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Amalgamated products and finitely presented groups

GILBERT BAUMSLAG AND PETER B. SHALEN

§1. Introduction

§1.1. It has long been recognized that a decomposition of a group G as a free
product of two groups with one amalgamated subgroup can often be used to obtain
important properties of G. The objective of this paper is to show that if a finitely
presented group has a presentation of the “right kind” then the group can be
decomposed into an amalgamated product in an interesting way.

It is customary to term an amalgamated product

G=Ax*-B (%)

non-trivial if the amalgamated subgroup C is a proper subgroup of each of the
factors 4 and B. In the event that C is of index 2 in both 4 and B then we say that
the decomposition (*) is of dihedral type; if C is proper in both 4 and B, and has
index greater than 2 in one of them then the decomposition (*) is called proper. In
general, a group has a decomposition of dihedral type if and only if it admits a
homomorphism onto the infinite dihedral group (see §3). It is not hard to show that
many solvable groups admit decompositions of dihedral type. By way of contrast,
as is well-known, the groups with proper decompositions always contain free
subgroups of rank two (see §2). It is with such proper decompositions that we are
mainly concerned. Indeed our goal here is to obtain conditions on a finite
presentation of a group G that ensure that G has a proper amalgamated product
decomposition. The following theorem exemplifies what we have in mind.

THEOREM 2. Let G be a group given by a finite presentation of deficiency at
least two (i.e. one with at least two more generators than relators). Then G admits a
proper decomposition where the factors (and amalgamated subgroup) are all finitely
generated.

It follows immediately from Theorem 2 that a finitely presented group with a
presentation of deficiency at least two contains a free subgroup of rank two. This
observation should be compared with the theorem of B. Baumslag & S. J. Pride [1]
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244 G. BAUMSLAG AND P. B. SHALEN

which states that a finitely presented group G with a presentation of deficiency at
least two contains a normal subgroup K such that G/K is a finite cyclic group and
K maps onto a free group of rank two.

It also follows immediately from Theorem 2 that

COROLLARY 2.1. A one-relator group given by a presentation with at least 3
generators and one defining relator has a proper decomposition in which the factors
(and amalgamated subgroup) are finitely generated.

C. T. C. Wall posed the following question in [13]:
Which one-relator groups are (non-trivial) amalgamated products?

Corollary 2.1 answers this question for one-relator groups with at least three
generators in a most emphatic way.
The key to Theorem 2 is the following

THEOREM 1. Let G be a finitely presented group with a given non-trivial
amalgamated product decomposition G = A »- B. Then G also has a non-trivial
amalgamated product decomposition G = A’ ». B’ where A’, B’ and C’ are finitely
generated and A’ < A, B’ < B, and C’' < C.

It has been pointed out to us by Martin Dunwoody, in a letter, after this paper
was submitted for publication, that Theorem 1 has also been proved, indepen-
dently, by M. Bestvina and M. Feighn in some as yet unpublished work of theirs.
Their work depends on earlier work of Dunwoody.

It is worth noting that if a finitely presented group G has an amalgamated
product decomposition (*) in which the factors 4 and B are finitely generated, then
the amalgamated subgroup C is necessarily finitely generated (this is essentially the
content of G. Baumslag [2]). It is also worth noting that it is possible for a finitely
presented group to have an amalgamated product decomposition in which the
factors and the amalgamated subgroup are finitely generated despite the fact that
none of them are finitely related. We give such an example in §6.

Theorem 1 will be proved in §2.

C. F. Miller has pointed out to us that the proof of Theorem 1 applies,
essentially without change, to HNN extensions. Dunwoody has informed us that
this result has also been obtained by Bestvina and Feighn.

Theorem 2 will be deduced from Theorem 1 on appealing to four lemmas, which
will be proved in §3.

There is a simple variation of the argument used to prove Theorem 2 which can
be applied to finitely presented groups of a rather different kind:
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THEOREM 3. Let the group G be given by the finite presentation
G=<x|,...,xm;r1,...,r,,>

where m 2 2 and each of the relators r, lie in the third derived group of the free group
onx,,...,X,. Then G admits a proper amalgamated product decomposition in which
the factors (and amalgamated subgroup) are all finitely generated.

We will give the proof of Theorem 3 in §5.

So Theorem 3 implies in particular that the non-cyclic free solvable groups of
derived length at least three are infinitely presented — in fact A. I. Mal’cev [8] has
proved that all non-cyclic free solvable groups of derived length at least two are
infinitely presented (cf. also R. Bieri & R. Strebel [6]). We refer the interested
reader to R. Strebel [12] for the last word on this subject.

In conclusion we would like to point out that much of the work in this paper
was stimulated by an earlier unpublished theorem of ours that we proved in 1982,
namely

THEOREM O. Let G be a group given by a finite presentation on m generators
and n relations. If d =m —n and

3d — 3> dim (H,(G, Z/22)),

(where here H,(G, Z|2Z) is the first homology group of G with coefficients in the
integers mod 2 and dim (H, (G, Z/2Z)) is the dimension of H,(G, Z|2Z) thought of
as a vector space over Z[2Z) then G is an amalgamated product in which the
amalgamated subgroup is of infinite index in one factor and of index at least two in
the other.

The proof of Theorem O relies on the representation-theoretic ideas that were
introduced by Culler and Shalen in [7]. Now the hypothesis of Theorem O implies
that d > 1. Consequently Theorem 2 can also be applied here, yielding a proper
amalgamated product decomposition, a conclusion only slightly weaker than that
reached in Theorem O.

§2. The proof of Theorem 1

§2.1. Let G be a group generated by its subgroups 4 and B. Suppose that
AnB=C. We term G an amalgamated product of A and B amalgamating C if
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every strictly alternating product
ab,---ab,(a;e A,a;,¢ C,b;e B, b, ¢ C)

is different from 1 (see B. H. Neumann [11]) and we express this fact by writing
G=A »:B.
We observe next, as promised in the introduction, the well-known

LEMMA 1. Let G = A *. B be a proper decomposition. Then G contains a free
subgroup of rank two.

We give the proof here for completeness. Thus suppose that C is of index at
least 3 in 4 and of index at least 2 in B. Let a, and a, be two elements of 4 which
lie outside C and such that q,a;'¢ C. Then a;'b~'a;b and a5 'b~'a,b freely
generate a free group of rank two.

§2.2. Our objective now is to prove Theorem 1. Thus suppose G is a finitely
presented group given as a non-trivial amalgamated product:

G=A=x*B.
Since G is finitely presented, it is finitely generated. Hence we can find a finite set
a, . ..,am,bl,...,b,,

of generators of G where the g; € 4 and the b, € B. By a theorem of B. H. Neumann
[10], G can be finitely presented on this set of generators:

G=<al,.-.,am,bl,...,bn;rl,...,rp>. (l)

Let 4, =gp(a,,...,a,) and let B, =gp(b,,...,b,). Suppose that we present A,
and B, on the generators given above:

A|=<al,...,a,,,;R1> and Bl=<b|,...,bn;sl>.

Of course R, and S, are consequences of the defining relations for G. So we can add
both sets to the presentation (1) for G:

G=<ala"'aam’bl,'-'sbn;RlaslarI""arp>’ (2)
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Now each of the relators r, can be written as alternating products which take the
form

Iy = ul(d)vl(z) T uq(d)vq(g)'
Since 4, < A4 and B, < B it follows that either one of u;(d@) € C or vj(l;) € C.

Suppose, for example, that »,(d@) € C. Then put y, = 4;(a) and add y, to the set of
generators for G together with the extra relation u;(a)y; "

G =<a1, .. .,am,bl,. ‘ "bn’yl;Rl’ Sl,rl, . .,rp,uiyrl>. (3)
We now set B, =gp(B,, y,), A, = A, and present 4, and B,
A2=<a1,...,am;R2> and B‘=<bl,...,bn,y1;S2>;

here R, = R,, but S, may well be different from S,. R, and S, are consequences of
the defining relators in the presentation (3) of G. So

G=La,...,08,,b,....b, ;R S, 11,... .1, uyi"). (4)

Notice that we can think of y, as an element of B. The relator r, can then be
replaced in (4) by the relator

re = ul(é)vl(g) RS (/) (7 1(5))’101'(5))““ 1(5)01'4- 1(5) T uq(a)vl(z):
which has smaller “syllable” length. This procedure can be repeated, leading to a

presentation of G which takes the form we shall now describe. First of all the
generators of G are partitioned into two finite sets:

{al,...,am,xl,..-,xh}, {blg---’bpuyl,""yj}’

where a,,...,a,,x,,...,x,€A4, b;,...,b,,y1,...,y; € B. The defining relators
in this presentation are arrived at as follows. First we put

A =gp(a,,...,aq,, Xi,...,X), B =gpb,,...,byy1,...,¥)
Then A’ and B’ can be defined on these generators:

A ={ay,...,0,, X,...,%,; R, B =(by,.... by Yy, 8.
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The defining relators of G then consist of
-1 -1 -1 —1
RouS' u{rf,...,rZYo{ufyr',...cufy7 L xiwl,. .. x; 't}

where each of the r* are words in the generators of 4° and B’ of syllable length 1,

uf,...,ufedA'nCf,...,vf eB' nC and
u1#=y13"-9u}¢=yj9 x1=Ur, xh=v;f
in G. Thus

G=La,...,8u, X1, ... X b1y by Y1, LY

’ ’ # #,,—1 #,,—1 —1,,# —1
R,S,r¥,...,r¥utyr', .. uly7 L xr o, oo x o). (5

Since we have included R’ and S’ among the relators, each of the r* can be omitted
from the presentation (5). Moreover if we put

C'=gpuf,...,uf,x,....x)
then
C' =gp(yi,....,yp0F, ..., 0F).
It follows from the presentation (5) that
G=A*-B'.
Notice that this decomposition is non-trivial, because if, e.g. C' = 4’, then G = B,
contradicting the hypothesis. This completes the proof of Theorem 1.
§3. Preparation for the proof of Theorem 2
§3.1. We begin with the proof of the following simple

LEMMA 2. A4 group G has a decomposition of dihedral type if and only if it
admits a homomorphism onto the infinite dihedral group.

The proof of Lemma 2 is straightforward. Thus suppose that G has a decompo-
sition of dihedral type G = A4 *- B — so here C is of index two in both 4 and B.
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Hence C is a normal subgroup of G and G/C is the infinite dihedral group.
Conversely, suppose that G maps onto the infinite dihedral group
D =<{a,b;a*=b*>=1). Let A be the preimage of gp(a), B the preimage of gp(b)
and C the preimage of 1. Then G = A4 *. B is a decomposition of G of dihedral
type.

§3.2. The next lemma turns out to be crucial in the proof of Theorem 2 (cf. G.
Baumslag [3])

LEMMA 3. Let G be a group given by the finite presentation
G=Lay,...,q,; 1y sTn)

where m —n 2 2. Let K be any normal subgroup of G with G/K infinite cyclic. Then
the tensor product

Kab ®Q

of the abelianisation K, of K with the additive group Q of rational numbers (over Z)
is infinite dimensional. So, in particular, K is not finitely generated.

Proof. Suppose that G/K = gp(tK). We add ¢ to the given generators of G and
one extra relation expressing ¢ as a word w in the given generators of G. This yields
the presentation

. -1
G={ay,...,a,,L,r,...,I,tWw™ ")

of deficiency m — n. Since ¢ generates G modulo K we can find integers e,, .. ., e,
such that q,t°,...,a,t all lie in K. Put b,=a;t (i=1,...,m). Then the
elements ¢, b,,...,b, again generate G and we can present G on these m + 1
generators subject to n + 1 relators sy, . . ., §, . ,, where now ¢ occurs with exponent
sum zero in each of these relators:

G=<t9bl""9bm;s19""Sn+1>’

It follows then that the normal closure in G of b,,...,b,, (i.e. the least normal
subgroup of G containing b,, ..., b,,) is K. We now view K,, as a right module
over the integral group ring Z[t, t~'] of the infinite cyclic group generated by ¢,
where t acts on K, via conjugation. This allows us to think of K, as an
m-generator module subject to n + 1 defining relators. So we can view

M=K,®Q
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as an m-generator module over A = Q[¢, t '] subject to n + 1 defining relators.
Since A is a principal ideal domain, M is a direct sum of cyclic modules. Moreover,
since m >n + 1 at least one of these cyclic submodules is free and so is infinite
dimensional over Q. This completes the proof of Lemma 3.

§3.3. We are now in a position to prove Lemma 4, another key step in the proof
of Theorem 2. We adopt throughout the notation and hypothesis of Lemma 3.

LEMMA 4. The Klein bottle group
H ={u,v;u*>=0v?
is a quotient of G.

In order to prove Lemma 4 we first prove that <{a,t;tat '=a~') is a
homomorphic image of G. To this end let N be a rational vector space with basis
{«}. We turn N into an A4-module by setting

a-t=—a.

There is an obvious module homomorphism y of M onto N obtained by first
mapping M onto a free cyclic summand of M and then mapping this summand
onto N. Now the composition of the canonical homomorphism of K into M with
y is a homomorphism, say u, of K into N such that N/Kyu is a torsion abelian group,
which means that Ku is non-zero. Now Ky, thought of as a Z[t, t ~']-module, is
finitely generated. It follows that Ky is infinite cyclic. The kernel L of u is invariant
under conjugation by ¢ and is therefore normal in G. The quotient group G/L can
be presented in the form G/L = (a, t; tat—' = a~'). It is easy then to see that G/L
is simply H with a different presentation — we need only put u =1, v =at.

§3.3. Finally we will need the following observation

LEMMA 5. Let G be a group given by a presentation of deficiency at least two
with m generators and n relators. Then every subgroup of G of finite index has a
presentation of deficiency at least two.

Let J be a subgroup of G of finite index j. It follows immediately from the
method of Reidemeister and Schreier that J can be presented on 1+ j(m — 1)
generators and defined in terms of these generators by jn relators (see e.g. M. Hall
[8]). The desired conclusion follows immediately.
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§4. The proof of Theorem 2

§4.1. Let G be a group given by a finite presentation of deficiency d > 1. Then,
by Lemma 4, G maps onto the Klein bottle group H. So, by Lemma 2 G has a
decomposition of dihedral type, i.e.

G=Ax*»-B

where C is of index two in both 4 and B. We now apply Theorem 1 to obtain a
non-trivial decomposition

G=A"+B

where A’, B’ and C’ are finitely generated. This decomposition is necessarily
proper. In order to see this suppose that C’ is of index two in both 4" and B’. Then,
by Lemma 2, G contains a subgroup S of index two containing C’ with S/C’ is
infinite cyclic. By Lemma 5, S has a presentation of deficiency at least two. Hence,
by Lemma 3, C’ is not finitely generated. This contradiction completes the proof of
Theorem 2.

§5. The proof of Theorem 3

§5.1. Let G be a finitely presented group satisfying the hypothesis of Theorem 3.
Then G maps onto the infinite dihedral group and so has a decomposition

G=Ax*-B
of dihedral type. So, by Theorem 1, G also has a non-trivial decomposition
G=A*B

in which both 4’ and B’ are finitely generated. Our objective is to prove that this
decomposition is proper. It suffices then, as in the proof of Theorem 2 in §4, to
prove that a normal subgroup K of G with G/K isomorphic to the infinite dihedral
group is not finitely generated. This follows from the following

LEMMA 6. Let S be a non-cyclic free solvable group of derived length three. If
T is a normal subgroup of S such that S|T is isomorphic to the infinite dihedral group,
then T, is not finitely generated.
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Proof. By definition
S = F[0,(F)

where F is an absolutely free group of rank at least two and 6,(F) is the third
derived group of F. In terms of this isomorphism, the normal subgroup T of S
corresponds to a normal subgroup D of F containing d,(F) with F/D isomorphic to
the infinite dihedral group. Hence there is a subgroup E of F containing D of index
2 in F with E/D infinite cyclic. It follows from the subgroup theorem for free groups
that D is a free group of infinite rank. Hence D,, = D/[D, D] is free abelian of
infinite rank. Now F/[D, D] is a solvable group of derived length at most 3. Hence

6,;(F) <[D, D).
This implies that
T/[T, T = D/[D, D]
and therefore completes the proof of the lemma.

This analysis does not work if one replaces the free solvable group of derived
length three by the free solvable group of derived length two, i.e. by the free
metabelian group. Indeed if S is the free metabelian group of rank two on x and y
and if T is the normal closure in S of x? and y?, then S/T is the infinite dihedral
group but T is generated by 5 elements.

§6. An example

§6.1. The content of Theorem 1 is that if a finitely presented group has a
non-trivial amalgamated product decomposition then it also has a non-trivial
decomposition in which the factors are finitely generated. It is not hard to show
that in this instance the amalgamated subgroup is necessarily finitely generated. Our
objective here is to give an example of a finitely presented amalgamated product in
which the factors are both finitely generated but not finitely presented, and the
amalgamated subgroup is also finitely generated but not finitely presented. To this
end, let

M=<a,st[s, ] =1,[a,a’l=1,a"=aa*).
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Then M is a finitely presented group in which gp(a, s) = (ad\{(s), the wreath
product of two infinite cyclic groups, is not finitely presented (G. Baumslag [4]). Put

G=M=x*{(v),

the free product of M and the infinite cyclic group on v and let u = tv. Then it is
not hard to see that if

A =gp(a,s,u), B=gp(a,s,v),
then
A =gp(a,s)*(u) and B =gp(a,s)*{v).
So neither 4 nor B is finitely presented. Next observe that
U =gp(a, 5, a*, s*) = gp(a, 5) » gp(a*, s*)
and
V =gp(a, s, (aa’)®, s°) = gp(a, s) * gp((aa’)®, s°).
So U and V are isomorphic. Let ¢ : U — V be the isomorphism defined by
¢:ara, s>, a*w (aa’)*, s4 1 s,

Then it follows without difficulty that G is an amalgamated product of 4 and B
where U and V are identified according to the isomorphism ¢:

G={A*B; U=V}

Now U is the free product of two copies of (a)\{s). So U is also finitely
generated but not finitely presented. Since G is patently finitely presented we have
concocted the desired example.
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