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On the algebraic hull of an automorphism group of a principal bundle

ROBERT J. ZIMMER!

1. Introduction

Suppose a locally compact group G acts by principal bundle automorphisms of
a (continuous) principal H-bundle P - M where H is a real algebraic group and M
is separable and metrizable. Then under the further assumption that the G-action
on M is ergodic with respect to some quasi-invariant measure, there is a natural
(conjugacy class of an) algebraic subgroup L < H associated to the G-action.
Namely, there is a smallest algebraic subgroup L = H, unique up to conjugacy
in H, such that there is a measurable G-invariant reduction of P to L, ie., a
measurable G-invariant section of P/L — M. This group L is called the algebraic
hull of the action of G on P — M, and has proven to be a quite useful invariant for
studying smooth transformation groups. We refer the reader to [9] for an introduc-
tion to and discussion of this notion, and to [1], [2], [6], [9], [10] for some examples
of applications. In the special situation in which G acts transitively on M, say with
stabilizer G, c G, there is an isotropy homomorphism G, — H, and the algebraic
hull of the action of G on P — M is simply the algebraic hull (in the usual sense)
of the image in H.

The main point of this paper is to prove the following result.

THEOREM 1.1. Suppose M is compact and G preserves a finite measure on M
with respect to which the G-action is ergodic. Suppose further that G is a semisimple
group of higher rank (i.e., a finite product I1 G, where each G; is the set of k;-points
of a k;-simple connected k;-group of k;-rank at least 2, where k; is a local field of
characteristic 0. For k; = R, we may also take G, to be a connected semisimple Lie
group with finite center and all simple factors of R-rank at least 2.) If P> M is a
principal H-bundle on which G acts by principal bundle automorphisms, where H is a
real algebraic group, then the algebraic hull of the action is a reductive group with
compact center.

Partially supported by NSF Grant.
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COROLLARY 1.2. Let G, H be as in Theorem 1.1 and I' =« G a cocompact
lattice. Suppose P — M is a principal H-bundle on which I acts by principal bundle
automorphisms. If M is compact and the I'-action on M is ergodic with respect to a
finite I -invariant measure, then the algebraic hull of the I-action on P—+ M is
reductive with compact center.

Special cases of Theorem 1.1 have been known before. If H is amenable, then
the result follows fairly easily from Kazhdan’s property [7, Theorem 9.11]. (In fact,
in this case the algebraic hull is compact.) If H does not locally contain any of the
simple factors of G, then the result follows by the argument of [10, Theorem 4.5]
(which again shows the algebraic hull is compact). If H does not locally contain G
itself (which holds automatically if one of the p-adic factors is non-trivial), the
conclusion of the theorem was obtained by Stuck [5] under one further assumption.
Namely, Stuck assumed that the action of G on M is irreducible, i.e., each simple
factor of G acts ergodically. This also enabled Stuck to deduce Corollary 1.2
(assuming the same relation between G and H) for actions of I' on M which induce
to irreducible actions of G, e.g., isometric I'-actions, or mixing I'-actions. If the
action of G on M is transitive, then as we remarked above, we are dealing with the
algebraic hull of a representation of the stabilizer for this transitive action, and
since M has a finite invariant measure the fact that the algebraic hull is reductive
is established for example in [3]. However, in the non-transitive case where H
locally contains a copy of G (e.g., if G is real and H = SL(n, R) for n sufficiently
large), the conclusions of Theorem 1.1 and Corollary 1.2 have not been previously
established. The technique of proof will depend heavily on the ideas of [3], [7].

If we measurably trivialize the bundle P —» M, the action of G on P is given by
a measurable cocycle a:G x M — H. That is, writing P>~ M x H, we have
g(m, h) = (gm, a(g, m)h). One can define the algebraic hull for any measurable
cocycle [9] and the results of Stuck and those preceding it that we mentioned above
in fact hold for all such cocycles. The proof we give of Theorem 1.1, however,
depends upon boundedness properties of the cocycle deriving from the fact it is
obtained from a continuous action on principal bundle over a compact base. It
would be of interest to obtain the conclusion of Theorem 1.1 for measurable
cocycles in general. Such a result should, for example, have application to the study
of measurable orbit equivalence [7] for actions of semi-direct product groups. (Cf.
[7, Chap. 4] and Theorem 4.1 below.)

If the algebraic hull L is semisimple with no compact factors, then the
superrigidity theory of [3], [7] implies that the cocycle is essentially given (up to
measurable equivalence) by a rational surjection G — L. Thus, Theorem 1.1 com-
bined with superrigidity yields very precise information on the measurable structure
for the action of G on P. On the other hand, as in [3] in the transitive case, the
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superrigidity theorem (applied to the cocycle obtained by composing with the
projection of the algebraic hull onto its maximal semisimple factor) is in fact used
in the proof of Theorem 1.1.

We expect this result to be of general use in a number of questions regarding
transformation groups. Here we indicate a few such applications. In [6], Stuck used
his result concerning algebraic hulls and ideas of Hurder and Katok [2] to deduce
a vanishing theorem for characteristic classes of foliations with symmetric leaves.
Theorem 1.1 allows one to establish Stuck’s vanishing theorem more generally.

COROLLARY 1.3. (via [6]: cf. [2]) Let F be an ergodic codimension q foliation
of a compact Riemannian manifold M with a holonomy invariant transverse volume
density. Assume all leaves are locally isometric to a fixed symmetric space
X of non-positive curvaturae each of whose irreducible factors in the de Rham
decomposition has rank at least 2. Let y : H*(9(q, R), O(q)) - H*(M, #)* be the
Weil homomorphism defined by & . Then there is a subgroup G < GL(q, R) locally
isomorphic to a factor of the isometry group of X such that y factors through the map
H*(%{(q, R), O(q)) » H*(%, G N O(q)) induced by restriction.

The second geometric application we give is to manifolds admitting a connec-
tion preserving action of a semi-direct product. For actions of semisimple groups,
obstructions to the existence of such actions in terms of the representation theory
of the fundamental group of the manifold are given in [1], [11]. Via Theorem 1.1 we
establish in Section 4 below the following result

THEOREM 1.4. Suppose G is a simple Lie group with finite center and R-rank
(G) 23, and V,, V, are real vector spaces on which G acts irreducibly, with
dim (V;) #1 for i =1, 2, and V, #(0). Suppose M is a compact manifold with a
connection and a volume density and that G x V, acts smoothly on M, preserving the
connection and the volume. If there is an embedding n,(M) < G x V, with discrete
image, then V, and V, are equivalent G-modules.

Other results along this line can be derived using Theorem 1.1 and the
techniques of [11]. We leave this to the interested reader.

It is a natural conjecture that every volume preserving ergodic action of a
semisimple Lie group of higher rank or of a lattice in such a group actually
preserves a connection. As a consequence of Theorem 1.1 it follows that there is
always a measurable invariant connection. There are a number of situations in
which one can deduce that the presence of a measurable invariant geometric
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structure implies the presence of a smooth one. (See [10], e.g.) Thus one may hope
Theorem 1.1 will be useful in making progress on the above conjecture.

2. Exponential cocycles

In this section we discuss some consequences of the multiplicative ergodic
theorem [3], [4]. We shall organize the material in a way that will prove convenient
for the proof of Theorem 1.1. We refer the reader to [3] for proofs and further
discussion.

We recall that if G acts on M and H is a group, a cocycle is a measurable
function a:G xM—-H such that for each g,, g,€G, a(g,g,,m =
o(g,, gam)a(g,, m) for a.e. me M. Two such cocycles a, f are called equivalent
(a ~ B) if there is a measurable ¢ : M - H such that for each g, a(g,m) =

p(gm)B(g, m)o(m) .

DEFINITION 2.1. (i) a: G x M - GL(n, R) is called integrable if for each
g € G, log*||a(g, m)|| € L'(M). (This is clearly independent of the norm on R".)
(ii) « is called quasi-integrable if it is equivalent to an integrable cocycle.

EXAMPLE 2.2. (i) If P—> M is a principal GL(n)-bundle on which G acts by
automorphisms, then after choosing a measurable trivialization the action is given
by a GL(n)-valued cocycle. If M is compact we may choose a bounded measurable
trivialization. Letting « be the corresponding cocycle we have x +— log™ ||a(g, x| is
bounded, and hence L'. Since any two measurable trivializations define equivalent
cocycles, if M is compact any measurable trivialization of P defines a quasi-
integrable cocycle.

(i) If a : G x M - GL(n) is a cocycle, a measurable field of linear subspaces on
M, x — Y(x) =« R" is called a-invariant if for each g, a(g, x)Y(x) = Y(gx) for a.e.
x € M. Assuming ergodicity of G on M, dim Y(x) will be essentially constant, say
r. We may then measurably choose an orthonormal basis w,(x), ..., w,(x) of R”
such that {w;(x) |1 <i <r} is a basis of Y(x). Writing a with respect to this basis
we obtain a cocycle G x M — GI(r) by restricting a to {Y(x)}, and which we
denote, somewhat ambiguously, by «|,. Since the {w;(x)} are an orthonormal basis,
it is clear that a|,:G x M —»GL(r) is integrable if o is integrable. Similarly,
the quotient cocycle say & :G x M —-GL(n —r) (representing the mapping
R”/Y(x) = R"/Y(gx)) is also integrable. It follows that for any quasi-integrable
and any B-invariant field of subspaces {¥(x)}, the cocycles B|, and B are quasi-
integrable.

Suppose now G=Z. If Ac M and xe M, we set S,(x) ={neZ|n-xeA}.
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DEFINITION 2.3. Suppose Z acts ergodically on M, preserving a finite mea-

sure. A cocycle a : Z x M — GL(n) is called exponential if there are:

(a) for each x € M a direct sum decomposition R” = W_(x) ® Wy(x) ® W, (x)
so that {W_(x)}, {W,(x)}, {W,(x)} are measurable a-invariant fields of
subspaces; and

(b) an increasing sequence of measurable subsets, M; = M, ,, with UM, = M,
such that if 4 = M, for some i and x € 4, we have:

-
Wy(x) = {v e R"

1
lim log||oc(n xp| = }
ne S (x
|n} — oo

(i) < W_(x)= {v e R" hsm( n log"oc(n xp| < 0}

nl—«»oo

W, (x)=

neS,x)n

veR"| lim ! — log|a(n, x)v| > 0}

In[—ooo

neS, ( )In

(i) < "

W, (x)= {v eR"| lim |log"oz(n x| < 0}
W_(x)= {

veR'| lim ~ log|a(n, x)v|| < 0}.
T

r

Wo(x) @ W, (x) = {v e R" hsm( )|1’ log|a(n, x)v| < 0}

(i) <

neS )N
\_ n— 4+ o

REMARK 24

(i) From (i) and (ii) in 2.3 we see that W_, W,, W are uniquely determined
if they exist; in particualr, they are independent of the expresison M = UM,, for
any {M,} which satisfy the conditions of the definition.

(ii)) If @ : Z x M - GL(n) is integrable, then the multiplicative ergodic theorem
implies that « is exponential, where we may take each M; = M.

(iii) Suppose a ~ B, say B(n, x) = @(nx)a(n, x)o(x) ~', and that « is exponential.
Let M = UM, such that the conditions in Definition 2.3 hold for a. Then we can
write M = UN, where ¢ | N, is bounded in GL(n), N;c N,,,, and for each j,

W_(x)® Wy(x) = {v e R*| lim ! = log|a(n, x)v| < 0}
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N; c M,;, for some i(j). f AcN;, xe A, ne S,(x), and n € R", then

¢ ||o(n, x)n|| < ||B(n, x)p(x)n| < c,||a(n, x)n||

where ¢,, ¢, > 0 depend only on the bound of |¢|, |¢ ~'| on N,. It follows from
(ii), (iii) in Definition 2.3 that B is exponential with the corresponding invariant
fields, say V_, V,, V., being given by

V_(x) =)W _(x), Vo(x)=ex)Wo(x), V,(x)=eXx)W (x).
(iv) It follows from (ii), (iii) that any quasi-integrable cocycle is exponential.

LEMMA 2.5. [3] Suppose a is exponential and Y < R" is a-invariant, i.e.,
a(n,x)Y =Y for all n, x. Suppose further that &, the induced cocycle on R"/Y, is
exponential. (For example, suppose a is quasi-integrable.) Let W_, W,, W, be the
invariant fields for a, W_, W,, W, the fields for &. Then for (a.e.) x € M, there is
an exact sequence

0= (Wo(x) 0 Y) = Wy(x) = Wo(x) - 0.
Proof. [3] Let p : R"— R"/Y be the projection. From (ii), (iii) of 2.3, we see that

PW_(x)) = W_(x), p(W.(x) c W, (%),
P(W_(x) ® Wo(x)) © W_(x) ® W,(x),
P(W .. (x) ® Wo(x)) = W,(x) ® Wy(x).

It follows that

P(W_(x) ® Wy(x)) = W_(x) ® Wy(x)
and

PW () ® Wo(x)) = W ,.(x) @ Wo(x)
Therefore, p(W,) = W,

LEMMA 2.6. Suppose A is an abelian group acting on M and ay,€ A. Let Z act
by powers of a,, and assume that the action is ergodic. Let o : A x M — GL(n) be a
cocycle such that a |{a3} x M is exponential, with invariant fields W_, W,, W .
Then these fields are a-invariant.
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Proof. Let M = UM, be as in Definition 2.3. Fix a € 4. Then we can write
M = UN;, N;c N,, , such that x — a(a, x) is bounded on each N;, and for each j,
N; = M, ;, for some i(j). For any x € M we have

a(aga, x) = a(aay, x),

that is,
a(ag, ax)a(a, x) = a(a, agx)a(ag, x)

Thus, if Y < N, for some j, x € Y, n € Sy(x) and v € R” we have
¢, |aag, x)v || < ||a(al, ax)((a, x))|| < ¢, ||a(al, x)n||

where ¢,, ¢, > 0 depend only on the bound of |a(a, x)|, [|a(a, x) ~'|| for x € N,. The
lemma then follows from (ii), (iii) in Definition 2.3.

3. Proof of Theorem 1.1
The basic use we make of the notion of exponential cocycle is the following.

LEMMA 3.1. Let H be a connected non-compact semisimple algebraic Lie group
and n : H - GI(V) a finite dimensional non-trivial irreducible (real) representation.
Let A be an abelian Lie group and o : A - H be a homomorphism onto a maximal
R-split torus in H. Choose a, € A such that n(o(a,)) has all positive eigenvalues with
at least one of these being strictly greater than 1. Suppose A acts ergodically and with
a finite invariant measure on M, and assume that the restriction of the action to {ag}
is still ergodic. Let o : A x M — H x . V be a cocycle such that, if p: Hx ,V — H is
projection, then (p o a)(a, m) = a(a)n(a, m), where n(a, m) € K and K c H is a com-
pact subgroup that centralizes a(A). Finally, suppose Ad - a, is exponential where
ao=a [{aj} x M and Ad is the adjoint representation of H x V. Then the algebraic
hull of a does not contain V.

Proof. The Lie algebra of H x V can be identified (as a vector space) with
b@® V, and clearly V is Ad ° a-invariant. Choose W_, W,, W_ as in Definition 2.3
for the exponential cocycle Ad-a,. We can view W, as a measurable map
M - Gr (h@® V) (the Grassmann variety), and by Lemma 2.6, W, is Ad - a-invari-
ant. Since H x V acts tamely on Gr (h@ V) (cf. [9]) and 4 acts ergodically on M,
the image of W, lies in a single H x V-orbit, and thus W, can be interpreted as an
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a-invariant map M — (H x V)/H, where H, is the stabilizer of a point in the orbit
containing (almost all of) W,(M). This is equivalent [9] to saying that the algebraic
hull of « is contained in H,. Therefore, to prove the lemma, it suffices to see that
H 3V.

Apply Lemma 2.5 to the Ad°a,invariant subspace V. We can write
V=V, ®V, where ¥V, is the space of m(a,)-invariant vectors and ¥V, is the space
spanned by the eigenvectors of other eigenvalues. By the choice of a, we have
V, #(0). Similarly, on (h@ V')/V, the cocycle (Ad’\ol ®o) is just given by

Ady (p(a(ay, m))) = Ady (a(ay)) Ady (n(ay, x)).

It follows that this cocycle is exponential and that W,(x) = b, for all x, where by, is
the space of Ad, (d(ay))-invariant vectors in §). By Lemma 2.5 for a.e. x € M, we
have an exact sequence

0oV, Wy(x) =>h,—0.

To see that H, 7V, it suffices to see that any such subspace W,(x) is not
Ad (V)-invariant. Since ad (V)(V,) =0, if W,(x) were Ad (V)-invariant we would
have [V, §,] = V, (where the bracket is in the Lie algebra b @ V). However, since q,
is contained in a l-parameter subgroup whose Lie algebra clearly lies in b,, and
V, #(0), this is clearly impossible.

We will also need the following simple fact.

LEMMA 3.2. Suppose o :G x M —GL(n) is an integrable cocycle, and that
o ~ f where B(G x M) c H < GL(n), and H is algebraic. Suppose N < H is a closed
normal subgroup and let v : G x M — GL(H/n) be the cocycle induced by Ad, - B
acting on Y. Then y is quasi-integrable.

Proof. Let Ad be the adjoint representation of GL(n). Then clearly Ad -«
is integrable. We have Adoa~Ado-f, (Adop)g x)|hc¥(n) is just
(Ady - p)(g, x), and the result follows by example 2.2(ii).

The proof of Theorem 1.1 now follows closely the proof of [7, Theorem 5.2.5].
We shall indicate the new ingredients, but refer to [7] for a number of points. For
simplicity, we shall also assume that the real part of G acts ergodically and
irreducibly. The technical modifications necessary to remove these hypotheses are
the same as those in [8]

Proof of Theorem 1.1. We may suppose a : G x M — H is a quasi-integrable
cocycle whose algebraic hull is H, where H —« GL(n) is a real algebraic group. By
possibly passing to a finite cover of M, we may assume H is Zariski connected by
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[7, Proposition 9.2.6]. Write H = L x U where L is reductive and U is unipotent.
The composition of a with projection of H onto H/[L, L] x U is a cocycle into an
abelian algebraic group whose algebraic hull is the whole group. Since G has
Kazhdan’s property, it follows from [7, Theorem 9.1.1] that H/[L, L] x U is
compact, and hence that the center Z(L) is compact. To prove the theorem, we need
to show U = {e}. We may assume that L itself is not compact, for otherwise [7,
Theorem 9.1.1] applies again to show that H itself is compact. If U # {e}, we may
write U/[U, U]l = V@V’ where V, V' are L-invariant vector groups, V # (0), and
the representation m of L on V is irreducible. Projecting H to H/ker n x [U, U]V,
we obtain a cocycle a,: G x M — L, x V whose algebraic hull is L, x V, where
Ly=L/kern. Let L =ZS where § is semisimple with no compact factors, Z is
compact and centralizes S, and the product is almost direct. The representation
n | S of § on V must be non-trivial, for otherwise S is normal in L,x V, and
projecting «;, to Ly, V/S we would obtain a cocycle whose algebraic hull is a
non-compact amenable group, which is impossible by another application of
[7, Theorem 9.1.1]. We may lift all actions and cocycles to G, which we take in the
usual sense for Lie groups, and in the algebraic sense for p-adic groups. By
applying the superrigidity theorem for cocycles ([7, Theorem 5.2.5]; see also [8] for
the result with precisely our present hypotheses) to the projection of «, to L,, we
deduce that this projection is equivalent to a cocycle f: G x M — ZS of the form
B(g, m) = n(g, m)o(g), where n(g,m) € Z and ¢ : G- S is a surjective homomor-
phism (which factors to a rational homomorphism of the maximal algebraic factor
of G).

Let A = G be a maximal abelian subgroup with Adg (4) a maximal split torus
in Ad; (G). We may choose g, € A such that n(a(a,)) has all positive eigenvalues
with at least one of these being strictly greater than 1. The action of 4 on M is
ergodic by Moore’s theorem [7]. By Lemma 3.2, Ad, . , ° , is quasi-integrable. We
may therefore apply Lemma 3.1. We deduce that the algebraic hull, say H,, of
®, |AZ(C7) x M does not contain V. Now replacing A by its image in G, we have
deduced that there is an «, | AZ(G) x M-invariant map M —(L,x V)/H,. Let
@, :Gx(M xG[/AZ(G)) - L x V be the cocycle (g, (x,y)) =a,(g, x) for the
diagonal action of G on M x G/AZ(G). Then (cf. [7, Section 4.2]) there is an
&,-invariant map M x G/AZ(G) - (L, V)/H,. Reorganizing our notation some-
what, we see that it suffices to prove the following lemma.

LEMMA 3.3. Let G, M, A be as above. Suppose L is an algebraic group and
n:L—>GL(V) a faithful irreducible representation. Suppose o :G x M —->L x V
is a cocycle and that there is a measurable d&-invariant map ¢ : M x G/AZ(G) —»
(L x V)/H where H is an algebraic subgroup that does not contain V. Then the
algebraic hull of a is not equal to L x V.
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The proof of Lemma 3.3 is basically the same as that of [7, Theorem 5.2.5).
Namely, suppose the algebraic hull is L x V. Then the proof of Step 2 in [7, p. 104]
shows that for ae. me M, ¢,(y) =@(m,y) defines a rational function on
G/AZ(G). The proof of Step 3 in [7, p. 105], modulo one point which we discuss
imminently, shows that replacing a be an equivalent cocycle we can assume ¢, is
independent of m. The only additional point that needs to be seen is that the result
[7, Proposition 3.3.2] on spaces of rational mappings ¥ — P" holds for quasi-projec-
tive varieties, not just projective varieties as in [7]. This is needed here because our
functions are defined on G/AZ(G) which is only quasi-projective, in contrast to the
proof of [7, Theorem 5.2.5] where they are defined on G/P where P is parabolic.
However, any quasi-projective variety Y is determined by the pair (¥, ¥ — Y) of
projective varieties and hence it is easy to modify the proof of [7, Proposition 3.3.2]
to cover the quasi-projective case as well. Finally, the proof of [7, Lemma 5.2.8]
shows that « is in fact given by a rational homomorphism G — L x V (cf. [7, pp.
106-107)] for the p-adic case) and hence would have algebraic hull contained in L,
providing the contradiction. The central point here is that what is necessary for the
proof of [7, Lemma 5.2.8] to work is that the intersection of the conjugates of H in
L x V be trivial. However, since = is irreducible any normal subgroup not contain-
ing ¥ must be contained in L, and since = is faithful this subgroup must be trivial.
This completes the proof.

4. Application to fundamental groups and semi-direct products

In this section we prove Theorem 1.4, and in fact prove a somewhat stronger
assertion. We first prove a superrigidity type result for cocycles into semi-
direct products. We shall use both Theorem 1.1 and the techniques involved its
proof.

THEOREM 4.1. Suppose G is a connected semisimple Lie group with finite
center, R-rank(G) = 3, and all simple factors have R-rank at least 2. Suppose (n, V)
is a finite dimensional G-module (possibly with trivial action) and G x V acts on M
so as to preserve a finite measure. Suppose further that G acts irreducibly on M, i.e.,
all simple factors act ergodically. Let H be a connected semisimple real algebraic
group with no compact factors and let (p, W) be a finite dimensional H-module.
Suppose a : M x (G x W) is a quasi-integrable cocycle (for some embedding of
H x W in GL(n)) and that the projection of o onto H has algebraic hull H. Then o
is equivalent to a cocycle independent of M, i.e., it is given by a homomorphism
G x V- H x W of the form (g, v) — (a(g), T(v)), where a is a smooth surjection and
T : V> W is linear and intertwines the representations (n, V) and (p - 6, W).
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Proof. By superrigidity for cocycles [7, Theorem 5.2.5] (and [8] for the exact
form we need), by possibly passing to a finite cover of G we can assume « is of the
form

a(m, (g, v)) = (a(g), B(m, g, v))

where 6:G—>H is a smooth surjection. By Theorem 1.1 we can find
® : M — Hx W such that ¢(m)a(m, (g, v))e(m(g, v)) ~' has a vanishing component
in W whenever v =0. Writing o(m) = (¢,(m), ¢,(m)) € H x W, one easily checks
simply by multiplying that the same is true if we modify a by ¢, instead of ¢. The
result of this is that we may assume a is of the form a(m, (g, v)) = (6(g), 6(m, g, v))
where d(m, g, v) =0 if v =0.

From the identity

o(m, (8, v)) = a(m, (g, 0))a(mg, (e, v)),
we obtain
(a(8), 8(m, g, v)) = (a(g), 0)(e, x(mg, v)),
since a(mg, v) € W. Therefore
o(m, g, v) = a(mg, v),
and we have
o(m, (g, v)) = (a(g), a(mg, v)).
We have gv = (n(g)v)g in H x V, so we also have
o(m, gv) = a(m, (n(g)v)g)
= a(m, n(g)v)a(m - (n(g)v), &)
= a(m, n(g)v)o(g)
= (0(8), p(a(g)) ~'a(m, n(g))).
Therefore, we deduce
(*)  a(mg,v) = p(o(g)) ~'a(m, n(g)v).

Now let 4 = G be the maximal R-split torus and fix 4, = A a 2-dimensional
sub-torus such that the centralizer Z;(A4,) o L, where L is a non-compact simple
group. Such a group A, exists since R-rank(G) = 3. Let v € V be a weight vector for
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A (i.e., a simultaneous eigenvector), and 4 : 4 - R* the corresponding weight. Let
A, =ker (A)nA,, so that dim 4, =21, and A4, = G,, the stabilizer of v in G.
Restricting « to the G-orbit n(G)v, we obtain a G-map (by (*)) a : M x G/G, = W,
and we lift this to a G-map a : M x G/A4, —» W. Since A, is non-compact, G acts
ergodically on M x G/A, [7, Chapter 2]. The action of G on W (via p o ¢) is tame,
and hence (cf. [9]) the image of « on M x G/A, lies in a single G-orbit in W, say
G/G,. Thus, we can view a as a G-map o : M x G/A, - G/G,.

By the proof of [7, Lemma 5.2.9], for almost all me M and y € G/A,, the
function g+ a(m, n(g)y) is rational on L (using in a basic way the fact that
L c Z;(A,)). Fix y € G/A, such that this rationality property holds for a.e. m e M.
Then o defines an L-map « : M x L/L, - G/G,, which for a.e., m € M is rational
on L/L,. Thus, letting R be the space of rational maps L/L, - G/G,, « defines an
L-map 6 : M - R. By [7, Proposition 3.3.2] (and the remarks in the final para-
graph), the action of L on R is tame with algebraic stabilizers. By tameness and
ergodicity of L on M, we deduce that the image of 6 lies in a single L-orbit in R.
Thus, 0 defines an L-map 6 : M — L/L, where L, is the stabilizer of a point in R,
and in particular is algebraic. Since there is an L-invariant probability measure y on
M, 0, p will be such a measure on L/L,, which by the Borel density theorem implies
L =L,. In other words, 0 is constant, or equivalently, a is independent of M as a
map defined on M x L/L,. Viewing o once again as a map M x V' — W, this
implies that for each weight vector v € V, for a.e. g € G we have that a(m, n(g)v) is
independent of m.

For each t € R, v is also a weight vector, and hence we deduce by Fubini’s
theorem that for almost all g € G, we have a(m, n(g)(tv)) = a(m, tn(g)v) is indepen-
dent of m for almost all # € R. In particular, we can choose y € V arbitrarily close to
v such that for almost all ¢ € R, a(m, ty) is independent of m. Since there is a basis
of V consisting of weight vectors, we can choose a basis {y;} of ¥ such that each y,
has this property. Given any z,, z, € V, then a(m, z, + z,) = a(m, z,) + a(mz,, z,),
so that if a(m, z;) are both independent of m, the same is true for a(m, z, + z,). By
taking finite sums of the form X ¢,y,, we see that a(m, z) is independent of m for a.e.
z € V. However, we have also just observed that {z € V' | a(m, z) is independent of
m} is a semi-group in ¥, and being conull it must be equal to V [7, B.1]. Thus,
o : M x V- W is independent of M, and this completes the proof.

We now prove a somewhat more general version of Theorem 1.4 (cf. [11]).

THEOREM 4.2. Suppose G is a simple Lie group with finite center and V is a
finite dimensional G-module with no invariant vectors. Let W be another finite
dimensional G-module. Assume R-rank(G) =3 and n,(G) is finite. Let M be a
compact manifold on which G x V acts with finite kernel preserving a connection and
a volume density. If n,(M) embeds discretely in G x W, then V < W as G-modules.
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REMARKS. (i) The result is true more generally for M any “standard”
topological space on which the action of G x V is topologically engaging. (See [11]
for discussion of these conditions.)

(i1) With the assumption of topological engaging, we may allow V to have
invariant vectors if we assume that there is a finite ergodic invariant measure for
G x V which is still ergodic upon restriction to G, e.g., if we assume the G x V
action is mixing.

Proof. By [1, Lemma 6.1.A], the action of G x V is essentially proper on M.
Viewing M — M as a principal n,(M)-bundle, we form the associated bundle Q
with fiber G x W given by the embedding n,(M) < G x W. Since this image is
discrete, it follows that the action of G x ¥V on Q is also essentially proper. Choose
a finite G x V-invariant and ergodic measure. Since there are no G-invariant
vectors in V, the Mackey analysis of unitary representations of semi-direct products
together with the Borel density theorem shows that G itself acts ergodically. (Cf. [7,
7.3.4].) By Theorem 4.1, we deduce that the V action on Q is given by a cocycle
which we can take to be a linear G-map V — W. Since the V-action is proper, this
map must clearly be injective.
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