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Sur les longueurs des géodésiques d’une métrique a
courbure négative dans le disque

JEAN-PIERRE OTAL

Soit D un disque compact C?, de dimension n. Si ce disque est muni d’un
métrique riemannienne m, on peut définir une distance sur D :la distance entre
deux points est la longueur d’'un plus court chemin joignant ces deux points. Ce
minimum est alors réalis¢ comme la longueur d’un chemin rectifiable.

On peut donc considérer la distance d,, induite sur le bord de D. On définit ainsi
une application de ’ensemble des métriques sur D vers ’ensemble des fonctions
distances sur dD. Si on remplace la métrique m par une métrique qui lui est isotope
par un difffomorphisme qui est I'identité sur le bord, la distance restreinte ne
change pas. On a donc défini une application # de l'’espace des métriques a
isométrie prés vers ’ensemble des fonctions distances sur dD.

Considérons le probléme suivant:

Question. L’application # est-elle injective?

F. Bonahon m’a fait remarquer que le réponse générale a ce probléme était
négative si 'on n’imposait pas de restrictions supplémentaires, par exemple sur la
courbure sectionnelle de la métrique m. En effet, il est facile de construire des
exemples de métriques m ou les plus courtes géodésiques joignant le bord au bord
évitent chacunes une petite boule dans Pintérieur de D. Une perturbation de la
métrique supportée dans I'intérieur de cette boule ne changera alors pas la distance
induite d,,.

R. Michel a montré dans [Mi] le résultat suivant. Considérons deux métriques
m et m’ sur le disque D2 l'une des deux étant de courbure constante telles que
#(m) = B(m’), alors m =m’.

Il y a aussi des résultats généraux dans une méme classe conforme obtenus par
R. G. Mukhometov : soient m et m’ deux métriques dont le comportement des
géodésiques est du type courbure négative et qui sont conformément équivalentes
dans un rapport de conformité dont la régularité est C* jusqu’au bord de D et telles
que le bord 0D est géodésiquement convexe; d,, =d, alors m =m’ (nous ren-
voyons a [Mul] pour le cas n =2 et & [Mu2] pour le cas général).
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Nous nous proposons dans cette note de démontrer le Théoréme 1 cidessous. On
se restreint au cas ou n = 2 et cette restriction est essentielle pour notre argument.

THEOREME 1. Lorsque n =2, la restriction de # a Pespace des metriques C?
a courbure strictement négative est injective: une métrique m de classe C? sur le disque

D, de courbure strictement négative peut étre reconstruite a partir de la distance d,,
sur 0D.

Le probleme de la reconstruction des métriques sur le disque a partir de la
restriction de la fonction distance sur leur bord est a comparer avec celui de
reconstruire une métrique de courbure négative sur une variété compacte a partir de
la donnée de son spectre marqué des longueurs (cf. [Gr, 5.5.B]. Dans ce sens, le
théoréme ci-dessus est ’analogue du théoréme de rigidité de [O].

D’autre part, on peut se demander si on peut améliorer les hypothéses de cet
énonce. En fait, les arguments que nous utilisons montrent aussi le résultat suivant.
Si deux métriques C?> m et m’ sur le disque D, sans points focaux, vérifient:
B(m) = B(m’), alors elles sont isométriques, dés que la courbure de I'une est
négative et ne s’annulle sur aucun ouvert.

Je tiens a remercier pour son hospitalité le MSRI ou ce travail a été rédigé en
Octobre 1988.

Le théoréme 1 ci-dessus a été obtenu sous des hypothéses plus faibles et de fagon
indépendante par C. Croke dans [C].

§1. L’espace des géodésiques du disque D

Soit m une métrique C? a courbure négative dans le disque D.

On peut joindre deux points quelconques du bord 0D par un chemin minimisant
contenu dans D. Paramétré par longueur d’arcs, un tel chemin sera appelé une
géodésique de la distance d,. Le résultat suivant concerne la régularite de ces
chemins.

AFFIRMATION 2. Les géodésiques de la distance d,, sont des arcs C'.

Preuve. 11 nous suffit de montrer qu'un chemin rectifiable X minimisant la
longueur entre ses extrémités admet en chaque point une tangente et que celle-ci
varie de fagon continue.

Pour cela considérons d’abord un point de k& dans I'intérieur de D; un voisinage
de ce point dans k est donc une géodésique de la métrique riemannienne m et en
particulier k est différentiable dans un voisinage de ce point.

De méme si x est un intervalle de k dont une extrémité p, différente d’une
extrémité de k est contenue dans 0D, alors I’arc x a une dérivée au point p. Notons
en effet que sous nos hypoﬂ\éses de différentiabilité la meétrique m admet un
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prolongement en une métrique de classe C2. Donc la géodésique x a une tangente
au point p. Supposons qu’en son extrémité p la géodésique k est transverse au bord
0D. Alors la formule de la variation premiére fournit une contradiction au fait que
dans un voisinage de x, ’arc X minimise la distance entre chacuns de ses points.
Donc la dérivée de x existe au point p et cette dérivée est la tangente unitaire de 0D
en ce point.

D’autre part si k est un intervalle d’intersection de k avec dD, la tangente a k
existe en tout point de x et est égale a la tangente & dD au point considéré.

Soit maintenant g :¢—g(f) une paramétrisation par longueur d’arcs de la
courbe géodésique joignant p a g. Considérons le probléme de la différentiabilité du
chemin g au voisinage du point g(0) € 0D. Supposons la métrique m prolongée en
une métrique C> m’ définie dans un disque contenant D dans son intérieur; cette
métrique aura donc aussi une courbure strictement négative mais nous n’utiliserons
pas ce résultat.

Puisque le probléme est local, nous supposerons finalement que la métrique m’
est définie dans Iintérieur du disque unité de R?, de sorte que le disque D soit
'intersection du disque unité avec le demi-plan supérieur et que le point g(0)
corresponde a I’origine de D. Nous noterons finalement d,, la fonction distance
associée a m’.

Nous allons montrer que lorsque ¢; est une suite tendant vers 0, la limite de

Og(t;)
L

existe. Pour cela considérons d’abord la cas ou la suite (g(¢;)) appartient & oD.
Alors, on a:

d. (0, g(1;)) < t; < ([0, g(1;)]),

le dernier terme de I'inégalité étant la longueur de I'intervalle [0, g(¢;)] contenu dans
0D. Puisque le bord D est différentiable, les deux termes extrémes de I'inégalité
c-dessus sont équivalents lorsque ¢, tend vers O. Ils sont donc équivalents a celui du
milieu et la suite

( Og(1;) )

|log@) |

a bien une limite lorsque ¢, tend vers 0, en vérifiant que g(¢;) € dD: cette limite est
alors le vecteur de norme 1 (pour la métrique m) a la courbe 6D en l'origine.
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L’orsqu’il n’existe pas de suite tendant vers 0 telle que g(¢;) appartienne au bord
0D, alors, un intervalle ]0, ] a une image entiérement contenue dans I'intérieur du

disque D. Cette image est donc un segment géodésique de la métrique riemannienne
m et ce cas a été traité précedemment.

Si ce n’est pas le cas, soit (#;) une suite tendant vers 0; on peut encadrer cette
suite entre deux suites tendant vers 0, (¢;) et (¢7) telles que g(¢}) et g(¢/) soient
contenus dans dD. On déduit I'existence de la limite de

( Og(t;) )
|og(t) || )

de l’existence d’une limite commune pour

( Ogri) ( Og(t}) )
log(e) | log)|)

Donc la courbe k est différentiable et sa tangente varie continiiment. O

Certaines des géodésiques de la distance d,, ressemblent vraiment a des géodé-
siques. On obtient une telle géodésique a partir d’un vecteur dans I'intérieur D en
considérant les premiers points d’intersection de la géodésique passant par ce
vecteur: cette géodésique intersecte le bord 0D en deux points, puisqu’elle est propre
(courbure neégative), ces deux points étant bien distincts (courbure négative).
Lorsqu’on applique la méme construction en un point de dD, dans une direction
non tangente au bord, on obtient aussi une géodésique. Toutefois, il est possible que
la géodésique issue d’un point du bord dans une direction tangente au bord ait son
intérieur contenu dans l'intérieur de D jusqu’a son premier point de sortie. Les
géodésiques de la distance d,, obtenues par la méthode précédente seront appelées
des géodésiques droites: elles sont caractérisées par le fait que leur intérieur est
entiérement contenu dans l'intérieur du disque D.

Lorsque le bord de D est strictement convexe toutes les géodésiques de la
distance d,, sont des géodésiques droites et peuvent donc &tre décrites par la
méthode précédente. Dans le cas général, ou le bord n’est pas convexe, il n’en est
rien.

Toutefois, on a le résultat général suivant qui traduit le fait que, méme lorsque
le bord de D n’est pas convexe, les géodésiques de la distance d,, s’intersectent
comme des géodésiques droites.

AFFIRMATION 3. Soit m une métriqgue C* a courbure négative définie sur le
disque D. On a alors:
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(1) deux géodésiques de la distance d,, ont une intersection connexe ou vide;
(2) pour toute paire de points distincts p et q de 0D, il existe une unique
géodésique de la distance d,, qui joint ces deux points.

Preuve. Considérons deux géodésiques distinctes y et ” dont 'intersection n’est
pas connexe. Il existe alors un arc &k contenu dans y et un arc k' conteu dans y’ qui
s’intersectent uniquement en leurs extrémités. Le réunion de ces deux arcs borde un
disque contenu dans D; la courbure de chacun des arcs k et k’ est orientée vers
Pextérieur de ce disque, si elle n’est pas nulle. Une telle situation est interdite par le
théoréme de Gauss—Bonnet puisque m est a courbure négative.

Ceci montre que l'intersection de y et y’ est connexe.

La deuxieme partie de I’assertion se déduit immédiatement de la premiére. [J

L’ensemble des geodésiques non-orientées de la distance d,, s’identifie naturelle-
ment avec les paires de points distincts de dD: cet espace sers noté .#(D).

DEFINITION. On définite C(D) comme I'espace des mesures de Borel sur
M (D) de masse totale finie.

Un exemple de mesure dans C(D) est défini de la maniére suivante. Soient p et
g deux points distincts de dD: ces deux points s’interprétent comme un élément de
#(D) que 'on voit a son tour comme le support d’'une masse de Dirac.

Un Autre exemple est la mesure de Liouville associée a une métrique a courbure
négative m, que nous définissons maintenant. Soit O ’ensemble des paires de points
de 0D tels que la géodésique qui les joint est une géodésique droite, transverse
en ses extrémités & dD. Ainsi défini, I’ensemble O est ouvert. Il correspond a un
ouvert de I’espace des géodésiques de la métrique riemannienne du disque D. Sur
cet espace de géodésiques on a une mesure, la mesure de Liouville, définie comme
la valeur absolue de la 2-forme obtenue comme produit intérieur de la forme
volume de Liouville sur le fibré unitaire de D par le champ de vecteurs tangent au
flot.

Nous allons maintenant donner la formule de cette mesure en coordonnées. Soit
k un segment géodésique de la métrique m contenu dans D on bien un arc contenu
dans dD, dont la concavité est tournée vers I’extérieur; munissons cet arc d’une
coordonnée par longueur d’arcs.

On peut paramétrer les géodésiques de 'ouvert O qui intersectent k transver-
salement par leur point d’intersection avec k et par I’angle qu’elles font en ce point
d’intersection avec k. Cette paramétrisation est injective pour les géodésiques de O
et ’ensemble des géodésiques de O qui intersectent k est ainsi homéomorphe a un
ouvert de k x ]O, a[. Sur cet ouvert, I’expression de la mesure de Liouville est
du =sin 0 dt d0 (cf. [Sa, §9]).
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On définit finalement le mesure de Liouville u(m) sur .#(D) en prolongeant le
mesure ainsi deéfinie sur O par 0 dans le complémentaire. On a ainsi définit une
mesure de Borel; son support contient O, donc ce support est exactement le
fermeture de O dans (D). Il nous reste a voir que le masse totale de la mesure de
Liouville est finie; toutefois ce dernier point découlera d’une formule générale, la
formule de Crofton que nous allons maintenant expliquer. Reprenons les notations
utilisées pour définir en coordonnées la mesure de Liouville. L’ensemble des

géodésiques de O qui intersectent k transversalement est homéomorphe a un ouvert
O, de k x]0, n[. On a alors:

AFFIRMATION 4. L’ouvert O, est de mesure pleine pour la mesure de
Lebesgue sur k x 10, nf.

Preuve. 11 nous suffit de montrer, d’aprés Fubini, que pour tout point p €k,
I’ensemble des vecteurs v au point p tels que le géodésique (de la métrique
riemannienne m) issue de p dans la direction 7 est transverse en ses deux extrémités
a la courbe dD est un ensemble de mesure pleine dans I’espace unitaire tangent du
disque D,, au point p.

Pour cela, soit v, un vecteur au point p tel que le géodésique issue de p dans la
direction v, soit tangente en son extrémité p’ a la courbe dD. Prolongeons la
métrique m sur le disque D en une métrique que nous noterons toujours m définie
dans un disque D’ contenant D dans son intérieur. La nouvelle métrique peut étre
choisie C? et aura une courbure sectionnelle négative quitte a restreindre le disque
D’. Les géodésiques issues de p dans un voisinage de la direction v, fournissent un
feuilletage # d’un voisinage U du point p’ sur le disque D’. Ce feuilletage est C!
puisque la métrique m est C?, c’est-a-dire que, si k’ est petit arc géodésique
transverse a 0D et contenu dans U la projection de U sur k’ le long des feuilles du
feuilletage # est C'. Donc, si k” est un arc contenu dans dD n U voisinage du point
p’, paramétré par longueur d’arcs, la projection de k” sur Parc k' est une
application C'. Donc I'image des points critiques de cette application est un
ensemble de mesure de Lebesgue nulle. Mais I'image de ces points critiques contient
les directions v au point p telles que la géodésique issue de p dans la direction v est
tangente a 0D.

Donc, pour tout point p I'ensemble des directions au point p qui définissent des
géodésiques droites contenues dans O a un complémentaire de mesure nulle.

Donc O, est de mesure pleine. O

On en déduit immédiatement que si un arc k est soit un segment géodésique, soit
un arc contenu dans dD dont la concavité est tournée vers ’extérieur (de sorte
qu’une géodésique ayant une extrémité dans k ait son autre extrémité dans dD — k),
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alors la mesure de Liouville des géodésiques de la distance d,, qui intersectent k est
exactement le double de la longueur de k.

Nous allons généraliser la formule précédente mais il nous faut pour cela définir
le nombre d’intersection entre deux éléments de C(D).

Soit u et u’ deux éléments de C(D). Dans I’espace .#(D) x .#(D), on peut
considérer I’'ouvert formé des paires de paires de points telles que I'une des paires
n’est pas contenue dans une composante connexe du complémentaire dans 0D de
l'autre paire.

L’espace #(D) x .#(D) étant muni de la mesure produit du x du’, la masse
totale de cet ensemble sera notée i(u, u") et appelée nombre d’intersection de u et de
u’. Ce nombre d’intersection est symeétrique.

Dans le cas ou 'une des mesures, disons u, est supportée sur une seule paire g,
et disons avec masse totale 1, le nombre d’intersection de u avec une autre mesure
u’ se calcule en prenant la y'-masse de I’ensemble des paires de points qui sont dans
des composantes distinctes de 0D — g.

En particulier, on a le résultat suivant, qui découle de la définition du nombre
d’intersection, de I’écriture de la mesure de Liouville en coordonnées, et du fait que
toute géodésique de la distance d,, est réunion disjointe d’arcs concaves contenus
dans 0D et de segments géodésiques de la métrique riemannienne m.

PROPOSITION 5. Supposons que le disque D est muni d’une métrique a
courbure négative. Soit p et q deux points distincts de 0D. Alors la longueur de la
géodésique de la métrique d,, qui joint ces deux points est égale a la moitié du nombre
d’intersection de la mesure [p, q] avec la mesure de Liouville u(m).

D’aprés cette proposition, il nous suffit, pour démontrer le théoréme 1 de
prouver que I'on peut reconstruire la métrique m a partir de la donnée des nombres
d’intersection de sa mesure de Liouville u(m) avec les masses de Dirac [p, q].

Nous allons commencer par établir que 'on peut reconstruire la mesure de
Liouville u(m) a partir de ses nombres d’intersection avec les masses de Dirac. C’est
un cas particulier du résultat suivant.

PROPOSITION 6. Soient u et pu’ deux éléements de C(D) tels que pour tout
couple de points distincts p et q, on a: i(u, [p, q)) =i(u/, [p, q]). Alors les mesures u
et u’ sonte égales.

Preuve par A. Douady. Soient p, p’, q, q’, 4 points distincts apparaisant dans cet
ordre sur le cercle D. On peut supposer puisque u est une de ces points est nulle.
On a alors, si F désigne ’ensemble des géodésiques dont une extrémité est dans
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I'intervalle [p, q”] et 'autre dans I'intervalle [p’, q]:

2u(F) =i(u, [p, qD) +i(u, [P, q) — i, [P, P’ D) — i1, (9, 9" ])-

On en déduit la proposition. O

Soient maintenant m et m’ deux métriques riemanniennes sur le disque telle que
les distances d,, et d,, qui leurs sont respectivement associées sont isométriques. Soit
¢ l'application de dD dans lui-méme qui réalise I'isométrie en question. On déduit
des propositions 5 et 6 que ’homéomorphisme de .#(D), § = ¢ x ¢ transporte la
mesure de Liouville u(m) sur la mesure u’(m). En particulier cet homéomorphisme
envoit le support de la premiére mesure sur le support de la deuxiéme.

Une autre conclusion est que la longueur de D pour les deux métriques est la
méme : en effet, cette longueur n’est autre que la masse totale de la mesure de
Liouville u(m). Ce point appara aussi dans [Mi], ou il est montré que la donnée de
d,, détermine la métrique restreinte a dD, c’est-a-dire, dans le cas n = 2, la longueur
d’arc.

Finalement remarquons aussi que le volume total de D pour ces deux métriques
est le méme: le volume n’est autre en effet, que le nombre d’intersection de la
mesure u(m) avec elle-méme, & une constante preés.

§2. Une obstruction a prolonger un homéomorphisme de JD par une homographie

DEFINITION. Soient m et m’ deux métriques de courbure négative sur D. Une
homographie du disque riemannien D, vers le disque riemannien D, est un
homéomorphisme qui transporte les géodésiques de la métrique riemannienne m sur
les geodésiques de la métrique riemannienne m’.

L’existence d’une homographie entre deux meétriques riemanniennes est un
phénoméne trés rare. Nous renvoyons le lecteur intéressé au livre de G. Darboux
sur les surfaces (troisiéme partie) dans lequel le probléme de I’existence d’homogra-
phies C? entre deux surfaces riemanniennes est traitée en détail.

Soit ¢ un homéomorphisme de D dans lui-méme. Nous allons définir une
obstruction a prolonger ’homéomorphisme ¢ en une homographie de D,, dans D,,,.

Soit T} le fibré unitaire du disque D,,. Soit v un vecteur et soit  un nombre réel
dans P'intervalle 10, n[. Notons 6.v le vecteur défini en tournant n dans sa fibre d’un
angle 0. Il correspond aux vecteurs v et 8.n deux géodésiques droites de la métrique
m, donc deux paires de points dans le cercle dD. A ces deux paires de points,
’homéomorphisme ¢ associe deux nouvelles paires de points de 0D, qui ont la
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propriété de se croiser (i.e. une paire n’est pas entiérement contenue dans une
composante connexe du complémentaire de l'autre). Considérons alors les
deux géodésiques y, et vy, de la distance d,, que ces nouvelles paires définissent.
Ces géodésiques ont une intersection non-vide. On définit la fonction 6(v, §) comme
langle qui fait passer de la géodésique y'(v) a la géodésique y’(f.v): on a
besoin pour cela d’une orientation sur le disque D,,, 'orientation sur le disque
D, étant alors choisie de sorte que P’application ¢ respecte I'orientation induite
sur 0D.

L’angle 6'(v, 0) est aussi défini lorsque les géodésiques y’(n) et y’(6.v) n’ont pas
une intersection transverse : toutefois il est facile de voir, puisque les géodésiques de
la distance d,, sont C', que I’angle de la rotation qui fair passer de y’(v) a4 y’(6.v) aux
extrémités de leur intervalle d’intersection est toujours 0 ou 7.

On a alors le résultat suivant:

AFFIRMATION 7. On a:
(1) pour 0 fixé, la fonction 6'(v, 6) est mesurable:
(2) soit ©'(0) la valeur moyenne de la fonction 0'(v, @) pour la mesure de

Lebesgue sur le fibré unitaire T),. Alors, la fonction @' est une fonction continue
de 6.

Preuve. Considérons tout d’abord 'application qui associe a un vecteur de T,
le point e * (v) défini comme le premier point d’intersection de la géodésique issue du
vecteur v avec le cercle 0D. L’ensemble des vecteurs v tels que la géodésique issue
de v est transverse au point e *(v) a la courbe dD est un ouvert du fibré unitaire T,
du disque D. D’aprés la démonstration de I’affirmation 4, cet ouvert est de mesure
pleine pour la mesure de Lebesgue sur la fibre de T, au point p. Ceci est encore vrai
pour I'ouvert défini de la méme fagon mais en considérant I’autre extrémité e ~(v)
de la géodésique issue du vecteur v. Donc, d’aprés Fubini, I’ensemble des vecteurs
v tels que la géodésique issue de v est transverse en ses deux extrémités au bord 6D
est un ouvert de mesure pleine du fibré unitaire T,.

Fixons maintenant un angle 6 dans l'intervalle [0, n]. L’ensemble des vecteurs v
tels que les géodésiques issues de v et de 0.v sont transverses au bord 0D en leurs
extrémités est encore un ouvert O, de mesure pleine. L’application 6'(v, 6) est en ces
points une fonction continue du vecteur n. Ceci démontre la premiére partie de
I’affirmation 7.

Soit maintenant (6,) est une suite tendant vers 6. On a pour v € O, convergence
de la suite (6'(v, 6;)) vers 0’(v, ). Donc du théoréme de convergence dominée de
Lebesgue, on déduit la continuité de la fonction @ au point 6. O

La propriété essentielle de la fonction @’ est la suivante.
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PROPOSITION 8. L’application @’ est une application continue croissante de
[0, ) dans lui-méme telle que:
(1) @’ est symétrique en m — 0:

Vo, O'(n —0) =n — O'(H);
(2) O’ est une application sur-additive:

v0,, 0, tels que 6, + 0,€[0, n], on a: O’(6, +0,) =2 O'(0,) + ©'(6,).

Preuve. Le fait que I'application @’ est croisante résultera de la suradditiveé,
puisque @’ prend des valeurs positives.

Montrons la premiére assertion. D’aprés Fubini, si d4 désigne la mesure de
Lebesgue sur la surface S,, et si d’n désigne la mesure de Lebesgue sur chaque fibre
fde T}, on a: '

I , ,
@(0)-—1/(],'1”) Lm.[;B(v,O)dndA.

Soit f une fibre du fibré unitaire tangent T'),. On a alors, pour tout 8, si v € f:
0'(w,0) +6@0.v,n —0) =mn.

Intégrons cette égalité pour la mesure d’v, on obtient en utilisant I'invariance de la
mesure d’'v par la rotation d’angle 6,

1 ’ ’ 1 ’ re
—2—7;L0(v,O)dv+2nJ;9(v,1t—0)dv-n.

Si on intégre maintenant cette égalité sur le disque D,,, on obtient la symétrie en
n—0de .

Démontrons maintenant le deuxiéme assertion. Rappelons d’abord I'inégalité de
Gauss—Bonnet appliquée a un triangle T contenu dans D,, dont chaque c6té du
bord a une courbure géodésique négative ou nulle. Puisque le métrique m’ a une
courbure strictement négative, la somme des angles intérieurs de T est inférieure a
m, avec égalité si et seulement si le triangle T a une aire nulle, c’est-a-dire si et
seulement si triangle T est réduit & un point ou a un intervalle.

Soient alors f une une fibre de T}, v un vecteur contenu dans cette fibre, et 6,
et 6, deux angles dans l'intervalle [0, n] vérifiant 6, + 6, < n. Considérons les images
par la conjugaison ¢ des trois géodésiques y,, 7o, , €t V¢, + 0,)0- Le€S trois géodé-
siques images définissent un triangle T de D,,, éventuellement réduit a un point ou
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a un intervalle contenu dans dD. Les angles intérieurs du triangle T sont: 8'(v, 6,),
0'(6,.v,0,), et t —0'(v, 0, + 0,). On a donc d’aprés Gauss—Bonnet:

0'(v,0,)+00,.v,0,) <6(,0,+0,).

Intégrons d’abord cette inégalité sur la fibre f, pour la mesure de Lebesgue d'v,
en utilisant I'invariance de la mesure d’v par la rotation d’angle 6,, puis intégrons
I'inégalité obtenue sur la surface D,,. On en déduit la sur-additivité de la fonction
o

Ceci termine la démonstration de la proposition 8. O

THEOREME 9. L’homéomorphisme ¢ se prolonge en une homographie de D,,
dans D, si et seulement si les deux conditions suivantes sont vérifiées:
(1) Papplicaton @' est égale a I’indentité;
(2) lapplication ¢ induit une bijection entre les géodésiques droites de D,, et les
géodésiques droites de D, .

Preuve. La nécessité de la deuxiéme condition est claire; pour la premiére,
remarquons seulement que l'application @’ est alors une fonction continue et
additive de l'intervalle dans lui-méme.

Considérons maintenant la réciproque. Si 'application @’ est I'identité, en
particulier, elle est additive. D’aprés sa définition, ’application @’ est la moyenne
des applications @, ou @ ,(0) est défini comme la moyenne sur la fibre au point p
de la fonction 6’(v, 6). Maintenant, le méme raisonnement que celui effectué dans la
démonstration de la continuité et de la sur-additivité de I’application @’ montre que
chaque application @, est continue croissante, et sur-additive. D’autre part si la
suite (p;) converge vers le point p, la suite d’applications (@ ) converge simplement
vers la fonction @,, d’aprés le théoréme de convergence dominée de Lebesgue.
Puisque cette derniére application est croissante et continue, un théoréme de Dini
dit alors que la convergence des fonctions @, vers la fonction @, est uniforme.
Donc la fonction @ est la moyenne pour la mesure de Lebesgue du disque D,, de
la fonction @, continue en p. Ainsi, pour que @’ soit I'identité, il est nécessaire que
chaque fonction @, soit I'identité.

Fixons un point p dans le disque D et considérons la fibre f du fibré unitaire T,
en ce point. L’'image de chaque géodésique droite issue d’un vecteur v € f est une
géodésique droite par hypothése. Montrons que maintenant que si v,, v,, v; sont
trois vecteurs deux a deux distincts de la fibre £, les trois géodésiques droites J(yvi)
passent par le méme point de 'intérieur du disque D,, .

L’application qui a un vecteur v associe ses extrémités dans .#(D) est continue
sauf en un nombre dénombrable de points de f. En effet I'application v — e *(v) est
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monotone et il en est de méme de 'application v — e ~(v). De plus chacune des
applications e *(v) et e ~(v) est continue a droite ou a gauche en tout point.

Supposons dans un premier temps que les trois vecteurs v, sont contenus dans
I'ouvert O nf; dans la preuve de I'affirmation 4, on a vu que 'ouvert O N f était de
mesure pleine, donc en particulier, dense.

Raisonnons alors par ’absurde et reprenons la démonstration de la proposition
8: 'image par @ des trois géodésiques 70, €st formée de trois géodésiques deux a
deux transverses et I'intersection de deux quelconques d’entr’elles est contenue dans
'intérieur du disque D. Si ces trois géodésiques ne sont pas concourrantes, le
triangle qu’elles définissent a une aire non nulle et donc I'inégalité de Gauss—Bon-
net est stricte. Elle est stricte aussi pour des angles voisins des angles (v;), car les
vecteurs v; sonte supposés appartenir a 'ouvert O Nnf, ou l'application v —y, est
continue. Donc d’aprés la démonstration de la proposition 8, la fonction @, est
différente de I'identité.

On en déduit que chaque géodésique de 'ouvert O nf a pour image une
géodésique qui passe par le méme point Y(p) de I'intérieur du disque D, .

Nous allons maintenant montrer que foutes les géodésique droites passant par p
ont pour image une géodésique droite pasant par Y(p). Pour cela, soit v un vecteur
dans la fibre f, et soit (v;) une suite de vecteurs dans O N f qui I’approxime, choisie
de sorte que (v;) 'approxime par la droite ou par la gauche selon que la fonction
v —e*(v) est continue a droite ou a gauche. Alors les images par ¢ des géodésiques
7», sont des geodésiques droites g, et la suite de géodésiques g; converge vers une
géodésique g de la distance d,, contenant les points ¢(e *(v)) et ¥(p).

Si cette géodésique a son intérieur contenu dans D,,, alors ses extrémités sont
¢(e *(v)) et (e ~(v)) et on a bien que la géodésique y, a pour image une géodésique
droite pasasnt par y( p).

Sinon, le géodésique g contient une géodésique droite dont une extrémité est
¢(e *(v)) et I'autre un point ¢(a). Cette géodésique contient le point y(p) dans son
intérieur. Donc, d’aprés notre hypothése sur ¢ la géodésique joignant les points «
et e *(v) est droite et intersecte toutes les géodésiques passant par le point p dans des
directions contenues dans 'ouvert O nf. Ceci n’est possible que si routes les
géodésiques passant par le point p rencontrent la géodésique joignant o a e *(v),
auquel cas, on voit alors facilement que le point p lui-méme est contenu dans cette
géodésique. Mais ceci entraine que a = e ~(v). Donc la géodésique droite issue de p
dans la direction v a pour image une géodésique droite passant par y(p).

Donc I'application de l'intérieur du disque D,, dans le disque D,, deéfinie par
Y(p) a la propriété que l'image de toute géodésique est contenue dans une
géodésique.

On laisse au lecteur I'exercice de montrer que cette application se prolonge en
fait en un homéomorphisme du disque D,, dans le disque D, . L’application
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obtenue envoit les géodésiques de la métrique riemannienne m sur les géodésiques
de la métrique riemannienne m’. C’est donc une homographic. O

REMARQUE. Tout d’abord, notons que si le bord dD pour la métrique m est
convexe, la deuxiéme hypothése de I’énoncé du théoréme 9 est superflue.
En outre, on peut se demander si elle n’est pas toujours superflue.

§3. Preuve du théoréme 1

Nous allons d’abord montrer que si on a un homéomorphisme ¢ de dD qui est
une isométrie de la distance d,, vers la distance d,,, il vérifie les hypothéses du
théoréme 9.

Vérifions tout d’abord la deuxiéme hypothése. Remarquons qu’une géodésique
de la distance d,, qui joint les points p et g n’est pas droite si et seulement si il existe
un point r sur dD, distinct de p et de g tel que d,,,.(p, q9) =d,..(p,r) +d,.(r, q). Donc
si un homéomorphisme ¢ induit une isométrie de la distance d,, vers la distance d,,,,
I'image d’une paire de points joints par une géodésique droite est une paire de
points du méme type.

Donc il nous suffit de montrer que I’homéomorphisme @ est I'identité.

Soit F une fonction continue convexe sur lintervalle [0, n] & valeurs réelles.
D’aprés I'inégalité de Jensen, on a, pour tout 6 dans l'intervalle [0, x]:

1

FO'0) < 7T

j F (0, 0)) db.

Remarquons que le second membre de cette inégalité est une fonction continue
de 6 d’apres I'affirmation 7 et intégrons cette inégalité sur I'intervalle [0, n] pour la
mesure sin @ df. 11 vient, aprés application de Fubini:

fﬂ F(©’'(0) sinf df < :

o ST I ( f F(O'(0, 0)) siane) .

Posons F’(v) =[5 F(6'(v, 0)) sin 0 df. Ainsi le second membre de Iinégalité
ci-dessus est la moyenne sur T, de la fonction (continue) F’.

PROPOSITION 10. Supposons que ¢ envoit la mesure de Liowville p,, sur la
mesure de Liouville p,.. Alors, pour toute fonction convexe F comme ci-dessus, on a:

I " F(©'(8)) sin 0 dO < j " F(0) sin 6 b.

0 0
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Preuve. 11 nous suffit de montrere que pour toute fonction continue F, si on

définit la fonction F’ sur T., par: F'(v) = _[{,' F(0'(v, 0)) sin 0 df, alors on a:
1 , p .

m o F@)dv = J; F(6) sin 0 d6.

La moyenne d’une fonction sur le fibré unitaire 7'}, pour la mesure dv est égale
a la moyenne sur I’espace des géodésiques de la moyenne de cette fonction sur
chaque géodésique. La mesure de Liouville peut étre approximée dans la topologie
vague (comme toute mesure de Radon) par une combinaison linéaire finie de
masses de Dirac. Donc il nous suffit de montrer la proposition ci-dessus dans le cas
particulier ou la mesure sur I’espace des géodésiques est une masse de Dirac. Dans
ce cas, un changement de variable donne immédiatement le résultat cherché (cf.
[O, Proposition 7}). O

L’homéomorphisme @’ vérifie alors les hypothéses du lemma 8 de [O]; on en
déduit que @ est I'identité.

Donc il existe une homographie  entre les disques D,, et D,,. Montrons que ¥
est en fait isométrie. Pour cela, considérons deux points p et g dans le disque D,,.
Leur distance, pour la distance par chemin associée a la métrique riemannienne m
est, d’aprés la formule de Crofton la mesure de Liouville de I’ensemble des
géodésiques droites qui les séparent. Or I'image par y d’une géodésique droite qui
sépare p de g est une géodésique droite du disque D,, qui sépare Y(p) de Y(q).
Donc, en réutilisant que ¢ envoit la mesure de Liouville y,, sur la mesure de
Liouville u,., on obtient bien que y respecte les distances.

Ceci termine la démonstration du théoréme 1.
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