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The monodromy of a series of hypersurface singularities

DIRK SIERSMA

Abstract. Let { f =0} be a hypersurface in C”* ! with a 1-dimensional singular set . We consider the
series of hypersurfaces { f + ex™ = 0} where x is a generic linear form.

We derive a formula, which relates the characteristic polynomials of the monodromies of f and
f+ex™. Other ingredients in this formula are the horizontal and the vertical monodromies of the
transversal (isolated) singularities on each branch of the singular set. We use polar curves and the
carrousel method in the proof.

The formula is a generalization of the Iomdin formula for the Milnor numbers:

u(f+ex™) = p,(f) — p, _ 1 (f) + Neg(2).

§1. Introduction

Let f:C"*!'—>C be a germ at 0 e C"*! of an analytic function. Let f have a
1-dimensional critical locus X~. We consider for each N € N the functions:

fn=f+ex¥ ¢eC

where x is an admissible linear form, which means that f~'(0) n{x =0} has an
isolated singularity. We call the series { fy} a linear series or Iomdin series of
hypersurface singularities.

An important invariant of a singularity is the Milnor fibration [Mi]: For ¢ >0
small enough there exists 7 > 0 such that

[:B.nfTI(Sy) S,

is a locally trivial fibre bundle. B, is the closed e-ball in C**!, S} is the circle with
radius n in C). A typical fibre F = f~'(n) N B, is called a Milnor fibre of f. Let

e (f) = dim Hk(F)-

If dim £ =1 then it is known (cf [KM]) that u,(f) =0if kK #n — 1, n. If f has an
isolated singularity then pu,(f) =0 if k #n, and u(f) = p,(f) is called the Milnor
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182 DIRK SIERSMA

number of f. Iomdin studied the Milnor numbers for the linear series fy = f + ex”
and related them to the non-isolated singularity f.

THEOREM [Iomdin] ([Io}, cf. also [Lé-5]). Let f: C**'—C have a 1-dimen-
sional critical locus ¥ and let x be an admissible linear form. There exists an N, such
that for all N > Nj:

1. fy has an isolated singularity for all ¢ € C, ¢ #0.

2. u(fy) = () — thy_ (f) + Neo(X) where ey(2) is the algebraic multiplicity

of 2 at Q

In this paper we study the monodromy of such a linear series in connection with
the mondromy of f.

A geometric monodromy is a diffeomorphism 4 : F — F, which is a characteristic
map for the Milnor fibration over the circle S}. It has the property that there exists
an diffeotopy H : F x [0, 2n] - B, nf~'(S]) such that:

S(H(x, 1)) =ne"

H(x, 0) = identity
H(x, 2rn) = h(x).

The induced map:
T:H,(F)—> Hu(F)

is called the algebraic monodromy.

We now consider the case of a 1-dimensional critical locus in more detail. As we
mentioned above: H,(F) =0 if k #n — 1, n. So the algebraic monodromy can only
act non trivially at the levels n-1 and n;

T | Hy(F) : H,(F) - H,(F)
T|H, (F):H, (F)—>H,_,(F)

For every irreducible branch X; of ~ we have on X, — {0} a local system of
transversal singularities: Take at any x € £, — {0} the germ of a generic transversal
section. This gives an isolated singularity, whose pu-constant class is well defined.
We denote a typical Milnor fibre of this transversal singularity by F;. The only
non-vanishing homology group is A,_,(F;). This is a special case of Deligne’s
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sheaf of vanishing cycles (cf. [De]). On the level of homology we have got in this
way a local system, which has two different monodromies:

(a) the vertical monodromy
A;: Hn—l(F;) “’Hn—l(F;)

which is the characteristic mapping of the local system over the punctured
disc Z; — {0}
(b) the horizontal monodromy

Ti : Hn—l(F;)_’Hn—l(Fli)

which is the Milnor fibration monodromy, when we restrict fto a transver-
sal slice through x € %,

Note that the two monodromies 4; and T; commute, since they are defined on
(2; —{0}) x S,

which is homotopy equivalent to a torus.

The two monodromies play an important role in the relation between the
monodromies of f and f}.

MAIN THEOREM. Let f:C'*'>C have a 1-dimensional critical locus
2 =X,u...0ZX, (irreducible components). Let x be an admissible linear form. Let
M[f1(A) be the alternating product of the characteristic polynomials of the
monodromy T of f in dimensions n and n — 1. Let M[f + ex™)(A) be the characteristic
polynomial of the monodromy of f + ex”™ in dimension n. Then for all N sufficiently
large N =2 N,

MLf+ €M) = ML) [] et — A,T),
l=1

where:

A H, (F))-H, (F}) vertical monodromy
T,:A, (F))-H,_,(F}) horizontal monodromy
d; = ey(Z7°%), the multiplicity of X7
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Remarks

1. m; = dy; where m; = ey(Z;) and y; =dim H,_,(F})

2. M[f)(A) =det(Al — T|H,(F)). [det(Al — T | H,_ (F))] '

3. M[f] is related to {,, the zeta function of the monodromy which is defined
as follows: {, (1) =11, {det(I — AT|HU(F))}~D"*" cf. A’Campo [Ac]

COROLLARY. The eigenvalues of the monodromy satisfy Steenbrink’s spectrum
conjecture [St] (2.2).

The spectrum of a singularity, which is defined in [S7] is a set of a real numbers
Sp(f). A spectrum number o € Sp(f) is via

'1 = e2m’a

related to the eigenvalues of the monodromy (including multiplicities). The multi-
valuedness of

1

2mi log 4

g =

is normalized with the Hodge filtration on the Milnor fibre. The semi simple part
of the monodromy respects the Hodge filtration and the level of the log 4.
Our main theorem can be written as

eZni[Spectrum conjecture]

As a general reference for hypersurface singularities we refer to the book of
Arnol’d-Guzein Zade-Varchenko [AGV].

The proof of the main theorem arose from a discussion with Jozef Steenbrink in
the train from Nancy to Maastricht.

Almost simultaneously M. Saito [Sa] announced a proof of Steenbrink’s spec-
trum conjecture. His proof appears to be completely different from ours and uses
the deep theory of Mixed Hodge Modules.

§2. The polar curve and the carrousel
We start with a summary about the polar filtration and the carrousel method.

For details we refer to [Lé-4].
Let f:C"*!'—>C be a germ of an analytic function. Let x : C"*! > C be an
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admissible linear form. After a change of coordinates we can assume that x is the
first coordinate in C"*!. We denote points in C**! by (x,y)) eCx C*=C"* !,

Let @ : C"+' 22, C x C. We denote the singular locus of @ by C. The polar
curve of f (relative to x) is the closed set:

r=cC\f(o.
The image of I' in C? is called the Cerf diagram A. Let ' =T, u---UT,
(decomposition in irreducible components) and 4 = 4, v - - -u 4, with F(I';) = 4,.

According to [Lé-1] the components of 4 are tangent to z =0 in C2. [We use (z, x)
as coordinates in the target].

Z A
4, ﬂ
i

v

X
The curves 4, have Puiseux expansions of the form
x=aqz"i+4" " with @, #0 r; € Q.
The numbers r,, ..., r, are called the polar ratios (of f at Q). Note that several

branches of 4 can have the same polar ratio. Now let p,, ..., p; be the different
polar ratios and assume

Pr>pP2>" > Py
Let A} be the first approximation of 4,, defined by
X =a,z}.

A! has the same polar ratio as 4;. With the help of the polar ratios one defines a
filtration by concentric discs in the x-plane

OcD,c---=D,
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such that {n} x (D;\D,_,) contains the intersections
4;,n{z=n} and 4} n{z =n}

for all branches with polar ratio p,.

Let F'=¢&~'(n,0) and F, = &~ '({n} x D,). The filtration:
F’CFlc...CFl

is called the polar filtration of the Milnor fibre F of f.

Lé constructed a geometric monodromy of f, which keeps the polar filtration
invariant. As mentioned in [Lé-4] the geometric monodromy can be constructed as
a carrousel. L€ used this construction to show that:

—there exists a geometric monodromy without fixed points [Lég-2],
—the algebraic monodromy is quasi-unipotent [Lé-4].

The construction of the geometric monodromy involves a vectorfield v on
S} x D which lifts the unit vectorfield on S}.

The x-component integrates in a first approximation to a rotation by an angle
2mp;; on DA\D;_, and to the identity on dD. Moreover the vectorfield is tangent to
the intersection of the Cerf diagram 4 with S} x D. Near the intersection points of
the approximated branch 4] :x =a;z"" one uses a similar construction, which
involves step by step also the next Puiseux pairs.

The geometric monodromy of F now is a lift by @ of the vectorfield. For more
details see the original papers. [Lé-2], [Lé-3] and [Lé-4].
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§3. The geometric monodromy
Let now as in the introduction f: C"*! - C have a 1-dimensional critical locus
2 and x be an admissible linear coordinate.
We want to compare the polar filtrations and the monodromy operators,
associated to fand to fy = f + ex”. We studied f already in §2, we now treat f. Let

Dy =(f+exV, x):C+!' o C2

&, has the same critical locus as @, namely C = {df/dy = 0}. This is no surprise
since the diffeomorphism

h:C?>-C?
defined by A(z, x) = (z + ex”, x) has the property
¢h = ¢N'

Next we consider the question when f}, has an isolated singularity. (cf. [Pe], p. 106).
Consider the composition

fNIC"+l——<’lv—* Cz-’-:)C
(w, x) > w.

Note that = is submersive, so we can restrict ourselves to the critical set C of ®,.
The condition we have to satisfy is:

image(d®, ) < Ker(dn) = {w =0}.

Outside the origin image (d¢, ) is the tangent space to @, (C). Since P(C) is given
by fractional power series z = f = a(x) we need for each branch

w=f+e"=ax)+exV=0.

This has a non-isolated solution at x = 0 only if a(x) is identical to —ex”. This is
a strong condition! A necessary condition is that the polar ratio of the branch is
1/N. Moreover if for a given n we have a(x) = —ex” then the number of e-solutions
is finite.
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Next assume N and ¢ are chosen such that f,, has an isolated singularity.
Observe that f and fy have almost the same polar curves I' and Iy, since
I'y=TIuUZ. As a consequence the Cerf diagram 4, of f, has one component more
than the Cerf diagram 4 of f. More precisely h maps 4 U {z =0} bijectively onto
4y. The extra component can be non reduced.

‘\Z=‘§ A Aw:fN AN

. fo —

xV

Remember that the polar ratios of fand p, >---> p,. Let now Ny=1/p,. If
N 2 N, then p, has polar ratios p, > -->p, 2 1/N. N.B. If N <N, the polar
ratio’s become max{p;, 1/N}. We have the following propositions:

PROPOSITION. Let N 2 N,,. There is amap g : F - F" from a representative of
the Milnor fibre F of f into the Milnor fibre F" of fy which induces a diffeomorphism
on the polar filtrations up to level I

F,CFICcm"'CFl=F
" LR I

FcFYcFYc---cF)cFV

So f and fx have the same polar filtration, except fy has one level more.

Proof. We take a representative of the map germ
(f+exM,x,€):C*!'xC>CxCxC.

We use polydisc neighborhoods; let D be the corresponding disc in the x-coordinate
plane. We take an admissible ¢ > 0 and choose next n > 0 such that the solutions
of x¥ = n/e¢ are contained in D. We put the information for ¢ =0 and ¢ # 0 in one
picture.
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AZ

We use the filtration 0 = D, < - - - = D, (associated to f) to define the first / steps
in the polar filtrations of both f and f,. For the Milnor fibres we have:

F=90"'[{z=n}nx"(D))]
FN=¢""{z+ex"=n}nx"1(D))]

and for the polar filtrations

FF=0""{z=n}nx"'D)] j=1,...,1
FY=¢""{z+ex"=n}nx"'(D;)] j=1,...,1L

We next use ¢ as a parameter, and we lift the isotopy

{z=n}ox"'(D) »{z+ex"=n}nx"1(D))
with the help of the Thom isotopy-lemma to a diffeomorphism

h:F,—>FV
which induces diffeomorphisms on each level

h|F,:F,—»FV.

Remark. We can make the construction and the arguments finer such that also
the whole carrousels of F, and F} are diffeomorphic. Since the carrousel in
connection with the Puiseux data determine a geometric monodromy it follows that

F; and F}) have the same carrousel monodromy.

Remark. From now on we use 4 to identify F}Y = F.
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Next we want to complete the monodromy over D\D,.

For f we make the x-component of the carrousel such that it becomes the
identity on D\D, except near 0D,, where we interpolate it with the rotation on
D\D,_,. This has the advantage that over D\D, the geometric monodromy
preserves the x-coordinate.

Moreover this monodromy extends from S;, x (D\D,) over D, x (D\D,) and
gives rise to a geometric monodromy T of @.

For f, we have one extra level in the polar filtration. The Cerf-diagram has the
extra branch

which has exactly N intersection points with the Milnor fibre {fy =n}.

These points are of the form x; = x, e>™* N (k =1,...,N), where x, is one
intersection point. They all have the same absolute value and are contained in
D\D,.

The x-component of the carrousel for f, is a rotation by 2n/N on D\D,.

Let S be the diffeomorphism FM\F — FM\F which integrates a lift of the
x-component of the carrousel vector field.

CLAIM. The geometric local (relative) monodromy on F\F, is just T - S.

Proof. Let S, be the integral of the lifted x-component over the interval [0, 7],
and T, be similar for the z-component.

S2n = S’ T2n = T,

S, preserves the levels f = c; T, preserves the x-coordinate.
So

T]Sl{f+ st} = Tt {f+ ste“} =feit + steit = (f+ st)ei,

which tells us that TS is the monodromy of f on FM\F.

§4. The algebraic monodromy

Next we study the algebraic monodromy.
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Let x,, ..., xy be the intersection points of z + ex” =n with z =0. At these
points the projection

g:® | FM\F-D\D,
fails to be a submersion. Around x,, . .., x5 we choose small discs 4,, ..., Ay and

points a,,...,ay on 0A4,,...,0Ay.
By deformation retraction and excision we have

Hy(F* F)= @ Hu(g™'(40), g (A)).

Before doing more excision we remember that the projections
®|Z,:Z,-{z=0}

are branched coverings of topological degree d;.

So each a, has d; preimages under this map. Let {b,,,...,b;n;} be the
preimages of a,,...,a,,...,ay numbered in such a way that

D(b; 1) = xmoany Where 1 < k(modN) < N and k(modN) =k modN.

Next we choose E, , as a Milnor ball and F; , =g~ '(4;) " E, , as Milnor fibre of
the isolated singularity g : (FM\F}, b, ) = (C, Gimoan)). Further deformation and
excision gives us

r Nd; r

d, Nd;
Hq(FN: F;V) = '@l k@l Hq(Ei,k’ Fi,k) = i@l k@l ﬁq— I(E,k)'

These local Milnor fibres F; , are nothing other than the Milnor fibre of the
transversal singularity on Z,, taken at the point b, ,.
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They are all isomorphic with a typical fibre F;. Later on this isomorphism will
be important; for now:

H(F*, F) = @ [, (F )™

Note also that only non vanishing dimension is ¢ = N.

Let T, : H,(FN, F) - H,(F", F) denote the induced action of the geometric
monodromy on H,(F", F). We call it the relative monodromy.

The definitions, the excisions and the deformations from above, can be made
compatible with the actions of § and T. We suppose we have done so. The
construction of S was related to the cyclic permutation:

XXy = Xy 2 X,

and we can assume the same permutation on
a,—a,— - -—ay—a,.

In the same way S permutes the g = '(4,). k=1,..., N

We split H,(F", F) according to the branches X,,...,Z,. From the above
arguments, it follows that T, acts diagonal on this decomposition

HE P =@ | 8 A, |

i=1

So we can treat each branch separately. Since X, is irreducible and the branched
covering

2, ={z=0}

has degree d;, the induced action of S is also a full cyclic permutation of
{bi1s...,b; na}. We assume that we numbered our b, ; such that

b, = b; - '_’bi,Ndf"’bi, 1
So S induces permutations:

Ei,x“’Ei,z‘*' "Ly Na, - E;
F,,»F,> > i,Nd,.“’Fi,l-

Note also that T preserves the x-coordinate and can be assumed to be the
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identity outside a neighborhood of the polar curve, more precisely on:

g—l(Ak)\U U E v

k" i=1,..r

with k’(modN) = k. We denote the resulting actions on the homology as follows:

T, : Hn—l(Fi,k)‘*ﬁn-l(Fi,k)
Si,k :Hn—l(Fi.k)—’Hn—l(E,k-l—l)'

The description of the monodromy in the block decomposition

6‘5 Hn—l(Fi,k)
k=1

is as follows:

0 0 0 0 S, v, Ti, na, |
ST, 0 0
0 S..T,, O
0
0 0 S.T 0
LEMMA.
(Si,va, Tiva) * - " (8;,2T52) - (81 T3 o) = A, (T;)

where A, = H(F, ) —-»ﬁ(F,., ,) is the vertical monodromy of the transversal local
system and T,=T,,: H— H(F, ) is the horizontal monodromy of a transversal

section.
Proof. This is clear since @ is a submersion over the torus
x| =lay|, || = n.

Moreover:

Ai=Ai,1=Si,Nd,»'Si,z'Si,l-



194 DIRK SIERSMA

LEMMA. Let
0 0 0 B,
B, 0 0
S
o P

a m x m matrix consisting of blocks of size v x v, then
det(AI — B) =det(A"I[ — B, - ... B,).

Proof. As shown to me by Rob Schrauwen, the proof is an elementary exercise
in block matrix computation.

COROLLARY. The characteristic polynomial of the monodromy on
4N
@ Hn — 1(F i, k)
k=1
is equal to:
det[AN4T — A,(T;)N).
We have shown:

PROPOSITION. For the relative monodromy we have:

det(Af — T,y) = [] det[ANI — A,(T,)™4.

i=1

As a last step in the proof of the main theorem, we consider the action of the
monodromy T on the long exact sequence of the pair (FV, F):

0~ Hy(F) = Hy(F%) — Hy(F™, F) = H, _(F) >0
Ir 17w [T |7
0> H,(F) » H,(F™) = Hy(F™, F) » H, _(F) =0.
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It follows that:
M[fy)(A) =det(A] — Ty) = M[f1(A) - det(A] — T )

= M[f]() - [] det[ANT — A,(T;)™]

i=1

(since M] f1(A) is the quotient: det(@ — T | H,(F)) )

det(AI-T | H,_ ,(F))

EXAMPLE. Consider the case that fis homogeneous of degree d. Notice that:

*d; =1 for all i.
* the only polar ratio is 1/d,

» the horizontal and vertical algebraic monodromies are related by 4, = T
(cf. [St])

So if N =d the formula of the main theorem reduces to

MLf +ex™() = MUAIA) - [] det(VT — TV -9).

i=1

If N =d it follows that

MLf +ex?1(8) = MLFIR) - [ (9= D™

i=1

Observe that f + ex“ is homogeneous of degree d. For almost all ¢ it has an isolated
singularity and its monodromy depends only on the degree d:

M[f+ex?)A) = M7(A),

which is described in detail in [Mi], p. 71. We have now an expression for M[ (]!
After substitution we find: (N 2 d):

reg \ r
M) [ detA 1 — TN =)

M[f+8xN](/l) =m.i=l

which is similar to the formula in [Ste].
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So it is possible to compute M[f+ ex”] if we know the degree d and the
eigenvalues of the vertical algebraic monodromies. For the Milnor numbers it
follows that:

u(f+ex)=(d—1)"+Z(N — d)p,.

Remark. Linear series f + ex” as studied by Yomdin, sometimes correspond to
the series in Arnol’d’s lists of singularities:

Ay_1:y*+ex?V

. 2N
Dy xy<x™.

But in other cases one does not get the full series; examples are:

Yr,s: x2y2+xr+4+ys+4

{

WEy 1t (PP—=x)+x*ty  g21
Wk, @+ (P=x)2+x>*9y g=1-

This especially occurs when the multiplicity of X is different from one.

Schrauwen [Sch] gave in the case of a plane curve a definition of a topological
series of singularities and derived [in the case of transversal type 4,] a formula for
the monodromy in such a series, which is similar to our main formula.
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