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Complex singularities and the framed cobordism class of compact
quotients of 3-dimensional Lie groups by discrète subgroups1

J. A. Seade and B. F. Steer

Let F be a discrète subgroup of a 3-dimensional Lie group G with compact
quotient Mr F\G. The tangent bundle of G may be trivialized by left translation.
This descends to Mr and defines a trivialization i? of its tangent bundle. Once an
orientation is chosen for Mr the pair (Afr, if) détermines an élément in 0%, the
cobordism group of stably framed 3-manifolds, which is isomorphic to the stable

homotopy group of the sphères, n\, via the Pontryagin construction [25]. In this
article we détermine the éléments in 713 so obtained in terms of invariants of the

embedding of F in G, thus completing the work started in [38].
We use the Adams e-invariant [1]. It is a monomorphism

e :

expressible in terms of spin-cobordism [6]. However, in the cases relevant hère we
hâve F\G ôX and X is seldom spin. So we use a formula of [36], derived from
Rochlin&apos;s theorem [12], [31], [35], that expresses e in terms of complex cobordism
plus a correction term for the lack of a spin-structure.

Up to isomorphism, there are six différent 3-dimensional, simply-connected Lie

groups that admit discrète subgroups with compact quotient. A complète list of
thèse is given in [34], where a list of the discrète subgroups and the corresponding
quotients F\G is also given. The Lie groups are SU(2)9 SÎ^U\U3, E+\2), the

Lorentz group £(1,1) (or SOLV) and the Heisenberg group H. From work
initiated by F. Klein and continued by F. Hirzebruch and others [20], [15], [9], [10],
[26], [29] we know that if G is SU(2), s£R, H or £(1, 1), then for every F c G the

quotient Mr F\G is diffeomorphic to the link of a normal, Gorenstein, surface

singularity. The first three correspond to singularities with C*-action and /?(!, 1) to

&apos;Research partially supportée by a grant from SERC (U.K.) and by CONACYT (Mexico).
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the cusp singularities. Thus, in ail thèse cases Mr can be regardée as the boundary
of a resolution V Vr of the corresponding singularity. Moreover, the framing 5£

on Mr is compatible with the complex structure on V, hence the formula [36] for
the e -invariant says

e(Mr, S£)
kK

&apos;2J— + ^ Arf (K) mod Z

16

where x(V) is the Euler-Poincaré characteristic, K is the canonical class of V,

Arf (AT) is the Arf invariant of K for a suitable quadratic form on HX(K, Z2) [12],
[35], ii(9) is Rochlin&apos;s invariant [12], [16], [22], [41] and ô{9) is the signature defect

so much studied [11], [15], [17], [21], [27].
In §2 of this article we make explicit computations of thèse invariants for

the semi-simple groups SU{2) and SÎ^U. The case of S^IR is the most interest-

ing and it takes most of our energy. Let us illustrate the situation with two
examples: F a PS12U and F cz 5/2!R. In the first case the corresponding singularities
are the quotient singularities of Dolgachev [9]. The resolution of thèse is of the
form

#-*«

where {g; al5..., an} is the signature of the Fuchsian group F and ail the vertices

represent sphères, except the centre Eo which has genus g. The canonical class K is

— 2E0 — Z?= i En the invariant Arf (K) is (g — 1) mod (2) and the e -invariant is

1 / n \
e(F\PSl2U, iO=^(2g-2 + /i-X&lt;x«) mod Z.

Now, if F c: Sl2R and -/ i T, so that n : S12U-+PS12U is an isomorphism over G,

then the corresponding singularity has graph
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where {g;a,, ...,«„} is the signature of n(F\ the a,&apos;s are (automatically) odd
integers and ail vertices represent 2-spheres, except the centre E0^F\Jf. In this
case K is -3E0 - 2 1?= ElA - I?_ Eia) and Arf (K) is

(g - 1) + dim //°(£0; L - &apos;) mod (2)

where L v ® L, ® • • • ® Ln, v is the normal bundle of Eo and L,, i 1,..., n, is
the holomorphic line bundle over Eo determined by its intersection point with the
curve Etfl. Then we find

1 / \
e(F\Sl2U,&amp;)= — [2g-2 + n- £ a, + 24dim H°(E0; L&quot;1) mod Z.

Thèse two cases exemplify the gênerai situation. Given F c= SÎ^U with compact
quotient, there is an integer r &gt; 1, the index of F in n~l (n(F)), where rc is the
projection onto PS12U; this integer r is determined by the Seifert invariant of Mr
and — (r + 1) is the coefficient of the central curve Eo in the canonical class K of the
resolution in [32]. If r is odd, then we can drop Eo from the expression for a
characteristic submanifold W and we may détermine e(Mr,&lt;&amp;) in terms of the
Seifert invariants: indeed, simply in terms of r and the &apos;signature&apos; {g; o^,..., &lt;xM} of
n(F) as W. D. Neumann&apos;s improvement (2.7) clearly shows. However, when r is

even the central curve Eo has a canonical spin-structure and the corresponding Arf
invariant dépends on the embedding of F in G. Thus, to détermine the class of
(F\G, 5£) in 7C3 one must specify the Seifert invariants of F\G plus an additional
invariant when r is even: the mod (2)-index of the Dirac operator on the central
curve iso-

In the case G E(\, 1), §3, our work dépends upon the basic article of F.
Hirzebruch [15]: ail that is left for us is the évaluation of Arf (AT). This we do &apos;by

hand&apos;, using the topological définition as given in [12]. In §3 we also study the other
solvable, non-nilpotent group: E^{2\ the universal cover of E+(2), the orientation
preserving affine motions of R2. In this case, the quotients F/G are no longer
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singularity links as in the other cases, but they are boundaries of &apos;big neighbour-
hoods&apos; containing 3 or 4 singular points, and the same method applies. The

nilpotent case has already appeared in [8], but we include (in §4) a short and qui te
différent proof, for completeness, together with a proof in the abelian case, which
is similar. In §1 we first recall some définitions and results about the e-invariant and
the Arf invariant. We then define the invariant Arf (K) for singularises and we
relate it with the ^-invariant and the spin cobordism invariant of Atiyah [4], as well
as with other invariants of the singularity. Our computations also détermine the
Rochlin /i-invariant of F/G in ail cases.

We are happy to thank Igor Dolgachev, Nigel Hitchin and Elmer Rees for a
number of conversations and suggestions. Walter Neumann we especially thank for
showing us how to simplify and improve the statements in several instances. At his

suggestion we include the values of the Rochlin invariant fi and the signature defect
S. We are grateful to the Universities of Geneva and Neuchâtel, to IMPA at Rio de

Janeiro, the Tata Institute at Bombay and to colleagues at thèse institutions whilst
working on this paper.

The table below summarizes the classification of the éléments in 713 represented

by (F/G, &lt;£\ for the 3-dimensional Lie groups with compact quotients.

Group G Subgroup F Elément represented in

*5£{1,2,...,24}

Abelian
u3 rsz3,

Nilpotent

H keZ fixed

12

12-A:

Solvable

M
w |

Va

with
Z.U+Z.1,

index /

E+(2)
n(F)czE+(2) inZ2,
a triangle group (2, 3, 6), (2,4,4)
or (3, 3, 3) or the quadrangle

group (2, 2, 2, 2).

3/r — / Z;. ,4 + 12

0,if«(D£Z2;
2-/i+a1 + --- + a,ï,

if7r(r)=(a1,...,an)
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Semi-simple

rsZ/r, r :&gt; 1, or r, if TsZ/r,
5(7(2) r îs a (binary) tnangle group -1 + &lt;Zj + a2 -h a3,

&lt;2, 2, r&gt;, r £ 2, &lt;2, 3, 3&gt;, &lt;2, 3,4&gt; if F &lt;a,, a2, a3&gt;

or &lt;2, 3, 5&gt;

r is given by a cocompact
Sf^R Fuschian group T, c PS72R, See (2 8) and (2 10)

and an embedding of T, in some in the text
finite cychc cover Gr of PS12U

§1 Surface singularities and Rochlin&apos;s invariant

(a) Let X be a closed, C00, 4-mamfold with a complex structure on îts (stable)
tangent bundle, and let — K c= X be an onented submanifold of X representing the
first Chern class cx(X) An onented 2-submanifold W of X is characteristic if ît
represents the same class as A&apos;in H2{X, Z2) Thus, in particular, K\§ charactenstic
Rochhn&apos;s theorem [12], [30], [31], [35] says that

a(X) -W2 8Arf W) mod 16),

where o(X) dénotes the signature of X Taking W K wc hâve

Td(X)=Aïf(K) mod (2),

where Td (X) is the Todd genus [14]
Let us now suppose that X is compact but has non-empty boundary M ôX

Assume that the complex bundle TX is trivial over M and p TX\M AMxC2is
a spécifie tnviahsation Then P defines a complex vector bundle x(P) over the quotient
XjM, whose pull-back to X is TX By définition [19], the Chern classes of t(0),
c,(P) 6 H2t(X, M, Z), i 1, 2, are the Chern classes of X relative to p Their image
in H*(X9 Z) are the usual Chern classes of X, but as relative classes they dépend

on p The following results of [36] is a conséquence of Rochhn&apos;s theorem and,
mdeed, provides an extension of Rochhn&apos;s theorem to mamfolds with boundary
Recall that W, an onented submanifold of Int (A&quot;), is characteristic relative to P if
it represents a homology class in H2(X, Z2) s H2(X, M, Z2) dual to the réduction
mod (2) of cx(p)
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(1.1) THEOREM. If W &lt;= X is characteristic relative to fi, then the e-invariant

of(M,p)is,

e(M, /?) UlciiP) ~ c?(/?»m + UW2 - 8 Arf (W)) mod Z

modZ,

where [X] is the orientation cycle, Arf (W) e {0, 1} is as in Rochlin&apos;s theorem and

li(M, p) =/i(Ar) is Rochlin&apos;s mod (16) invariant [12], [16].

Note that if we know Arf (W) for some characteristic W, then we can détermine

Arf (W) for another characteristic W by the formula

yy^(1.2) Arf(W&quot;) Arf(»O+i—-z mod 2.
8

(b) Let us dénote by (ir9 P) the germ of a normal, Gorenstein, surface

singularity, and we let n : i^ -? y be a (good) resolution of P. If V c Y dénotes a

compact tubular neighbourhood of the exceptional set E n~x(P), then V is an
almost complex 4-manifold with boundary M, the link of P in ir. If œ is a nowhere

zéro holomorphic 2-form on i^\{P} (which exists because P is Gorenstein), then
[36], [38] œ defines a canonical trivialization ^ of TM9 compatible with the complex
structure on Y. Thus ^ defines a complex trivialization of T9\M. Moreover, the
Chern class c, (^) of V relative to # is indeed independent of # and it is dual to
— K, the anti-canonical class. By [28], the class K is uniquely characterized by the

adjunction formula

for every non-singular curve E in Int(P) of genus g. Also [19], [36], if p is a
trivialization of TV\M induced from one of TM and, like #, compatible with the

complex structure then c2(fi)[X] is the (topological) Euler characteristic of P, %{V).

Thus we hâve,

(1.3) THEOREM [36]. Let p be some trivialization of TM compatible with the

complex structure on V. Then

e(M, P) à(2Z(P) - K2) + UW2 - 8 Arf (W)) mod Z

modZ,



Complex singularises 355

where W is a characteristic submanifold of V. In particular ifW R,a représentative
of the canonical class K, then

e(M, fi) Ul(V) + *2) + \ Arf (R) mod Z.

(If D is a (possibly) singular divisor on V, then we can always find a smooth D
representing the same homology class as D, hence D2 D2. It thus follows from
(1.2) that if [D]\2 [à:]|2, then we may define Arf (D) Arf (3) mod (2), and this
définition does not dépend on the choice of D. In this case we say that D is a

characteristic divisor and Arf (D) its associated Arf invariant. Moreover, if ail
components of D are non-singular, with multiplicities equal to 1 and normal
corssings, then there is a canonical way of smoothing D and obtaining a smooth D
in the same class as D: at each crossing point, we choose local coordinates so that
D is given by zxz2 0, and replace this with zYz2 t, for some small t.) Because the
Todd genus is invariant under blowing up [14], [18] the following resuit is an
immédiate conséquence of (1.3).

1.4) PROPOSITION. The invariant Arf (K) dépends only on (T, P) and not on

any of the choices involved in its définition.

(1.5) THEOREM. Let P be any trivialization of TM (Le. P&apos;.

compatible with the complex structure and let V be a resolution of P.

(1) If n(M) g Q/Z is the Rochlin pi-invariant of M[\6], [41], with respect to the

spin structure defined by /?, then

fi(M) \Arf (K) - ±(K2 + b2) mod Z

where b2 is the rank of H2(V; Z).
(2) If(V, P) is smoothable then

Arf (K)=pg mod (2)

where pg is the géométrie genus of P, pg dim Hl(V9 0).

Proof: Clause 2 is immédiate from the Laufer-Steenbrink formula [13], [23],
[40], (1.3), and the observation that if rT&apos; is a smoothing with Milnor number d
then e(M, /?) (d + l)/24 mod Z. (It admits a rather better proof, independent of
the existence of a smoothing, in several cases.)
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Clause 1 follows directly from Rochlin&apos;s theorem [12], [35] if we bear in mind
Novikov additivity for the signature and Mumford&apos;s theorem [28] that b2 —o{P).

Let us now assume that the characteristic submanifold W is, in fact, a Riemann
surface in Int(P), i.e. Wis an effective, non-singular divisor. Then Wis given by the

zeroes of a holomorphic section of a bundle of the form -#V X pl ®@2, for
some Une bundle 3f which is holomorphically trivial near dP, where Jf is the
canonical bundle of f, Jf&gt; A2T*P. Since H\Vy dV; Z2) s H\9\ Z2) 0, 9 is

uniquely determined.

(1.6) PROPOSITION.

Arf W) dim H°( W; 21 w) mod (2).

Proof. The normal bundle of W in P is isomorphic to S£w\w, by the adjunction
formula, thus

&gt;|IFVV|IF» where

Therefore,

by the définition of if^. This means [4] that 2 détermines spin-structure on W, as

described in [31], so (1.6) follows from the fact that both sides are (non-trivial)
spin-cobordism invariants by [4], [31] and fi2(Spin) s Z/2 by [2]. D

We note [4] that dim H°(W; 9\W) is the mod (2)-index of the Dirac operator
on W, for the spin-structure. If we dénote this index by h(W), then (1.6) can be

stated as

kti{W)=h{W) mod (2).

In this form (1.6) holds in the smooth category, i.e. even if W is not complex
analytic.

§2 The Semi-simple groups

(a) We consider first the case G 5(7(2), though the calculations are in [38].
The discrète subgroups of SU(2) are the cyclic groups Z/r, r ^ 1, and the triangle
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groups &lt;2,2,r&gt;, r ;&gt; 2, &lt;2, 3, 3&gt;, &lt;2, 3, 4&gt; and &lt;2, 3, 5&gt;. The quotient F\G is

diffeomorphic to the link of the singularity F/C2. The resolution of thèse singular-
ities is well-known: it is given by the famous Dynkin diagrams Ar_,, Dr, E69 E7 and

£8, see [3], so that the canonical class K is 0 in ail cases, by the Adjunction
Formula. Since G acts on C2 by holomorphic transformations, the framing 5£ on

F\G is compatible with the complex structure on F\C2. Thus we may use (1.3) to
détermine the e-invariant of (F\G, &amp;) and we find

n=4 mod(16);

where Vr is the resolution.

(2.1) THEOREM. Let F c 5(7(2) te a âfacrete subgroup. If F s Z/r,
(r\G, .^f) Zia^ e-invariant r/24mod Z. If F is a triangle group &lt;p, #, r&gt;,

e-invariant is

UP+9 + r-l) mod(Z).

(b) The case of SÎ^U. For a moment consider in gênerai a germ (f, /&gt;) of a

complex surface with a good C*-action. Let M dénote the link of P in f. Then M
is a Seifert manifold and its Seifert invariants {g : d0 : (al5 ft),..., (an, ^rt)} can be

determined, as in [32], from the weights of P. It is shown in [32] that thèse

singularises hâve a canonical, equivariant resolution V with graph

where the centre Eo is a non-singular curve of genus g ^ 0 with self intersection

-rf0 and ail other vertices EtJ are copies of CP1. The number of branches

corresponds to the exceptional fibres of M and the weights dtJ corresponding to the

/th-branch are determined by (a,, #) as follows: set aI&gt;0 «„ ao # and then define
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inductively

(2.2) af,0 &lt;!«,,!-aïf2

We set ahqt 1. AU the dtJ are then £2, but d0 may be 1, see [32], [16]. So

[[dtfl,..., dI4J] is the continued fraction for (a,//?,), in the notation of [15].
The Euler number of M, as a Seifert manifold, is defined by

It is always a négative number [29], because M is the link of a singularity. The
number

is the Euler characteristic of the base orbifold.
If K is the canonical class of the resolution of (f, P) described above, then K

is a linear combination of the form

K itiqEq -h Z

Let us define ml0 to be m0 for 1 £ / £ /i, and set w,^ +,
0. The following

proposition tells us what m0 and the mt/s are.

(2.3) PROPOSITION. If we set XQ mQ -f 1 am/ Ajy mM -h 1, then

(3)
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To prove (2.3) one applies the adjunction formula to each EhJ and to Eo and
obtains the following System of équations:

&lt;y-2= -dltJmltJ + ml%J_x +mliJ+l, for ail ij &gt; 1; (1&apos;)

n

2g - 2 + d0 -domo+ £ mlX. (40

Replacing the mtJ by ÀtJ — 1 yields

KA,j Kj-\ + Kj+u for ail i, y &gt; 1; (1)

2g-2 + n -d0XQ+ £ AltI. (4)
«= i

Equation (2) follows from a trivial induction on decreasing/
Again by decreasing induction on j we can show that if we specify XlCJi to be st

then kUJ ol1%jSî ~ ytJ, where 0 &lt; yl%J &lt; oluj and ytiJ&lt;xltJ+, l(a^); 1 ^; &lt; qt. So if
7,^ l(a,), 0 &lt; yt &lt; a,, and r y,(a,) then System (1) has a solution with XQ — r
and A^ — [(r — y,)/aj. The gênerai one can be obtained from this particular
solution and we see that to satisfy équation (4) we must hâve Ào —X(M)/E(M).

If the germ is Gorenstein then [10], [29] its link M is of the form r\G where
G is SU(2), SÎ^U, or the Heisenberg group H, according as X(M) is positive,
négative, or zéro. In thèse cases the canonical class A^ is intégral and so the ktJ are
integers.

Now we turn to S/2R. It is an infinité central extension of PS12U so that, if we
dénote PS12U by G, and SÎ^U by G^, we hâve an exact séquence

For every integer r ^ 1 there are central extensions

moreover, given F^ &lt;= G^, a discrète subgroup with compact quotient, there exists

an integer r ^ 1 and a discrète cocompact subgroup Tr of Gr such that

ker(7tr|r) 1 and Tr\Gr s T^G^ [34]. (The number r is the index of T^ in

n~\n(r^)). The group rc/^ is determined up to quasiconformal équivalence by its
&apos;signature&apos; [7].)
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The group Gi=PSl2U acts on the upper half plane Jf via the Môbius
transformations

(a b\ _az + b

\c d) cz +d

a, b, c, deU, ad - bc 1 and Im(z) &gt; 1. This action extends to one, also by
holomorphic maps, of G on TjHf ^Jf xC, the holomorphic tangent bundle of tf.
It is defined by differentiation:

g • (z, w) (g(z), g\z) - w)

where (z, w) e #f x C. So, choosing a base point (z0, 1) s TJf, we map G into Tjf
as the orbit of (z0, 1). In fact, this map is an embedding and identifies G with T{Jf,
the unit sphère bundle of Jf. (G acts transitively on T{Jf with trivial isotropy
group.) The situation for Gr is similar.

In [26], J. Milnor gives an explicit description of G^. If we adopt his notation,
we can identify Gr with the r-labelled biholomorphic maps of Jf to itself, where
such an object is a biholomorphic map of Jf {Im (z) &gt; 0}, / : Jf -» Jf, together
with a lift ?&apos; :Jf-&gt;C? ^C* of the derivative to the r-fold cover Cr* of the

multiplicative group C*. If we dénote by Cr s C the r-fold cyclic cover of C

branched at 0, we then hâve an action of Gr on Jf x Cr, which embeds Gr as the

orbit of (i, 1), where 1 is a selected point in Cr lying above 1 g C. Let F c Gr. We
hâve r\Gr Mr=dVr, where Vr is an analytic surface with a single normal
singularity at a point P [9], [10] obtained from Jt x Cr/F. Moreover, it is shown in
[38] that there is a holomorphic 2-form won/x C*, invariant under G^. This
induces the canonical framing # on the link of P, which is Mr, and by the

Goo-invariance of œ we hâve that J£? and &lt;$ are the same framing on Mr, up to
homotopy. The surface Vr has a C*-action, so the graph of its canonical equivari-
ant resolution Vr is a star and it is fully determined by the Seifert invariants of

(2.4) PROPOSITION. Let K dénote the canonical class of Pr and let m0 be the

coefficient of the central curve Eo in K. Then

r -(iwo + 1) X(Mr)/E(Mr)9 (1)

— K is an effective divisor. (2)

Statement (1) follows from [34] or [29] and (2.3)(2) by direct computation, whilst
statement (2) is immédiate from (2.3)(2) since — Ao ^ 1 and ail atJ are positive,
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(2.5) LEMMA. If K is the canonical class of Vr then

where {g : do : (a,, /T,),.. (an, #,)} tfre /A* &amp;(/er/ invariants [32] 6&gt;/Afr jthe entries in the continuée! fraction expansion of olJP,.

Proof Since the graph of Vr is a star we may write

n

K1 -mldo - 2 X ^0^,, + D2,
i= i

where D2 Z&quot;=, Z&gt;f is the contribution of the branches. From (2.3)(1) we deduce

Thus we obtain

K2 -mldo + m0 Z Ki + 0 &quot; Z Ki + &quot;.*,) + Z Z (2 - &lt;y)-

Using this équation together with (2.3) again we obtain

K2 -(r + \)2d0-(r + 2){2g -2 + n -dor} +n - £ m^ £ £ (2-&lt;y),
i i7*i

from which (2.5) is immédiate.

The expression in (2.5) can be written much more neatly, as W. D.
Neumann has pointed out to us. First note that from the proof of (2.3) we know
that

where ^/yl l(aJ) and 0&lt;y,&lt;al. Substituting for ml%qi we reach his version
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of(2.5):

(This he deduces directly using §20 of the Annals of Mathematics study number 101

&quot;Three-dimensional link theory and invariants of plane curve singularities&quot; by D.
Eisenbud and himself.)

Now he reminds us that, given a pair of coprime integers (a, fi) with 0 &lt; fi &lt; a
and yfi l(a) and 1 ^ y &lt; a,

£ (3-4)-
y-1

where

and is a form of the classical Dedekind sum [17]. So we hâve that

K2 rX(Mr) + 2(2 - 2g) - d0 + £ ^ - (l + £ qt\ + £ 3d(an r),

giving a very neat expression for S(Mr).

(2.6) THEOREM (W. D. Neumann&apos;s version):

à(Mr) \ (r + - )X(Mr) + 1 + £ &lt;/(&lt;*,, r).
3\ r/ ,-1

It remains for us to compute W2 and Arf (W) for a characteristic JF or—what
amounts to the same thing—the Rochlin ^-invariant of Mr. To do this, choose

n

*=1./=1

where [m] dénotes the réduction of m mod (2). Note that [m0] 0 if and only if r
is odd (2.4) and that [mttJ] ^ 0 implies [mlJ_ x] 0 [mlJ+,], so that Wis automat-
ically smooth. We give W. D. Neumann&apos;s formula for W2, because it is a decided

improvement on ours, but our dérivation.
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(2.7) PROPOSITION. (W. D. Neumann)

£ {2d(2*,, r) - d{n,, r)-q,} if r is odd;

î
When r is odd [/wo]=0, so that W is the disjoint union of copies of CPl.
Consequently HX(W, 1/2) 0 and Arf (W) 0.

(2.8) THEOREM. Ifr roocz SÎ^U and r, the index of T in n-l(nri is odd

(where n : SÎ^U-^PS12U is the canonical projection) then

-W\S£R) + \ î {d(2an r) - d(at9 r)};

r) - rf(a,, r)}
1= 1

where {g, rf0; a,,. aw} w fA^ signature of n(F).

If r is even W is again smooth, but now Arf W) Arf (Eo). Let us write r 2s,

let v dénote the normal bundle of the central curve Eo in Vr and let Lx,..., Ln be

the line bundles over Eo determined by the intersection points of Eo with the curves

EiU \ &lt;&gt; i &lt;&gt;n. We know from (2.3) that each ElX appears in K with négative even

multiplicity, say —25,.

(2.9) THEOREM. Let L vs®L\&apos;®- -®Lsn». Then

Arf (Eo) dim H°(E0,L-1) mod (2).

From Theorems (2.9), (2.6) and (2.7) we hâve the computation of e(r\SÎ^U) when

r is even.

(2.10) THEOREM. IfT =To0c: SÎ^U and r, the index of T in n~\nr\ is even

then

-1 (r -(r - *W\s£R) + \ î |^a,, 0 - «/(«„ r) J
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1 + E(r\Sr2U) + £ [ldUl9 Çj - rf(a,, r)\

+ SdimH°(E0,L-1).

Computations of /* for spécial cases may be found in [30].

We shall prove proposition (2.7) in a rather dull way by using the lemma below.

If a and r are coprime positive integers with /Kr l(a) and 0&lt;/T&lt;a, let us

write

[2d(2a, r) - d(a, r), if r is odd
rf/(«,r)=J / r\ S

] 2d[ a, - - rf(a, r) -f -, if r is even.
\ 2/ a

Define &lt;/&apos;(«, 0) 0.

(2.11) LEMMA. // (*=dlf!-&lt;x29 with ol2 &gt; 0, and rp - sa 1

/. A trivial calculation establishes that when r 1 then s is zéro and
&lt;f(a, r) 1 - a.

When r is 2 we may write a 2k + 1 and then jff fc + 1, .s 1, dx 2, a2 l
and &lt;/2 ^ •+&quot; 1- Direct computation shows that d&apos;{&lt;x, 2) 1 — k — (k + l)/a +
(* + l)/a==l-* l+&lt;/&apos;(*+ 1,1).

The gênerai resuit now follows by induction upon r and breaks up into three

cases: (i) r odd, s even, (ii) r odd, 5 odd and, (iii) r even, s odd. In the course of the

proof one notes that s — Xx and that if s is odd then the parity of X2 dépends upon
that of dx. (It is, of course, essential that O^s &lt;r—which follows from the
relation rfï — sa 1.)

(2.12) COROLLARY.

&lt;/&apos;(«,&apos;) =-f [A,+ !]&lt;/, +

where f!r l(a), 0 &lt; ^ &lt; a, #r — as 1 a/îrf [[&lt;/,,..., dq]] is the continued fraction
expansion for oc /fi, and k0 — r, A, — s with XJ+l= djkj — A,_, i/y ^ 1.
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The formulae of Proposition 2.7 are now direct conséquences of this corollary
and the définition of d&apos;(a, r), since

- t
We are left with establishing Theorem 2.9. The proof is implicit in the article by

S. Ochanine [31]. Any hermitian manifold has natural spinc-structure with the
&apos;déterminant&apos; bundle given by the dual of the canonical bundle KM. The complète
set of spinc-structures is in bijective correspondence with H2(M, Z); the group of
topological line bundles over M. If L is such a bundle the &apos;déterminant&apos; of the

spinc-structure is KM®L2. When M is complex analytic we may argue holomor-
phically. Suppose that W is a smooth divisor (without multiplicities) which is

characteristic for M. Then K — W 2D and, taking corresponding line-bundles, we
hâve

jl m 5t w ® ££ D

The manifold W is characteristic for the spinc-structure with déterminant bundle

ifw. It has a spinc-structure with zéro déterminant: that is a spin-structure. This
spin-structure is determined by KM and \&lt;£D]. When dimc M 2 this is easy to see,

for spin-structures on W correspond to square roots of Tw [4]. By the adjunction
formula,

vw — -z w

and hence TW L2TM\®&lt;£W\ JfJ,\®&lt;£w\ Jé?d|2, where the vertical bar
dénotes restriction to W.

This argument applies to open manifolds or manifolds with boundary provided
K and W are compact and do not eut the boundary. This is the situation with Vr.
Let «£?0 and &lt;£„ 1 ^ i ^ n be the line bundles defined over Vr by the divisors Eo and

£fïl, 1 £ i £ h. Write r 2s so that w0 -(2s + 1), and let 0 be the bundle

corresponding to the outer divisor u?. \j]imt2Elj- From the adjunction formula we
hâve

where we write mlX —2sn and
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From thèse we see immediately that TE0^ &amp;ls®&amp;\Sx® • • -®*m\ since &amp; is

canonically trivial on Eo. The bundle £ détermines a spinc-structure on Vr with
déterminant A2T*Pr ® Z ~2 and, restricted to Eo, we hâve rj\ s &amp;0\ v, the normal
bundle. Consequently the spinc-structure determined by £, gives a holomorphic
square root of TE0: namely L Ç~l ® j£fo|. The resuit now foliows from [31] since

dim H°(E09 L~l)= Arf(E0).

§3 The solvable groups

(a) Up to isomorphism, there are two simply connected, solvable, non-nilpotent
Lie groups of dimension 3, which admit cocompact discrète subgroups. Thèse are
Ë+(2), the universai cover of the group £&quot;+(2) of orientation preserving isometrics
of the euclidean plane, and the inhomogeneous Lorentz group E(\91). We consider
the latter first. The computations to be made in this case dépend upon the work of
F. Hirzebruch in [15], where he identifies the quotients F c:G with the boundaries
of the cusps (p. 194), constructs a resolution of the singularises and calculâtes
several numerical invariants. The group G E(\, 1) is a semi-direct product of U2

and R, multiplication being defined by

(x, t)(x\ t&apos;) (x + x&apos;X\ t + /&apos;);

where x, x&apos; e U2, t, t&apos; e R and X is a suitably chosen matrix in SL2(1). Further, X
has real eigenvalues ea, e~a for some a &gt; 1 and Xt dénotes X to the power /, so it
has eigenvlaues e±&lt;xt. Since w e* is an eigenvalue of X g SL2(Z), it is an algebraic
integer in the quadratic field k Q(w) : and not just an integer, but in fact a

generator of U£ the positive units. Now M Zw-fZl is a complète Z—
module of k. Let U^ Z be the totally positive units in k that préserve M, see

[15: pp. 214, 215], and let V &lt;= U&amp; be a subgroup of finite index / £ 1. Then V acts

on M in the natural way and we may form the semi-direct product F =M &gt;4 V; F
is a discrète subgroup of 2?(1, 1). Up to isomorphism, every cocompact discrète

subgroup of E(l, 1) is of this form.
The number w above is a quadratic irrational, see [15: p. 215], and its expression

as an infinité continued fraction is purely periodic: if we express w as

w dx —-—

then 4 4+r f°r every i^l and for some (smallest) r ^ 1. We thus write
w [&lt;/,,...,4]] following [15].
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(3.1) THEOREM. Let F M x V be a cocompact discrète subgroup of the

solvable group E( 1, 1 G, with M Z • W + Z-l, w [[dx,. dr]l and
V c= Um Z a subgroup of index / ^ 1. Then (F\G, &amp;) represents the homotopy
élément,

3/r-/ £ t/,+ 12 \vsn\.

Also ô(r\G, &amp;) \l(}r - ZJ, rfj [15] /(3r - ZJ_, rfj - 8.

The proof of this resuit is along the same lines as for the semi-simple groups.
Let H dénote the upper half plane of C and H2 H x H. We identify G E{ 1, 1)

with the group of affine transformations of H2 of the form

where au a2, tu t2 e IR and r^2 1. Then G acts freely on H2, [15, p. 194] and we

can identify G with the orbit of (i, ï) e H2. The quotient F\/72 i^r is a complex
analytic surface with a cusp singularity at oo, and it is normal [15; p. 202] and

Gorenstein [15; p. 233]. Moreover, the action of G on H2 is by holomorphic
transformations, so the framing 5£ on T\G (or on G) is compatible with the

complex structure on Yr. Hence the ^-invariant of (F\G, «£?) is given by formula
(1.3), where V is a resolution of the cusp singularity. Such is described in [15]: if
/ 1, the graph of F is a cycle of rational curves EJ9 where the dt&apos;s are given by the

continued fraction expansion of w.

-de

-d.

d -
-d.

(There are two spécial cases, corresponding to r 1, 2.) If / &gt; 1, the cycle just
repeats itself / times before closing. The canonical class K of V was determined in
[15: p. 224] and so were the self-intersection number K2 and the Euler characteristic:

(3.2) *= a =: Lir — i X(?)=lr.
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We are left with evaluating the invariant Arf (K) for the cusp singularises.

(3.3) LEMMA. For the cusp singularities,

(Le. Arf (AT) equals the géométrie genus [23]).

Proof. We know (3.2) that K is -E -££,, so that

Arf(tf)=Arf(jE;)mod(2)

by définition [35]. To evaluate Arf (E) we must first smooth E as in §l.(b): at each

crossing point px,..., pr of E, we choose local coordinates so that E is given by
zx z2 0, we remove {z, z2 0} n Z)£, where Dc is a small dise in 9 around pt, and we
attach back {zxz2 t}nD(. Topologically, we are removing two dises from E that
intersect at px and replacing thèse by an embedded S1 x /. Doing this for
i i 1,..., r — 1 we obtain a space E&apos; which is (topologically) S2 with one
self-intersection point, pr. After smoothing E&apos; we get a manifold 2?, diffeomorphic
to the 2-torus and Arf(E) Arf (Ë) by définition. Now, HX(Ë; Z2) s Z2® *2» so
that Arf (2s) 0 if and only if q, the corresponding quadratic form, has at least two
zeroes (cf. [4]). Thus, we will prove (3.3) by finding a suitable basis {C,, C2} of
HX(Ë; Z2) and showing that q(C{) q(C2) 1. Choose e&apos; &gt; e &gt; 0 small and sphères
Sc&gt;9 S£ around the point pr e E\ We use Se to smooth E&apos; and obtain 2s, and we look
at the intersection ËnSe&gt; EnS€&apos;. This is the Hopf link, i.e. it consists of two
linked circles Sl9 S2, which are homotopic in Ë. We choose Cx Sx as one of our
generators of HX(E\ Z2), and we let Dx be a small dise in Sc bounded by C,. Then
the interior of Dx will intersect Ë in one point, because S, and S2 hâve linking
number 1. If t dénotes the &apos;inwards&apos; normal field of Cx in E, then Cx is transversal
to Sc, so that t extends to a normal vector field of /), in P. Hence q(Cx) 1, by
définition of q (see [12], [35]). We are thus left with finding the generator C2 and
showing q(C2) 1. For this we let C be the obvious circle in E a V that générâtes
Hx(?) s //i(£) Z. This defines r arcs in Ë s T2 after smoothing. We then join
thèse arcs in 2? by attaching small intervais, in such a way that the resulting curve
C C2 is a smooth unknotted circle in 2s, générâtes HX(V, Z) and restricted to C
the tangent bundle of Ë is a complex subbundle of TV. (This we can always assume
because CP1 is 1-connected.) Moreover, with no loss of generality we may assume
that the normal bundle of Ë in V is trivial restricted to C Let v be a nowhere-zero
section of N(Ë\ the normal bundle, defined on C and push C away with v. Then
we &apos;kiir [v((?)] in HX(P; Z) by performing framed surgery along v((?). If V&apos; is the
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modifiée manifold then HX(V\T) 0 and C bounds an oriented dise D in V\
whose interior does not meet Ë and it is transversal to Ë on &lt;?, i.e. D is a membrane

for C. Let #(/)) be the normal bundle of D and let T(D) be its tangent bundle. If
t dénotes a unit, normal vector field on € in £, then x defines a trivialization of
N(D) over £. By définition [12], q(C) e Z/2 is the obstruction for extending to N(D)
the spin-structure on N(D)\C defined by x. That is, q(C)=Q if and only if
w2(N(D); x) =0, where this is the 2nd Stiefel-Whitney class of ND relative to t.
Now, N(D) is isomorphic to 77), and multiplication by the complex number i maps

t into a section ix of TD\C Hence w2(N(D); x) =w2(TD; ix). The resuit now
foliows because ix is tangent to &lt;?, since TË\C is a complex subbundle; so

w2(TD;ix) 1.

(b) We now consider G Ë + (2). Every discrète subgroup of G with compact
quotient is the lifting of some such subgroup in £+(2). Thèse are Z2, the triangle

groups (2, 3, 6), (2, 4, 4), (3, 3, 3) and the quadrangle group (2, 2, 2, 2). The corre-
sponding quotient Mr is a Seifert manifold with Seifert invariants {g; 0} for Z2, and

{0; 2; (a,, olx — 1),. (aM, an_ J}, where ai is 3 or 4 and (a,,..., an) is one of the
above triples (if n 3) or quadruple (if « 4). (When F is Z2, the corresponding
quotient Mr F\G is the torus T3, but its framing if induced from G is not its

framing if as a Lie group. The latter corresponds to the abelian case and represents
the élément in ns3 with e -invariant \, while T3 represents 0 with its framing coming
from E+(2), the différence being determined by the différence in their corresponding

Arf invariants.) The value of the &lt;5-invariant is again well-known [21] [27].

(3.4) THEOREM. Let F en G be as above, Then (Mr, if) represents the élément

-2g-n+ f «Ave*?.

(Hère 8(Mr) =&amp;(?/)-! and fi(Mr, St) x(Vr) - 1.)

Proof. The group G + £ + (2) acts on C ^ IR2 in the obvious way, and this action

ex tends by differentiation to an action on 7&quot;C C x C:

g (z, w)-+(g(z),g&apos;(z) w)

This action is free away from the line z 0, where it has fixed points (except for
F Z2 when there is no fixed point). The quotient F\TC is a complex analytic
surface, with 0, 3 or 4 singular points, as the case may be, ail contained in the

zero-section F\C, which is either a torus T2, if F Z2, or CPl. At each of thèse

singular points Vr is of the form Za \C2, for some appropriate a,. We embed G in
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TC, using the (/-action, and identify Mr with the boundary of F\DT(C), where

DT(C) dénotes the unit dise bundle. If we résolve the singularities of ifr over T\C,
we then hâve Mr expressed as the boundary of the resolution Vr, which is a

complex manifold.
Now observe that the holomorphic 2-form

co dz a dw

on TC is globally defined and G-invariant; so it descends to ifr, and it is nowhere

zéro there, except at the singular points. Thus, co defines a canonical framing # on
Mr, just as before, and this framing is if, up to homotopy, because co is

G-invariant. We are in a position to apply 1.1 to Vr,

(3.5) LEMMA. Let K e H2(Vr,Z) represent the Chern class of Vr relative to
S£. Then K 0.

If we assume this lemma, (3.4) is now straightforward: since K 0, Arf (K) 0,

so the ^-invariant is determined by X(Vr). If T Z2, Vr T\C x D, so X(Vr) 0,

and e(Mr, &lt;£) 0, as claimed in 3.4. For the other cases we just look at the graph
of Vr. AH vertices are CP!&apos;s, so that e(Mr, S£} =^(2 4- number of vertices away
from central curve) and we arrive at 3.4 by inspection.

We now prove 3.5: that is, C,(Fr, J£?) g H2(Vr, Mr\T) vanishes. For this we

use the définition of Cx(Vr, if) as an obstruction class. We handle T — 1} first. The
form œ is nowhere zéro on Fr, hence Cv{A2TVr, $£) 0, so C,(Fr, if) 0. In the

other cases, the form co is nowhere-zero away from the singular points of ifr. Thus,
when we résolve thèse points we obtain a form on Vr with tubular neighbourhoods
of the three or four, exceptional sets removed. The class Cx{Vr, !£) is concentrated
around thèse exceptional sets. But each of thèse is the resolution of a quotient
singularity of the form /P\C2. Thus Cx{Vr,^) 0, because the canonical divisor
of thèse quotient singularities is identically 0.

§4 The nilpotent and abelian cases

The resuit in the nilpotent case has already appeared in [8]. We now give a

simple proof of it for completeness.
Let H be the 3-dimensional Heisenberg group, consisting of ail real matrices of

the form



Complex singulanties 371

As a manifold, it is IR3. Up to isomorphism of //, any cocompact discrète subgroup
Fk— F consists of matrices of the form

where nu n2, «3eZ, for some integer k ^ 1. Then Mk F\H is the total space of
a principal S^-bundle over T3 will Euler class ±k, depending on orientations. If we
write (0, b, c) for a matrix

Then we define a function

0://xC2-&gt;C2

by 0((û, b, c), (z, w))=(z+a + ib, e2mcw). This is not a group action, since

9[(a, b, c\ 0((A, m, v), (z, w))] (z + a + A + i{ji -f 6), e2re&apos;(v + c)w)

while

fl[(fl, 6, c), (A, ji, v), (z, w)] (z 4- a + A + i&apos;Oi -h 6), e^ + &apos; + ^w).

Thus we hâve an extra factor e2ni^a) in the second variable. Still, 8 is an action
restricted to every disorder subgroup of H, because /iûieZ. Moreover, we may
define a map

by 4&gt;(a9 b, c) 0((a, b, c), (0, 1)) (a + », é&gt;2rtlc). Then 0 maps # onto C x S1 T.

Then we can divide H and C2 by the action of F c H, 0 induces a diffeomorphism

and F\T is the boundary of F\D V, D CxD2. The torus Eo= y

embedded in F\D with self intersection —k, so we can blow it down to a point and



372 J A SEADE AND B F STEER

we obtain a normal singularity (Vr,P), which is an elliptic singularity [23].
Moreover, for every h (a, b, c) e //, the map

0h:C2-+C2

given by 0h(z, w) d((a9 b, c) (z, w)) leaves invariant the holomorphic 2-form

dz a dw
œ

w

Thus œ descends to a holomorphic 2-form on yr and defines the framing # on
Mr — F\T. The map $&gt; then pulls # to the left invariant framing S£. Now, the Euler
characteristic of 9 is 0 and the canonical class K is -£0 by the adjunction formula;
hence K2 -fc. We now claim Arf (K) 1, which yields the following resuit.

(4.1) THEOREM [8]. If we orient rk\H as the boundary of V above, then

(Fk \//, j£?) represents the homotopy élément

-(\2+k)vens3.

To prove that Arf (K) 1 is équivalent to proving that the induced spin structure
on K is the product one. Since K= — Eo, it follows that Eo is defined by a

holomorphic section of J£* s A2TVr. Thus K*\Eq £ N(E0), the normal bundle, and
we hâve

T(E0)®N(E0)^N(E0)

an isomorphism of holomorphic vector bundle. Hence T(E0) inherits a holomorphic
trivialization, which in turn induces the spin structure on Eo. Therefore it is the

product spin structure on £0, for that is the only trivialization of r(i}0) which is

holomorphic. Hence Arf(K) Arf (Eo) 1.

We are only left with the abelian case G R3, F 1?. We use the same technique:
Define

0:IR3xC2-&gt;C2

by 6((a, b, c), (z, w)) (z + a + ifc, e2nicw). This time 0 is a group action and induces

a map

which identifies T3 with the boundary of V r\£&gt;4 c V^, where D4 is the unit dise.

Again the form œ =dz a dw/w descends to V and defines a holomorphic 2-form
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away from the torus T2 c V, where it has a pôle of order 1. Thus T2 is —ATand the
invariance of œ identifies the framings &lt;£ and (€. Also, X(V) 0 and AT2 0,
because T2 has trivial normal bundle. Finally Arf (K) is 1 [21] as one can see by the

same argument as above.

THEOREM. The torus jT3, with iis left invariant framing S£, represents the

homotopy élément

12VG7153.
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