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A generalization of Nehari’s univalence criterion

BRAD OSGOOD AND DENNIS STOWE

This note is a sequel to our paper [OS] where we generalized the Schwarzian
derivative to conformal mappings of Riemannian manifolds. There we found that
many of the phenomena familiar from the classical theory have counterparts in the
more general setting. Here we advance this another step by giving a generalization
of the well known univalence criterion of Nehari [N]. Despite its relatively
advanced age, this result continues to generate interest, see [L]. The argument used
here in the general case, if specialized to the situation considered by Nehari, gives
a somewhat different and a more geometric proof of his theorem than is often
presented.

We want to keep this note short, since the proof of the Theorem is really quite
simple, and also fairly self-contained. We shall need a number of facts from our
earlier paper and we collect them here with very little additional discussion. We
refer the reader to that paper for more details.

1. Background

Let M be an n-dimensional Riemannian manifold, » > 2, with metric g and
Riemannian connection V. If § =e??g is a conformal metric we define a (0, 2),
symmetric, traceless tensor field

1
B(9) = B,(¢) =Hess(p) —dp ® dp —~ {4 — |grad o},

where Hess is the Hessian operator. Recall that Hess(p)(X, Y) = X(Yo) — (VxY)op
for a pair of vector fields X, Y. If f:(M,g)—>(M’,g") is a conformal local
difffomorphism between Riemannian manifolds with f*g’ =e%?g, ¢ =log|df],
then we define the Schwarzian tensor of f to be L(f) =L (f) =B, (). If fis
analytic on a domain in C with f” # 0 then, computing with respect to the Euclidean
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metric in standard coordinates, one finds

(D

«9’(f)=B(log|f”I)=[ ReS(f)  ~ImS(/ )],

—Im S(f) —ReS(f)

where S(f) = (f"If) — " /f")? is the usual Schwarzian derivative of an analytic
function.

By |#(f)| we mean the norm of &(f), with respect to g, as a bilinear form on
each tangent space, that is

|#(N = max{[F ()X, V)| | x| = Y] =1}. 2)
In the case of analytic functions and the Euclidean metric | (1) = |S(f)|, from
(1.

If B,(p) =0 then ¢ = e>*g is said to be a Mdbius metric (with respect to g). The
most general Mobius metric on R” conformal to the Euclidean metric has

@(x) = —log (a|x* + b - x + ¢), a,ceR, beR”, 3)

where b - x is the Euclidean inner product. These metrics have constant curvature
4ac — |b[*. In particular, the Poincaré metric

1
=

on the disk (Gaussian curvature —4, scalar curvature —8) and the spherical metric

2
T+ P

on R"uU {0} (sectional curvatures 1, scalar curvature n(n — 1)) are Mobius metrics.

The most important property of the tensor B,(¢) that we use here is the way it
changes when there is a conformal change in the metric g. Thus if § = e??g and if
o is any smooth function on M then

B, (¢ +0) = B,(¢) + By(0). (4)
This is entirely equivalent to the formula

Felhof) =f*Fy(h) + Fo(f) (4’
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for the composition of two conformal local diffeomorphisms (M, g) -
M, g") LN (M", g"). Equation (4)’ is a generalization of the well known classical
formula.

One consequence of this is that if f: (M, g) »(M’, g’) is conformal and if
g =e%g is a Mobius metric (here ¢ is not necessarily log ||df]) then
L (f)=F4(f). A second consequence that we need has to do with Mobius
metrics on the sphere, but before stating this we make one more general remark.
The substitution u = e~ converts the equations B(¢) = 0, B(¢) = p into the linear
equations

(a) Hess (u) = (fj;g)g

(b) Hess (u) + up = (ﬁng)g,

(3)

respectively. (Note that in the second equation p is a symmetric (0, 2) tensor field
of trace zero.) We let (M) be the space of solutions to (5a). If u € (M) with
u >0 then B(—logu) =0.

Let S” be the sphere and let g, denote the standard round metric. Using
stereographic coordinates we write g, as 4(1 + |x[?) ~|dx|* = e?*° (euc) on R" U {o0}.
Since, as mentioned, B(¢,) =0 with respect to the Euclidean metric, we find from
(3) and (4) that the general solution of B, (¢) =0 is of the form

2 .
Al |:|2B+ :‘+ C), A, CeR, BeR,

o(x) = —log(

in these coordinates, and a general u € %(S") is of the form

AXP+B-x+C
Ix|?+1 )

u(x) =

Then u ~2g, has curvature AC —|B[>. We see from this that if u ~2g, is flat then u
vanishes at precisely one point in R*U {c0} = S" and hence is otherwise of one sign.
This is the fact we shall use later and we state it as follows.

LEMMA. For each p € S" there is a u € U(S"™) such that u(p) =0, u >0 on
S™\{p} and u~?g, is flat.

We need one more formula. For a metric g on M let k = (n(n — 1)) ~! scal (g),
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where scal is the scalar curvature. If § = e**g and k is the corresponding quantity
then

fc=e—2w{k 240 "2 |grad <p1|2}. ©

2. Injectivity criterion.
We may now state

THEOREM. Let (M, g) be a Riemannian manifold of dimension n =2 and
f: (M, g) > (S", g,) a conformal local diffeomorphism. Suppose that the scalar curva-
ture of M is bounded above by n(n — 1)K for some K € R, and that any two points in
M can be joined by a geodesic of length <6 for some 0 < < c0. If

2n? 1
< -
7l <25 -1k

then f is injective.
Proof. Let ¢ =log |df]|, so that f*g, =e?*g = §. Let x € M, p = f(x) and choose

a function u € %(S”) which vanishes at p, which is otherwise positive and is such
that u ~2g, is flat. Define

w=(Uof)e *
on M. Then

w™2g = f*(u"go)
is a flat metric on M\ f~!(p). Using (4) we find that

By(—log w) = B,(¢ —log (u /) = B,(¢) + By(—log (u > f))
=S(f) +/*B, (—logu) =L(f)

Hence from (5b) we may write
Aw
Hess(w) = —wZ(f) +—n-g. @)

(Equation (7) holds on all of M.)
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Let k be (n(n — 1) ! times the scalar curvature of g. Since the metric w~2g is
flat, equation (6) gives

0=k ——%A(——log w) ———n—;—g |grad log w2

2 Aw rad w2

nw w

=k

The assumption on the scalar curvature then implies

2
.A_’.V_le{_KJrlg_’_a_‘_‘_zl"JL}. (9)
n 2 w

Now let y : [0,7) - M, | <, be a unit speed geodesic for g with p(0) = x. Write
w(?) for w evaluated along y. Then w(0) =0 and w(¢) > 0 for small positive . From
(7), (9) and the bound on || #(f))| we obtain, whenever w(f) > 0,

|
w" = Hess (W)(J, 7) = —w ()4, )+~

272 1 1 w\2
> —wl 20— — — - _
w(éz 'k +2w( K+(w))

We write this as

2
(W' > ——:SE-Z—W”Z. (10)

To summarize, w(0) =0, w(f) >0 for sufficiently small positive ¢+ and (10) holds
whenever w(f) >0. Since /<, the simplest Sturm comparison theorem (see
e.g. [BR, p. 23]) guarantees that w(¢) cannot vanish again. But then f(y(¢)), ¢ € (0, /)
cannot equal f(x) and the theorem is proved.

Remark. Observe that we have actually proved a more general statement, to the
effect that if the hypotheses are satisfied along a geodesic of length <¢ then f is
injective along that geodesic.
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3. Concluding remarks
We easily deduce Nehari’s original theorems as a corollary.

COROLLARY. (Nehari) If f is analytic and locally injective in |z| <1 and if
either

2
(@ |S(N@)| = a—_TZ'EQ, or

®) |S()| <%

then f is injective in |z| < 1.

Proof. In both cases we apply the Theorem with M the unit disk. For (b) we use
the Euclidean metric, for which 6 =2 and K=0. The condition is then
IS(N|| < =?/2, which is (b).

For (a) we use the Poincaré metric (1 — |z|?) ~!|dz|. Then é = 0 and K = —4
and the condition is |%(f)| < 2. To see that this translates to (a) we recall first
that the Poincaré metric on |z| <1 is a M&bius metric, so that the Schwarzian
tensor is the same in either the Poincaré or the Euclidean metric. Second, the norm
is with respect to the Poincaré metric, so if X is a unit tangent vector at z in the
Euclidean metric then (1 — |z|*)X is a unit vector in the Poincaré metric. Thus

1£(NH@) | = (1= zPHYS(f)2)],

and (a) follows at once.

Of course one can deduce other such criteria. For example, if we consider the
disk with the spherical metric 2(1 + |z|*) ~'|dz|, then 6 == and K = 1. Again since
this is a M6bius metric the condition | & (f)| < 3/2 translates to

6

IS(f)(2)| < a+iep

as a sufficient condition for injectivity. This is sharp, as shown by

4 , e >0.

i \2+ €
1@ =(1 +lz)

Nehari’s theorems are also sharp.
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We can also phrase these kinds of conditions differently by stating, for example,
that if either

IS()@)| < 2(:;—2- + 1)(1 —zP)-2  or
2
NOOIEPE

for |z| < 1 then f is injective in any disk D in |z| <1 of hyperbolic or Euclidean
diameter 6 respectively. Similarly, if Q is a convex domain with its Euclidean metric
then

S| S e

(diam Q)2
is a sufficient condition for injectivity. This is a sample. In his Stanford Thesis (in
progress) M. Chuaqui has shown how to derive all of the known univalence criteria
of this type from the general theorem.

Finally, we would like to offer one more proof of part (a) of Nehari’s original
theorem. It too is brief and uses an auxiliary function u € #(S?) provided by the
Lemma. But it is not a differential equations argument and it is unlike any other
proof of this result we know; in particular the constant 2 enters in a rather different
way. Although we have not yet been able to use this reasoning in a more general
setting, we feel it may be of independent interest.

Suppose, then, that f is analytic and locally injective in |z| <1 and satisfies

2
1S(N)2)| S a—}p?

there. Let z, be a point in the disk and choose u € #(S?) as in the Lemma with
u( f(z0)) =0 and u >0 elsewhere. Let D, = {|z| <r}, 0 <r <1 and denote by

2

P
g (f'2 — |Z|2)2 |d2|

the Poincaré metric for D,. Choose r < 1 so that z, € D, and consider the conformal
maps '

(D,.8,) (D, 8) > (53 u~2g,),

where i is the inclusion map.
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We follow the proof of the Theorem up to equation (8). Thus we define a flat
metric on D, \{z,} by

w g, = (f o i)*(u?g),

where we compute the conformal factor w to be

)
/

oo LEUE_r
w=Wofoli) A P—FF (11)

w is defined on D, and we want to show that it can vanish only at z,.

We have that &, (i) =0, whence by (4)" &, (f° i) =%, (f), and we may
write (7) as

Hess (w) = —wygl(f)+é2—”ig,. (12)

(In (12) Hess (w) and 4w are computed with respect to g,.) Equation (8) becomes
in this case,

—4w? — ||grad w2 +w 4w =0.

The argument now takes a different turn. At a critical point of w which is not
a zero we have Aw = 4w, so

Hess (W) = —w&, (f) + 2wg,. (13)

By hypothesis | &, (f)[,, <2 and it is easy to check that then |%, (f)|,, <2
Therefore Hess (w) is positive definite at such a critical point, and the point is a
local minimum. On the other hand w a positive except when it is zero, hence all
critical points are minima.

Now from (11), w —» oo as |z| >, so on a slightly smaller disk grad w gives an
outward pointing vector field along the boundary. Hence the sum of the indices of
the vector field grad w at the critical points in D, is 1, the Euler characteristic of a
closed disk. (see, e.g. [H]). But each critical point is a local minimum and so has
index 1. Therefore there is exactly one critical point, z,, the point where w vanishes.
We now let r = 1 and the result is proved.
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