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Sur les longueurs des géodésiques d&apos;une métrique à
courbure négative dans le disque

Jean-Pierre Otal

Soit D un disque compact C2, de dimension n. Si ce disque est muni d&apos;un

métrique riemannienne m, on peut définir une distance sur D : la distance entre
deux points est la longueur d&apos;un plus court chemin joignant ces deux points. Ce

minimum est alors réalisé comme la longueur d&apos;un chemin rectifiable.
On peut donc considérer la distance dm induite sur le bord de D. On définit ainsi

une application de l&apos;ensemble des métriques sur D vers l&apos;ensemble des fonctions
distances sur dD. Si on remplace la métrique m par une métrique qui lui est isotope

par un difféomorphisme qui est l&apos;identité sur le bord, la distance restreinte ne

change pas. On a donc défini une application Si de l&apos;espace des métriques à

isométrie près vers l&apos;ensemble des fonctions distances sur dD.
Considérons le problème suivant:

Question. L&apos;application Si est-elle injective?

F. Bonahon m&apos;a fait remarquer que le réponse générale à ce problème était
négative si l&apos;on n&apos;imposait pas de restrictions supplémentaires, par exemple sur la
courbure sectionnelle de la métrique m. En effet, il est facile de construire des

exemples de métriques m où les plus courtes géodésiques joignant le bord au bord
évitent chacunes une petite boule dans l&apos;intérieur de D. Une perturbation de la

métrique supportée dans l&apos;intérieur de cette boule ne changera alors pas la distance
induite dm.

R. Michel a montré dans [Mi] le résultat suivant. Considérons deux métriques
m et m&apos; sur le disque D2, l&apos;une des deux étant de courbure constante telles que
âi{m) SHjn&apos;X alors m—mf.

II y a aussi des résultats généraux dans une même classe conforme obtenus par
R. G. Mukhometov : soient m et m&apos; deux métriques dont le comportement des

géodésiques est du type courbure négative et qui sont conformément équivalentes
dans un rapport de conformité dont la régularité est C4 jusqu&apos;au bord de D et telles

que le bord dD est géodésiquement convexe; dm dm&gt; alors m m&apos; (nous
renvoyons à [Mul] pour le cas n 2 et à [Mu2] pour le cas général).
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Nous nous proposons dans cette note de démontrer le Théorème 1 cidessous. On
se restreint au cas où n 2 et cette restriction est essentielle pour notre argument.

THÉORÈME 1. Lorsque n 2, la restriction de &amp; à Vespace des métriques C2

à courbure strictement négative est injective: une métrique m de classe C2 sur le disque

D, de courbure strictement négative peut être reconstruite à partir de la distance dm

sur dD.

Le problème de la reconstruction des métriques sur le disque à partir de la
restriction de la fonction distance sur leur bord est à comparer avec celui de

reconstruire une métrique de courbure négative sur une variété compacte à partir de

la donnée de son spectre marqué des longueurs (cf. [Gr, 5.5.B]. Dans ce sens, le

théorème ci-dessus est l&apos;analogue du théorème de rigidité de [O].
D&apos;autre part, on peut se demander si on peut améliorer les hypothèses de cet

énoncé. En fait, les arguments que nous utilisons montrent aussi le résultat suivant.
Si deux métriques C2 m et mf sur le disque /), sans points focaux, vérifient:
$(m)=$(m&apos;), alors elles sont isométriques, dès que la courbure de l&apos;une est

négative et ne s&apos;annulle sur aucun ouvert.
Je tiens à remercier pour son hospitalité le MSRI où ce travail a été rédigé en

Octobre 1988.

Le théorème 1 ci-dessus a été obtenu sous des hypothèses plus faibles et de façon
indépendante par C. Croke dans [C].

§1. L&apos;espace des géodésiques du disque D

Soit m une métrique C2 à courbure négative dans le disque D.
On peut joindre deux points quelconques du bord dD par un chemin minimisant

contenu dans D. Paramétré par longueur d&apos;arcs, un tel chemin sera appelé une

géodésique de la distance dm. Le résultat suivant concerne la régularité de ces

chemins.

AFFIRMATION 2. Les géodésiques de la distance dm sont des arcs C1.

Preuve. Il nous suffit de montrer qu&apos;un chemin rectifiable k minimisant la

longueur entre ses extrémités admet en chaque point une tangente et que celle-ci

varie de façon continue.
Pour cela considérons d&apos;abord un point de k dans l&apos;intérieur de D; un voisinage

de ce point dans k est donc une géodésique de la métrique riemannienne m et en

particulier k est différentiable dans un voisinage de ce point.
De même si k est un intervalle de k dont une extrémité p9 différente d&apos;une

extrémité de k est contenue dans dD9 alors l&apos;arc k a une dérivée au point p. Notons
en effet que sous nos hypothèses de différentiabilité la métrique m admet un
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prolongement en une métrique de classe C2. Donc la géodésique k a une tangente
au point p. Supposons qu&apos;en son extrémité p la géodésique k est transverse au bord
dD. Alors la formule de la variation première fournit une contradiction au fait que
dans un voisinage de k, l&apos;arc k minimise la distance entre chacuns de ses points.
Donc la dérivée de k existe au point p et cette dérivée est la tangente unitaire de dD
en ce point.

D&apos;autre part si k est un intervalle d&apos;intersection de k avec dD, la tangente à k
existe en tout point de k et est égale à la tangente à dD au point considéré.

Soit maintenant g:t-*g(i) une paramétrisation par longueur d&apos;arcs de la
courbe géodésique joignant p à q. Considérons le problème de la différentiabilité du
chemin g au voisinage du point g(0) g dD. Supposons la métrique m prolongée en

une métrique C2 m&apos; définie dans un disque contenant D dans son intérieur; cette

métrique aura donc aussi une courbure strictement négative mais nous n&apos;utiliserons

pas ce résultat.

Puisque le problème est local, nous supposerons finalement que la métrique m&apos;

est définie dans l&apos;intérieur du disque unité de R2, de sorte que le disque D soit
l&apos;intersection du disque unité avec le demi-plan supérieur et que le point g(0)
corresponde à l&apos;origine de D. Nous noterons finalement rfm- la fonction distance
associée à m&apos;.

Nous allons montrer que lorsque tt est une suite tendant vers 0, la limite de

existe. Pour cela considérons d&apos;abord la cas où la suite (g(tt)) appartient à dD.

Alors, on a:

&lt;L(0, g(tt))zt,*l&lt;[09g(tt)})9

le dernier terme de l&apos;inégalité étant la longueur de l&apos;intervalle [0, g(/, )] contenu dans
dD. Puisque le bord dD est différentiable, les deux termes extrêmes de l&apos;inégalité

c-dessus sont équivalents lorsque tt tend vers O. Ils sont donc équivalents à celui du
milieu et la suite

Og(t.)

a bien une limite lorsque tt tend vers 0, en vérifiant que g(tt) e dD: cette limite est

alors le vecteur de norme 1 (pour la métrique m) à la courbe dD en l&apos;origine.
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L&apos;orsqu&apos;il n&apos;existe pas de suite tendant vers 0 telle que g(tt) appartienne au bord
ÔD9 alors, un intervalle ]0, n] a une image entièrement contenue dans l&apos;intérieur du
disque D. Cette image est donc un segment géodésique de la métrique riemannienne
m et ce cas a été traité précédemment.

Si ce n&apos;est pas le cas, soit (/,) une suite tendant vers 0; on peut encadrer cette
suite entre deux suites tendant vers 0, (t\) et (t&quot;) telles que g{t&apos;t) et g(t&quot;) soient
contenus dans dD. On déduit l&apos;existence de la limite de

de l&apos;existence d&apos;une limite commune pour

\\\og(t:)\\
et

{\\og(t&gt;;)\\)-

Donc la courbe k est différentiable et sa tangente varie continûment.

Certaines des géodésiques de la distance dm ressemblent vraiment à des

géodésiques. On obtient une telle géodésique à partir d&apos;un vecteur dans l&apos;intérieur D en
considérant les premiers points d&apos;intersection de la géodésique passant par ce

vecteur: cette géodésique intersecte le bord dD en deux points, puisqu&apos;elle est propre
(courbure négative), ces deux points étant bien distincts (courbure négative).
Lorsqu&apos;on applique la même construction en un point de dD9 dans une direction
non tangente au bord, on obtient aussi une géodésique. Toutefois, il est possible que
la géodésique issue d&apos;un point du bord dans une direction tangente au bord ait son
intérieur contenu dans l&apos;intérieur de D jusqu&apos;à son premier point de sortie. Les

géodésiques de la distance dm obtenues par la méthode précédente seront appelées
des géodésiques droites: elles sont caractérisées par le fait que leur intérieur est

entièrement contenu dans l&apos;intérieur du disque £&gt;.

Lorsque le bord de D est strictement convexe toutes les géodésiques de la
distance dm sont des géodésiques droites et peuvent donc être décrites par la
méthode précédente. Dans le cas général, où le bord n&apos;est pas convexe, il n&apos;en est
rien.

Toutefois, on a le résultat général suivant qui traduit le fait que, même lorsque
le bord de D n&apos;est pas convexe, les géodésiques de la distance dm s&apos;intersectent

comme des géodésiques droites.

AFFIRMATION 3. Soit m une métrique C2 à courbure négative définie sur le

disque D. On a alors:
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(1) deux géodésiques de la distance dm ont une intersection connexe ou vide;
(2) pour toute paire de points distincts p et q de dD, il existe une unique

géodésique de la distance dm qui joint ces deux points.

Preuve. Considérons deux géodésiques distinctes y et y&apos; dont l&apos;intersection n&apos;est

pas connexe. Il existe alors un arc k contenu dans y et un arc k&apos; conteu dans y&apos; qui
s&apos;intersectent uniquement en leurs extrémités. Le réunion de ces deux arcs borde un
disque contenu dans D; la courbure de chacun des arcs k et k&apos; est orientée vers
l&apos;extérieur de ce disque, si elle n&apos;est pas nulle. Une telle situation est interdite par le
théorème de Gauss-Bonnet puisque m est à courbure négative.

Ceci montre que l&apos;intersection de y et y&apos; est connexe.
La deuxième partie de l&apos;assertion se déduit immédiatement de la première.

L&apos;ensemble des géodésiques non-orientées de la distance dm s&apos;identifie naturellement

avec les paires de points distincts de dD: cet espace sers noté Jt(D).

DÉFINITION. On définite C(D) comme l&apos;espace des mesures de Borel sur
Jt(D) de masse totale finie.

Un exemple de mesure dans C{D) est défini de la manière suivante. Soient p et

q deux points distincts de dD: ces deux points s&apos;interprètent comme un élément de

M(B) que l&apos;on voit à son tour comme le support d&apos;une masse de Dirac.
Un Autre exemple est la mesure de Liouville associée à une métrique à courbure

négative m, que nous définissons maintenant. Soit O l&apos;ensemble des paires de points
de dD tels que la géodésique qui les joint est une géodésique droite, transverse

en ses extrémités à dD. Ainsi défini, l&apos;ensemble O est ouvert. Il correspond à un
ouvert de l&apos;espace des géodésiques de la métrique riemannienne du disque D. Sur
cet espace de géodésiques on a une mesure, la mesure de Liouville, définie comme
la valeur absolue de la 2-forme obtenue comme produit intérieur de la forme
volume de Liouville sur le fibre unitaire de D par le champ de vecteurs tangent au
flot.

Nous allons maintenant donner la formule de cette mesure en coordonnées. Soit
k un segment géodésique de la métrique m contenu dans D on bien un arc contenu
dans dD, dont la concavité est tournée vers l&apos;extérieur; munissons cet arc d&apos;une

coordonnée par longueur d&apos;arcs.

On peut paramétrer les géodésiques de l&apos;ouvert O qui intersectent k transversalement

par leur point d&apos;intersection avec k et par l&apos;angle qu&apos;elles font en ce point
d&apos;intersection avec k. Cette paramétrisation est injective pour les géodésiques de O

et l&apos;ensemble des géodésiques de O qui intersectent k est ainsi homéomorphe à un
ouvert de k x ]0, n[. Sur cet ouvert, l&apos;expression de la mesure de Liouville est

dti=sinOdtd0(cf. [Sa, §9]).
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On définit finalement le mesure de Liouville fi(m) sur M{U) en prolongeant le

mesure ainsi définie sur O par 0 dans le complémentaire. On a ainsi définit une
mesure de Borel; son support contient 0, donc ce support est exactement le
fermeture de O dans M(D). Il nous reste à voir que le masse totale de la mesure de

Liouville est finie; toutefois ce dernier point découlera d&apos;une formule générale, la
formule de Crofton que nous allons maintenant expliquer. Reprenons les notations
utilisées pour définir en coordonnées la mesure de Liouville. L&apos;ensemble des

géodésiques de O qui intersectent k transversalement est homéomorphe à un ouvert
Ok de k x ]0, n[. On a alors:

AFFIRMATION 4. L&apos;ouvert Ok est de mesure pleine pour la mesure de

Lebesgue sur k x ]0, n[.

Preuve. Il nous suffit de montrer, d&apos;après Fubini, que pour tout point p ek,
l&apos;ensemble des vecteurs v au point p tels que le géodésique (de la métrique
riemannienne m) issue de p dans la direction n est transverse en ses deux extrémités
à la courbe dD est un ensemble de mesure pleine dans l&apos;espace unitaire tangent du
disque Dm au point p.

Pour cela, soit v0 un vecteur au point p tel que le géodésique issue de p dans la
direction v0 soit tangente en son extrémité p&apos; à la courbe dD. Prolongeons la

métrique m sur le disque D en une métrique que nous noterons toujours m définie
dans un disque D&apos; contenant D dans son intérieur. La nouvelle métrique peut être

choisie C2 et aura une courbure sectionnelle négative quitte à restreindre le disque
D&apos;. Les géodésiques issues de p dans un voisinage de la direction v0 fournissent un
feuilletage 9 d&apos;un voisinage U du point p&apos; sur le disque £&gt;&apos;. Ce feuilletage est C1

puisque la métrique m est C2, c&apos;est-à-dire que, si k&apos; est petit arc géodésique

transverse à dD et contenu dans U la projection de U sur k&apos; le long des feuilles du
feuilletage &amp; est C1. Donc, si k&quot; est un arc contenu dans ôD nU voisinage du point
p\ paramétré par longueur d&apos;arcs, la projection de k&quot; sur l&apos;arc k&apos; est une

application C1. Donc l&apos;image des points critiques de cette application est un
ensemble de mesure de Lebesgue nulle. Mais l&apos;image de ces points critiques contient
les directions v au point p telles que la géodésique issue de p dans la direction v est

tangente à dD.

Donc, pour tout point p l&apos;ensemble des directions au point p qui définissent des

géodésiques droites contenues dans O a un complémentaire de mesure nulle.

Donc Ok est de mesure pleine.

On en déduit immédiatement que si un arc k est soit un segment géodésique, soit

un arc contenu dans dD dont la concavité est tournée vers l&apos;extérieur (de sorte
qu&apos;une géodésique ayant une extrémité dans k ait son autre extrémité dans dD — fc),
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alors la mesure de Liouville des géodésiques de la distance dm qui intersectent k est

exactement le double de la longueur de k.
Nous allons généraliser la formule précédente mais il nous faut pour cela définir

le nombre d&apos;intersection entre deux éléments de C(D).
Soit fi et /*&apos; deux éléments de C{D). Dans l&apos;espace Jt(D) x Jt(D), on peut

considérer l&apos;ouvert formé des paires de paires de points telles que l&apos;une des paires
n&apos;est pas contenue dans une composante connexe du complémentaire dans dD de
l&apos;autre paire.

L&apos;espace M{B) x Jt(D) étant muni de la mesure produit d\i x d[i\ la masse

totale de cet ensemble sera notée i(ji9 /x&apos;) et appelée nombre d&apos;intersection de \i et de

\i&apos;. Ce nombre d&apos;intersection est symétrique.
Dans le cas où l&apos;une des mesures, disons /*, est supportée sur une seule paire g,

et disons avec masse totale 1, le nombre d&apos;intersection de n avec une autre mesure
\i&apos; se calcule en prenant la \x&apos;-masse de l&apos;ensemble des paires de points qui sont dans
des composantes distinctes de dD — g.

En particulier, on a le résultat suivant, qui découle de la définition du nombre
d&apos;intersection, de l&apos;écriture de la mesure de Liouville en coordonnées, et du fait que
toute géodésique de la distance dm est réunion disjointe d&apos;arcs concaves contenus
dans dD et de segments géodésiques de la métrique riemannienne m.

PROPOSITION 5. Supposons que le disque D est muni d&apos;une métrique à

courbure négative. Soit p et q deux points distincts de dD. Alors la longueur de la

géodésique de la métrique dm qui joint ces deux points est égale à la moitié du nombre
d&apos;intersection de la mesure [p, q] avec la mesure de Liouville n(m).

D&apos;après cette proposition, il nous suffit, pour démontrer le théorème 1 de

prouver que l&apos;on peut reconstruire la métrique m à partir de la donnée des nombres
d&apos;intersection de sa mesure de Liouville fi(m) avec les masses de Dirac [/&gt;, q].

Nous allons commencer par établir que l&apos;on peut reconstruire la mesure de

Liouville fi(m) à partir de ses nombres d&apos;intersection avec les masses de Dirac. C&apos;est

un cas particulier du résultat suivant.

PROPOSITION 6. Soient \i et \i&apos; deux éléments de C(D) tels que pour tout
couple de points distincts p et q, on a: i(ji&gt; [/?, q]) i(ji&apos;, [p, q]). Alors les mesures \i
et \xf sonte égales.

Preuve par A. Douady. Soient p, p\q,q&apos;,4 points distincts apparaisant dans cet
ordre sur le cercle dD. On peut supposer puisque /* est une de ces points est nulle.
On a alors, si F désigne l&apos;ensemble des géodésiques dont une extrémité est dans
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l&apos;intervalle [p, q&apos;] et l&apos;autre dans l&apos;intervalle [p&apos;9q]:

2fi(F) i(ji, [p, q]) + i&apos;0i, [/?, q]) - i(n, [p, pf ]) - i(ji, [q, q&apos; ]).

On en déduit la proposition.

Soient maintenant m et m&apos; deux métriques riemanniennes sur le disque telle que
les distances dm et dm qui leurs sont respectivement associées sont isométriques. Soit
(/&gt; l&apos;application de dD dans lui-même qui réalise l&apos;isométrie en question. On déduit
des propositions 5 et 6 que Phoméomorphisme de Jt{D\ $ &lt;t&gt; x &lt;f&gt; transporte la
mesure de Liouville /*(m) sur la mesure ix\m). En particulier cet homéomorphisme
envoit le support de la première mesure sur le support de la deuxième.

Une autre conclusion est que la longueur de dD pour les deux métriques est la
même : en effet, cette longueur n&apos;est autre que la masse totale de la mesure de

Liouville n(m). Ce point apparâ aussi dans [Mi], où il est montré que la donnée de

dm détermine la métrique restreinte à dD, c&apos;est-à-dire, dans le cas n 2, la longueur
d&apos;arc.

Finalement remarquons aussi que le volume total de D pour ces deux métriques
est le même: le volume n&apos;est autre en effet, que le nombre d&apos;intersection de la

mesure fi(m) avec elle-même, à une constante près.

§2. Une obstruction à prolonger un homéomorphisme de dD par une homographie

DÉFINITION. Soient m et m&apos; deux métriques de courbure négative sur D. Une

homographie du disque riemannien Dm vers le disque riemannien Dm&gt; est un
homéomorphisme qui transporte les géodésiques de la métrique riemannienne m sur
les géodésiques de la métrique riemannienne m&apos;.

L&apos;existence d&apos;une homographie entre deux métriques riemanniennes est un
phénomène très rare. Nous renvoyons le lecteur intéressé au livre de G. Darboux
sur les surfaces (troisième partie) dans lequel le problème de l&apos;existence d&apos;homographies

C2 entre deux surfaces riemanniennes est traitée en détail.
Soit (j&gt; un homéomorphisme de dD dans lui-même. Nous allons définir une

obstruction à prolonger l&apos;homéomorphisme &lt;f&gt; en une homographie de Dm dans Dm&gt;.

Soit Tlm le fibre unitaire du disque Dm. Soit v un vecteur et soit 8 un nombre réel

dans l&apos;intervalle ]0, n[. Notons O.v le vecteur défini en tournant n dans sa fibre d&apos;un

angle 8. Il correspond aux vecteurs v et O.n deux géodésiques droites de la métrique

w, donc deux paires de points dans le cercle dD. A ces deux paires de points,
l&apos;homéomorphisme &lt;\&gt; associe deux nouvelles paires de points de dD, qui ont la
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propriété de se croiser (i.e. une paire n&apos;est pas entièrement contenue dans une

composante connexe du complémentaire de l&apos;autre). Considérons alors les

deux géodésiques y&apos;v et y &apos;0V de la distance dm&lt; que ces nouvelles paires définissent.
Ces géodésiques ont une intersection non-vide. On définit la fonction 0(v, 0) comme
l&apos;angle qui fait passer de la géodésique y\v) à la géodésique y\0.v): on a

besoin pour cela d&apos;une orientation sur le disque Dm, l&apos;orientation sur le disque
Dm&gt; étant alors choisie de sorte que l&apos;application &lt;t&gt; respecte l&apos;orientation induite
sur dD.

L&apos;angle 0\v, 0) est aussi défini lorsque les géodésiques y&apos;{ri) et y&apos;(0.v) n&apos;ont pas
une intersection transverse : toutefois il est facile de voir, puisque les géodésiques de

la distance dm sont C\ que l&apos;angle de la rotation qui fair passer de y\v) à y\0.v) aux
extrémités de leur intervalle d&apos;intersection est toujours 0 ou n.

On a alors le résultat suivant:

AFFIRMATION 7. On a:
(1) pour 0 fixé, la fonction O&apos;(v, 0) est mesurable:

(2) soit G&apos;{0) la valeur moyenne de la fonction 0&apos;(v,0) pour la mesure de

Lebesgue sur le fibre unitaire Tlm. Alors, la fonction Q&apos; est une fonction continue

de0.

Preuve. Considérons tout d&apos;abord l&apos;application qui associe à un vecteur de Txm

le point e+(v) défini comme le premier point d&apos;intersection de la géodésique issue du
vecteur v avec le cercle dD. L&apos;ensemble des vecteurs v tels que la géodésique issue

de v est transverse au point e+(v) à la courbe dD est un ouvert du fibre unitaire Tlm

du disque D. D&apos;après la démonstration de l&apos;affirmation 4, cet ouvert est de mesure
pleine pour la mesure de Lebesgue sur la fibre de Txm au point p. Ceci est encore vrai

pour l&apos;ouvert défini de la même façon mais en considérant l&apos;autre extrémité e~{v)
de la géodésique issue du vecteur v. Donc, d&apos;après Fubini, l&apos;ensemble des vecteurs

v tels que la géodésique issue de v est transverse en ses deux extrémités au bord dD
est un ouvert de mesure pleine du fibre unitaire Tlm.

Fixons maintenant un angle 0 dans l&apos;intervalle [0, n]. L&apos;ensemble des vecteurs v

tels que les géodésiques issues de v et de 0.v sont transverses au bord dD en leurs
extrémités est encore un ouvert Oe de mesure pleine. L&apos;application 0&apos;{v, 0) est en ces

points une fonction continue du vecteur n. Ceci démontre la première partie de
l&apos;affirmation 7.

Soit maintenant (0, est une suite tendant vers 0. On a pour v eOe convergence
de la suite (0\v, 0t)) vers 0&apos;(v, 0). Donc du théorème de convergence dominée de

Lebesgue, on déduit la continuité de la fonction &amp;&apos; au point 0.

La propriété essentielle de la fonction &amp;&apos; est la suivante.
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PROPOSITION 8 Uapplication 0&apos; est une application continue croissante de

[0,n] dans lui-même telle que
(1) 0&apos; est symétrique en n —9

V0, 0&apos;(n-6)=n-0&apos;(O),

(2) 0&apos; est une application sur-additwe

V0,, 02 tels que 0, + 02 e [0, te], on a &lt;9&apos;(0i + 02) ;&gt; &lt;9&apos;(0i) + ©&apos;(02)

Preuve Le fait que l&apos;application 0&apos; est croisante résultera de la suradditivé,
puisque 0&apos; prend des valeurs positives

Montrons la première assertion D&apos;après Fubini, si dA désigne la mesure de

Lebesgue sur la surface Sm et si d&apos;n désigne la mesure de Lebesgue sur chaque fibre

/de ri,, on a

[ O&apos;(v,0)d&apos;ndA

Jf
&quot;1 \m) JSm

Soit/une fibre du fibre unitaire tangent Txm On a alors, pour tout 0, si v e/

Intégrons cette égalité pour la mesure d&apos;v, on obtient en utilisant l&apos;invariance de la

mesure d&apos;v par la rotation d&apos;angle 0,

^- I e\v9e)d&apos;v+l- I O&apos;(v,n-0)d&apos;v n
2n J/ 2n Jf

Si on intègre maintenant cette égalité sur le disque Dm9 on obtient la symétne en

tt-0 de 0&apos;

Démontrons maintenant le deuxième assertion Rappelons d&apos;abord l&apos;inégalité de

Gauss-Bonnet appliquée à un tnangle T contenu dans Dm dont chaque côté du
bord a une courbure géodésique négative ou nulle Puisque le métrique m&apos; a une
courbure stnctement négative, la somme des angles intérieurs de T est inférieure à

7i, avec égalité si et seulement si le tnangle T a une aire nulle, c&apos;est-à-dire si et
seulement si tnangle T est réduit a un point ou à un intervalle

Soient alors /une une fibre de Tlm9 v un vecteur contenu dans cette fibre, et 0x

et 02 deux angles dans l&apos;intervalle [0, n] vénfiant 0, + 02 ^ fl Considérons les images

par la conjugaison &lt;f&gt; des trois géodésiques yv, y0lV et y(0l + d2)v Les trois géodé-

siques images définissent un tnangle T de Dm éventuellement réduit à un point ou
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a un intervalle contenu dans dD. Les angles intérieurs du triangle T sont: O&apos;(v9 #i),
G\Qx.v, 02)&gt; et n — 0\v, 0X + 02). On a donc d&apos;après Gauss-Bonnet:

o&apos;(v, ex) + e\ex .v, e2) ^ e\v9 ex + e2).

Intégrons d&apos;abord cette inégalité sur la fibre /, pour la mesure de Lebesgue d&apos;v,

en utilisant l&apos;invariance de la mesure d&apos;v par la rotation d&apos;angle 0x, puis intégrons
l&apos;inégalité obtenue sur la surface Dm. On en déduit la sur-additivité de la fonction

0\
Ceci termine la démonstration de la proposition 8.

THÉORÈME 9. Vhoméomorphisme (j&gt; se prolonge en une homographie de Dm

dans Dm&gt; si et seulement si les deux conditions suivantes sont vérifiées:
(1) Vapplicaton &amp;&apos; est égale à Vindentitè\
(2) Vapplication $ induit une bijection entre les géodésiques droites de Dm et les

géodésiques droites de Z)m-.

Preuve. La nécessité de la deuxième condition est claire; pour la première,

remarquons seulement que l&apos;application 0&apos; est alors une fonction continue et
additive de l&apos;intervalle dans lui-même.

Considérons maintenant la réciproque. Si l&apos;application 0&apos; est l&apos;identité, en

particulier, elle est additive. D&apos;après sa définition, l&apos;application &amp;&apos; est la moyenne
des applications 0p9 où 0P{S) est défini comme la moyenne sur la fibre au point p
de la fonction O&apos;(v9 0). Maintenant, le même raisonnement que celui effectué dans la
démonstration de la continuité et de la sur-additivité de l&apos;application ©&apos; montre que
chaque application 0P est continue croissante, et sur-additive. D&apos;autre part si la
suite (/?,) converge vers le point p, la suite d&apos;applications (@&apos;Pl) converge simplement
vers la fonction 0p9 d&apos;après le théorème de convergence dominée de Lebesgue.

Puisque cette dernière application est croissante et continue, un théorème de Dini
dit alors que la convergence des fonctions ©Pi vers la fonction 0P est uniforme.
Donc la fonction &amp;&apos; est la moyenne pour la mesure de Lebesgue du disque Dm de

la fonction 0P continue en p. Ainsi, pour que 0f soit l&apos;identité, il est nécessaire que
chaque fonction 0p soit l&apos;identité.

Fixons un point p dans le disque D et considérons la fibre/du fibre unitaire Tlm

en ce point. L&apos;image de chaque géodésique droite issue d&apos;un vecteur v sf est une
géodésique droite par hypothèse. Montrons que maintenant que si vu v2, v3 sont
trois vecteurs deux à deux distincts de la fibre/, les trois géodésiques droites ${yv)
passent par le même point de l&apos;intérieur du disque Dm&gt;.

L&apos;application qui à un vecteur v associe ses extrémités dans Jt(P) est continue
sauf en un nombre dénombrable de points de/. En effet l&apos;application v -+e+(v) est
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monotone et il en est de même de l&apos;application v-+e~(v). De plus chacune des

applications e+(v) et e~(v) est continue à droite ou à gauche en tout point.
Supposons dans un premier temps que les trois vecteurs vt sont contenus dans

l&apos;ouvert O nf; dans la preuve de l&apos;affirmation 4, on a vu que l&apos;ouvert O nf était de

mesure pleine, donc en particulier, dense.

Raisonnons alors par l&apos;absurde et reprenons la démonstration de la proposition
8: l&apos;image par $ des trois géodésiques yVg est formée de trois géodésiques deux à
deux transverses et l&apos;intersection de deux quelconques d&apos;entr&apos;elles est contenue dans
l&apos;intérieur du disque D. Si ces trois géodésiques ne sont pas concourrantes, le

triangle qu&apos;elles définissent a une aire non nulle et donc l&apos;inégalité de Gauss-Bonnet

est stricte. Elle est stricte aussi pour des angles voisins des angles (#,), car les

vecteurs vt sonte supposés appartenir à l&apos;ouvert O nf où l&apos;application v-+yv est

continue. Donc d&apos;après la démonstration de la proposition 8, la fonction Q&apos;p est
différente de l&apos;identité.

On en déduit que chaque géodésique de l&apos;ouvert O nf a pour image une
géodésique qui passe par le même point {//(p) de l&apos;intérieur du disque Dm&gt;.

Nous allons maintenant montrer que toutes les géodésique droites passant par p
ont pour image une géodésique droite pasant par {j/(p). Pour cela, soit v un vecteur
dans la fibre/, et soit (vt) une suite de vecteurs dans O n/qui l&apos;approxime, choisie
de sorte que (vt) l&apos;approxime par la droite ou par la gauche selon que la fonction
v -+e+(v) est continue à droite ou à gauche. Alors les images par $ des géodésiques

yVi sont des géodésiques droites gt et la suite de géodésiques gt converge vers une
géodésique g de la distance dm&gt; contenant les points 4&gt;(e+(v)) et *l/(p).

Si cette géodésique a son intérieur contenu dans Z)m, alors ses extrémités sont
&lt;j&gt;(e+(v)) et &lt;j&gt;(e~(v)) et on a bien que la géodésique yv a pour image une géodésique
droite pasasnt par \j/{p).

Sinon, le géodésique g contient une géodésique droite dont une extrémité est

&lt;l)(e+(v)) et l&apos;autre un point $(a). Cette géodésique contient le point \j/(p) dans son
intérieur. Donc, d&apos;après notre hypothèse sur &lt;j&gt; la géodésique joignant les points a

et e+(v) est droite et intersecte toutes les géodésiques passant par le point p dans des

directions contenues dans l&apos;ouvert O nf Ceci n&apos;est possible que si toutes les

géodésiques passant par le point p rencontrent la géodésique joignant a à e+(v),
auquel cas, on voit alors facilement que le point p lui-même est contenu dans cette

géodésique. Mais ceci entraîne que a e~(v). Donc la géodésique droite issue de p
dans la direction v a pour image une géodésique droite passant par &amp;(p).

Donc l&apos;application de l&apos;intérieur du disque Dm dans le disque Dm&gt; définie par
\j/(p) a la propriété que l&apos;image de toute géodésique est contenue dans une
géodésique.

On laisse au lecteur l&apos;exercice de montrer que cette application se prolonge en

fait en un homéomorphisme du disque Dm dans le disque Dm. L&apos;application
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obtenue envoit les géodésiques de la métrique riemannienne m sur les géodésiques
de la métrique riemannienne mf. C&apos;est donc une homographie.

REMARQUE. Tout d&apos;abord, notons que si le bord ôD pour la métrique m est

convexe, la deuxième hypothèse de l&apos;énoncé du théorème 9 est superflue.
En outre, on peut se demander si elle n&apos;est pas toujours superflue.

§3. Preuve du théorème 1

Nous allons d&apos;abord montrer que si on a un homéomorphisme &lt;f&gt; de dD qui est

une isométrie de la distance dm vers la distance dm,, il vérifie les hypothèses du
théorème 9.

Vérifions tout d&apos;abord la deuxième hypothèse. Remarquons qu&apos;une géodésique
de la distance rfm- qui joint les points p et q n&apos;est pas droite si et seulement si il existe

un point r sur dD, distinct de p et de q tel que dm (p, q) dm\p, r) + dm(r, q). Donc
si un homéomorphisme (f&gt; induit une isométrie de la distance dm vers la distance dm&gt;,

l&apos;image d&apos;une paire de points joints par une géodésique droite est une paire de

points du même type.
Donc il nous suffit de montrer que Fhoméomorphisme 0&apos; est l&apos;identité.

Soit F une fonction continue convexe sur l&apos;intervalle [0, n] à valeurs réelles.
D&apos;après l&apos;inégalité de Jensen, on a, pour tout 9 dans l&apos;intervalle [0, n]:

il) J
F(9&apos;(v,9))dv.

K

Remarquons que le second membre de cette inégalité est une fonction continue
de 9 d&apos;après l&apos;affirmation 7 et intégrons cette inégalité sur l&apos;intervalle [0, n] pour la

mesure sin 9 d9. Il vient, après application de Fubini:

PF{0\9)) sin 9 d9 &lt;; —L_ f [* F(9&apos;{v, 9)) sin 9 dd) dv.
JO r U m) JT^ \Jo /
Posons F&apos;{v) — jo F(9&apos;(v, 9)) sin 9d9. Ainsi le second membre de l&apos;inégalité

ci-dessus est la moyenne sur Txm de la fonction (continue) F&apos;.

PROPOSITION 10. Supposons que $ envoit la mesure de Liouville fim sur la
mesure de Liouville \im&gt;. Alors, pour toute fonction convexe F comme ci-dessus, on a:

F{0\9)) sin 9 dO &lt;&gt; \ F{9) sin 9 d0.f
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Preuve. Il nous suffit de montrera que pour toute fonction continue F, si on
définit la fonction F sur Tlm par: F(v) Jj F(0&apos;(v9 0)) sin 0 d0, alors on a:

1

- F F(v) dv I F{0) sin 0 d0.
n) Jrj, Jo

La moyenne d&apos;une fonction sur le fibre unitaire Txm pour la mesure dv est égale
à la moyenne sur l&apos;espace des géodésiques de la moyenne de cette fonction sur
chaque géodésique. La mesure de Liouville peut être approximée dans la topologie

vague (comme toute mesure de Radon) par une combinaison linéaire finie de

masses de Dirac. Donc il nous suffit de montrer la proposition ci-dessus dans le cas

particulier où la mesure sur l&apos;espace des géodésiques est une masse de Dirac. Dans

ce cas, un changement de variable donne immédiatement le résultat cherché (cf.
[O, Proposition 7]).

L&apos;homéomorphisme S&apos; vérifie alors les hypothèses du lemma 8 de [O]; on en
déduit que &amp;&apos; est l&apos;identité.

Donc il existe une homographie ij/ entre les disques Dm et Dm&gt;. Montrons que \j/

est en fait isométrie. Pour cela, considérons deux points p et q dans le disque Dm.

Leur distance, pour la distance par chemin associée à la métrique riemannienne m

est, d&apos;après la formule de Crofton la mesure de Liouville de l&apos;ensemble des

géodésiques droites qui les séparent. Or l&apos;image par ^ d&apos;une géodésique droite qui
sépare p de q est une géodésique droite du disque Dm qui sépare ^(/?) de \\f{q).

Donc, en réutilisant que $ envoit la mesure de Liouville \im sur la mesure de

Liouville /xm-, on obtient bien que \j/ respecte les distances.

Ceci termine la démonstration du théorème 1.
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