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Some examples of higher rank manifolds of nonnegative curvature
R. J. SPATZIER* AND M. STRAKET

1. Introduction

Let M be a complete Riemannian manifold. We recall the notion of rank from
[2] (cf. also [3]). It measures the amount of flatness in a manifold.

DEFINITION 1.1. If y is a (complete) geodesic in M we define the rank of
7, tk 7, as the dimension of the space of parallel Jacobi fields along y. Let the rank
of M, rk M, be the minimum of the ranks of all geodesics in M. Also, we call a
geodesic y regular if rk y =rk M.

Recall that a metric on M is locally irreducible if the universal cover of M does
not split isometrically as a product. In nonpositive (sectional) curvature and higher
rank, all locally irreducible finite volume manifolds (with bounded curvature) are
locally symmetric spaces [1], [8], [12]. This result uses the special properties of
nonpositive curvature in an essential way. In fact, Heintze found examples of
normally homogeneous nonsymmetric spaces of nonnegative curvature and higher
rank [16]. In this note, we will obtain more examples of higher rank and nonnega-
tive curvature with some new features. Indeed, the whole point of this paper is to
show that higher rank metrics in nonnegative curvature can be very complicated.

One should compare our situation with the pinching theorems. There there is a
duality between positive and negative curvature. In fact, if M is any rank 1 compact
locally symmetric space with nonconstant curvature then any other 1/4-pinched
metric on M must be symmetric. For positive curvature, this is a consequence of
Berger’s famous rigidity theorem [10]. For negative curvature, this was proved by
Hamenstéddt [15]. Notice though that there really is no theorem dual to the sphere
theorem in negative curvature, due to the Gromov-Thurston examples of compact
manifolds with arbitrarily pinched sectional curvatures which are not homotopy
equivalent to a space with constant curvature. Similarly, our examples show that
duality fails for the higher-rank rigidity theorems.

*Partially supported by the NSF, Sloan Foundation Fellow.
tPartially supported by the Heinrich-Hertz-Stiftung.
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300 R. J. SPATZIER AND M. STRAKE

The construction of our examples is based on a simple lower estimate of the
rank of certain submersion metrics.

THEOREM 1.2. Suppose M is a compact Riemannian manifold and H a compact
group of isometries of M which acts on M with only principal orbits. Let
n:M->BEM /H be the associated Riemannian submersion. Then tk B 2tk M —
dim F where F is the fiber of the submersion.

As Remark 2.4 shows, one cannot in general improve the estimate of the rank
by rk M —rk F. Also note that the compactness of M is essential. For a noncom-
pact counterexample see Example 2.2. We do not know whether the theorem holds
true for a general submersion with compact total space. If the submersion has
totally geodesic fibers it follows quite easily. Also one can always estimate the rank
of geodesics in the base space that are covered by a closed horizontal geodesic.

The rank of a manifold really is an infinitesimal measure of the amount of
flatness in a manifold. More globally, let us make the

DEFINITION 1.3. A k-flat F in a Riemannian manifold is a totally geodesic
isometric immersion of R* into M.

One can then ask whether every geodesic lies in a k-flat. Let us call the largest
such k the global rank of M. Of course, the rank of M is always at least as big as
the global rank. Whether a converse holds, that is whether one can integrate the
parallel Jacobi fields to flats is only known in nonpositive curvature [2]. In all of
our examples however, the two ranks are in fact equal (cf. Corollary 2.5).

In Section 3 we use Theorem 1.2 to determine the rank of various standard
submersion metrics. In particular, we see in 3.3.1 that higher-rank metrics of
nonnegative curvature are not infinitesimally rigid, even for the standard symmetric
spaces.

COROLLARY 1.4. Let M be a rank k globally symmetric space of the compact
type with the standard symmetric metric g,. Then there is a 1-parameter variation of
metrics g, of g, of constant (global) rank k and nonnegative curvature such that none
of the metrics g, for t > 0 is symmetric.

Let M be a manifold of global rank at least 2. One can study the “intersection
pattern” of the flats at a point p € M. More precisely, choose a sphere S centered
at p of radius less than the injectivity radius of p. Since the global rank is at least
2, the intersections of the k-flats through p with S define a (singular) foliation of S.
Call a point x € S regular if the geodesic through p and x is regular. We define Weyl
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chambers as the connected components of the regular points of the leaves of this
foliation. Note that the Weyl chambers are convex subsets of S (possibly empty).
Call this tesselation of the regular points of S by the Weyl chambers the building
germ A, of the metric at p. Note that 4, is independent of S. The building germ is
a cell complex where the cells are convex subsets of S.

We do not know how complicated these building germs can be. When M is a
symmetric space, the building germ at any point is just a spherical building in the
sense of Tits [23]. This follows from the fact that flats in M correspond to flats in
the symmetric space of noncompact type dual to M [17]. For the deformations in
Corollary 1.4 the building germs are “combinatorically isomorphic” to those of the
symmetric space (in the sense that there is a bijection of the flats through a point
p in the deformation to the flats through p in the symmetric space that preserves
intersections).

Thus not even the full intersection structure of the flats determines the metric.
However, we can define a finer invariant, the Tits metric dr on S. If x and y are two
points on S, let d-(x, y) be the length (in the round metric on S) of the shortest
path connecting x to y that is piecewise contained in a k-flat through p. If there is
no such path, we set d(x, y) = co. It is easy to see that the Tits metric is finite in
all of our examples. Note that d; makes the building germ into a metric space. We
will see that the building germs of the deformations in Corollary 1.4 are not
isometric to that of the symmetric space. We do not know whether the Tits metric
determines the metric in general.

Let us call a manifold strongly inhomogeneous if it does not have the homotopy
type of a compact homogeneous space. Eschenburg constructed strongly inhomoge-
neous compact 7-manifolds of positive curvature [13]. In Section 4 we use his
examples to show

THEOREM 1.5. There are strongly inhomogeneous compact 9-manifolds with
locally irreducible metrics of nonnegative curvature and (global) rank 2.

In fact, these manifolds are 2-sphere bundles over the Eschenburg examples. It
is much easier to find inhomogeneous metrics of higher rank and nonnegative
curvature. In fact, one can construct such metrics on SU(3) x 51 S?, starting from
an S'-invariant metric on S2.

Finally, in Section 5, we generalize Berger’s theorem on the nonexistence of
variations positive of first order of the product metric on S x S? to metrics of
nonnegative curvature with a 2-flat.

We are grateful to T. Farrell for showing us Proposition 4.2. Our proof is a
variation on his argument. Also we would like to thank C. H. Sah for several
helpful conversations.
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2. The rank of submersion metrics

Here we discuss Theorem 1.2 and a variant of it. We will adopt the notations of
[5] and [20].

First we prove Theorem 1.2. Recall that M is a compact manifold and H a
closed group of isometries of M with only principal orbits. Give BEM /H the
submersion metric induced by n : M — B. Consider a geodesic 7 in B with initial
vector X. Since 7 is a Riemannian submersion we can define diffeomorphisms k*
between the fibres F=n"'(J(0)) and F, == "'(j(¢)) in the following way: Let
k'(p) di-fy,,(t), where 7, is the (unique) horizontal lift of § which starts at p € F;.

Fix p € F, and consider a vertical curve ¢ through p with initial vector v = ¢é(0).

The diffeomorphism & gives rise to a geodesic variation o of 7y,:
a(s, 1) = k'(c(s)).
The corresponding Jacobi field J,(¢) along y, with J,(0) =v is vertical and
kiv =J,(5). (%)

Set m:=rk M — dim F,. As rk B is always at least 1, we may assume that m = 2.
Then we can find (m — 1) orthonormal parallel Jacobi fields E,(¢),..., E,, _,(f)
along y, which are orthogonal to y, and horizontal for ¢ = 0. By Lemma 2.1 below,
the inner product (E;, J, )(?) is identically zero for all v € T,F,. By (*) we have
T, oF, ={J,(t) |v € T,F,}. Thus every parallel field E; is horizontal for all ¢ e R.

Y
Hénce we get m — 1 vectorfields E,-df: 7« E; along 7 such that

0=#(E)) = E (1)
0=u(E;) = 4;E, (2)

where A is the O’Neill tensor of n (cf. [20]). By [5, 9.28f, p. 241] equation (2)
implies that R(E;, §)j = 0. Together with (1) this shows that E, is a parallel Jacobi
field along . Therefore we have rk (B) = m.

To finish the proof of Theorem 1.2 we need the following generalization of the
Clairaut integral.

LEMMA 2.1. Consider the Riemannian submersion n : M —- M /H, where M is a
compact Riemannian manifold and H is a closed subgroup of isometries such that all
orbits of the H-action on M are principal orbits. Let y:R— M be a horizontal
geodesic and E a parallel Jacobi field along y. If J,(f) =k, v denotes the vertical
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Jacobi field along y defined by (*) then

def

Jo(8) =<Jp, EX(1)

is constant in t.

Proof. As E is parallel we get

fo@=<J3, EX1)
= - <R(Jv’ 'Y)y’ E>(t)
= —(R(E, 7}y, J, )(1).
Since E is a parallel Jacobi field we deduce that f; = 0. Thus f,(f) = at + b for some
a,beR. Let | =dim F, =dim H — dim H, where H, is the isotropy group of p.
Choose a basis vy, . . ., v, of T,F, such that v; = X ;(p), where J; is a Killing field

generated by the action of H on M. Since k' commutes with all elements h € H, we
get

kyXi(p)=H;oy(t) (1<is<m-—1).
Therefore equation (*) yields
H ;o)1) = J,, (1)

Hence J,, is the restriction of a globally defined vector field on M. Since M is
compact we get

o | < 53] < 0.

In particular, f, is bounded for all i. By (*), f, is bounded. Thus a =0 and f, is
constant. O

EXAMPLE 2.2. Theorem 1.2 and Lemma 2.1 do not hold in general if M is not
compact. As an example, consider M = S' x R? and let S' act diagonally on M by
rotation. It is not difficult to verify that the rank of M/S'is 1.

Consider a Riemannian submersion n : M — B. Recall that a k-flat in M is an
isometric totally geodesic immersion F : R* » M. The next proposition summarizes
the relation between k-flats of M and B.
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PROPOSITION 23. Let n : M — B be a Riemannian submersion, y a horizontal
geodesic, y =0 v and E a parallel Jacobi ﬁeld along y.

1. If E is horizontal for all t then E<n +«E is a parallel Jacobi field along 7.
Conversely, if E is a parallel Jacobi ﬁeld and M has nonnegative curvature then
the same holds for the horizontal lift E of E along Y,

2. Let F be a k-flat in M. If F is horizontal then FE n(F ) is a k-flat in B.
Conversely, suppose M has nonnegative curvature. Then, given a k-flat F in B
there is a (uniquely determined) horizontal k-flat F through every point
p € n~(F) with n(F) = F.

Proof. The first claim is a straightforward application of O’Neill’s formulas (cf.
[20] and the proof of Theorem 1.2). Indeed, we have

0 = (R(E, )}, E) = (R(E, )}, E) + | 4;E|*.

Since M is nonnegatively curved, this shows that (R(E, y)y, E) =0, and therefore
R(E, y)y =0.

The second claim follows from the fact that the distribution defined by lifting
the tangent spaces of F is integrable. Indeed, as above, the O’Neill tensor vanishes
for this distribution. O

REMARK 2.4. The inequality rk M /H =2tk M —rk H does not hold in gen-
eral: Let S° be the round 3-sphere. Set MES3x S*x S and let HE §% > SU(2)
act diagonally on M. Then M/H with the submersion metric is diffeomorphic to
S3 x §* and has rank 1, as is straightforward to show.

We can apply Theorem 1.2 to the case where M is a compact symmetric space
of nonnegative curvature and higher rank. Since a Riemannian submersion is
curvature non-decreasing, we obtain manifolds B = M/H of nonnegative curvature
and higher rank which are in general neither symmetric nor products. We will study
this class in the next section in more detail. The special case of a normal
homogeneous space B = G/H is due to E. Heintze [16].

COROLLARY 2.5. Let M be a compact Riemannian manifold of curvature
K 2 0 and H a Lie group acting freely on M by isometries. Then the space of orbits
BEM |H inherits a metric of non-negative curvature K and tk B >tk M — dim H.
Furthermore, if M 'is a symmetric space, ¢ a 2-plane in TB with K(6) =0 then there
exists a complete 2-flat F such that & is tangent to F.

Proof. The first part of this corollary follows directly from Theorem 1.2. Let o
be a horizontal lift of & through a point p € M. Since K(¢) =0 we obtain by [20]
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that K(o) = 0. Since M is a symmetric space there is a 2-flat F with ¢ = T,F. Let x
and y be a basis of ¢ and let E be the parallel field along y, with E(0) = y, where
7, 1s the geodesic with initial vector x. Then E is tangent to F and horizontal by
Lemma 2.1. This shows that F is horizontal. By Proposition 2.3, F:=n(F) is the
desired flat in B. a

3. Simple applications
3.1. Normal homogeneous spaces (E. Heintze)

Let M =G be a compact Lie group with a biinvariant metric, H a closed
subgroup with dim H + 2 < rk G. By Corollary 2.5, the normal homogeneous space

B=EG /H carries a metric of nonnegative curvature and rk = 2.

3.2. Biquotients

(cf. [13, p. 496] and [14]) Let G be a compact Lie group, H a closed subgroup
of G x G. We denote the projection from G x G to the second factor by pr and
assume that the metric on G is left-invariant under G and right invariant under
pr (H). Then h = (h,, h,) € H acts on G by an isometry via

def

h-g=hgh;'

If the metric on G has non-negative curvature (which of course holds for the
biinvariant metric on G) and if H acts freely on G (or, more generally, if all
isotropy groups are principal) then B =G/H with the submersion metric has
nonnegative curvature and rk B 2rk M —dim H. As an explicit example, take
M = SU(4) and H < SU(4) x SU(4). Let H be the circle generated by the tangent
vector (D,, D,) € T\H, where the D, are the diagonal matrices with coefficients
1,0, —1,0 and 2, 2, —4, 0 respectively. It is easy to check that H acts freely (cf.
[13] for the corresponding statement for SU(3)).

3.3. Quotients of products

(cf. [10, p. 79] and [9]) Let G be a compact Lie group, M, a Riemannian
manifold and H a subgroup of G \;hich acts on M, by isometries. Assume that G
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carries a metric right invariant under H. Then H acts isometrically on M =G x M,
by

h-(g,p)=(gh~", hp).

The action is fixed point free and the manifold BEM /H =G x z M, is an example
of the type described in Corollary 2.5.

3.3.1. Deforming symmetric metrics

Here we prove Corollary 1.4. By varying the metric on factors, we can restrict
ourselves to the irreducible case. Also, it clearly suffices to consider the case when
the rank is bigger than 1. Thus we let M be an irreducible globally symmetric space
of the compact type with rank k > 1 with the standard symmetric metric g,. In the
construction above, let G = H = S! be a subgroup of the isometries of M. Then
B = S'x g1 M is diffeomorphic to M and the rank of the submersion is at least k
(we will see below that it is actually k). If we multiply the given metric on S! by u?
then the metric on (B, g,) = (4*S") x 51 M) converges to the initial metric on M as
p — co. Setting ¢ = 1/u?, we obtain a deformation ¢ — g, of the symmetric metric g,
on M in the category of higher rank manifolds of non-negative curvature. If the
S'-action on M is fixed point free, then this deformation is exactly of the type
described in (5, p. 252]). Fix some ¢ = 1/u?>> 0 and suppose from now on that
H = S"' acts on M by translations. We will now study the structure of the flats in
(M, g,). We refer to the Introduction for the definition of building germs and the
Tits metrics on them.

Let ((d/dx), k) be the infinitesimal generator of the action of S! on S! x M. By
a simple calculation (cf. also Proposition 2.3) we obtain the

LEMMA 3.1. Let p € M, and let F be a k-flat through p in the standard metric.
Then the image F of T,F in S' x M under the map

S expg,p (—f " Kk(p) ;d;,f)

is horizontal for any s € S'. Conversely, every horizontal k-flat is of this form.

COROLLARY 3.2. The building germ A’ of S x 51 M at any point is (combina-
torially) isomorphic with the Tits building A of M.

Proof. The map from the lemma gives the desired isomorphism. O
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COROLLARY 3.3. The Tits metrics on A and A’ are not isometric.

Proof. Fix a point p € M. Since M is a symmetric space, the building germ 4
has some additional structure, namely 4 is simplicial. We call the unit vectors
corresponding to vertices in 4 the maximally singular vectors. The idea of the proof
is that some (k — 1)-simplex in 4 becomes ‘“bigger” in 4’ with respect to the Tits
metrics.

To find this (k — 1)-simplex we first claim that there is a maximally singular unit
vector w based at p with w L k(p). In fact, the vertices of 4 decompose into finitely
many connected sets (in the Hausdorff topology on S§) such that each such set
contains exactly one vertex from each simplex. This follows from the description of
the building of the dual symmetric space of the noncompact type by parabolic
subgroups [23]. The set a vertex belongs to is called the type of the vertex. Now
our claim follows easily. In fact, let w, and w, be vertices of the same type in
(k — 1)-simplices that x(p) and —«k(p) belong to. Since the diameter of any
(k — 1)-simplex in 4 is at most n/2, w, and w, lie in the northern and southern
hemisphere defined by x( p) respectively. Connect w, to w, by a path in the vertices
of the same type as w,. The intersection point of this path with the equator defines
a maximally singular vector w perpendicular to x(p).

We may also assume that w is tangent to a flat F which is not perpendicular to
k(p). Indeed, let w” be a unit vector not perpendicular to x(p). Then w and w’ are
connected by a finite chain of flats. The first flat (starting from w) that is not
orthogonal to x(p) contains a maximally singular vector as desired.

For a unit vector v tangent to F, let # denote the unit vector tangent to S' x M
in direction of ( —v - k(p)(d/dx), v). An easy calculation shows that

A w- v
W 0= (»)

JT+ 0 x(p)*

Let € be a (k — 1)-simplex containing w. Since F is not perpendicular to «(p),
€ is not perpendicular to x(p). Let {v,,...,v,} be the vertices of € which are not
orthogonal to x(p), and let {wo=w,w,,...,w,_,_,} be the remaining vertices.
Since M and therefore its Tits building are irreducible, not all v; can be orthogonal
to all w;,. Thus there are vertices v and w’ of € such that w’ is orthogonal to x(p)
and v is neither orthogonal to x(p) nor to w’.

By the above calculation (*), the distances between w’ and the other vertices of
€ orthogonal to x(p) are not decreased and the distances between w’ and the
vertices not orthogonal to x(p) definitely become bigger. This shows that there
cannot be a type preserving isometry between the building germs of M and
S!'x g1 M. Also note that this finishes the proof in rank 2.
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Finally, let ¢ be any isometry between the building germs. Identifying the
building germs combinatorially as in Corollary 3.2, ¢ defines a combinatorial
isomorphism. In fact, it suffices to see that ¢ maps regular points to regular points.
Regular points in the building germ of M are characterized by the property that
they have neighborhoods that are balls. Since the combinatorial isomorphism from
the last corollary is continuous the same characterization holds for 4°. An isometry,
of course, preserves this property.

Identifying 4 and 4’ combinatorially as in Corollary 3.2, ¢ defines a combina-
torial automorphism of A. Then a finite power ¢’ of ¢ is type-preserving [23,
Corollary 5.10]). Now interpret ¢/~ ! as an isometry of 4. Then ¢ o ¢'~! defines a
type-preserving isometry between the building germs which is impossible. O

Proof of Corollary 1.4. The argument for the last corollary can also be used to
show that the metrics g, are not symmetric. Let f be a maximally singular vector
orthogonal to x(p). Since the building is irreducible, there is a maximally singular
vector f” in the star of f that is not orthogonal to f. Let T be the set of maximally
singular vectors of the same type as f” in the star of f. Again, T is connected, and
as above, we may assume that not every vector in T is perpendicular to x(p). Using
the geodesic symmetry in p we see that there are vectors in T strictly to either side
of the equator defined by x(p). Since T is connected, there are also vectors in T
perpendicular to x(p). Using formula (*) from the proof of Corollary 3.3, we see
that the distance between vertices of fixed type is not constant. Thus g, is not
symmetric. O

This finally proves all our claims about the deformations of the symmetric
metrics made in the Introduction.

4. A strongly inhomogeneous manifold of nonnegative curvature and higher rank

In this section we will construct a compact Riemannian manifold of nonnegative
curvature and higher rank which topologically is not a product and which is not
homotopy equivalent to any compact Riemannian homogeneous space. This will
prove Theorem 1.5.

We combine the constructions from 3.2 and 3.3: Consider G = SU(3) and let
H = Hy,,, be a closed one-parameter subgroup of G x G as in [13]. The numbers £,
I, p and g describe how H = S’ is embedded into G x G. Choose k, I, p and ¢ such
that the action of H on G does not have fixed points and such that (cf. [13])

ri=|(k?+ 2+ kl) — (p*+ q* + pq)| = 2 mod 3.
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Let H also act on the standard sphere S? by rotation. Then the space
X= SU(3) x ,; S? has nonnegative curvature and rank at least 2. Topologically, X
is a 2-sphere bundle over Eschenburg’s strongly inhomogeneous 7-manifold
ye SU(3)/H. Metrically however we just endow SU(3) with the biinvariant metric
unlike Eschenburg who strives for positive curvature on the biquotient Y.

Proposition 2.5 implies that every flat 2-plane ¢ (i.e. K(¢) =0) tangent to X is
tangent to a complete 2-flat F : R, X. Thus the structure of the flat 2-planes in X
is similar to that of symmetric spaces or normal homogeneous spaces. However, X
is strongly inhomogeneous, simply connected and irreducible (topologically, i.e. X
is not a product). We will show this in the next two sections.

4.1. Homotopy and Homology of X

Using standard techniques from algebraic topology, we calculate the homotopy
and integral cohomology groups of X. For simplicity, we write H(-) for H(:, Z).
Also we denote the cyclic group of order p by Z,.

PROPOSITION 4.1. Let r be defined as above. Then
(a) X is connected and simply connected and

my(X) =my(X) =2Z?
my(X) =Z,

(b) HYUX) is isomorphic to HY(Y) ® H?~X(Y). In particular, we obtain

H\(X)=0 HYX) =277
H}(X) =0 H'X)=28Z,
HX)=1 HYX) =12,
H'(X) =277 HYX) =0.

Proof. The homotopy groups can be calculated easily from the exact homotopy
sequence of the fibration S'— SU(3) x $2—>SU(3) x 1 S

As for the cohomology groups, the 2-sphere bundle S?— X 5 Y gives rise to the
Gysin sequence

s HP YY) S HP(Y) S HP(X) S HP - 2(Y) > -
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where u is multiplication with the Euler class e € H3(Y). In our case, e is 0 since the
fixed points of the S'-action on S? generate cross sections s: Y — X. Thus the
Gysin sequence breaks up into pieces of length 3. Moreover for every a € H?(X) we
have a unique decomposition:

o =mn*a,) + an*(a,)

where a, € H(Y), a, € H?~%(Y) and a is an element in H*(X) such that y(a) =1
in HYY) (cf. [19, p. 273]). This shows that HYX) is isomorphic to
H%Y)@® H?%(Y). The precise formulas for the cohomology groups now follow
from Proposition 36 of [13]. O

4.2. Irreducibility

In this section we will show that X is irreducible. This was shown to us by
T. Farrell. Our proof is a variation of his argument.

PROPOSITION 4.2. (T. Farrell) The manifold X is topologically irreducible,
more precisely, X is not homotopy equivalent to any product of closed manifolds.

We begin by reducing to a special case.

LEMMA 43. Let V be a closed simply connected product manifold,
V=M"xN"withl <m=dim M <n=dim N. Suppose V has the same integral

cohomology groups as X. Then M is homeomorphic to S?> and N is a closed
7-manifold.

Proof. Since V is simply connected and closed, we only need to show that
m =2. For the same reason, we see that m # 1. Suppose that m > 2. Kiinneth’s
exact sequence

0 (H*M) @ H*(N))* > H*M x N)» @  Tor (H (M), HY(N)) -0
p+g=k+1
implies H3(M) = H3*(N) =0 since H*(X) =0. Therefore, we see that m =4 and
n=>3.
Note that H*(N) is torsion by Poincaré duality. Hence the Kiinneth sequence
also shows that H*(N) =0 and H*(M) = Z>. Since H?(M) is torsion-free for all p,

all the torsion groups in the Kiinneth sequence vanish and we get
AN

ZOHN)=H'X)=ZDLZ,.
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Therefore we have H*(N) = Z,. This gives a contradiction to the exactness of the
Kiinneth sequence

0->H*(M)®HYN)=2Z’QZ, > HX)=1,. (]

View X as the sphere bundle S(n ®¢'), where 5 is the complex line bundle
associated with the principal fibration ¢ : §' - SU(3) - Y of Eschenburg’s example
and €' is the trivial R-bundle over Y.

LEMMA 4.4. The second Stiefel — Whitney class w,(n @€") is not 0.

Proof. Since n,(SU(3)) =0 for i <3, ¢ is 3-universal [21, Theorem 19.4].
Therefore, there exists a map f:S>— Y such that the pullback of ¢ is the
Hopf-bundle { : S' — 53— §? [21]. Let v be the complex line bundle associated to {.
By the functoriality of the Stiefel - Whitney classes we get f*w,(n) = w,(f*n) =
w,(v). Since w,(v) generates H*(CP!,Z,), we see that w,(n) is a generator of
HXY,Z,) =Z,. Thus w,(n @€') = w,(v) #£0. O

LEMMA 4.5. The space X is not homotopy equivalent to S* x N for any closed
manifold N.

Proof. First recall from the proof of Proposition 4.1(b) that every element
o € HP(X) has a unique decomposition as

o =n*,) +an*(a,)

where a, € H?(Y), a, € H? ~%(Y) and a is an element in H*(X) such that (@) =1 in
H°(Y). In particular, choose « € H*Y) and B € H*(Y) such that

a’=n*(a) + an*(p).

The elements o and f determine the multiplicative structure of H*(X) completely.
By Theorem III of [19] we have B = w,(n @ ¢') mod 2. Lemma 4.4 then shows that
f =1mod 2.

Now suppose that X is homotopy equivalent to S x N. Let o, be the generator
of H¥(S?) < H*(X) and w, the generator of H*(N)< H*(X). Note here that
H?*(N) = Z by Kiinneth. We have the decompositions

GO = 1t*0‘l + (11!?*0'2

WO = n*wl + an*WZ.
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Therefore we get
0=02=n*s?+2an*(6,0,) + n*(ac3) + an*(c3p).
By Kiinneth we know that H*(N) = Z and therefore H*(N) = Z,. Thus we get
0=rwd=r[n*w? + n*(aw3) + a(n*(2w,w,) + n*(w3p))}.
Since H?N = Z is torsion-free, we have
0=2w,w, + wip = 20,0, + 03p.
In particular, we get w3f =d38 =0mod 2. As B =1 mod 2, we see that
w, =0, =0mod 2. (*)
Notice that H2(X) splits in two different ways as Z @ Z using Kiinneth on the
one hand and Proposition 4.1 on the other hand. Viewing 4, and w, as integers, the

matrix which transforms one splitting to the other is given by the unimodular
matrix

def (O, O,
U= .
W W,

On the other hand, det U = 0 mod 2 by (*) which yields the final contradiction.
a

4.3. Strong Inhomogeneity

The proof of the next claim is a fairly routine matter. We should say however
that our efforts were facilitated by several lucky accidents.

PROPOSITION 4.6. The manifold X is strongly inhomogeneous.

Proof. Step 1. Assume to the contrary that X is homotopy equivalent to some
compact homogeneous space X = G/H where G is a transitive subgroup of the
isometry group of X and H is the isotropy group of some point x € X. In this first
step, we will restrict the possibilities for G by fairly general arguments.

Since dim X =dim X =9, H is a subgroup of O(9). By Proposition 4.1 and the
exact homotopy sequence for H - G — X, we obtain:
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1. no(G) = no(H)
2. the sequence 0 » Z2 - n,(H) - n,(G) =0 is exact
3. the sequence 0-7n;(H)—>ny(G)>Z*—-0 is exact (since m(X) =
ny(X) = Z,).
As in [13, 4.2 and 4.3] we see that we may assume without loss of generality
(possibly replacing G by a finite cover) that
* H and G are connected
* G is compact, semisimple and simply connected
* H=H’' x T? where H’ is semisimple and simply connected, and T2 is the
2-torus.
Notice that by (3), G has p + 2 simple factors if H’ has p such factors.
Fortunately, there are further restrictions on the Lie group G. For any compact
Lie group G define

m(G) = min {dim M | M is a manifold on which G acts almost effectively}

(cf. [18, Chapter 4]). Assume that G is simply connected. Decompose
G =G, x - -+ x G, such that each G, is either simple or Spin (4) and there is at most
one SU(2). Thus each pair of SU(2)’s has been combined into a Spin (4). A
theorem due to L. N. Mann says that

m(G) =} m(G,)

(cf. [18, p. 68)).

In our case, G is a subgroup of the isometry group of X (up to a finite cover).
Therefore G acts almost effectively on X. In particular, we see that
m(G) < dim X = 9. As the number of simple factors of G is at least 2, we obtain the
following list of possible factors G, of G (cf. [18, p. 68]):

G, rank dim G, m(G,)
SU(2) 1 3 2
SU(3) 2 8 4
SU(4) 3 15 6
Spin (5) 2 10 4
Spin (7) 3 21 6
Spin (8) 4 28 7
Gy 2 14 6
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Step 2: Here we complete the proof of the proposition by checking all possible
candidates for G, from the table above. We argue using the number p of simple
factors of H’. We will denote the Lie algebra of a Lie group G by G.

Case I. p=0

In this case H = T? and G has two simple factors: G = G, x G,. Moreover,
we get dim G =dim X +dim H =11. Thus (up to permutation) we see that
G, =SU(2) and G, = SU(3). Let p, and p, denote the projections onto SU(2) and
SU(3) respectively. If dim p,(T?) =0 or dim p,(T?) =0 then X is a product
manifold, in contradiction to Proposition 4.2. Thus dimp,(T?) =1. If
dim p,(T?) =1 then again X would be a product manifold.

Finally, we get to the most critical case of all, namely that dim p,(7?) = 2. We
may arrange the projection in such a way that one of the S's projects to 0 in
SU(2). Then

X =(SU(2) x (SU(3)/S")/S!

is a fiber bundle n : X — S2 whose fiber is the homogeneous space we SU@3)/S!,
the so-called Wallach example. Let D, and D_ be the closed northern and southern
hemisphere in S? respectively. Then the triad

XX, X )E®X 2D, )2 (D)
is exact. Set A = X, nX_. Then the Mayer - Vietoris sequence

c """H4Y+ @H4X—_ —"H4Y"H3A LH3X+ @H3X_ —’H3Y_’H2A o SR
is exact. By [13], the Wallach examples have H; W =~ H*W =~ Z, for some integer s.
Also note that X,, X_ and A are trivial bundles and that H,4 = Z. Thus the
Mayer — Vietoris sequence above gives the exact sequence

0-2-202,%2, 02, -7, 0.

Note that the map Y :H;A=H,WOH,WRZ-H,X, ®H,X_ is 0 on
H,W ® Z and consists of inclusions on H; W. Therefore

0-2,-2,0Z,-2Z,-0

is exact. This implies that s =r =2 mod 3 by our choice of r. However, s =0 or
1 mod 3 since W is a Wallach example (cf. [13]).
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Case II: p =1

In this case, H = H, x T? where H, is simple and G = G, x G, x G, with simple
factors G,. Since m(G) <9, we conclude from the table that at least one G,, say G,,
must be isomorphic to SU(2). Up to a covering, H is a subgroup of O(9) so that
rk H < 4 and therefore rk H, < 2. Thus we have the following possibilities:

(Gpy (1)
Spin (5) (2)
Hi=13svu@) )
SU(2) (4

Let us first make the

OBSERVATION 4.7. Suppose that (in addition to G,) G, is isomorphic
with SU(2) and that H, projects trivially into G, + G,. Then m,(X) contains
n,SU(2) ®n,SU(2) = Z, D Z,. In particular, X is not homotopy equivalent with X
as X =12,.

Now we will exclude all the possibilities for H,:

H, =G : From the table we find that G,=SU(3) and G;= G (up to
permutation). Thus X =~ SU(2) x SU(3)/T? since H, = G must project trivially
onto SU(2) x SU(3). This however is our Case I.

H, = Spin (5): By the observation above we may assume that only G, = SU(2).
From the table we see that G, = SU(3) and G; = Spin (5). Again H, = Spin (5)
projects trivially onto SU(2) x SU(3).

H, = SU(3): Then we see that G, = G; = SU(3). Therefore we have again that
X = SU(2) x SU(3)/T>.

H, = SU(2): Then dim G = dim X + dim H = 14. Therefore we get G, = SU(2),
G, =SU(3) and X = SU(2) x SU(2) x SU(3)/SU(2) x T If H, projects trivially
into G, + G, then we are done by our observation. Otherwise, X is again homeo-
morphic to SU(2) x SU(3)/T>.

Case III. p=2

In this case, H = H, x H, x T? and G = G, x G, X G, x G, with simple factors
H; and G,. Since rk H <4, H, and H, must have rank 1. Thus H, = H, = SU(2).
Since m(G) <9, at least 3 factors, say G,, G, and G; equal SU(2). Therefore
G, = SU(3) since dim G = 17. By the observation, H, or H, must project nontriv-
ially into G, + G,. Therefore X = SU(2) x SU(3) x SU(3)/SU(2) x T? and we are
back to the previous case.

Clearly p <2 as rk H < 4, and we have checked all the possibilities. O
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S. First order rigidity

A famous problem of Hopf asks whether there is a metric of strictly positive
curvature on S? x S2. More generally, one can ask whether there are metrics of
positive curvature on any manifold M admitting a metric g of nonnegative
curvature and rank at least 2. Let us consider a differentiable variation ¢ +— g, of the
metric g =g,. We call g, positive if (M, g,) is complete and has strictly positive
curvature K, for all 1 > 0. We call g, positive of first order if the derivative

is strictly positive for all 2-planes ¢ € K5 '(0) [4].

If a metric variation is positive of first order and M is compact then the
variation is positive. If M, and M, are compact Riemannian manifolds without
Killing fields, then the Riemannian product does not admit any positive variations
which depend analytically on ¢ [6]. Much less is known if there are Killing fields [7].
Notice Remark 2.4 where one can deform the product metric on S* x S* to a metric
of rank 1.

Let us now consider variations g, positive of first order. Riemannian products
and symmetric spaces of higher rank do not admit such variations [4], [22].
The obstruction to their existence are the embedded flat k-tori i : T*c, M. More
precisely, if g, is a variation positive of first order, then the pulled back metric
_def,* k : .y - .y .
g, =i*g, on T is also positive of first order. Thus g, is positive. This is impossible
since T* does not admit a metric of positive curvature. By a similar argument we
have

PROPOSITION 5.1. Let M be a compact manifold of nonnegative curvature.
Suppose there exists an immersed totally geodesic k-flat i : R*<, M with k > 1. Then
M does not admit a variation positive of first order.

Proof. Let g, be the metric of M. Suppose g, is a variation positive of first order
of g,. Then the pulled back variation g, = i*g, is also positive of first order. Now
we can estimate the curvature functions K, of g, from below. Let & be a 2-plane in
TR*. Using the formulas in [6, Section 3] and the compactness of M it is
straightforward to check that the coefficients of the Taylor expansion around ¢ =0
of t+— K, (G) are bounded from above by a constant independent of &. Since
K;(6) = K'(i,6) by [22, Lemma 4.1], we obtain

R.(3) = (K'(i,6) + tD(G)) = (b + 1(—C))
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where D is the remainder term in the Taylor expansion and 6 and C are positive
constants independent of 6. Since M is compact, we have li*g, < i*g, < 2i*g, for all
small 1. Therefore g, is a complete metric on R* with positive curvature bounded
from below. This is clearly a contradiction to the theorem of Myers [10]. O
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