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Multiple fibres of a morphism

FERNANDO SERRANO

§0. Introduction

Let us be given a proper, surjective, holomorphic map ¢ : X - C with connected
fibres from a complex manifold onto a smooth quasiprojective curve C. Let
{m,,...,m,} be the (global) multiplicities of the multiple fibres of ¢, and denote
by F a general fibre. The aim of this paper is to compute the homology of the
natural complex of abelian groups

H\(F,Z) > H,(S,Z) “>H,(C,Z) -0
in terms of the multiplicities {m,, ..., m,}. Namely, a suitable exact sequence
H\(F, Z) - H\(S, Z) » H\(C, Z) x G(p) =0

is constructed, where G(¢):=Coker (f:Z— @, Z/m;Z) and f(1) =(1,...,1).

Next we will address the question of the variation of G(¢) and &;_,Z/m,Z
under smooth deformations of ¢ (with the extra assumption that X and C are
compact). It will be shown in §2 that both groups are actually invariant under
deformation. The proof for G(¢) relies on the above exact sequence plus the fact
that a smooth analytic map is differentiably locally trivial. Then a base change trick
will give the invariance of @®; Z/m;Z.

All this generalizes the already known situation for elliptic surfaces: when X is
a compact surface and F is a curve of genus 1, the above exact sequence on
homology groups can be deduced from the explicit description of the fundamental
group of the surface ([8]). For a larger fibre genus such a description is lacking in
general. As to the behaviour under deformation, the picture is neater for these
two-dimensional elliptic fibrations: litaka has proved in [7] that the set of multiplic-
ities of the fibres is a deformation invariant in this case.

Finally, I want to express my thanks to J. Kollar for a helpful remark.
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§1. Homology groups

We shall be working over the field of complex numbers. Our complex manifolds
are by definition connected, non-singular analytic varieties. A curve C is a quasipro-
jective complex manifold of dimension one. Equivalently, the smooth compactifica-
tion of C differs from C at finitely many points only. In this paper a fibration is
defined to be a proper, surjective holomorphic map from a complex manifold onto
a smooth curve, all of whose fibres are connected. We will also use the following
notation:

- Z,,=integers Z modulo (m)Z.

tor H:=torsion of an abelian group H.

7, (X):=fundamental group of X.

- h'0Oy:=dim¢c H'(X, Oy), where Oy is the structure sheaf of X.

Let ¢ : X = C be a fibration, and F = X n,B; a fibre of ¢ where the B;s are the
irreducible reduced components of F and the n;s are their multiplicities. Let m be
the greatest common divisor of the n;s. We say that m is the multiplicity of F and
write F = mD, where D = X (n;/m)B;. Whenever we say ““let mD be a multiple fibre”
we shall always mean that m is the multiplicity of mD and m = 2.

Let ¢ : X - C be a fibration and let m,D,, ..., m,D, be all its multiple fibres.

DEFINITION 1.1.

i=1

G((p)==Coker<Z—> &) z,,,,,) 1-(1,...,1)

Lip)= @D z,,.

i=1

If p is the least common multiple of m,, ..., m,, by dualizing the sequence

0-2,~ @ Z,,-G(g) 0

i=1

we obtain an alternative description of G(¢) as

G((P)'—"Ker(é Zm,-—’zp) (al,'--,at)Hzai(”/mi)'

i=1

The third characterization that follows will be used later:
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LEMMA 1.2. Write ®/_,Z,, ~®}_, Z,, where each d; divides d;, ,. Then

G(p) ~ é Zdj.

j=1

Proof. Since pu/m,, . .., u/m, are relatively prime, we can find integers 4,, ..., 4,
such that X{_, (4,u/m;) = 1. The homomorphism

!

@ Zmi—’zu @,...,a)— Z a;(4;u/m;)

i=1 i=1
is a retraction of 0-Z,-®;_,Z, —G(p)—0, and this sequence splits.

If we put G(o) = ®j_, z, with e; dividing e;,, for all j, then all ejs divide u
and

Dz, =G ozZn= ( @ Ze,)@zu.

i=1 j=1

Since the djs are uniquely determined, it follows that (d,,...,di_,,di) =
(er,...,e., 1. O

Now it comes the main result of this paper. Our proof has been inspired in that of
Prop. 1.41 of [2].

THEOREM 1.3. Let ¢ : X = C be a fibration from the complex manifold X onto
a smooth curve C. Denote by m,D,, . .., m,D, all multiple fibres of ¢, and let F be
any smooth fibre, and G := G(p). Then there exists an exact sequence

HI(F9 Z)_’HI(XS Z)—'PH](C, Z) xG—0

induced by ¢ and the inclusion of F into X.

Proof. Let
Q={peC|o'(p)issingular}, C=C-9Q, X=X—(U,cq0 '(p)).

Consider the following commutative diagram with exact rows and columns,
whose homomorphisms come from the obvious inclusions and restrictions:
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0 0
1 1
0— M —SHXZ2ZH(ECZ)—0
Tf Te Th
H\(F,Z) — H,(X,7) — H,((,Z) — 0
1 1
N — N,
1 1
0 0

M, N, and N, are defined to be the kernels of the corresponding homomorphisms.
The second row is exact because X —» C is a C=-fibre bundle.

CLAIM 1. The cokernel of t : N, — N, is a quotient of G.

Proof of Claim 1. Given p € ©, denote by y, a simple loop around p in C. The
group N, is generated by all the y,, p € Q, with the single relation I1,.gy, = 0.

If B is a component of multiplicity n of a fibre ¢ ~!(p), p € Q, then there is a
loop « in X around B such that « € N, and () = ny,. Consequently, if m is the
total multiplicity of ¢ ~'(p) then my, € Im (z), and the claim follows.

CLAIM 2. There exists an exact sequence:
H,(F, Z) —L5M —2- Coker (1) — 0.

Proof of Claim 2. Define the map p : M — Coker(t) as follows. Given x € M,
there is y € H,(X, Z) such that g(y) = &(x). Thus a(y) € N,, and we write p(x) as
the class of a(y) in N,/(Im (1)). An easy diagram-checking shows that the above
sequence is exact. This is nothing else than the so-called Snake Lemma, but later we
are going to use the explicit description of the map p.

CLAIM 3. There exists a commutative diagram with exact rows and columns as
Sfollows:

0 0
! 7
H(F,7)-%> M - Coker(t)—0
Nl
HX,2)-> G
le*
H\(C, 2)
!

0
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Proof of Claim 3. 0 : G - Coker (1) is the epimorphism of Claim 1, and j =¢ °f
by definition. We must define A and prove p =6 ° A ° ¢. The fundamental group
n,(C) is generated by elements «,, f;, V,,6; (for i from 1 up to genus of C,
p €, and §; corresponding to the ‘“holes” of C) with the unique relation
(IT; o B0 ' B (T 6, ) (I, 7,) =1. Given peQ and m(p) = multiplicity of
@ ~'(p), there corresponds to ¢ ~'(p) a direct summand Z,,,, in ®;_, Z,,, with
Z .y = 0 in case m(p) = 1. Define an epimorphism 7, (&) - G by mapping 7, to the
image of 1€ Z,,,, = ®,Z,, in G, and all a;, §,, , to 0. We get in this fashion a
ramified covering B — C, unramified outside Q and such that the ramification index
on points over p €  divides m(p). If Y denotes the normalization of X x - B then
Y - X is unramified with group G (see the proof of [1], III 9.1, valid in any
dimension), and thus it is determined by an epimorphism =#,(X) - G which de-
scends to an epimorphism 4 : H,(X, Z) - G. The preimage of F by Y — X splits into
as many components as the order of G, so that the induced map =n,(F) - G is 0. It
follows that A °j = 0. Finally, the commutativity of the diagram of Claim 3 stems
from the description of p given in Claim 2 combined with the commutativity of the
following diagram:

HX,2) -2 G
(#)) ot a1
H,(X,7) = H,(C,Z) _Coker (1)
T
N,

CLAIM 4. 0 is an isomorphism.

Proof of Claim 4. Since 4 °j =0, one has a commutative diagram

M/Im (f) — Coker (1)

\TGG

In particular, Coker (7) is a direct summand of G. Now it suffices to show that 1 ° ¢
is surjective. The class of the loop y, in H,(C, Z) maps by ¢ : H,(C, Z) -G to the
image of Te Z,,,, = ®{.,Z, in G. By the commutativity of the diagram (»)
above, one gets that if g(x) =y, then g(x)eIm (¢), and (4 ° g)(x) is also the image of
1eZ,,, in G. Consequently A ° ¢ is surjective, as we wanted.

CLAIM 5. The following sequence is exact:

(Lo,)

H\(F,Z7) - H,(X, 2)

G x H\(C, Z) -0.



292 FERNANDO SERRANO

Proof of Claim 5. Clearly Im () < Ker (4, ¢,). Conversely if x € Ker (4, ¢,)
then x €e M and p(x) =0, so that x € Im (). Let us finally prove the surjectivity
of (4, ¢,). Let (y,2) € G x H,(C, Z). There exists an element x € H,(H, Z) such
that ¢,(x) =z. Since A°e¢ is surjective, one can find teM such that
Ae(H) =y — A(x). Then A(x + &(f)) =y and ¢ ,(x + &(#)) =z. This ends the proof
of Theorem 1.3. O

For the remainder of this section we will assume all complex manifolds to be
projective algebraic.

REMARK 1.4. When X is a compact surface and F is a curve of genus 1 (i.e.
when ¢ : X = C is an elliptic fibration) one has a more accurate information. If ¢
has a singular fibre other than a multiple of a smooth curve, then the homomor-
phism H,(F, Z) - H,(X, Z) is the zero map ([2], 1.39). In particular 4'0, =h'0O,
in this case. For the other cases see [11]. In general, the fundamental group of an
elliptic surface can be almost completely described ([8]).

A fibration ¢ : X = C induces a surjective morphism Alb (X) — Alb (C) be-
tween the corresponding Albanese varieties, so that one always has the inequality
h'0y = h'0.. Furthermore, one gets the equality 4'0, = h'0 if and only if either
h'0, =0 or ¢ coincides with the map from X onto its image by X — Alb (X).
This is a consequence of the universal property of the Albanese variety and uses
in a crucial way the connectedness of the fibre of ¢.

Denote by tor (H) the torsion of an abelian group H. From Theorem 1.3 one
immediately gets.

COROLLARY 1.5. Let J denote the image of H,(F, Z) in H,(X, Z). Then there
is an exact sequence

0— tor J - tor H,(X, Z) - G.
Furthermore, tor H,(X, Z) — G is surjective provided that h'0O, = h'0_. O

We recall that tor H,(X, Z) ~tor H (X, Z) (non-canonically). The follow-
ing Proposition describes explicitly some of the elements of tor H%(X, Z) in

case h'Oy =h'0.. Let mD,,...,mD, be the multiple fibres of a fibration
¢: X—-C, and denote u the least common multiple of m,,...,m,. Since
u/my, ..., u/m, are relatively prime, there exist integers 4,,...,4, such that

T _ (A4u/m)=1 Let D=X!_, ,D,. Denote by [E] the class in H*(X,Z) of a
divisor E, and G :=G(¢).
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PROPOSITION 1.6. If h'Ox=h'0O:, then the classes {[D;— (u/m;)D]|
i=1,...,t} generate a subgroup of tor H*(X, Z) isomorphic to G.

Proof. First we remark that the subgroup generated by these classes is precisely
{Zi-10:[D;] | el X, (/m) = 0}-

In order to avoid technical difficulties we will reduce the proof to the case
dim X = 2. Take successive general hyperplane sections of X so as to get a smooth
surface S. We have h'0Og =h'0y and H*(X, Z) - H*(S, Z) one-to-one ([5], §1). By
Lemma 1.8, the multiple fibres of the restriction ¢|s : S — C come as linear sections
of the multiple fibres of ¢, and have the same multiplicities. Therefore the
Proposition is true for X as long as it holds for S. From now onwards we will
assume dim X = 2.

If Fis a general fibre of ¢ then

m;[D; — (u/m;)D] = [m;D;] — [uD]
=[F] —[F] =0.

Thus [D; — (u/m;)D] € tor H*(X, Z). Define the homomorphisms:

c6:2-® z,, p: D Z,-tor HX(X, 2)

i=1 i=1

as a(1) =X!_, Ae;, p(e;) =[D; — (u/m;)D), where e¢; = (0,...,0,1,0,...,0), (T in
the ith-position).

CLAIM 1. The sequence

72— @ z,, - tor H(X, 2)
i=1

is exact.

Proof of Claim 1. First note that

(5 4)-[(p10) -posmi]

=[D—D] =0

Hence Im (6) < Ker (p). Now assume p(X{_, 7,¢;) =0, and put J:=Z, (y;u/m,).
From [(Z; y;,D;) —6D] =0 it follows that (Z; y,D;) — 4D belongs to the Picard
variety of X, denoted Pic® (X). As indicated before, the fact that h'0, = h'0O
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implies that the Albanese varieties of X and C are isomorphic, hence also their
Picard varieties are isomorphic. The symbol ~ is going to denote linear equivalence
of divisors. Obviously the restriction Pic® (C) — Pic® (D, ) is the zero map, and it
follows that (X;_, y;D; — éD)p, ~ 0. We know that (D;)p, ~0if i #k, and (D,)p,
is torsion of order m, in Pic (D,) ([1]; III 8.3). Combining with D, ~ 4,(Dy)p,
one gets (7 — 04,)(Dy)p, ~ 0, which implies that y, — 64, is a multiple of m, . Thus
Z;v.€; =0 X, A,e; € Im (o), as we wanted.

CLAIM 2. Ker (¢) = (4)Z

Proof of Claim 2. Let (v)Z:=Ker(s). Multiplying the equation
Xi_, (4;u/m;) =1 by m, we obtain that A, u is a multiple of m,. Hence a(u) =0 and
one can write u = v - d for some d € Z. Since m; divides A,v we have X, (4;,v/m,) € Z.
On the other hand 1 =X, (4,u/m,) =d X, (A;,v/m;), so that d=1 and Claim 2
follows.

The exact sequence

02, @ z,,— Im(p)— 0
i=1
splits because 6 admits a retraction 1t defined by t(e;) = u/m;. Let Im(p) ~
i1 4, with b; dividing b, , for all j. Since Im (p) is a quotient of ®;_, Z,, we
see that b, divides u. Hence

@D z,~2,0 72,2,

i=1

The uniqueness of this decomposition together with Lemma 1.2 imply that
Im (p) ~G. O

Finally we will prove some results used before.

LEMMA 1.7. Let V < P" be a reduced variety of dimension 22, and denote by
(P™)Y the variety of hyperplanes. Then dim {L € (P")"|L NV is non-reduced} <
n—2.

Proof. Let I' ={(P,L)e V x (P")Y| LNV is non-reduced at P}, and Q =
{(P,L) e V x(P)Y| LAV is singular at P}. One has dim Q =n —1 ([6], IT 8.18)
and I' < Q, so that dim I <n — 1. On the other hand, if n : I' = (P")" denotes the
projection and L € Im n then dim n ~!'(L) 2 1. We conclude dmImz <n—-2. O

LEMMA 1.8. Let ¢ : X = C be a fibration from the smooth projective variety X
of dimension 23 onto a curve. Let Y be a general hyperplane section of X. Then the
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multiple fibres of the restriction of ¢ to Y are exactly the hyperplane sections of the
multiple fibres of @, and have their same multiplicities.

Proof. Let X = P", and set I' = {(#, L) € C x (P")" | multiplicity of (¢ ~'(f) nL)
is strictly greater than the multiplicity of ¢ ~'(s)}. Denote by a:I -C,
B : I —»(P")" the two projections. For any ¢ € C, the preceding Lemma applied to
all the irreducible components of (¢ ~'()),.q yields dim a ~'(f) < n — 2. Therefore
dmImpg <dimrI <n-—1. O

§2. Families of fibrations

We will consider the following situation. Let X, Y, M be connected complex
manifolds (not necessarily compact), and let f: X > Y, g: Y — M be surjective,
proper, flat holomorphic maps with connected fibres. Write h:=g ° f, and suppose
that all fibres of g are smooth compact curves, and the fibres of 4 are all compact
manifolds. If X,, Y, denote the fibres of 4 and g over ¢t € M, then the induced map
f.: X, > 7Y, is a fibration as defined at the beginning of §1.

DEFINITION 2.1. With the hypothesis just stated, we will say that
{fi:X,>Y,},cr is a family of fibrations. For any 0, t € M, f, is called a smooth
deformation of f,.

Now we ask ourselves how do the groups L(f,) of Definition 1.1 vary for a
family of fibrations {f;},c»- As a matter of fact, we will see that they are all
isomorphic. To begin with, the following Proposition shows the invariance of G( f;)
under smooth deformations. The proof relies on the fact that a smooth holomor-
phic map is differentiably locally trivial. Then we will recall that G(f,) is a direct
summand of L(f,) and will do a base change in order to obtain the invariance of

L(f).

PROPOSITION 2.2. If {f,:X,> Y, },cr is a family of fibrations, then the
groups G(f,) are all isomorphic.

Proof. Let (X,Y, M,f,g) be the quintuplet which determines the family
{f;: X,—>Y,}, as defined before. In order to fix ideas, we will choose an element
0 e M and will write R:=X,, C:=Y,, ¢:=f,. The maps f, are smooth deforma-
tions of ¢ : R = C. A theorem of Ehresmann ([3]; compare with [10], page 19, and
[12]) states that g and h:=g ° f are differentiably locally trivial. In particular, there
exists an analytic open neighbourhood U of 0 € M and a commutative diagram



296 FERNANDO SERRANO

S/
h='(U) — g~ (V)
i~ 9]~ g
RXxU —>C x U (projetion)

(>0 =)0 U

where the vertical arrows p, g are diffeomorphisms, and ¥, : R — C a differentiable
map. Choose a point ¢ € C such that F:=¢ ~!(£) is smooth. The map f: X - Y
is also differentiably trivial in a neighbourhood V = g~'(U) of ¢~!(¢&, 0), that is,
there exists a diffcomorphism f~!(V) ~ F x V making commutative the following
diagram

) "sFxV

l (projection)
S

Put W:=q(V). We have a commutative diagram

(projection)
FxW-——m—

l l
RxU———CxU

working as
() (», 1)
l !

Az, 3, 0,), 0 (P, oAz, t); ) =(y, 0

The left vertical arrow is a differentiable immersion, and A:Fx W—-R is a
differentiable map. Let us define o, : F — R(t € M) by a,(2) = A(z, &, ). Notice that
a,(F) is the fibre of ¥, over the point ¢ € C. Furthermore the maps o,, 6, are
homotopic to each other for ¢ close enough to 0, and thus they induce the same
map in homology. With our identifications and Theorem 1.3 we immediately see
that the cokernel of (,), : H|(F, Z) - H,(R, Z) is isomorphic to H,(C, Z) x G(f,),
whose torsion part is G( f;). Since (0,), = (d),, it follows that G(f,) ~ G(f,) for ¢
near 0. As a matter of fact, we have just proved that the set of 1 € M such that
G(f,) ~G(f,) is open. But similar arguments show that it is also closed, and the
connectedness of M finishes our proof. O
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THEOREM 23. Let {f,: X,>Y,},cs be a family of fibrations. Then the
groups L( f,) are all isomorphic.

Proof. Let the family be determined by the maps f: X > Y, g: Y—> M as
described at the beginning of this section. Write h:=g °f, and choose a point
0 e M. First we will assume that Y, is not rational. Let ¢ : B— Y, be any étale
morphism of degree 2. Since g is differentiably locally trivial, there is a neighbour-
hood U of 0 e M such that U x Y, and g ~'(U) are diffeomorphic over U. The
composite (id, 6) : U x B— U x Y,~ g~ '(U) makes U x B into a topological cov-
ering space of g ~!(U). Let V denote the space U x B endowed with the complex
structure induced by g ~'(U), and set W:=h~'(U) X, 1, V. The natural projec-
tion A: W -V defines a family of fibrations parametrized by U. Furthermore,
each fibre of multiplicity m of f,: X,—-Y,, teU, lifts to a pair of fibres of
A, . W, - V,, both with multiplicity m. Thus L(4,) ~ L(f,) ® L(f,). Combining the
invariance of G(4,) asserted in Theorem 2.2 with Lemma 1.2 yields the invariance
of L(f,) for t € U. Now use the connectedness of M to get that L(f,) is the same
for all t € M.

Next let us suppose that Y, is rational. Then Y, ~ P! for all t € M. It follows
from [4] that g : Y —» M is analytically locally trivial, so that g —!(U) is analytically
isomorphic to U x Y, over U, for some neighbourhood U of 0 e M. Let B> Y,
be any double cover which is unramified over the points of Y, where f;: X, — ¥,
fails to be smooth. Making U smaller if necessary one may assume that the
composite f:h~(U)—-»g ' (U)~U x Y, is a smooth map over all points (¢, x)
where x is a branch point of B—>Y,. Set V:=U x Band W:=h"'(U) X -1, V.
Then W is smooth and the projection A: W —V defines a family of fibra-
tions. One checks that A,: W, — V,. has no other multiple fibres than the ones
coming from f, : X, - Y,. Hence also L(4,) ~ L(f,)®? for all ¢, and one finishes as
before. |

REMARK 24. For elliptic fibrations on a compact surface something
stronger than Theorem 2.3 holds, namely, that the set of multiplicities of the fibres
is invariant under smooth deformations. This was proved by litaka in [7].
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