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Positive scalar curvature and periodic fundamental groups

SrAWOMIR KWASIK and REINHARD SCHULTZ

If M is a smooth manifold and g is a riemannian metric on M, then the scalar
curvature is a smooth real valued function k, : M - R that measures the average
sectional curvature at a point of M; more precisely, k, is formed by double
contraction of the riemannian curvature tensor of g (compare [He, pages 74—75)).
Geometrically speaking, the scalar curvature function measures the difference
between the volumes of the riemannian and euclidean geodesic disks. The existence
of a riemannian metric with positive scalar curvature on a smooth manifold turns
out to be of interest in many contexts. For example, by results of J. Kazdan and
F. Warner [KW] the entire question of realizing a smooth function as a scalar
curvature reduces to the existence of such a metric, and results of R. Schoen [Schn]
on the Yamabe problem show that a metric with positive scalar curvature can be
conformally deformed to one with constant positive scalar curvature. Furthermore,
the existence of a riemannian metric with positive scalar curvature is directly related
to some questions and results from index theory, transformation groups, and the
applications of differential geometry to general relativity; discussions of these
relationships can be found in papers by H. B. Lawson and M. Gromov [GL1-2],
and R. Schoen and S.-T. Yau [SY]. Several results from the past two decades have
shown that differential-topological invariants often yield necessary or sufficient
conditions for a manifold to admit a positive scalar curvature metric. In most cases
the invariants involve characteristic class data and the manifold’s fundamental
group (compare [GL1-2], [Miyl], [Ros1-3], [SY]). As in surgery theory, there are
major differences between the techniques for studying finite and infinite fundamen-
tal groups; the latter often require geometric and analytic input related to the Index
Theorem, while algebraic and homotopy-theoretic methods are often preferable for
finite groups.

For various technical reasons one expects that the most tractable finite funda-
mental groups are those of odd order. In [Ros3] J. Rosenberg considered the special
case of cyclic groups Z,, where p is an odd prime. The main conclusion of [Ros3]
in this direction is that a closed smooth manifold M with fundamental group Z,
and dimension at least 5 admits a riemannian metric with positive scalar curvature
if and only if its universal covering M does. Motivated by this result and by earlier
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272 SIAWOMIR KWASIK AND REINHARD SCHULTZ

results in [Ros2] in the non-spin case, Rosenberg conjectured that a similar relation
holds for arbitrary odd order groups.

In Section 1 of this paper we shall prove Rosenberg’s conjecture for manifolds
with periodic odd order fundamental groups (Theorem 1.8). Recall that a finite
group G is periodic if there is a d > 0 such that H(G) = H**{(G) for all i > 0; the
least such d is called the period of G and is denoted by d,;. One reason for interest
in such groups is that a finite group of odd order acts freely and smoothly on some
(homotopy) sphere if and only if G is periodic (compare [DM]). The most basic
class of such actions is given by orthogonal (or linear) spherical spaceforms in which
the action of G on S” is induced by an orthogonal representation on R”*! that is
free except at the origin. For these examples the quotient manifolds S$”/G admit
complete riemannian metrics of constant positive sectional curvature, and in fact an
arbitrary manifold M"” admits such a metric if and only if M” is an orthogonal
spherical spaceform.

Although the orbit manifold of a free nonlinear differentiable action on a
homotopy sphere cannot admit a metric with constant positive sectional curvature,
it is still meaningful to ask if there is a metric on M” with weaker positive curvature
properties, and scalar curvature provides a natural starting point. The existence of
metrics with reasonable positive curvature properties has attracted particular inter-
est when the group G admits a free differentiable action on some homotopy sphere
but does not act freely and orthogonally on any sphere (compare [Schu, Problem
8.13, page 558]); the simplest examples are nonabelian groups of order pq, where p
and ¢ are distinct odd primes, and the smallest such group has order 21 (compare
[Pe], [Lee]). Our results imply a complete characterization of those quotient
manifolds M = §”/G admitting riemannian metrics with positive scalar curvature.
Specifically, M admits such a metric if and only if its universal covering does (see
Corollary 1.8). It follows that either M admits a positive scalar curvature metric or
the connected sum of M with some homotopy sphere does (see Complement 1.9).
Special cases of these results beyond [Ros3] had previously been verified by
Rosenberg.

In Section 2 we consider the existence of metrics with positive scalar curvature
on the orbit manifolds 2 /G, where G has even order and acts freely and smoothly
on the homotopy sphere X. As in the odd order case, the group G must be periodic,
and the dimension of X must be congruent to —1 mod the period d; of G.
Furthermore, there are systematic families of such groups that act smoothly and
freely on homotopy spheres but never orthogonally; in all cases it is possible to find
examples in each dimension congruent to —1 mod 2d;, and in most cases it is
possible to find examples in each dimension congruent to —1 mod d; (compare
[DM]). If the order of G is greater than 2, then there are infinitely many
differentiably inequivalent examples in every such dimension, and we prove that
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there is always an infinite subfamily of manifolds that admit riemannian metrics
with positive scalar curvature (see Theorem 2.1). In fact, in each dimension
congruent to 4 except 3 itself, one can show that every smooth spherical spaceform
admits such a metric (see Theorem 2.2).

Our methods rely on a result of Gromov—Lawson [GL2] and Schoen—Yau
[SY]: If M" has a riemannian metric with positive scalar curvature and N” is
obtained from M" by surgery on an embedded sphere of dimension <(n — 3), then
N" also admits such a metric. It follows that the existence of a positive scalar
curvature metric essentially depends upon the bordism class of a closed manifold
M™" and its 2-connected reference map M” — K(n,(M"), 1). The results of this paper
will be proved by a combination of previous results of T. Miyazaki [Miyl-2] and
J. Rosenberg [Ros1-3] on such bordism classes, additional homotopy-theoretic
techniques from bordism theory, and surgery-theoretic results on the existence of
smooth spherical spaceforms as in [DM] or [Ma].

It appears that techniques from surgery theory and homotopy theory can yield
much further information on the existence of riemannian metrics with positive
scalar curvature on smooth spherical spaceforms. More generally, such methods
should also yield quantitative criteria for determining when a positive scalar
curvature metric g on a closed spin manifold M with finite fundamental group can
be propagated to a second closed spin manifold N that is homotopy equivalent to
M. We shall consider these questions in subsequent papers.
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1. Rosenberg’s conjecture

We begin with some notation. If = is a finite group and k is a positive integer,
let Q3Pin(Br) be the k-th spin bordism group of . As in [CF] or [St], this group can
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be described by equivalence classes of pairs ( f: V — Br, o), where (V, o) is a closed
k-dimensional spin manifold (with spin structure ¢) and fis a continuous map into
the classifying space of n, modulo bordism, and the group can also be described
algebraically as the stable homotopy group n,(M Spin A Br_ ), where M Spin is
the Thom spectrum associated to B Spin and Br_ is the disjoint union of Bn and
a point. Define Pos, (1) = Q3P°(Br) to be the set of all classes with representatives
of the form (V — Br, ), where V has a riemannian metric with positive scalar
curvature. It is immediate from [GL2] and [SY] that Pos, (7) is a subgroup if k = 5.
Furthermore, the results in the latter papers imply an important invariance prop-
erty for Pos, (1) (compare [Ros2)).

PROPOSITION 1.1. Let f: M — Br represent a class in Pos, (n), where k = 5.
If f is 2-connected, then M admits a riemannian metric with positive scalar curvature.
O

Following standard practice we define €$P"(Bn) to be the kernel of the
homomorphism Q3P"(Br) — Q3°"({pt}) induced by the constant map. The proof of
Rosenberg’s conjecture for Z, in [Ros3] has two steps. One involves results of T.
Miyazaki [Miy2] that yield lower bounds for the set Pos, ({pt}) = Q"({pt}), and
the other is a proof that Pos, (n) contains €2$P"(Br) for all k 2 0. In fact, the
methods of [Ros3] and the equivalence of ordinary and spin bordism away from 2
immediately yield a reduction of Rosenberg’s conjecture to the case of spin
manifolds:

(1.2) Let n be a finite group of odd order. Then Rosenberg’s conjecture is true for
7 if and only if Pos, (n) contains QP"(Bn) for all k = 0. O

The subgroups Pos, (n) have covariant and contravariant naturality properties
that are extremely useful in formal manipulations. We begin with covariant
naturality.

(1.3) If ¢ : m > 7’ is a group homomorphism and Be is the associated map of
classifying spaces, then

(Bo) « : QFP™(Br) —» QFP(Bn’)

sends Pos, (1) to Pos, (n’).

This follows because By, sends the class represented by (f: V' — Bn, o) to the
class represented by ((By)f: V — Brn’, o). O
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The statement of the contravariant naturality property involves the transfer
homomorphism

(Bo)' : Q§P™(Br’) — Q37"(Br)

associated to the inclusion of one finite group n’ into another group n. Geometri-
cally, this map takes a class represented by the pair (f: V — Br, o) into the class
represented by (f: V' — Bn’, ¢”), where f” and V"’ are obtained from the pullback of
the diagram V — Bn « Bn’ and ¢’ is obtained by lifting ¢ through the covering
space projection V' — ¥V (compare [CF]). The map (Bg)' can also be described
homotopy-theoretically as the homomorphism induced by a transfer map of CW
spectra

t, : S*Bn - S Bn’,

where S®X denotes the CW spectrem associated to a CW complex X (compare
[BG]).

(1.4) If ¢ : m > n’ is an inclusion and
(Bo)': QP"(Bn’) — QiP™(Bn)

is the associated transfer homomorphism, then (Bg)' sends Pos; (n’) to Pos, (x).

This follows because a metric with positive scalar curvature can always be lifted
to a covering space. O

The following consequence of (1.3) and (1.4) will be used repeatedly in this
paper.

PROPOSITION 1.5. Let n be a finite group, let p be a prime dividing the order
of n, and let j, : m, —n be inclusion of a Sylow p-subgroup. Then a class o € Q3P"(Br)
lies in Pos, (n) if and only if the images (Bj,)'(a) under the associated transfer
homomorphisms lie in Pos,(rn,) for all p.

Proof. Half of the proposition is a restatement of (1.4), so it suffices to show
that o e Pos, (r) if for every prime p dividing the order || of 7 the transfer (Bj,)'x
lies in Pos, (z,).

For each prime p let 7, be the composite (Bj,)«(Bj,)'. Standard transfer
arguments as in [BG] show that T, ® Z,, is an isomorphism.

We shall need the following elementary fact:
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(1.5A). Let R be a noetherian ring, let Q be a finitely generated R-module, and let
T be an automorphism of Q. If P is a submodule of Q such that T(P) is contained in
P, the T(P) is in fact equal to P.

Proof of (1.5A). The ascending chain of submodules
PcT ' (P)=T*%(P)---

must terminate because € is noetherian. But if 7-%(P) = T—*~(P), then T(P) = P
(apply T**! to both sides of the equation). O

We now return to the proof of 1.5. Assume now that for every prime p dividing
the order |n| of = the transfer (Bj,)'« lies in Pos, (n,). By (1.3) it follows that
T,(a) € Pos, () for all p. Since T, ® Z,, is an automorphism of Q3"(Br),, and
Pos, (), is T,-invariant by (1.3) and (1.4), it follows from (1.5A) that the image
of a, of a in QF*"(Bn), lies in Pos, (7). A similar conclusion holds for all
primes p not dividing |r|, for if j, denotes the inclusion of the trivial subgroup in =
then T,, is again a bijection by transfer considerations, and the hypotheses imply
that (Bj,)'a lies in Pos, ({pt}). Since Q3P"(Bn) is finitely generated and the image
classes o, lie in Pos, (n),,, for all primes p, elementary considerations imply that
must lie in Pos, (7). O

COROLLARY 1.6. Let © be a finite group of odd order. Then Rosenberg’s
conjecture is true for m if and only if it is true for each Sylow subgroup =, of n. [

Proposition 1.5 reflects well known results on stable splittings of classifying
space spectra S®Bn into p-primary components (where p is a prime dividing the
order of n). In fact, the subgroups Pos, (n) are compatible with all of the splittings
of S®Brn that have been discovered during the past decade (e.g., see the expository
article by S. Priddy [Pr]).

PROPOSITION 1.7. Suppose that S®Br is (stably) equivalent to a wedge of
spectra X, v ---v X,. For each i such that 1 <i <r let E,.: S°Bn — S*Bn be the
homotopy idempotent given by projection onto X; followed by inclusion, and let E,. be
the induced idempotent on Q5P"(Br). Then a class o € Q™(Br) lies in Pos, (n) if and
only if E.a lies in Pos, (%) for all i.

Proof. Since a =X, E.a the if direction is trivial, so it suffices to prove the only
if direction. Suppose that « € Pos, (n). By Proposition 1.5 and other transfer
considerations as in [Pr] it suffices to prove the result when = is a p-group. In this
case the truth of the Segal Conjecture implies that the S-maps E; of S Br are given
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by sums

Ei~} ci a5 @y

J

where each c; is a p-adic integer and each ay, is either a map S*Bg associated to
a group homomorphism ¢ as in (1.3) or a transfer ¢, associated to an inclusion ¢
as in (1.4); as noted in [Pr], this follows by combining the results of [Ca] and
[LMM]. Since the induced self-map E. of Q3F"(Br) is completely determined by
the restriction of E; to a finite subspectrum of S®Br with finite stable homotopy

groups, for each k it is possible to approximate the p-adic integers ¢, by ordinary
integers c;; such that

’
Eit = Z C,'j : aij]‘ ' aijZ‘ T aijq(j)"
j

on the group Q3P"(Bn); of course, one needs increasingly better approximations to
the p-adic integers c; as kK = co. By (1.3) and (1.4) the map E,» must send Pos, ()
to itself, and consequently E.a lies in Pos, () if a € Pos, (). O

We are now ready to prove our result on Rosenberg’s conjecture:

THEOREM 1.8. Let n be a finite periodic group of odd order, and let M be a
closed spin manifold with fundamental group n and dimension 25. Then M admits a
riemannian metric with positive scalar curvature if and only if its universal covering M
admits such a metric.

Proof. Recall that a finite group = is periodic if and only if each of its Sylow
p-subgroups 7, is periodic, and for p odd this happens if and only if =, is cyclic (see
[CE, Theorem XII.11.6]). Therefore by Corollary 1.6 it suffices to prove the
theorem for n =Z,,, where p is an odd prime.

The Atiyah - Hirzebruch spectral sequence for the groups QP"(BZ,,) collapses
for all r > 1; the considerations used in [Ros3] to verify this when r = 1 extend to
all values of r.

Let bo be the stable homotopy spectrum for connective real K-theory (compare
[ABP]), and let D : M Spin — bo be the morphism of ring spectra induced by the
Dirac orientation of a spin vector bundle (see [ABP] or [St]). The associated natural

transformation of homology theories

QF(X) - bo (X)
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will be denoted by (Dy ), or more simply by D,. As noted in [Ros3, §1], it is well
known that Pos, ({pt}) is contained in the kernel of D,, and if k < 23 the results
of [Ros3, §1] show that equality holds. Furthermore, the results of Miyazaki [Miy2]
imply that 2'Q3P"({pt}) = Pos, ({pt}) for some r 2 0. Therefore the collapsing
of the Atiyah—Hirzebruch spectral sequence implies that Pos, (Z,,) contains the
kernel of D, restricted to the reduced group @§P™(BZ,.). As in [Ros3, §1] this
reduces the proof to showing that the image of Pos, (Z,,) contains all of bo,(BZ )
furthermore, the methods of [Ros2, Theorem 2.14] and [Ros3, Theorem 3.1] imply
that it suffices to prove containment when k = 5. We shall prove this assertion by
induction on r.

The case r =1 is essentially contained in [Ros3, Theorem 1.3]. Assume that
r 22 and D,(Pos;(n)) contains bos(Bn) for m =Z,,_,. An Atiyah- Hirzebruch
spectral sequence argument implies that the sequence

0- bos(BZ

pr—l

) = bos(BZ,,) - bos(BZ,) -0

is exact, where the monomorphism is induced by inclusion and the epimorphism is
the transfer. By the induction hypothesis and (1.3) we know that the image of
bo, (BZ,--) is contained in D ,(Poss (Z,)). On the other hand, by [Ros3, Thm. 1.3]
we also know that every element in 505(BZP) has the form D ,(Za;x;), where the a;
are integers and each Xx; is represented by a Z, lens space. But every free linear
action of Z, on a sphere extends to a free linear action of Z,,, and therefore each
x; lifts to an element y; € Poss (Z,,) represented by an appropriate lens space.
Therefore every element u € bos (BZ,:) can be written as a sum u, + u,, where u, lies
in the image of Poss(Z,,) and u, € 505(BZP,_1). By the induction hypothesis we
know that u, = D,v for some v € Poss(Z,,-1), and it follows that u lies in the
image of Pos; (Z,). O

REMARK. Recently S. Stolz has announced that Pos, (1) is the kernel of the
Dirac orientation D, : Q37%(X) — bo,(X) = n,(Z x BO). This is a strengthening of
the result from [Miy2] used in the proof of Proposition 1.5.

Theorem 1.8 has immediate consequences for smooth spherical spaceforms
M"=2"/G, where n=>5 and G is an odd order group that acts freely and
differentiably on the homotopy sphere X".

COROLLARY 1.9. Let G be a finite group of odd order, and assume we are
given a free differentiable G-action on the homotopy n-sphere X", where n 2 5. Then
X /G admits a riemannian metric with positive scalar curvature if and only if Z bounds
a spin manifold.
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Proof. If M" as above admits a riemannian metric with positive scalar curva-
ture, then by [Hi, Remark (3), page 46] the universal covering Z” bounds a spin
manifold. Conversely, if Z” bounds a spin manifold, then the invariance principle
in Proposition 1.1 implies that Z admits a riemannian metric with positive scalar
curvature (since X" is spin cobordant to S” and the latter has such a metric). O

COMPLEMENT 1.10. Let M" and X" be as in 1.8, and assume that G # {1}. If
n is not congruent to 1 mod 8 then every smooth spherical spaceform M" as in 1.8
admits a riemannian metric with positive scalar curvature. If n is congruent to 1 mod 8
then either M™ admits such a metric or else there is a homotopy sphere X, such that
M # X, admits such a metric.

In particular, Corollary 1.9 and Complement 1.10 answer a question posed by
I. Madsen in [Schu, Problem 8.13, page 558]: If G is the nonabelian group of order
21 and @ is an arbitrary free differentiable action of G on S°, then S°/® admits a
riemannian metric with positive scalar curvature.

Proof. First of all, if G acts freely on a homotopy n-sphere, then it is well-
known that » must be odd.

Every homotopy n-sphere bounds a spin manifold if n is not congruent to 1 or
2mod 8, and in these cases there is a homotopy sphere X, that does not bound a
spin manifold such that X, # X, is diffeomorphic to S”, and for every homotopy
n-sphere T either T or T # X, bounds a spin manifold (compare [Bru, Theorem 1.1
and Section 2]).

If 2 bounds a spin manifold, then M admits a riemannian metric with positive
scalar curvature by 1.8. If 2 does not bound a spin manifold, then by the preceding
observations the homotopy sphere X # X, bounds a spin manifold and is the
universal covering of M # X, (the universal covering of the latter is the connected
sum of M and |G| = order (G) copies of Z,, and since |G| is odd the connected sum
of |G| copies of X, is diffeomorphic to Z,). It follows that M # X, admits a
riemannian metric with positive scalar curvature by 1.8. O

REMARK. As noted in the introduction, if the odd order group G acts freely
and smoothly on some sphere but never orthogonally, one can also ask if there is
some free action for which the orbit manifold has a riemannian metric with positive
curvature properties that are stronger than positive scalar curvature but (necessar-
ily) weaker than constant positive sectional curvature. As noted in the first
paragraph of this paper, if a metric with positive scalar curvature exists, then there
is a metric with constant positive scalar curvature by Schoen’s results on the
Yamabe problem [Schn]. Two natural strengthenings of positive scalar curvature
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are (variable) positive sectional curvature and positive Ricci curvature (definitions
may be found in many references — for example, see [He, pages 74-75]; in
particular, positive sectional curvature implies positive Ricci curvature). Examples
of nonlinear smooth spherical spaceforms with cyclic fundamental groups and
positive Ricci curvature metrics can be obtained from results of J. Cheeger [Ch] and
the work of Hernandez-Andrade [He]. If n is a nonabelian group of order pq, where
p > q are odd primes, then there are smooth spherical spaceforms for G that are
closely related to certain Brieskorn manifolds with positive Ricci curvature. Specifi-
cally, if V is the Brieskorn manifold defined by the intersection of the zero set of

P SR o+ PR oF -4 S (k >0)

with the unit sphere in C*¥*! then V is (kq — 2)-connected by general results on
Brieskorn manifolds, the group = acts freely and differentiably on ¥V (compare [Pe]
for the case kK = 1), and for all sufficiently large positive integers k the methods and
results of H. Hernandez-Andrade [He] imply that ¥ admits a n-invariant rieman-
nian metric with positive Ricci curvature. Furthermore, one can combine the
methods of T. Petrie [Pe] with subsequent results of A. Bak [Bak] and C. T. C. Wall
[Wa2-3] to perform m-equivariant surgery on embedded (kg — 1)-spheres in V to
obtain homotopy spheres with free differentiable n-actions. It seems natural to ask
whether the orbit manifolds of these free n-actions also admit riemannian metrics
with positive Ricci curvature.

2. Spaceforms with even order fundamental groups

The results of Section 1 completely describe the smooth spherical spaceforms
admitting riemannian metrics with positive scalar curvature when the fundamental
group has odd order. If the fundamental group G of the smooth spherical
spaceform M has even order, then the study of the scalar curvature problem for M
is considerably more difficult. However, for each group = that arises and for at least
half of the possible dimensions there are infinite families of spaceforms that admit
riemannian metrics with positive scalar curvature.

A precise statement of the result for even order groups requires some additional
notation. If the nontrivial finite group = acts freely on some sphere, then the results
of surgery theory yield free differentiable actions on homotopy spheres in all
dimensions =5 and congruent to —1 mod 2d, (twice the period of =) in all cases,
and for most n the results also yield actions in all dimensions =5 congruent to
—1mod the period d,. The hypotheses of [DM, corollary S5.11(a), page 275]
describe sufficient conditions for the stronger conclusion to hold (in this connection
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also see [Ma2]). Set a = a, equal to 1 if these conditions are satisfied, and set a = a,
equal to 2 if they do not.

THEOREM 2.1. Let n # 1, Z, be a finite group that acts freely and smoothly on
some sphere, let d = d, be the period of n, and let a = a, be defined as above. Then
for each positive integer k with kad > 5 there exist infinitely many differentiably
inequivalent smooth spherical spaceforms M** =" of dimension kad — 1 such that M
admits a riemannian metric with positive scalar curvature.

Proof of Theorem 2.1. Let n be a finite group that acts freely and smoothly on
some sphere. Then for each £ > 0 the methods of [Ma], Section 4, imply that = acts
freely on some homotopy (kad — 1)-sphere such that for each Sylow p-subgroup =,
the manifold X /m, is normally cobordant to an orthogonal spaceform. In fact, the
results of [Ma] and results on Wall groups from [Wa2] imply that there are
infinitely many differentiably inequivalent free m-actions on the standard sphere
S*ad—1 that are equivariantly normally cobordant to a given free action of this type.
Let {7}~ '} denote such an infinite family of smooth n-actions. For many choices
of m it is even possible to construct an infinite family of distinct free n-actions that
are equivariantly A-cobordant to a specific example (compare [Mlinr)).

Since © has order 23, its period d is even. The balance of the proof splits into
two cases depending upon the residue class of kad mod 4.

Case 1. Assume that kad is divisible by 4.

In this case we claim that the quotient space X /= is a spin manifold. Transfer
considerations reduce the verification of this to the case where = is a 2-group, and
thus to cases where = is either a cyclic or generalized quaternionic 2-group. In the
first subcase the stable tangent bundle is given by a balanced product £ x, V" where
V is a free complex n-representation with an even number of summands; it is an
elementary exercise to check that the first two Stiefel - Whitney classes vanish for
such bundles. In the second subcase the stable tangent bundle is also given by a
balanced product £ x, ¥, but in this case V is a quaternionic n-representation;
since the first two Stiefel - Whitney classes vanish for quaternionic vector bundles,
the claim is also true in this subcase.

Now choose a spin structure ¢ on X/n, and let

o € Q5 (Bn)

be the cobordism class associated to (Z/n — Br, 6). Since the manifolds T;/n are
all normally cobordant to Z/n and the normal cobordism between them is
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automatically a spin cobordism, by Proposition 1.1 the manifolds X/n and T,/n
will all admit riemannian metrics with positive scalar curvature if a € Pos,,; _, (7).

Let p be a prime dividing the order of =, let n, be the Sylow p-subgroup of =,
and let j,:m,—>n be the inclusion. Since X/m, is normally cobordant to an
orthogonal spaceform, by the results of [Wal] it is obtained from the latter by
surgeries on embedded spheres of codimension =3, and the relevant cobordism is
a spin cobordism. Therefore if (Bj,)' denotes the transfer associated to the Sylow
p-subgroup, it follows that (Bj,)'(«) lies in Pos,,,_, (n,) (because the class in
question can be represented by an orthogonal spaceform and hence by a manifold
with a metric of constant positive sectional curvature). Therefore by Proposition
1.5 it follows that a € Pos,,,;_; (7). This proves Theorem 2.1 when kad is divisible
by 4.

Case 2. Assume that kad = 6 is congruent to 2 mod 4.

In this case the Sylow 2-subgroup of n must be cyclic, the period d must be
congruent to 2 mod 4, and a must be 1. More important, the quotient X/n has a
nontrivial second Stiefel - Whitney class (essentially because the same is true for
RP*+1), Therefore it is necessary to modify the preceding arguments in order to
handle nonspin manifolds. Similar modifications may be found in [Ros2, Theorem
2.14] and [Miyl, Theorem 5.1].

If n is a positive integer or n = o0, n is a finite group, and B € HX(n; Z,) is a
cohomology class, define Y,(n,f) to be the homotopy pullback of
B : K(n, 1) - K(Z,, 2) and the second Stiefel - Whitney class w, : BSO, - K(Z,, 2).
Following standard conventions, if no subscript appears it is understood that
n = . If n <m the canonical maps classifying spaces BSO, — BSO,, yield corre-
sponding morphisms Y,(n, ) » Y, (xn, B), and if

Y (1 <00)

denotes the pullback of the universal oriented n-plane bundle with associated
Thom space Th, (%, B), then one obtains a sequence of maps

S Th,, (m, B) —>Th,,+  (m, ﬂ)

that yield a Thom spectrum Th(zn, f). The homotopy groups of Th(zn, ) have the
usual sort of interpretation as the bordism groups of manifolds with appropriate
normal structure (compare [St]).
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NOTE. If g =0 then Y,(n, B) reduces to B Spin, x K(=, 1).

If ¢ : m > n’ is a group homomorphism and B’ € H*(n’; Z,), then the universal-
ity properties of pullbacks yield mappings of spaces C,(¢): Y,(n, 0*f’) -
Y, (n’, B’) and an associated morphism of Thom spectra A¢ : Th(n, ¢*p’) -
Th (n’, ). The induced map of stable homotopy groups will be denoted by (4¢),.
Similarly, if ¢ is an inclusion there is an associated transfer morphism of spectra
from Th (n’, ) to Th (%, ¢*B’); the induced homomorphism of stable homotopy
groups will be denoted by (4¢)".

Suppose now that m and kad satisfy the conditions for Case 2. Then
H*(n; Z,) = Z, and the nonzero class f corresponds to the second Stiefel - Whitney
class of smooth spherical spaceforms M**~! with fundamental group n. Conse-
quently the manifold M*¥—! together with an orientation and a reference map
to Brn determine a bordism class associated to an element a of the group
Tkad -1 (Th (, B)).

Since (kad — 1) is odd, the Atiyah—Hirzebruch spectral sequence implies that
the stable homotopy group m;,,_(Th(m, p)) is finite, and therefore a may be
decomposed as a finite sum X a,, where p ranges over all the primes dividing the
order of m,,,;_,(Th (n, B)) and the order of «, is a power of p.

Let Pos,,,; _, (n, f) be the set of all classes in =n,,,;_,(Th (n, f)) representable by
manifolds V**—! supporting riemannian metrics with positive scalar curvature.
Exactly as in Proposition 1.1 (the special case § =0), if £ = 5 the results of [GL2]
and [SY] imply that Pos,,, ,(w, B) is a subgroup of Th(m, f) and that all
representatives for which the associated reference map V**~! — Br is 2-connected
admit riemannian metrics with positive scalar curvature. Therefore it suffices to
prove that each a, lies in Pos,;_ (%, B), < Posy,s_ (7, f) (the latter is finite
because n,,,_,(Th (z, B)) is).

As in Case 1, if p is a prime dividing the order of =, let m, be the Sylow
p-subgroup of x, and let j, : 7, - n be the inclusion. By construction the covering
spaces X/m, are normally cobordant to orthogonal spaceforms, and the normal
cobordisms are automatically (=, f)-bordisms. It follows that (4j,)'x lies in
Pos,.;_ 1 (%,, B),- If we project onto the p-primary component, we obtain the
relations

(Ajp)!ap € Poskad-— 1 (npa ﬁ)(p)’
(Ajp)*(Ajp)!ap € Poskad- 1 (TC, ﬂ)(p)'
As in Case 1, the second of these implies that a, lies in Pos,,,_; (%, B),)- By our

previous remarks, this completes the proof of Theorem 2.1 when kad is congruent
to 2 mod 4. O
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Refinements of Theorem 2.1

Roughly speaking, Corollary 1.9 and Theorem 2.1 show that there are basi-
cally no obstructions to the existence of positive scalar curvature metric on
smooth spherical spaceforms that arise from the fundamental groups or dimen-
sions of these manifolds. The obvious next question is to determine exactly which
spherical spaceforms admit such metrics; for fundamental groups or odd order the
results of Section 1 answer this question completely. In a subsequent paper we
shall prove a result that disposes of half the remaining cases:

THEOREM 2.2. Let n =4k + 3 2 7. Then every n-dimensional smooth spheri-
cal spaceform admits a riemannian metric with positive scalar curvature.

The results of this paper reduce the proof of this result to the case of
spaceforms whose fundamental groups are 2-groups. For such groups all spherical
spaceforms are homotopy equivalent to linear models, and therefore the existence
question can be viewed as a spacial case of the following:

PROPAGATION QUESTION. Let M" and N" be closed smooth manifolds
that are homotopy equivalent, and suppose that N has a positive scalar curvature
metric. Does M also have such a metric?

If N=S"and n 2 5 then this question has an affirmative answer if and only if
n is not congruent to 1 or 2 mod 8 (compare [GL1 - 2]). Theorem 2.2 is essentially
an affirmative answer to the propagation question for linear spaceforms N*+3
whose fundamental groups are 2-groups.

Our study of this question involves the surgery exact sequence of [Wal]. It is
fairly straightforward to show that the existence of a riemannian metric with
positive scalar curvature on a spherical spaceform M homotopy equivalent to the
linear spaceform X/n (where = is a finite 2-group) depends only upon the 2-local
normal invariant of the homotopy equivalence from M to X/a. Furthermore, a
case by case analysis shows that each normal invariant can be realized by a degree
1 normal map ¢ : M* —> X /n, where ¢ is 2-connected and M* has a metric with
positive scalar curvature; this analysis uses a variety of techniques from algebraic
topology and the representation theory of compact Lie groups. Theorem 2.2
follows directly from these considerations and the invariance property described in
Proposition 1.1.
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