = (55, 80, 41)
(xs) = (86, 125, 64)
(xs) = (117, 170, 87)
(xs) = (176, 256, 131)
(x;) = (207, 301, 154)

Recall that p, is also equal to dim¢c H(V — E, Q%)/H°(V, Q%) where Q2 is the sheaf
of germs of holomorphic 2-forms on ¥ by a result of Laufer [La2]. This means that
P, is the number of independent meromorphic 2-forms that cannot be extended
across the exceptional set. We can construct a meromorphic 2-form @ which has no
zeros on ¥ — E and the divisor (w) is exactly K as shown in (3.1). Notice that any
meromorphic 2-form w’ € H°(V — E, Q%) can be written as o’ = fw where fis a
holomorphic function on ¥ because any homomorphic function on ¥ — E extends
across E. Therefore to compute p,, we only need to count how many monomial
x'ix52 - - - x77 there are such that x7'x%2--- x7’w has a pole somewhere along E.
This is equivalent to find how many nonnegative integral vectors (n,, ..., n;) are
such that n,(x,) + - - - + n,(x;) + (w) is not effective. This can be done using Max
Benson’s computer program. We find that p, = 307. On the other hand using (3.1)
we get K* = —608. Hence K + 8p, = 8(—76 + 307) =8 - 231 # 0(mod 16). In view
of Theorem 2, the singularity (¥, 0) is not smoothable. Notice that the conditions
of Laufer’s conjecture (cf. [La3] or Wahl’s version of laufer’s conjecture (cf. [W])
on smoothable singularities are not satisfied for this example.
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EXAMPLE 2. The weighted dual graph of the exceptional set is given as
follows:

E, -30
Es
-6

E. E;, Ey, E Es Ey Ey Ej

This is a Gorenstein graph and the determinant of the intersection matrix is odd.
The canonical divisor K is given by

—4
~92
K=-36 —-72 —108 —144 —180 —124 —68 —12 (3.4)

The manifold ¥ consists of eleven coordinate patches as shown in Example 1 above.
The coordinate transformations are given also as in Example 1 except

|
U; =— W= “6”?30
23

A function x = u%%(1 — us) is holomorphic on ¥ if and only if

(aZO, b20, ¢c20
16a — 11620
3.
ﬁ59c——30b20 (3.5
6b —5a—520
.
The divisor of x is (x) =
2c—b
c
S5h —4a —4c 4b—-3a—3c 3b—-2a—2c 2b—a—c b a 2a—b 3a-2b
(3.6)

With the help of Max Benson’s computer program, we find that the integral
semigroup of (3.5) has seventeen generators. Therefore the minimal embedding
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dimension of ¥V (the blown-down of V) is seventeen. By abusing the notation, we
shall denote the divisor (x) of a holomorphic function x by (a, b, ¢). The actual
formula for (x) is given by (3.6). The seventeen coordinate functions are as follows:

x, = (204, 296, 150)
x, = (649, 944, 480)
x; = (55, 80, 41)

xs = (31, 45, 23)

x5 = (38, 55, 28)

x¢ = (66, 96, 49)

x, = (73, 106, 54)
xg = (77, 112, 57)
xo = (80, 116, 59)
x10= (119, 173, 88)
xy, = (121, 175, 89)
X1, = (122, 177, 90)
x5 = (161, 234, 119)
x4 = (163, 236, 120)
x,5 = (203, 295, 150)
X6 = (242, 352, 179)

x,, = (284, 413, 210)

As in Example 1, p, can be computed by Max Benson’s computer program. We
find that p, =31: On the other hand, using (3.4), we get K*= —160. Hence
K*+8p, =8(—20+31) =8-11# 0 (mod 16). In view of Theorem 2, the singular-
ity (¥, 0) is not smoothable. Notice that the conditions of Laufer’s conjecture
(cf. (La3) or Wahl’s version of Laufer’s conjecture (cf. [W]) on non-smoothable
singularities are not satisfied for this example.
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EXAMPLE 3. The weighted dual graph of the exceptional set is given as
follows:

E; -10
Eq
-28

E, E;, Ey E. Es E4 Ey Ey

This is a Gorenstein graph and the determinant of the intersection matrix is odd.
The canonical divisor K is given by

—14
—132
K=-50 —100 —150 —200 —250 —168 —86 —4 (3.7

The manifold ¥ consists of eleven coordinate patches as shown in Example 1 above.
The coordinate transformations are given also as in Example 1 except

Uy =— Uy=uUgs®

— _ 28
Ujg=— Vg = Uglg
Vg

A function x = u%?%(1 — us)¢ is holomorphic on ¥ if and only if

(aZO, b=20, ¢c=20
82a — 556 20
—5a+6b—5¢20
L—10b+19020

(3.8)

The divisor of x is (x) =

2c - b
c
Sb—4a —4c 4b—-3a—3c 3b—-2a—2c 2b—a—-c b a 2a—b 3a-2b

(3.9
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With the help of Max Benson’s computer program, we find that the integral
semigroup of (3.8) has sixten generators. Therefore the minimal embedding dimen-
sion of V (the blown-down of V) is sixteen. By abusing the notation, we shall
denote the divisor (x) of a holomorphic function x by (a, b, ¢). The actual formula
for (x) is given by (3.9). The sixteen coordinate functions are as follows:

x, = (64, 95, 50)

x, = (1045, 1558, 820)
x; = (275, 410, 217)
x4 = (37, 55, 29)

x5 = (47,70, 37)

x¢ = (51, 76, 40)

x; = (104, 155, 82)
xg = (108, 161, 85)
xo = (161, 240, 127)
x10= (163, 243, 128)
x1, = (165, 246, 130)
X1, = (218, 325, 172)
x13 = (220, 328, 173)
x4 = (275, 410, 216)
x,5 = (330, 492, 259)

x16 = (548, 817, 430)

As in Example 1, we find that p, =46. On the other hand, using (3.7), we
get K?= —216. Hence K?+ 8p, = 8(—27+46) =8.19 # 0(mod 16). In view of
Theorem 2, the singularity (¥, O) is not smoothable. Notice that the conditions of
Laufer’s conjecture (cf. [La3]) or Wahl’s version of Laufer’s conjecture (cf. [W]) on
nonsmoothable singularities are not satisfied for this example.
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EXAMPLE 4. The weighted dual graph of the exceptional set is given as
follows:

E, -10
Eq

-12

[ Py Py Py Y Y ]

E1 E) E3 Es E1 Eg Eg Em

This is a Gorenstein graph and the determinant of the intersection matrix is odd.
The canonical divisor K is given by

-10
—92
(K)=-58 —116 —-174 —-140 -—-106 —-72 -—-38 —4 (3.10)

The manifold ¥ consists of eleven coordinate patches as follows:

o

' v vs EQ

(] ]

' E, U v Eg ug

! v * us ug vy

i

Yo J vs : ve E, E, Eyo
: Ey Eq ur vio
- s e e» e R
vy uio
ujz EC
va Ey u3
v3

The coordinate transformations are given by

1
— _ 12
Ujp=— Vg = Uglg
Vg
_1! 2
Uy = Ug——ugvg
Ug
— 1 _ 2
ug—-— vg—u7v7
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1 2
u7—_ v7=u606
Vg
2
Ug ve = u3035(1 — u3)
v3(1 —u3)
1
Us = — Us = tyv 0
Uy
1 2
Uy = —— vy = u303(1 — u3)
U303
1 2
Uy = — Uy = UyV3
U
1 2
U = — Uy = Uy
Uy
1 2
ul = — Ul = uovo
Vo
A function

x =ujv3(1 —u3)°

uda-

b, a(l +uﬁv )b—a——c

— u;;a——va%a~b(1 + u;v%)bua——c

— uga—3b03a~2b(l + ugvg)b—-a-—c

= uga—‘tbvga-iib(l + ugvg)b—a——c
56a — 45b,,5a — 4b b—a—c
= Uy vie (1 + uigvio)

= 5

2¢c— b ((] +u404)b—a—<

— u;9c— lObv§<'~— b(l + u;9v§)b —a-c

=Uu,

b Zb-—a (U __l)

e g32b—a— y,3b — 2a — 2¢ 2 ¢
=uy 47 vy (wvy—1)

3b - 2a — 2¢'Ugb— 3a — 3(‘(u(2)v(3) ___ l)(
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is holomorphic on ¥ if and only if

(020, b=20, ¢c=20
56a —45b 2 0
—10b +19¢ 2 0 (3.11)
k—3a+4b——3c20
The divisor of x is (x) =
2c—b
c
3b —2a—-2c 2b—a-c b a 2a—b 3a—-2b 4a—-3b 5Sa—4b
(3.12)

With the help of Max Benson’s computer program, we find that the integral
semigroup of (3.11) has ten generators. Therefore the minimal embedding dimen-
sion of V (the blowndown of ¥) is ten. By abusing the notation, we shall denote the
divisor (x) of a holomorphic function x by (a, b, ¢). The actual formula for (x) is
given by (3.13). The ten coordinate functions are as follows:

x; = (46, 57, 30)

x, = (855, 1064, 560)
x; = (135, 168, 89)
xa= (29, 36, 19)

xs = (41, 51, 27)

X¢ = (90, 112, 59)

x, = (107, 133, 70)
xg = (168, 209, 110)
Xo = (397, 494, 260)

Xy = (626, 779, 410)

As in Example 1, we find that p, =30. On the other hand, using (3.10), we
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get K? = —120. Hence K*+ 8p, =8(—15+30) =8 15% 0(mod 16). In view of
Theorem 2.1, the singularity (¥, 0) is not smoothable. Notice that the conditions of
Laufer’s conjecture (cf. [La3]) or Wahl’s version of Laufer’s conjecture (cf. [W]) on
nonsmoothable singularities are not satisfied for this example.

In the following two examples, we shall show that for smoothable singularities,
the condition in Theorem 2 is satisfied.

EXAMPLE 5. The weighted dual graph of the exceptional set is given as
follows

Es -10
Eq
-8

E, E; E, E¢ E;: Ey Ey Ey

This is a Gorenstein graph and the determinant of the intersection matrix is odd.
The canonical divisor K is given by

-22
—212
K=—-134 —-268 —402 —-324 —-246 —-168 —-90 -—12 (3.13)

The manifold ¥ consists of eleven coordinate patches as in Example 4. The
coordinate transformations are given as in Example 4 except for

1 8
Ujp = Ujp = Ugly.
Vg

A function x = u%v4(1 — ;)¢ is holomorphic on ¥ if and only if

(a 20, b20, c20
36a—295 20
—106+19¢ 20

k—3a+4b—-3c20

(3.14)
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The divisor of x is: (x) =

2c—b
¢
3b—-2a—-2c 2b—a-—c b a 2a—b 3a—-2b 4a—-3b S5a—4b

(3.15)

With the help of Max Benson’s computer program, we find that the integral
semigroup of (3.14) has four generators. Therefore the minimal embedding dimen-
sion of V¥ (the blown-down of ¥) is four. By abusing the notation, we shall denote
the divisor (x) of a holomorphic function x by (a, b, ¢). The actual formula for (x)
is given by (3.15). The four coordinate functions are as follows:

x, = (46, 57, 30)
x, = (551, 684, 360)
x; = (29, 36, 19)
x4 = (199, 247, 130)

As in Example 1, we find that p, = 59. On the other hand, using (3.13), we get
K?= —248. Hence K* + 8p, = 8(—31+59) =16 14 = 0(mod 16). (V, 0) is a codi-
mension 2 Gorenstein surface singularity in C°. By a result of Schaps [S] (V, 0) is
a determinantal scheme and is smoothable.

EXAMPLE 6. The weighted dual graph of the exceptional set is given as
follows:

Es ¢ -14
E,

-4

P & & & 5. 5 v 3
L . " g

E, E; E; E¢ E; Ey Ey Ey

This is a Gorenstein graph and the determinant of the intersection matrix is odd.
The canonical divisor K is given by

—10
—128
K=-8 —164 —246 —-200 —154 —108 —62 -—16 (3.16)
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The manifold ¥ consists of eleven coordinate patches as in Example 4. The
coordinate transformations are given as in Example 4 except for

1 4
Uipg =" UV1p=Uglg
Uy

Us=— vs=uwl*
2

A function x = u%v3(1 — ;)¢ is a holomorphic on ¥ if and only if

(
020, bZO, CZO
16a —13b 20
—14b +27¢ 20 (3.17)
k—3a+4b-—3c20
The divisor of x is (x) =
2c—b
c
3b —2a—2c 2b—-a-c b a 2a—b 3a—2b 4a-3b 5a-4b
(3.18)

With the help of Max Benson’s computer program, we find that the integral
semigroup of (3.17) has four generators. Therefore the minimal embedding dimen-
sion of V (the blown-down of V) is four. By abusing the notation, we shall denote
the divisor (x) of a holomorphic function x by (a, b, ¢). The actual formula for (x)
is given by (3.18). The four coordinate functions are as follows:

x; = (22, 27, 14)
x, = (351, 432, 224)
x; = (39, 48, 25)

x4 = (130, 160, 83)

As in Example 1, we find that p, = 37. On the other hand, using (3.16), we get
K?*= —152. Hence K*+8p, =8(—19+37) =169 =0(mod 16). By a result of
Schaps [S], (¥, O) is a determinantal scheme and is smoothable.
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