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Locally flat 2-spheres in simply connected 4-manifolds

RONNIE LEE AND DARIUSZ M. WILCZYNSKI

Introduction

Let N?* be a closed (k — 1)-connected manifold. It is known that for k > 3, each
integral homology class x € H,(N) can be presented by a locally flat (differentiable,
piecewise linear, or topological) embedding f: S*¥— N, f,[S*] = x, and that for
k = 4, any two such embeddings are isotopic (see [H], [K—S]). Both of these facts
have important consequences for the classification of closed manifolds (for the
classification of (k — 1)-connected 2k-manifolds see [W,]). It is also known that
both statements fail to be true when k£ = 2. Knot theory in dimension 4 provides of
course counterexamples to the isotopy statement. First examples of homology
classes that cannot be represented by locally flat 2-spheres were found by Kervaire
and Milnor [K—-M], Tristram [T], Rochlin [R], and Hsiang and Szczarba [H-S§].
Several authors investigated the embedding problem in the case of some specific
manifolds like $2 x §? and CP? # CP?2. In these cases it was possible to determine
precisely which classes can be represented by embedded 2-spheres and a complete
analysis was carried out by Freedman [F,], Kuga [K], Suciu [S], Fintushel and
Stern [F—S], Lawson [L], and Luo [Lu]. In particular, it follows from their results
that different classes are representable in the differentiable and topological cate-
gories. Among results showing a particular method of embedding a 2-sphere in a
simply connected 4-manifold we should also mention papers by Wall [W,], Board-
man [B], and Freedman and Kirby [F-K]. Some aspects of the embedding problem
in relation to 4-dimensional surgery have also been considered by Cappell and
Shaneson [C-S], Quinn [Q,], and Freedman [F,].

The purpose of the present paper is to discuss both questions of existence and
uniqueness up to isotopy for locally flat 2-spheres topologically embedded in a
simply connected 4-manifold. Concerning the existence, we shall show that two well
known obstructions for embedding 2-spheres in 4-manifolds (op. cit.) are essentially
the only obstructions for this problem in the topological category. (In the differen-
tiable category, Donaldson theory provides additional obstructions.) The embed-
dings f:S?— N* that we are going to construct in the process of proving this
statement (Theorem 1.1) will have one additional property: they have an abelian
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fundamental group of the complement. We shall refer to them as ‘‘simple”
embeddings.

The significance of this additional condition on the fundamental group becomes
clear in the context of the isotopy classification of embedded 2-spheres representing
the same homology class. Indeed, given a locally flat embedding f: S>— N* and a
knotted, locally flat 2-sphere K< S*, we can vary the fundamental group
n, (N —f(S?)) by means of the connected sum operation (N, f(S?) # (S K) =
(N, f'(S%)). Many nonisotopic embeddings f’, representing the same homology
class, can be created in this way. Simple embeddings, however, often enjoy the
following rigidity property: they are topologically ambient isotopic iff they represent
the same homology class. This is roughly the contents of our Theorem 1.2.

The paper is organized in four sections. Our main results are stated in Section
1; there we also introduce some notation and terminology. In Section 2, as a
preparation for the results of the next two sections, we prove stable versions of
Theorems 1.1 and 1.2. In Section 3, we reformulate our problems in terms of certain
finite group actions on 4-manifolds. Working in this equivariant context, we make
a reduction of our topological statements to questions about certain hermitian
pairings. It is then a purely algebraic task to decide when a simple embedding
representing given homology class exists or whether it is unique up to isotopy. The
remaining algebra is carried out in Section 4, where we also prove Theorems 1.1
and 1.2.

Though in principle the methods of this paper apply to all homology classes,
our results here concern mainly homology classes of odd divisibility. There are
some additional complications in the case of even divisibility; these classes must be
given special consideration and we plan to address this issue in a subsequent paper.

It is a pleasure to acknowledge our debts to Sylvain Cappell, Jim Davis, John
Ewing, Ian Hambleton and Shmuel Weinberger. Conversations with them were
important at various stages of this work.

1. Main results

Let N be a closed, oriented, simply connected, topological 4-manifold, and let
i :H,(N;Z) x Hy(N; Z) - Z denote the unimodular, symmetric pairing defined by
the algebraic intersection number of 2-cycles, A(x, y) =x - y. It is a well known
result of J. H. C. Whitehead that the oriented homotopy type of N is completely
determined by this intersection pairing 4. Moreover, by the work of Freedman [F, ],
each unimodular form A on a free abelian group of finite rank occurs as the
intersection pairing of exactly one or two simply connected 4-manifolds N, depend-
ing on whether A is even or odd. In the case of an odd intersection pairing 4, the
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two nonhomeomorphic 4-manifolds are distinguished by their Kirby—Siebenmann
invariants. Recall that the Kirby—Siebenmann invariant of N,

KS(N) € H(N; Z,) = Z,,

is the stable obstruction to a differentiable structure on N (cf. [K-S]).

As already observed by Wall [W,], for the purpose of representing homology
classes in H,(N) by embedded 2-spheres, one has to make a distinction between
characteristic and ordinary classes. A homology class x is said to be characteristic
if its mod 2 reduction [x], € H,(N; Z,) is Poincaré dual to the Stiefel- Whitney class
w,(N) (i.e. x - z ={(w,(N), z) mod 2 for each z € H,(N)) and ordinary otherwise.
For a characteristic class x, x - x = ¢(N) mod 8 (see [M—-H], Lemma 5.2), where
a(N) denotes the signature of N ( =signature of A).

Since H,(N) is torsion free, each x # 0 is an integral multiple of some primitive
(=indivisible) class y € H,(N), x =dy. If x #0 and d > 0, d is called the divisibility
of x.

THEOREM 1.1. Let x € H,(N) be a class of odd divisibility d. There exists a
locally flat, simple embedding f: S> — N representing x if and only if

(i) KS(N) =3l6(N) — x - x] mod 2, when x is a characteristic class, and
(i) by(N) =2 maxy< ;4 |[o(N) — 2j(d —j)(1/d*)x - x|.

Both conditions in Theorem 1.1 are known to be necessary (also for d even).
Condition (i) is a topological version of a result due to Kervaire and Milnor
[K—-M]. The proof is essentially the same as that in [K—-M], the main ingredient
being Rochlin’s formula relating the signature of a closed spin 4-manifold to its
Kirby-Siebenmann invariant. Inequality (ii) is due to Rochlin [R] (cf. [H-S]) in
the differentiable category, and it follows from the G-signature formula applied to
a ramified covering of N branched over the embedded 2-sphere. By an argument of
Wall [W,], (ii) holds also for a locally flat topological embedding. The proof of
Theorem 1.1 will be completed in Section 4, where assuming (i) and (ii) we
construct the required embedding. It should also be pointed out that the existence
of a simple embedding representing a primitive class x in Theorem 1.1 can be
deduced directly from Freedman and Quinn’s results.

THEOREM 1.2. Let x € H,(N) be a class of odd divisibility d, and if d > 1
assume that b,(N) #2. If
b,(N) > maxd lo(N) — 2j(d — j)(1/d*)x - x|,
0<j<

then any two locally flat, simple embeddings S*— N representing x are ambient
isotopic.
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COROLLARY 1.3. Any two locally flat, simple embeddings S* — N representing
a homology class of odd divisibility are ambient isotopic in N # (S? x S?).

We remark that the isotopy statement of Theorem 1.2 holds true in the
differentiable category as well provided

b,(N) > max. lo(N) — 2j(d — j)(1/d*)x - x| + &(d, m)

for some integer &d, m) =0 which depends only on d and m. The proof is
essentially the same; in addition, one only needs to know that the smooth
s-cobordism theorem and Quinn’s isotopy theorem hold stably, up to connected
sum with copies of $2 x S2 [Q,], [Q,].

2. Stable embeddings

The purpose of this section is to discuss locally flat embeddings S?— N* in
the stable category. Let N be a closed, oriented, simply connected 4-manifold
as in Section 1 and let x € H,(N). We say that x is stably represented if
x @0 e Hy(N #k(S? x §?) is represented by a locally flat embedding f: S?—
N #k(S>x S?) for some k=0. Two stable embeddings f, f':S*-—
N, = N # k(S? x §?) are stably homeomorphic if there is an orientation preserving
homeomorphism 4 : (N, . ,, f(S?)) > (Ni,,f(§?)), r > 0.

For x € H,(N), we define @(x) € Z, according to the following rule. If x is
characteristic @(x) = KS(N) + 3lo(N) — x - x] mod 2, and we set ©(x) = 0 otherwise.

THEOREM 2.1. For each homology class x € H,(N), x can be stably represented
by a (simply embedded) locally flat 2-sphere if and only if @(x) =0.

As pointed out in Section 1, the necessity of the condition follows from an
argument of Kervaire and Milnor [K —M)]. Before proving the other direction, let us
recall some terminology from [F-K] (see also [K] for a somewhat different
treatment of some of these topics).

Let Q5 be the topological characteristic bordism gorup of characteristic pairs
(N4, K?), where N and K are closed and oriented, K = N is a locally flat surface and
[K] € H,(N; Z) is characteristic. Two pairs (N, K) and (N’, K) are said to be
characteristically bordant if there exists a compact oriented 5-manifold N and an
oriented, locally flat 3-submanifold K> with [K], € H;(N, dN; Z,) dual to w,(N) and
(N, K) = (N, K)u — (N, K').
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Given a characteristic pair (N, K), we can try to perform ambient surgery on K
to get an embedded 2-sphere in N. The “obstruction” to such a surgery problem can
be briefly described as follows (see [F—K] for details). Let 4,, . .., 4,, be embedded
circles representing the generators of a symplectic basis of H,(K) = Z%, and let v,
be a normal vector field to A4; which is tangent to K. Embed a 2-disk D; in N
transversely to K with dD; = A;. Let d; € Z denote the algebraic intersection number
of int D; with K. The obstruction to extending v, to a normal vector field over D,
is another integer e; € Z = n,(SO(2)). Associating d; + e; (mod 2) to each 4;, we
obtain a quadratic form q : H,(K; Z,) - Z,. Let ¢(N, K) denote the Arf invariant
of g. It turns out that ¢ determines a well-defined homomorphism Qe — Z, ((F-K]
Lemma 5).

LEMMA 2.2. ¢(N, K) = O([K)).

Proof. 1t follows from [F-K] and [Hs] that a: Q™ ->ZOZDZ,,
a(N, K) = (6(N), o(N) — K - K], KS(N)) is an isomorphism. The explicit generators
of Q¢ are (CP? CP'), (CP?# CP%3CP'# CP") and (|Es|, &), where |Eg|
denotes the simply connected 4-manifold whose intersection pairing is isomorphic to
the Eg-lattice. Clearly, ¢(|E;|, &) = ©(0) = 0. Since ¢ and © agree also on the other
two generators ([F—K] Lemma 6), the result follows. O

Proof of Theorem 2.1. Let x € H,(N) and assume @(x) = 0. We shall show that
x can be stably represented by a simply embedded locally flat 2-sphere.

Let N = W*U V* where W is smooth and simply connected, ¥ is contractible, and
X3 = 0W = 0V is an integral homology sphere [F,]. By immersion theory, x can be
represented by a smoothly embedded surface f : K — W. It was shown in [F—K] that
in the case of a characteristic class x, @(N, K) is the only obstruction to ambient
surgery on K which results in a stable embedding S2— N,, k > 0. By Lemma 2.2,
¢(N, K) =0 and surgery can be performed.

Next assume x € H,(N) is an ordinary class. If x is also primitive, then by [W,]
Theorem 3 there is a smooth embedding S?— W, = W # k(S? x §?)), k > 0 stably
representing x. It remains to consider the case of an imprimitive class x. As in the
characteristic case we can represent a basis of H,(K) by embedded circles
A,,...,A,,. To surger some A, inside W,, we first find a smoothly embedded 2-disk
D; in W, with 0D, =D,nK = A,. Let e; € Z =7,(SO(2)) be the obstruction to
extending a normal vector field from A, to D, defined as before. (Notice that d; =0
in this case.)

We claim that D; can be chosen so that e; € 2Z. Suppose this done. We can form
the connected sum of pairs

(W, D;) # (S x S?, graph of g;)

where g, : S2— $? is a smooth map of degree —e;/2. This results in an embedded
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disk D¥ in W, , with e} = 0. We can then replace the normal 1-disk bundle to 4,
in K by the boundary of the 1-disk bundle determined by the extended normal vector
field on D¥. Thus, by ambient surgery on K along 4;, we can reduce the genus of
Kby 1. Repeating this procedure several times gives eventually an embedded 2-sphere
stably representing x.

To prove the above claim, let us suppose ¢; =1 mod 2. Write x =dy with y a
primitive class. Suppose also that A is an even form, i.e. z - z € 2Z foreach z € H,(W}).
Since x is not characteristic, d must be odd, and consequently y is ordinary. For k = 2,
the orthogonal group O(A) operates transitively on primitive ordinary elements of
given square by [W,]. Hence we can assume that there is a pair of hyperbolic elements
uveH,(W,),u-u=v-v=0,u-v=1,suchthat y =pu +vforsomepeZ. Asa
primitive ordinary class, u can be represented by an embedded 2-sphere Sin W,. Under
the connected sum D; # S, e; does not change because u - u = 0, but d; = 0 does change
tod. =d,+ x - u =d. Also, we may spin D; = D, # S once around 4,, as in [F-K],
p. 87, changing e; =¢; to e; + 1 and d; to d; + 1. After spinning |d| times we get D
with e/ = e, + d and d/ = 0. Thus e} € 2Z as required, but we have achieved that at
the expense of introducing the intersection int (D} ) n K. We may assume that int (D7)
intersects K transversely. Since d; = 0, we can arrange all the intersection points to
occur in pairs with opposite +1 indices. For a given pair of points, we can create
a Whitney circle by joining the two points by one path in int (D} ) and another in
K. Then, by taking a connected sum with S? x S? (framed surgery along a nearby
curve) we can find an embedded 2-disk in which to perform the Whitney trick. By
iteration we can cancel all points of intersection, so that 0D} = D] nK = A;. This
proves the claim for an even form A.

In the odd case, A can be diagonalized, that is, there is a basis {y;} of H,(W;)
such that y; -y, = +4,. Then x = X a;y,, and since x is ordinary, a; € 2Z for some
index j. That y, can be represented by an embedded 2-sphere S. As before we take
D; =D, # S, for which we now have e; = e, +y; - 7, € 2Z and d; = d, + a; = a;. This
new disk D} can be spun |a,|-times around 4, to produce D; with e] =e; + a; €2Z
and d} =0. Finally, we cancel all intersections int (D;) N K to guarantee that
0D} = D! nK = A,, thereby proving the claim.

As noted before, this shows that x € H,(N) can be stably represented. To finish
the proof, we need only observe that each embedding f: S — N, can be improved
to a simple embedding by surgery on embedded circles generating the commutator
subgroup of n,(N, — f(S?)). Since N, is simply connected, framings can be picked
so that each surgery operation replaces N, , by Ny ., .. O

COROLLARY 2.3. Suppose N is a spin 4-manifold. For a characteristic class
x € Hy,(N), x can be stably represented by a (simple) locally flat 2-sphere if and only
if x-x=0 mod 16.
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Proof. Since KS(N) = 4o(N) mod 2, we have x - x = ©(x) - 8 mod 16. O

COROLLARY 2.4. Let N, N’ be homotopy equivalent, but nonhomeomorphic,
simply connected 4-manifolds. Let  : [H,(N), A\] »[H,(N’),A'] be an isometry of
intersection pairings. For each class x € H,(N), either x or Y(x) can be stably
represented by a simple, locally flat 2-sphere.

Proof. KS(N) # KS(N’) implies that either @(x) =0 or @(Y(x)) = 0. O

THEOREM 2.5. If x € H,(N) is an odd divisibility class, then any two simple
embeddings f,, f,: S*— N representing x are stably homeomorphic.

Proof. According to [F,] Theorem 10, each locally flat 2-sphere in N has a
topological vector bundle neighborhood. Let v; (i = 1, 2) be such a neighborhood of
£;(S?). Since v, is an oriented 2-plane bundle classified by its euler number, there is
an oriented homeomorphism (v,, f;(5%) = (v;, /,(S?)). Let X; =N —v,. We wish
to extend 0X; = 0X, to an oriented homeomorphism between X, # k(S? x S?) and
X, #k(S?x S?), k>»0.

Notice first that X; admits a spin structure unless N is nonspin and x is not
characteristic in which case X, is a nonspin manifold. In the spin case, 0X, inherits
the spin structure from X,. In fact, 0X; is homeomorphic to either a lens space
or S' x §? (the latter occurs precisely when x - x =0), so 0X; always admits a
spin structure and we can impose it arbitrarily when X, is not spin. Form
X =X, v, (—X,) by identifying the boundaries via a spin reversing homeomor-
phism 0X, =~ d(—X,) where —X, denotes X, with the orientation reversed. It
follows that X is a spin manifold iff X; is.

Let d denote as usual the divisibility of x. Since f; is a simple embedding,
n,(X;) = H,(X;) = Z, by Poincaré duality (cf. [H-S] Lemma 3.1). Furthermore,
n,(0X;) maps onto m,(X;), so by Van Kampen =,(X) =~ Z,. The manifold X
determines then a class in the oriented bordism group Q,(K(Z,, 1)) and in the spin
case in Q3P(K(Z,, 1)).

From the Atiyah—Hirzebruch spectral sequence we immediately see that
QP™(K(Zy, 1) = Hy(Z,, Q5P™) = Z is generated by the E; manifold. Similarly,
Q(K(Z,, 1)) xZ@Z, with the cyclic summands detected respectively by the
signature and the Kirby—Siebenmann invariant. Now depending on whether
x - x =0 or not we have either o(X;) =a(N) or a(X,;) =0a(N) + 1. In either case
o(X;) depends only on x and not on i. Thus o(X) =a(X,) —0(X;) =0. Also
KS(X) =0, so [X] =0 in Q,(K(Z,, 1)) (resp. Q5"(K(Z,, 1))). Thus there is an
oriented (resp. spin) 5-manifold W? such that 6W = X. Since 0.X; has a bicollared
neighborhood in X, W can also be viewed as a relative bordism from (X, 0X,) to
(X3, 0X3). It follows now from [Kr] §2 that there is a relative s-cobordism between
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X, #k(S*x S?) and X, #k(S? x §?), k> 0. This together with Freedman’s s-
cobordism theorem [F,] implies that (N, f,(5%)) and (N, £,(S?)) are stably homeo-
morphic, as required. O

3. Group actions on 4-manifolds.

In this section, we discuss the unstable classifications of locally flat, simple
embeddings S? — N representing the same homology class. The topological classifi-
cation of such embeddings will be reduced to a problem concerning certain hermitian
pairings. This algebraic problem will in turn be settled in Section 4.

Let f: S?— N be a locally flat, simple embedding representing a homology class
x € H,(N) of divisibility d. As noted in Section 2, n;(N — f(S?)) = H,(N —f(§?)) is
a cyclic group of order d. Following [H-S] and [R], we can form a d-fold ramified
covering n : M - N branched over f(S?). By construction then M supports a
continuous action by the group C, = n, (N — f(S?)). The fixed point set of this action
is a locally flat 2-sphere S = n~'(f(S?)), and = maps S homeomorphically onto
f(S?). Since f: S?— N is a simple embedding, so is S - M. In fact, n,(M — §) =0,
so the homology class z = [S] € H,(M), represented by S, is primitive. Furthermore,
it follows from [F,] Theorem 10 that S = M has a neighborhood homeomorphic to
a C,-vector bundle over S, i.e. C, acts locally linearly on M. By choosing correctly
the generator g of C,, we may assume that g acts on the normal fiber to S via
multiplication by e?™/?, Also, it follows from the van Kampen theorem that M is
simply connected. Conversely, a semifree, locally linear C,-action on a simply
connected 4-manifold M, whose fixed point set is a 2-sphere representing a primitive
class z € H,(M), corresponds to the ramified covering M - M/C,.

The above construction allows us to reformulate the classification problem for
embeddings as a similar problem for the corresponding group actions.

PROPOSITION 3.1. There is a one-to-one correspondence between the isomor-
phism classes of locally flat, simple embeddings f: S* - N*, n,(N) =0 representing
homology classes of divisibility d and the isomorphism classes of semifree, locally linear,
cyclic group actions (C,;, M), n,(M) = 0, for which the fixed point set Fix (C;, M) is
a simply embedded 2-sphere representing a primitive homology class. O

Let M be a closed, oriented, simply connected 4-manifold, and let G = C, be
a cyclic group acting locally linearly on M. Assume that the action is semifree,
and that the fixed point set M¢ = Fix (G, M) is a simply embedded 2-sphere
representing a primitive class z € H,(M). It follows that G preserves both the
orientation of M and its intersection pairing 4 : H,(M) x H,(M) - Z. Let v denote
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the equivariant tubular neighborhood of M€ < M, and let M, =M —intv be the
complement. There is a commutative diagram of exact sequences

0 . /Hz(Mo)\ )‘Hz(M,V) o Hz(Mo, Mo)\‘ /0
Hz(au) Hz(M) Hl(av)
2N 7N AN

0 \/Hz(u) Hz(M'Mo) ~ Hz(u,av) \_/'O

~—_ A"

From the diagram we see that the triple [H,(M), 4, z] completely determines the
homology group H,(M,) and its intersection pairing.

Our first goal is to determine the G-isovariant homotopy type of (G, M).
Following [Wil], we introduce two auxiliary G-spaces X and B. The first G-space X
is a G — CW complex obtained by attaching free n-cells (n = 4) of the form G x D"
to M so that (i) each closed cell is disjoint from v, and (ii) 7;(X — v) = 0 for i # 2.
Similarly, the space B is obtained by attaching free n-cells (n = 4) to X so that
n;(B) =0 for i #2.

Now suppose we are given another G-manifold (G, M’) satisfying the same
conditions as those required from (G, M). In addition, suppose there exists
a ZG-module isomorphism 6 : H,(M)— H,(M’) which preserves the inter-
section pairings, 6*1’ = 4, and sends z =[M€] to z’ =[M’“]. In such a case we
shall say that 0 is a ZG-isometry, and write 0 : [H,(M), 4, z] = [H,(M"), A, z’]. We
wish to show that @ can be realized by an isovariant homotopy equivalence
h:M—->M'.

Since z - z =z’ - z’ and the action of G near the fixed 2-spheres M€ and M€ is
completely determined by these intersection numbers, there exists an equivariant
homeomorphism v — v’ between the tubular neighborhoods. In fact, to simplify our
notation, we shall identify v and v’ via this homeomorphism and write v =v’ from
now on. We wish to extend this identification to all of M and M".

The first step towards the required extension is to find an isovariant homotopy
equivalence ¢ : X = X’ rel v which induces 6 on n,(X) = H,(M). It follows from
our braid diagram that 6 induces as a ZG-isomorphism 6, : H,(M,) — H,(Mg)
which respects the induced intersection pairings. Now from obstruction theory,
the map ¢:X—>X" can be constructed provided (6,).k =k’, where
k € Exty; (H,(0v), n,(M,)) is the relative first k-invariant of (G, M) defined in
[Wil]. Since 0v is connected, kK =k’=0 and the condition is trivially satisfied.
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Therefore there exists a diagram

veMcsM
(3.2) id | ih Ny
oveMyc M’ /.'
—1
where i is the inclusion of M in X, i’ is the composite map M’ ¢, X’ 2 x , and the
dotted arrow indicates the map A to be constructed.

Since B is an Eilenberg—MacLane space, it follows from [Mac] that H,(B) can
be identified with the module of symmetric 2-tensors I'n,(M) < n,(M) ®, n,(M).
Under this identification, the image of the fundamental class j,i.[M] € H,(B),
j:X o B, corresponds to the 2-tensor given by the intersection pairing on
n,(M) =~ H,(M). The fact that 8 is an isometry can now be interpreted as saying
that j,i.[M] =j.iW[M'].

We assert that j, : H,(X) - H,(B) is a monomorphism, and so the above
equality implies that i,[M] = i,[M’]. From a Mayer-Vietoris sequence argument,
we see that H,(X) = H,(X,) ® Z where X, = X — v. Since X, is also an Eilenberg—
MacLane space, H,(X,) can be identified with I'n,(X;). Under this identification,
the map j, restricted to H,(X,) corresponds to the induced map I'n,(X,) - I'n,(X)
which is clearly injective. On the other hand, the Z-summand in H,(X) is mapped
under j, to the subspace Z{z ®z’), where z’ € n,(X) is the element A-dual to z.
This proves that H,(X) and j, H,(X) have the same rank over Z, and the assertion
follows.

We also claim that once the required isovariant map 4 : (M, M,) - (M’, M) is
constructed so that diagram (3.2) commutes up to isovariant homotopy, then 4 is
automatically an isovariant homotopy equivalence. For any such A induces the
isomorphism 6 on the second homotopy group, and

ix[M] = iyhy[M] = (deg h)iy[M’] = (deg h)i . [M].

Thus deg h =1, and the claim follows from Poincaré duality and the Whitehead
theorem.

Finally, there is a secondary obstruction to construction of A, lying in the
equivariant cohomology group

HE (Mo, 0v; ma(Xo, Mp)) = Hy(Mo/G; my(Xo, My))
= 14 (Xo, Mo) ®2z¢ Z
= Hy(Xo, Mo) ®zc Z
= Hy(Xo/G, M}/G).
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From the following commutative diagram

H,(M|G) —— H (MG, v/G) «=— H,(M,/G, 3v/G)
W6), | l l
Hy(X/G) —— Hy(X/G, v|G) «—— H,(X,/G, 0v/G) —— H(X,/G, M}/G)

we see that this obstruction corresponds to the class a = (i/G).[M/G] —
(I’/G)«[M’/G) in H,(X,/G, My/G). Furthermore, if we consider the transfer
homomorphism

tro : Hy(Xo/G, M/G) - Hy(X,, My),

then tr,(x) is the obstruction to a nonequivariant extension h: (M, M,) —
(M’, My) such that i’ h ~i rel v. However, this nonequivariant obstruction

tro(a) = iys[M] —i4[M'] =0,

and so « € Ker (tr,) = Hy(G; Hy(X,, M})).
To compute this last group, we note that H,(Mg) = H'(M;, dv) =0, and
consequently,

H,(Xo, M) = Hy(Xo) = I'my(Xo).

Also, it follows from [Wil] Proposition 2.3 that =n,(X,) = n,(M,) fits into the exact
sequence of ZG-modules

0 QZ->n,(X,)® rZG - H' (M, M®) - 0.

Since H'(M, M€) =0 and QZ is represented by the augmentation ideal I of ZG, we
conclude that n,(X,) and I are stably isomorphic ZG-modules, i.e.,

T,(Xo) DrZG = 1P sZG

for some integers r and s. Now in the case of an odd order d, the results of [H-K]
§3 imply that I'n;(X,) is a stably free module, whereas for d even I'n,(X,) is stably
isomorphic to a certain permutation module. In either case H,(G; I'n,(X,)) =0,
and consequently the obstruction a vanishes.

To replace the resulting G-isovariant homotopy equivalence h : (M, M,) —
(M’, M) by an equivariant homeomorphism, we must also assume that M and M’
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have the same Kirby-Siebenmann invariant. A calculation with the topological
surgery exact sequence shows that this condition is also sufficient when d is odd.
Thus we have the following

THEOREM 3.3. Let (G, M) and (G, M’) be group actions satisfying all the
requirements specified in Proposition 3.1. Given a ZG-isometry 0 : [H,(M), A, z] =
[Hy(M"), A, '], there exists an isovariant homotopy equivalence h : M — M’ rel v
which extends the identity map on the tubular neighborhood v and induces 0 on
H,(M). Furthermore, if M and M’ have the same Kirby —Siebenmann invariant and
d is odd, then h can be required to be an equivariant homeomorphism. O

Our next result describes the ZG-module structure of H,(M).

THEOREM 3.4. H,(M) is a stably free ZG-module.

Proof. We begin by showing that H,(M) is a projective ZG-module. We have
already seen that H,(M,) is stably isomorphic to the augmentation ideal 7. The two
modules are related to each other via the following exact sequence

(3.5)  0— H,(v) » H,(M) - H,(M, v) - 0.

Notice that H,(M,v) >~ H,(M,,dv) is isomorphic via Poincaré duality to
H*(M,) = Hom, (H,(M,), Z) and as such it is also stably isomorphic to I.

We shall show that H(G; H,(M)) =0 for each i >0 (i =2, 3 is enough) by
examining the long exact sequence in cohomology

H'~(G; Hy(M, v)) —— H'(G; H,(v)) — H(G; Hy(M)) — H'(G; H,(M, v)).

Without loss of generality, we can assume that G has prime power order, say
d =p". Let K < G denote the unique subgroup of order p. For i even, consider the
following commutative diagram

Z,.= H'~(G; Hy(M, v)) — H'(G; H,(v)) = Z,,,
res l l res
Z,= H'~\(K; H,(M, v)) = H(K; H,(")) = Z,

It follows that for each i > 0, H(G; H,(M)) = 0 iff H(K; H,(M)) = 0. (Notice that
H(G;Z) =H'*(G;I) =0 for i odd.) But H(K; H,(M)) =0 for i >0 by [E], so
H,(M) is a projective ZG-module, as required.
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Finally, to prove that H,(M; Z) is stably free, we invoke the pull-back diagram
of commutative rings (Rim’s square)

mod X
et J4

(3.6) mod f | |mod1

17— 127,
mod d
Here A =2G, X =1+g+ -+ g% !is the sum of all groups elements in G, and
A, = A/(Z). Associated with this diagram there is a Mayer—Vietoris sequence of
K-groups

= K,(4) - K, (4,) ® K\(Z) = K\(Z,;) - Ko(A) = Ko(A4,) © Ko(Z) = Ko(Z,)

(cf. [M;]). In the present situation, K;(Z,) is the group of units in Z, and the
induced map K,(4,) -» K,(Z,) is a surjection. Hence

0 Ko(4) = Ko(A,) © Ko(Z) = Ko(Z4) >0,

and we can determine the structure of a projective module over A by taking the
tensor product with A4,, and examining the resulting element in K,(A4,). We make
use again of the exact sequence in (3.5)

0-Z-H,(M)-> H,(M,v)-0.
Tensoring with A,,
ZR,A4,-H,(M)®,4,->H,(M,v) ®,4,-0.

Since H,(M) ® , A, is a projective A,-module which has no Z-torsion and
Z®,A,=Z, we obtain an isomorphism H,(M) ® , A, = H,(M,v) ® , A, of A,-
modules. But H,(M, v) is stably isomorphic to I which is a free A,-module. It
follows that the tensor product H,(M,v) ® 4 A4, is a stably free A,-module, and
hence it represents the trivial element in the reduced K-group K,(4,). This proves
the theorem. O

The last two results suggest that we study ‘“‘pointed” integral A-lattices [L, 4, z],
where L is finitely generated, stably free A-module (4 = ZG) equipped with a
A-invariant unimodular pairing 4:L x L +Z and a base point, a distinguished
primitive class z € LY. However, for technical reasons, it will be more convenient to
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replace A by the corresponding hermitian pairing 4 : L x L - A defined as follows

h(x,y) =Y, Mg 'x,yg.

g€eG

The term “hermitian” refers to the property h(x, y) = h(y, x), where — : A > A is
the natural involution on the group ring given by g +— g~

Thus, associated with each group action (G, M) of the type considered there is
a pointed A-isometry class of [H,(M), h,,, z], where h,, is the nonsingular hermitian
pairing corresponding to the intersection pairing 4 and z = [M¢]. By Theorem 3.3,
group actions (G, M) are classified by the corresponding pointed A-isometry
classes.

We conclude this section with an observation based on the proof of Theorem
3.4. Our proof that H,(M) is stably free A-module also shows that the extension in
(3.5) is a generator of the group Ext! (A4,,Z) = Z,. Thus up to Galois automor-
phism of A,, (3.5) is (stably) isomorphic to

0-Z-22% A@ka 225 A, ®kA 0.

An easy computation with transfer shows that the corresponding sequence for the
orbit manifold M /G,

0—— H,(v/G) — Hy(M|G) —— Hy(M/G, v/G) —— 0

Il H

I
y/ ZOKZ Z,DkZ

results from tensoring (3.5) over A with Z.

A similar relationship exists between the intersection pairings of M and M/G.
By a straightforward geometric argument, we find that the intersection pairing on
H,(M/G) = H,(M) ® , Z is given as

h®,1:(H,(M) ®,Z) x(H(M) ®,Z)-Z

(h @, D(x,») =3 Mg 'x,p).

geCG

This we record as
PROPOSITION 3.7. There is a Z-isometry of pointed Z-lattices

Te @4 1:[Hy(M), hyy, 2] @4 Z=[H,(M/G), Apgyg, X]
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where n, : Hy(M) - H,(M/G) is the projection, z = [MC], and x = 1 ,(2). O

4. Pointed hermitian pairings

Let A be a ring with involution; for simplicity assume A is commutative with 1.
A pointed hermitian pairing over A is a triple [P, h, z], where P is a finitely
generated, projective A-module, 4 : P x P — A is a hermitian pairing and z € P is a
base point. An isometry of pointed hermitian pairings over A is an isomorphism of
A-modules which respects the pairings and the base points. We define addition of
pointed hermitian pairings by the following formula

[P, h, 2] ®[P, K,z =[POP  h®H, D7)

For a homomorphism of rings with involution ¢ : 4 - A’, we have a change-of-
rings operation:

(P, hz] @, A'=[PR,A,h @1,z @, 1]

(A special case of this operation appeared already in Proposition 3.7.) [P, h, z] and
[P’, h’, z’] are said to be stably equivalent if for some integers r and s

[P, h,z] @ H(A") = [P', I, '] @ H(A"),

where H(A”) stands for the hyperbolic pairing [4%, H(A"), 0] = r[A2, H(A), 0].
When [P, h, z] and [P’, h’, z'] are stably equivalent, we write [P, h, z] =, [P’, h’, Z'].
[P, h, 0] will often be abbreviated to [P, A].

If G = C,is a cyclic group and A = ZG with the involution given by g — g !,
then a pointed hermitian pairing [P, A, z] over A is said to be realizable whenever
there exists an action (G, M) of the type considered in Proposition 3.1 such that
[P, h, z) = [H,(M), h,,, [M€¢]]. By Theorem 3.4, the underlying module of a realiz-
able pairing is stable free.

PROPOSITION 4.1. A pointed hermitian pairing [P, h, z] over ZG is realizable if
and only if it is stably realizable.

Proof. Suppose

[P’ ha Z] @H(Ar) = [HZ(M)’ hM9 [MG]] @H(As)
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Now [H,(M), hy,, [MC]] ® H(A") can be realized by the equivariant connected sum
(G,M))=(G, M) #5(G,G x S? x §?)
of (G, M) with copies of S? x S2. In the exact sequence
0> H,(M,— M$¢)—>H,(M,)>H,(M,, M, — M{) >0

the third nonzero group is isomorphic to H*(M¢) by Poincaré duality and the
hyperbolic summand H(A") corresponds to a subspace in H,(M, — M¢). Therefore
by Freedman’s disk theorem [F,] with n, = G, there exist framed embedded
2-spheres S x D?— M, — M representing the hyperbolic generators of H(A").
Using these framed 2-spheres we can perform surgery on M, — M¢ to kill H(A").
The result of this surgery realizes [P, A, z]. O

We now proceed to formulate the cancellation law for pointed hermitian
pairings over ZG. We shall assume for the rest of this section that G = C, is a cyclic
group of odd order.

THEOREM 4.2. Let [P, h, z], [P, h', 2'] be nonsingular pointed hermitian pair-
ings over A =ZG with P stably free of rank 2 3. Assume that z € P¢ and [P, h, z]
has a hyperbolic summand equivalent to H(A). If [P,h,z] =,[P’,h’,z] and
(P,hz2l ®, Z=[P',h',2 ]| ®,Z, then [P,h,z] =[P, h’,z'). Furthermore, each
isometry between [P, h,z] ® 4, Z and [P',h’,z') @ 4 Z is induced by one between
[P,h,z] and [P, h', Z'].

Proof. Let I' be the usual maximal order in QG containing A. Consider the
cartesian square

A——>T

L I

A——T
where A = II/T,,, r=nr »» and the products are taken over the primes dividing d.
We shall show that (i) [P, h,z] ® [ =[P, h',z) ®,T and [P,h,z] ®, 4 =
[P’,h',z') ® , A, and (ii) that (i) implies [P, h, z] =[P, k', z].

We first note that since I' =11, , Z[{,] and d is odd, the hermitian pairings
[P,hl ®4 Z[(,),n #1,and [P, h] ®, /f,, have quadratic refinements. It follows now
from [W,] Theorem 10 that [P, h] ® , Z[{,] = [P’, h’'] ® 4 Z[{,]. This together with
the hypothesis over Z implies [P,h,z] ® , =[P, h’,z2'] ®,,I'. (Notice that
(P,h,z] ®, Z[(,] =[P, h, 0] ®, Z[{,] for ze P° and n#1.) By Lemma 1 and
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Theorem 2 of [W;], the statement over /’f,, can be reduced to one over F,C, where
C,=C,i x C,. Since F,C, is semisimple, cancellation is possible over /Tp, and so
[P,hz) ®,A=[P, k', 2] ®, A, as required.

The isometry classes of pointed hermitian pairings over A that are equivalent to
[P, h, z] over I' and A are in one-to-one correspondence with elements of the double
coset space

Aut ([P, h, 2] ® , A)\Aut ([P, h,z] ® ., )/Aut (P, h,z] ® , ).

This follows from [Ba,] Theorem 7.30 and the general discussion in [W,]. Let [«] be
the double coset corresponding to [P’, h’, z].

We claim that [«] has a representative a’ € Aut([P, h, z] ® , ') of determinant 1.
Since [P',h’,z’ ) D H(A") =[P, h,z) @ H(A") for some r, [P’,h’,z] ® H(A") corre-
sponds to the trivial double coset in

Aut ([P, h,2) ® , A ® HAN)\Aut ([P, h,z] ® ,  ® H(")/Aut ([P, h, z]
®4T @ H()).

Therefore for some representative a, det(a) = d - a, where d € A, a, = 1, a,€rl,
a,=1, 4d=a,a,=1. Since A is a complete semilocal ring and H(A/rad) is
diagonalizable, there is

f € Aut (H(A) x 1 < Aut ([P, h,z] ® 4 A)

with det(f) =d4~'. By the Dirichlet unit theorem, a,=(+(%) u, where
u, € Z|{,] * is of infinite order (unless u, = 1) and has the property that i, = u,
modulo finite units. From a,a, =1, it follows that u, =1, and consequently
a; ! =det(B,) for some

B. € Aut (H(Z[(,)) x 1 < Aut ([P, h, 2] ® 4 Z[(,)).

If we now let B, =1 and B, =1I1,,B,, then ¢’ = Pa B, is the required representative.
Finally, by the strong approximation theorem [Sh, 5.12], applied to the special
unitary group SAut ([P, h, z] ® , Z[{,], the latter is dense in

SAut ([P, b, 2] ® 4 Z{L,)).
Since the space of left cosets
Aut ([P, b, z] ® 4 D\Aut(P, h,2] ® 4 )

is finite, this shows that [a] has a representative in SAut ([P, h, z] ® , I'). Thus [a] is
the trivial double coset and [P’, h’, z'] = [P, h, 2], as required.
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To prove the second statement of the theorem, it suffices to show that the
natural map

Aut ([P, h,z]) > Aut ([P, h,z] ®, Z)

is surjective. By virtue of Rim’s square (3.6), this is equivalent to showing that the
image of Aut ([P, h] ® 4 Z) in Aut ([P, h] ® 4 Z,) is contained in the image of

Aut ([P, h) ® 4, A)) > Aut ([P, h] ® 4 Z,).

Notice that this last statement is true stably, when [P, h,z] is replaced by
[P, h,zZ] @ H(A"), r >0, since in the stable range the lifting problem for isometries
over Z, reduces to a determinant question. This shows that given

az € Aut ([P, h,z] ® 4 Z) x 1 c Aut ([P, h,z] ® 4 ZD H(Z")),
there exists a, € Aut ([P, h, z] @ H(A")) such that a, D1 =0, ® , Z.

LEMMA 4.3. There exists an isometry o € Aut ([P, h, z) @ H(A")) such that
o - o, preserves the hyperbolic summand of [P, h,z) @ H(A") and 6 ® 4, Z = 1.

It follows from Lemma 4.3 that ¢ - o, = o, ®a, where a, € Aut ([P, h, z]) and
a2 € Aut (H(Ar)). ThuS az@ 1 = a, ®A Z = (al ®A Z) @(az ®A Z). D

LEMMA 4.4. There exists a special isometry 6 € SAut ([P, h,z] ® , A ® H(A"))
such that 6 - («, ® 4 A) preserves the hyperbolic summand of [P, h,z] ® , A ® H(A"))
and ¢ ® ; 2-=1.

Proof of Lemma 4.3. Each isometry o over A can be thought of as a pair of
isometries ¢ and ¢, over A and I, respectively, which are compatible over I. Let
o € SAut ([P, h, z) ® , A ® H(A")) be the isometry provided by Lemma 4.4. By the
strong approximation theorem applied to SAut ([P, h, z] ® 4 Z[(,]) for each n|d,
n>1,8 ®;I can be lifted to an isometry o, € SAut ([P, h, z] ® , " ® H(I'")) such
that ¢, ® Z=1. By construction, 6 and ¢, are compatible over ' and the
corresponding o € Aut ([P, h, z] @ H(A")) has the required properties. O

Proof of Lemma 4.4. Consider the cartesian square

)

mod X
3 1
—

NN,
N
N
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where A, =A)(Z), S=1+g+---+g9 !, Z=H,,ld 2, and 2,=2QZ, We
wish to lift the identity 1€ SAut ([P,h] ® , 2, ® H(2})) to a special isometry
¢, € SAut (P, h) ® , A, ® H(A})) such that g, - (o, ® , A,) preserves the hyperbolic
summand of [P, h] ® , A, ® H(A})). By Lemma 1 and Theorem 2 of [W;], this is
equivalent to the corresponding lifting problem modulo the radical. The construc-
tion of a lifting having all the required properties modulo the radical is clearly
possible as follows from the following diagram

A - Ajrad — ] (H F,,i)

pld

! | l
Zdﬂzd/rad—g—e H F,. O

pld

REMARK 4.5. It follows from the proof of Theorem 4.2 that the hypothesis of
a hyperbolic summand in [P, h, z] can be replaced by the weaker condition that such
summands exist only over A and Z[(,] for each n |d, n > 1. The point here is of
course that we no longer require a hyperbolic summand in [P, A, z] ® 4, Z which
would be too restrictive for our purposes. Notice that if [A4, 4, x] is a pointed
Z-lattice, then it is possible that [4, /] may split off a copy of H(Z) but [A4, 4, x]
may not. For example, take any [4, 4, x] for which [4, 4] = [4,, 4] ® H(Z) where
[4,, 40] is a positive definite lattice, x # 0, and A(x, x) = 0.

For any hermitian pairing [P, h] over ZG, the hermitian pairing [P, h] ®, C
decomposes over CG as @ /=, [P(j), h;] where P(j) = P ®,C is the subspace of
P ®2 C on which the generator of G acts by multiplication by e**¥/¢ and A; is the
component of & ®, C corresponding to P(j). Let o; denote the signature of

[P(J), Ay

THEOREM 4.6. Let [P, h, z] be a nonsingular pointed hermitian pairing over
A = ZG (d odd) with z € P®. Assume that P is a stably free A-module of rank m 2 3
and that [P, h, z] ® 4 Z has a hyperbolic summand H(ZF) for some 0 <k <m/2. If
m 2 Maxo <, <4 |0;| + 2k, then there exists a pointed hermitian pairing [Py, hy, z,)
over A such that [P, h, z] = [Py, ho, zo] ® H(A").

Proof. By assumption, there exists a pointed Z-lattice [4, 4, x] and an isometry
(4.7) oz :[P,hzl ®,Z=[A, A x]® H(ZY.

Consider now [P, h,z] ® ,I'. Since k >0, the hermitian pairing [P, h] ® , Z[(,],
n id, n > 1 is indefinite at each archimidean place, and since d is odd it also has a
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quadratic refinement. Therefore by [W,] Theorem 11, there exists a pointed
hermitian pairing [P, h, z;] over I' and an isometry

ar [P, h,z) 4T =[Pr, hy, z;] ® H(IT'")

such that o @ Z =a,.

Since F=n,,M,,2,¢,, the classification of unpointed hermitian pairings
over I' reduces, by [W;] Theorem 2, to a problem over I, , I, , F,[(,]. Over
F,[{,], hermitian pairings are classified by the rank and the discriminant invariant
in F /F32. These are also the invariants needed for the classification over A.
Furthermore, a collection of invariants over I is realized by a hermitian pairing
over A if it is so stably realized. Thus there is a hermitian pairing [P, 4] over A and
an isometry

&:[P,h) ®, A =[P, R1® HA".

We also wish to find a base point Z for [P, A]. (The obvious candidate would be
4(z ® 1) but unfortunately it need not lie in the summand P). Now 4 and a, induce
isometries of 2-lattices

[P,h] ®, 2=[P, h) ®; Z&® H(Z"),
[P, h,z] @2 ~[A4, 1 x]®, 2® H(Z").

Since over Z cancellation is possible, [4, 1] ®, 2 2~[P, A ® ;2. Let ye P®; 2
be the image of x ® 1 under this isometry. We now define 7 = tr,(y) € P, so that
by construction

() = Ux) = h(z) = h(@(z ® 1))

as elements in A.

If k>2 then according to [Ba,] §4, Aut ([P, h] ®,A) acts transitively on
primitive elements in P ® , A of the same “length”. In particular, there is in that
case 6 € Aut [P, h] ® , A) such that 6(4(z ® 1)) = 2. Furthermore, if k > 3, such a ¢
can be found with determinant 1.

Assume temporarily that kK > 3. Let I denote the set of all isometries from
[Py, by, z2p) @ T ®@HUI*) to [P, A, ) ® ;T @ H('¥). Define

a=(G ®/If)°(& ®Aﬂ°(&r ®rf)—l-
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Then a € I. Let [x] denote the double coset of « in
Aut ([P, h, 2] ® H(A)\I/Aut (P, hy, 2] ® H(T™)).

LEMMA 4.8. There exist isometries B, : [Pr, hy, z;) @, =[P, h,3) ®; I and
B € Aut (H(*%)) such that [B, ® B,] =[«] and det (B,) = 1.

By [Ba,] Theorem 7.30, there exists a pointed hermitian pairing [P,, h,, z,] over
A which over I' (resp. A) is equivalent to [P, h,-, z] (resp. [P, A, £]) and such that
the composite isometry

[(Pr, hr, zr] ®rf§[Phh1,21] ®Afglpﬁﬁ’2] ®Zf

is equal to pB,. Likewise, there is a A-projective module P, for which
H(P,) ® ,T = H(I'"), H(P,) ® , A =~ H(A%), and such that the composite isometry

H(I*) =H(I*) @, 2H(P,) ®, xH(A" @, = HI"

coincides with §,. Since [, ® B,] = [a], there is an isometry
[P, h, z} =[P, hy, 2,] ® H(P,).

Since det (B,) =1, P, is a stably free module (see [M,] Lemma 2.4), and so
(49) [P, hzZ) ®@H(A") =[P, h,z,]® H(A**"), r>0.

It is clear now that the assumption on k is not needed if we are only interested in
a stable statement of the form (4.9). (Just apply the previous argument to
[P, h, z) ® H(A?) in place of [P, h, z).) Thus (4.9) holds for any k > 0.

The following lemma follows easily from Rim’s square (3.6).

LEMMA 4.10. Let [A, A, x] be a pointed Z-lattice. Suppose there is a pointed
hermitian pairing [P,, h,, z,] over A = ZG such that [P\, h,,2,] ® , ZO H(Z") =~
[4, A, x] ® H(Z"), r » 0. There exists a pointed hermitian pairing [Py, h,, z,] over A
such that [Py, hy, z9] ® 4 Z = [A, A, x] and [Py, hy, 2o]) =, [Py, h, 21].

Apply Lemma 4.10 to the nonhyperbolic summand of [P, A, z] ® , Z in (4.7).
Thus there is a pointed hermitian pairing [P,, A, hy] such that
[P, h, z2) @ H(A") =[Py, hy, zo) ® H(A**"), r>0,

(4.11)
[P, h,2] @, Z=[P,, ho, 0] ® 4 Z® H(Z").
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Notice that if the first equivalence in (4.11) is tensored over A with either A or
Z[(,), n|d, n > 1 then a hyperbolic form of rank r can be cancelled from both sides.
Therefore by Remark 4.5, Theorem 4.2 can be applied to (4.11) so that
[P, h, 2] [Py, hy, 2,] ® H(A¥), as claimed. O

REMARK 4.12. Let us record for future reference the following observation
based on the previous proof. If [P, h, z] @ H(A"), r > 0 has a hyperbolic summand
equivalent to H(A’ "), then [P, h, z] ® 4 A splits off a copy of H(A). This statement
is definitely not true over A as it fails already over Z (even when z = 0).

Proof of Lemma 4.8. We appeal again to the strong approximation theorem of
[Sh]. It follows that modulo the action of SAut ([P, A, z] ® , A) any element of the
special unitary group SAut ([P, h,z] ® ,I) can be lifted to SAut ([P, h, z] ® , I).
That is, given & € SAut (P, h;, z;] ® I @ H(I'%)), there exist

6, € SAut ([Pr, hy, 2, ) ® H(I'*)) and § e SAut ([P, A, 5] @ H(A¥))

such that ad = da ,-. Hence [¢8] =[] for each such 4.

Since SAut ([P, h, z] ® , ') acts transitively on hyperbolic summands H(I'*) in
[P,h,z2) ®,F, there is &, € SAut ([P, hr,z] @, @ H(F¥) and isometries
Bo:[Prohr,zr) @ F =[P, h, 2l ®; I, B;e Aut (H(*)) such that ad, = B, D B;.
Let b = det (B}). Since d is odd, we can find isometries 8 € Aut ([P, k., z;] ® 4 1),
8, € Aut (H(I")) with respective determinants b and b~'. Thus if we let

62=53®6468Aut ([PF’ hl‘s Zr] ®I‘f@H(fk))a

then ad, 6, = B, @ B, has the required properties. 0

Proof of Theorem 1.1. Assume conditions (i) and (ii). By Theorem 2.1, x can be
represented by a locally flat, simple embedding S>— N, = N # k(S? x S?) for some
k. If k>0, let n: M - N, be the ramified covering corresponding to this em-
bedding via Proposition 3.1 and let [P, h, z] = [H,(M), hy,, [M€]]. It follows from
Proposition 3.7 that

[P, h, 2] ® 4 Z=[H,(N), iy, x] ® H(Z").

Furthermore, according to [R], o, = (M) — 2j(d — j)(1/d*)x - x for each 0 < j < d.
Since by assumption

rank (P) = b,(N) + 2k 2 max_ lo(N) = 2j(d — j)(1/d*)x - x| + 2k,
<j<
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Theorem 4.6 applies to [P, h,z]. Thus there is a pointed hermitian pairing
[Py, hy, 2] such that [P, h, z] = [P,, hy, zo] ® H(A*) and by Lemma 4.10 we can also
assume that [Py, hy, zo] ® 4 Z = [H,(N), Ay, x].

Since [Py, hy, 2o] =, [P, h, z], Proposition 4.1 shows that [P, Ay, z,] can be
realized by an action (G, X). Since X/G results from surgery on M/G, the Kirby—
Siebenmann invariants of X/G and N are the same. Therefore the isometry of
intersection pairings

[HZ(X/G)s }'X/G’ [XG]] = [P09 hOs ZO] ®A Z = [HZ(N)7 A’ x]
can be realized by a homeomorphism f: X/G — N. f(X°) = N is then the required
2-sphere in N. O

Proof of Theorem 1.2. Let f, f’: S>> N be two locally flat, simple embeddings
representing x € H,(N). Let M, M’ — N be the associated ramified coverings, and
let [P, h,z], [P, h’,z’] be the corresponding pointed hermitian pairings over A.
Proposition 3.7 and Theorem 2.5 imply

(Ph,zl®,Z=[P,h",2] ®,4 Z=[H)(N), A, x],
(P,h,z] =,[P',h",2"].

(4.13)

We claim that [P, h, z] = [P’, h’, z’]. This is trivial when d = 1, so assume d > 1. By
assumption,

rank (P) = b,(N) = max. lo(N) — 2j(d —j)(1/d*)x - x| + 2.

In particular, [H,(N), 4] is indefinite and since b,(N) > 2, [H,(N), A, x}] ® H(Z")
splits off a copy of H(Z"*'), r » 0. Therefore by Theorem 4.6, [P, h, z] ® H(A") has
a hyperbolic summand equivalent to H(A"*!). By Remarks 4.12 and 4.5, Theorem
4.2 can be applied to (4.13). Hence [P, h, z] = [P’, h’, z’], as claimed.

It follows now from Theorem 3.3 and the second part of Theorem 4.2 that there
is an equivariant homeomorphism k : M — M’ such that k/G : N - N induces the
identity on homology. Then (k/G)- f = f’ and according to the isotopy theorem of
[Q,]} and [P], £/G is isotopic to the identity on N. Thus f and f’ are ambient

isotopic. ]
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