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Polynomial algebras over the Steenrod algebra

H. E. A. CAMPBELL and P. S. SELICK

0. Introduction

The most significant recent developments in homotopy theory have been the
proofs of the Segal Conjecture and Sullivan Conjecture by G. Carlsson [C] and H.
Miller [M] respectively. A key step in the proof of each of these theorems was a
splitting, first proved by Carlsson in the case p =2, which Miller observed is
equivalent to the statement that H, the mod p cohomology of B(Z/pZ), is injective
in the category # of unstable modules over the mod p Steenrod algebra. This was
later generalized by J. Lannes and S. Zarati [LZ], who showed that in this category,
I injective implies that / ® H is injective. Thus H ®* is injective in % for each s. Then
J. Lannes and L. Schwartz [LS] showed that the collection of indecomposable
injectives in 4% consists of all modules of the form J(n) ® Q, where Q is an
indecomposable summand of H®*, and J(n) is one of the modules described in
Section 2.

J. Harris, N. Kuhn, S. Mitchell, and S. Priddy have studied the problem of
finding a stable decomposition of the classifying space BG of a finite group G. The
case G = (Z/pZ)* was solved by Harris and Kuhn [HK] who gave a method for
finding the indecomposable summands and showed that such decompositions
correspond to decompositions of H®* in %.

In theory the results of Lannes and Schwartz combined with those of Harris
and Kuhn give a classification of the indecomposable # -injectives, although it is
impractical to carry out the computations involved in the Harris— Kuhn method for
s greater than 4 or 5. One of the purposes of this paper is to give a common
framework for consideration of both the injectivity of H®* and its decomposition.

The bulk of this paper deals with the case p = 2. The modifications required for
odd primes are considered in Section 3. Let 4 denote the mod 2 Steenrod algebra.
In Section 1 we consider the A4-algebra F,[x,, X, . .., x,_,] with the twisted action
given by Sg'x;=x?_, for j>0, and Sq'x,=x2_,. Somewhat surprisingly this
A-algebra turns out to be isomorphic as an A-module to F,[t, ¢, ..., _,]
with the standard action. By means of this redescription of the A-module
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172 H. E. A. CAMPBELL AND P. S. SELICK

H® > F,ty, t,,...,1t,_,] we give a splitting theorem which simultaneously demon-
strates the injectivity of H®* while producing 4-module decompositions of it. We
do not obtain a complete decomposition of H®* into indecomposable summands,
but from certain points of view our summands, although further decomposable, are
more interesting than the indecomposable summands. At least they are relatively
straightforward to describe. Initially we find 2°* — 1 summands of H®* labelled
M, 0),...,M, (2, —2). M,(0) is an A-algebra which can be described as the
invariants of H®* under an action of the group Z/(2° — 1)Z. The decomposition gives
H® the structure of an augmented graded M,(0)-algebra. According to W. Henn
and L. Schwartz [HS] the indecomposable summands of H®* are A-algebras only
in a few isolated cases. The splitting theorem mentioned above can be applied to give
a further decomposition of the modules M,(n), although not into indecomposable
pieces. Our methods also exhibit the injective modules K(n) used by Carlsson, Miller,
and Lannes—Zarati (see Section 2) as direct limits of modules M, (n).

One of the interesting facets of the proof that H®* is isomorphic to
F,lxo, X1, - - ., X, _ ;] with the twisted action is that it takes place over F,., although
the statement is over F,. In fact after tensoring with F,,, the two sides become
isomorphic not just as 4-modules but as A4-algebras. Lannes and Zarati define an
unstable p-A4-algebra to be an A-algebra, unstable as an 4-module, together with
a map p such that Sghlx = p(x)? = (px)2. Our polynomial algebra with twisted
action is thus an unstable p-A4-algebra. However the initially mysterious p becomes
much more natural when one passes to [F,,-coefficients—it becomes the inverse of
the Frobenius automorphism.

The authors would like to give special thanks to Bill Singer, whose unique
insights led him to suggest to us that we study the twisted action described above.
Also we would like to thank Ian Hughes and Joe Repka for helpful conversations
concerning this work. Additionally we would like to thank John Harris and Tom
Hunter for their comments and suggestions on preliminary versions of the
manuscript.

Added in proof

Since the first draft of this paper was submitted, J. Harris, T. Hunter, and J.
Shank have applied and expanded upon the ideas in this paper. The reader is
referred to [HHS], [H], and [S] for details.

1. A twisted Steenrod action on polynomial algebras

Let ¢(a) = a? denote the Frobenius automorphism of F,,. It is a generator of the
Galois group Gal (F,/F,). Extend ¢ to an automorphism of the polynomial algebra
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Faslto, t1, . . ., 8, 1] by setting its restriction to F,[t,, t,, . .., t,_,] to be the identity.
By the primitive normal basis theorem (see Davenport [D)) it is possible to choose
an element w € F, so that w generates the cyclic multiplicative group of units
in F,, and {w, ¢(w),...,¢* (w)} forms a basis for F,, over F,. Let
p(x)=ay+ax+---+a,_;x*~ '+ x? be the minimum polynomial of w. Let

(000 --- 0 gq)
1 0---0 a
T={01--0 a
6 0 et i as._l

be the s xs matrix over [, representing multiplication by w in the basis
{l,w,...,w* '}. Since w is a generator of F%, we see that T has order 2°—1 in
Gl,(F,). Let L denote the linear subspace of Fy[ty,#;,...,¢,_;]. Regard T as a
linear transformation on L using {t,?,...,t,_,} as basis. Extend this map
multiplicatively to a self-map of F,[¢,, ¢,, . . ., t,_,]. Since the characteristic polyno-
mial of T is p(x), @ becomes an eigenvalue of T over F,,. Let x, € L be a nonzero
eigenvector corresponding to the eigenvalue w. Set x; = ¢’x, for j=0,1,...,5 — 1.
The entries of T lie in F, so T commutes with ¢. Therefore Tx; = w? x;. So
{X0> X15...,X,_1} is a basis for L consisting of eigenvectors of 7. Extending
multiplicatively the map taking one basis for L to the other given an isomorphism
of polynomial algebras

B :Fyty, 1y ...t 1] = Foslxe, X15 -+ -5 X1

Define an A-algebra structure on F,[z,, #,, . . ., t,_,] by regarding it as H*((Z/22)",
F,). Extend the action to F, [t,, ?,,...,t,_,] by requiring that the action of
each element of A be Fy-linear. Next define an A-algebra structure on
Fos[xo, X4, ...,x,_,] by means of the isomorphism B. In this way
Folto, t1y .- -5t 1] = Fylxo, Xy, ..., X,_,] becomes an A-algebra which is unstable
as an A-module. Observe that the action of each element of A4 on
Falto, ty, . . ., t,_ ;] commutes with both ¢ and with multiplication by w which are
thus each 4-module homomorphisms. Also observe that if x belongs to L then
Sq'¢x =x% So Sq'x; =x}_, for j=0,1,...,5s —1, where we conventionally let
x; = x; when j = j’ (mod s). In particular F,[x,, x;, . .., x;_,] is a sub-A-algebra of
Faslxo, X1 ..oy X5 1]

THEOREM 1. F,[xg, x;, ..., %X, 1] = Falte, 1, ..., t,_1] as A modules.
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Proof. Define A : Fylty, ty,...,t,_11 =2 Falte, ty,...,1,_1] by A(x) =tr(wx) =
wx + ¢(wx) + - - - + ¢*~ '(wx). By earlier observations, 4 is an 4-module homo-
morphism. Since ¢(Ax) = Ax, Ax is invariant under the action of Gal (F,,/F,) on
Faolto, tys- -5 t,_1). SoIm A = Fy[¢, ¢4, ..., _ ] Define 0 to be the composite

B-1 A
Falxo, - - - xs1] & Falxo, ..., x, 1] — Falto, .. ., 8,11 = Faltg, ..., 8, 4]

Since {w, ¢(w), . . ., ¢*~ Y(w)} forms a basis for F,, over F,, 6 is a monomorphism.
However the Euler—Poincaré series of the two sides are identical, so this implies
that 0 is an isomorphism. The inverse to 6 can be described explicitly as follows.
For x eF,fty, t),...,t,_,], write B(x) =wq, + ¢(w)q, + - + ¢*~ (w)q,, with
g; in Fy[xo, x,,...,x,_,], and set Y(x) = ¢q,. The fact that x is invariant under
the action of Gal(F,/F,) on Fylto,t),...,¢_,] shows that ¢;=¢'~'(q,) so
B(x) =tr (wgq,). Thus ¢ =0, O

Tom Hunter has asked the following related question. Let M be a matrix
representing an element of End (L). For x € L, set Sq'x = (Mx)?2. Does this yield
an action of the Steenrod algebra on F,[x,, x;,...,x,_;]), and if so, is the
resulting action isomorphic to the standard one (coming from the identity) in the
case where M is invertible? Using the preceding theorem and change of basis it is
easy to see that this is true if M is conjugate to a permutation matrix. Joe Repka
has shown us that if M is invertible then there exists N such that M ® N is
conjugate to a permutation matrix. This can be used to show that we do get an
action of the Steenrod algebra in this case, but we do not know if it is isomorphic
to the standard one.

2. A-module splittings and injectivity of polynomial algebras

In this section we prove the splitting theorem referred to in the introduction.
We begin by recalling some of the history and setting notation.

Let % be the category of unstable left 4-modules with degree raising action
and let %, be the category of unstable right A-modules (or equivalently left
A°PP-modules) with degree lowering action. Let G(n) be the free # ,-object gener-
ated by 1, in degre¢ n. Thus Homg, (G(n), M) = M,.. Let J(n) = G(n)* in %. Let
J=@,:0J(n). If i +j=n, define G(n) »G(i) ® G(j) by sending 1, to 1, @,
Dualizing gives maps J(i) @ J(j) = J(i +j) which turn J into an A-algebra which
is unstable as an 4-module.
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THEOREM 2 (Miller). J = F,[{x;},.,] with x; € J(?) and

2 . .
o _§xi- ¥i>0
SQx,-—{O ifj=0 d

Define G(n) - G(2n) by sending 1, to Sq}1,,. Let

G, =—h—?»G(n)-vG(2n)—o- 5 G(2kn) - -

So G, = G,,. For 0 <n=m/(2) € Z[}] define G, =G,,, and set G, =0 for n <0.
Let K(n) = G*. For all n € Z[3), G, is projective in % « 50 K(n) is injective in #. Let
K =@,z K(n). The maps G(i +j) - G(i) ® G(j) induce maps G,,,—G,®G,
for i and j in Z[3]. Dualizing gives maps K(i) ® K(j) = K(i + j) which turn KX into
an A-algebra which unstable as an 4-module.

THEOREM 3 (Lannes-Zarati). K = F,[{x;};cz] with x; € K(?) and Sq'x; =
x}_, for all j. O

To define the maps used in our splittings it is convenient to enlarge the algebra
K to an algebra M which we now describe.

Define the weight w(m)eZ[i] of a monomial m in K by w(x;) =2 and
w(yz) = w(y) + w(z). So w(m) = if and only if m € K(}).

For n 2 0 in Z let a(n) be the number of 1’s in the diadic expansion of n. Noting
that a(n) = a(2n), extend the domain of « to Z[}] by setting a(m/(2")) = a(m).
Observe that K"(j) =0 unless a(j) <n. Let

M= T1 KWU),

jezth

where the product is taken in #. Define an algebra structure on M as follows.

MAIM=@ MIM)"= @ (M"QM9),
nel pgel
so to describe u: M @ M - M we must define u”(j): M?@ M?— K?*9(j) for
each p,q € Z and j € Z[}]. Let u”9(j) be the map induced from the bilinear map
MP x M?— K?*+9(j) taking ((@,); ezt (B)cczih) t0 X, ;0,b,, where a, € K?(s)
and b, € K%¢). This makes sense because although (a,), ¢ ziy and (b,), ¢ z4) may have
infinitely many nonzero terms, the sum X, ,_ ;jasb, is finite. This is because for
given p, ¢, and j there are only finitely many pairs s, ¢ € Z[}] such that s + ¢ = j and
a(s) < p, a(f) < q. Thus M becomes an A4-algebra which is unstable as an 4-module.
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Where convenient we will use the following alternate notations.

= =

M ={F2[x0,x,,...,x,_,] if s < o0 - ={llfz[xo,x,,...,x,‘,] if s < o0
M ifs=0" ° |K if s =00’

where the Steenrod action on F,[x,, x;,..., x,_,] is the twisted one described in

Section 1. We also set M_ (/) = K(j), and write X, _ zth @, for (a,),c 74y in M.

For s < o0 let G be Z/(2° — 1)Z. Define weight w(m) € G for monomials m in M,
by w(x;) =2 and w(yz) = w(y) + w(z). Let M, () be the subspace of M, having the
monomials of weight j as basis. Observe that Sqg' and thus all Steenrod operations
preserve weight. So M,(j) is an A-module for each jand M,(0) is an 4-algebra. The
vector space decomposition M, = @ ;. ¢ M, () is thus a decomposition of M, as
A-modules and exhibits an augmented graded M, (0)-algebra structure on M,. The
map sending x; to x;, , induces 4-module isomorphisms M, (k) = M (2k) for all k.
Returning to the original description of the x;’s as eigenvectors of the matrix T in
Section 1 shows that after tensoring with [, this decomposition becomes the
decomposition of F,.[z, t,,...,t,_,] into eigenspaces of T. In particular M (0) is
the algebra of invariants of F,[t,, ¢, ..., t,_,] under the group G acting by means
of T. This allows M, (0) to be described without reference to the isomorphism of H®*
with M,. The algebra M (0) also appears in one of Carlsson’s papers [C1]. Although
the descriptions of the summands differs considerably, the above decomposition of
H®* =~ M, bears a strong resemblance to one obtained by C. Witten [W] and it would
not surprise us to learn that they were isomorphic. We have not attempted to verify
this however*. M, (0) can also be described as the cohomology of a group as follows.
Let G act on the additive group F,. by letting the generator act as multiplication by
w and form the semidirect product F,,x G. In general, if N is a normal subgroup of
a group Q with |Q/N]| relatively prime to p, then H*(Q; F,) = H*(N; F,)2™. (cf.
[CE, pages 257-258].) Applying this to the inclusion F,, < F,,x G gives
H*(Fyx G; F,) = H*(F,,; F,)°. However as an additive group F,, = (Z/2Z)*, so

H*(Fux G ) = Fyltg, 1y, .. ., t,_1]19 = M,(0).

We will now define the maps used to produce our the splittings.
For s < o0, let s” = Is where I < co. The algebra homomorphism f ;. : M, - M,
is defined by defining it on the polynomial generators by

f:v,s’ (xj) = Z Xns
{n € P|n=jmod s)}

* Added in proof. John Harris [H] has subsequently checked that the decompositions are equivalent.
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where P =7 if s’=00 and P =2Z/s’Z if s’ < co. Since f,, commutes with Sg' on

generators, f . is an A-algebra homomorphism. For each j € Z, let f . () denote
the composite 4-module homomorphism

S5 n
M.(J) & M, = M, — M,()),
where 7; is the projection onto the jth component. Define an A -algebra homomor-
phism y, ;. : K. — M by defining it on polynomial generators by y,.(x;) = x;. Let

75+ (J) denote the composite 4-module homomorphism

M,(j) =K, (j) o K, =5 M, =5 M,(j).

Let M,(j) be the supspace of elements of degree greater than zero in M (). Thus
M, ())=M,(j) for 1 <j<2°—1 and M,(2° - 1) = M,(0), the augmentation ideal
in M, (0).

THEOREM 4. The composite y,.(j) of,s(J) is the identity on M.(j) for
1<j<2°—1.

Proof. Monomials x}" will be called atoms. Every monomial in M, has a unique
expression as a product of distinct atoms. Define t : M, - M, by extending linearly
the map defined on monomials by =(x?'- - x*)=x; ., ~* X +,, When the
monomial is written as a product of distinct atoms.

LEMMA 5.

(1) t(xy) =t(x)r(y) if no monomial in x has an atom in common with any
monomial in y.

(2) For a monomial m, w(tm) = w(m).

(3) m;(tx) = t(m;(x)) for all j.

(4) f,s(1x) = 1(f, - (x)).

(5) V55 (tx) = 1(p, (X)) if for each monomial in x the images under y, . of the
distinct atoms comprising that monomial are distinct.

(6) fo.s (J)(zx) = ([0 (J)x)) for all j.

(7) If x is as in (5), 75,0 ())x) = ©(35,5 ()))) for all j.

(8) 75,50(J) o fss (N(EX) = ©(y,,0 (J) © fo.s (JUX)) for all j.

Proof. Properties 1, 2, and 5 follow directly from the definitions. Property 3
follows from 2. To prove 4, notice that if monomials y and z have no common
atoms then neither do f; . (») and f, (). So 4 can be checked on monomials by use
of Property 1 and induction on the number of atoms in the decomposition into a
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product of distinct atoms. Properties 6 and 7 follow from 3 and from 4 or §
respectively and Property 8 follows from 6 and 7. O

Let m be a monomial in M (j). From the definitions, y,.(j) takes each
monomial in f,.(j)(m) back to m. So y,.()) o f,+(j)(m) =e¢,m where ¢, €F,.
We must show ¢, = 1. Applying t and Property 8 of the Lemma gives ¢,,, =¢,,.
Thus repeated application of t reduces the problem to showing ¢, =1 when
m=x; ---x;, with distinct i;’s. Let m=x, ---Xx; be such a monomial. Then
j=w(m)=214224--4 2% (mod 2> — 1). The i,’s are distinct and 0 < i, <5 — 1
forallg,so 1 <21 4224+ 42% <2042V 4... 4271 =2°— 1. Since we chose j
to be the representative of the congruence class within the range 1 <j <2°—1,
204224 .- 42k =]

Case 1. s" < ©

Monomials in f,(j)(m) have the form x; ---x;, with ii =i, (modys)
and 2i42%4.--42%=j (mod2*—1). Write j =2i42%4 - -42k=j
(mod 2* —1). The i,’s are distinct since their reductions mods are, and
0 <i, <s"—1 for all g, so as above we conclude that 1 <’ <2 — 1. Since we also
have 1 <j<2°—1<2"—1, the congruence forces j =j’. So the above sums are
binary expansions of j =" and so i, =i, for all ¢q. So there is a unique such
monomial. Thus £, ;.(j)(m) has only one term when m has this form, and therefore
e, = 1.

Case 2. 8" =

As above, monomials in f; ,.(j)(m) have the form x;; - - - x;, with i} =i, (mod s),
but this time the equality 2% + 2% 4 - - - 4+ 2% =j is in Z[3], or equivalently in Z since
both sides are integral. As above, the i, ’s are distinct, so the sum is the binary
expansion of j. Therefore i, =i, for all g. So again there is a unique such monomial
which is the only term in f, ;.(j)(m). Therefore e,, = 1. a

COROLLARY 6. M,(j) is injective in ¥ for all j and s. O
Partially order the positive integers by defining s <s’ if s divides s’.
THEOREM 7. For integral n, K(n) is the direct limit of the modules M (n) under

the maps f, ..

Proof. Since the maps in the direct system are injections compatible with the
injections f, ., it suffices to show that the induced map from the direct limit to K(n)
is surjective. But it is clear that f; . (n)(x;, - - - x;,) contains only the term x; - - - x;
when s is sufficiently large. O
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Remark. Interpreted properly, the statement and proof of the preceding
theorem make sense for any n € Z[3].

Example. Consider the case s =2. In this case the work of Harris, Kuhn,
Mitchell, and Priddy yields the complete stable decomposition

B(Z)2Z x Z)27) = (BA)o, v B(Z/2Z) v B(Z/2Z) v L(2) v L(2),

where A, is the alternating group on 4 symbols and L(2) is a quotient of symmetric
product spectra. Our methods give H® H = M,(0) ® M,(1) ® M,(2) with
M,(1) = M,(2). However by Theorem 4, M,(1) =~ M,(1) @ L for some L, and of
course M,(0) =~ F, ® M,(0). So we obtain the complete decomposition in this case.

Added in proof

Example. Consider s = 3. Our basic decomposition gives
HQHQH =M;=M;(0)®M;(1) ®M;(2) ®M;(3) D M;(4) ©M;(5) D M,(6)

where M,(1) =~ M;(2) = M,(4) and M;(3) = M,(6) =~ M,(5). Theorem 4 can be
used to split the summand M,(1) off of M;(1). To proceed further one must
consider compositions of our maps going from M, to M, through M, and back.
The complete decomposition will not be obtained however. The case s = 3 has been
examined in detail in the work of Harris, Hunter, and Shank ((HHS], [S]).

3. Extension to odd primes

Let p be an odd prime. Write H*(B(Z/pZ)*; F,) as the free graded commutative
algebra on generators {ug, #,,...,u,_,}U{ty, t;,...,t_,} having degrees 1 and 2
respectively with Bu, =t,. Replacing 2 with p, define ¢, w, T, and the new basis
{x0, X1, ..., x,_,} for the linear subspace of F,[t,, t;,...,%_,] as in Section 1.
Define a new basis {y,, yi,...,y,_} for H(B(Z/pZ)*; F,;) so that By; = x;. The
definitions of the maps B and A and the proof of Theorem 1 proceed as before.

The results of Section 2 also carry over to odd primes in a straightforward way.
This time K is the free graded commutative algebra on {y;};c 2V {x;};cz Where y;
lies in K'(2p’) and x; lies in K*(2p’). The Steenrod algebra action is described by
By, =x; and P'x;=x?_,. Since K(j) =0 if j is odd we find it convenient to set
M(j) = K(2j) and assign weights by w(x;) = w(y;) = p’. Otherwise we define M, as
before for s < o0. For s < oo weights are treated modulo p* — 1. The maps f, ;. and
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7., are defined as before and extended to the y’s by the same formulas. With the
obvious replacements, the proof of Theorem 4 now carries over to the odd prime

case.
REFERENCES
[C] CARLSSON, G., G. B. Segal’s Burnside ring conjecture for (Z/2)%, Top 22 (1983), 83-103.

[C1]
[CE]

[D]
(Da]

[H]
[HHS]

[HK]
(HS]
(LS]
[LZ]
M]
[MP]
(8]

(W]

CARLSSON, G., Some restrictions on finite groups acting freely on (S™)*, TAMS 64 (1981),
449-457.

CARTAN, H. and EILENBERG, S., Homological algebra, Princeton Math. Series 19, Princeton
Univ. Press (1956).

DAVENPORT, H., Bases for finite fields, J. London Math. Soc. 43 (1968), 21-39.

DAvis, D., A family of unstable Steenrod-modules which includes those of G. Carlsson, J. Pure
and Appl. Alg. 35 (1985), 253-267.

HARRIS, J., On certain stable wedge summands of B(Z/p)", , (preprint, 1989).

HARRIS, J. HUNTER, T. and SHANK, J., Steenrod Algebra module maps from H*(B(Z/p)™) to
H*(B(Z/p)*), (preprint, 1989).

HARRIS, J. and KUHN, N., Stable decompositions of classifying spaces of finite abelian p-groups,
Math. Proc. Camb. Phil. Soc. 103 (1988), 427-449.

HENN, W. and SCHWARTZ, L., Summands of H*V which are unstable algebras, (to appear).
LANNES, J. and SCHWARTZ, L., Sur la structure des A-modules instable injectifs, (to appear).
LANNES, J. and ZARATI, S., Sur les %-injectifs, Ann. Scient. Ec. Norm. Sup. 19 (1986),
303-333.

MIiLLER, H. R., The Sullivan conjecture on maps from classifying spaces, Ann. of Math. 120
(1984), 39-87.

MITCHELL, S. A. and PRIDDY, S. B., Stable splittings derived from the Steinberg module,
Topology 22 (1983), 285-298.

SHANK, J., Polynomial algebras over the Steenrod Algebra and Lannes’ division functors, (Thesis,
Univ. of Toronto, 1989).

WITTEN, C. M., Self-maps of classifying spaces of finite groups and classification of low-dimen-
sional poincaré duality spaces (Thesis, Stanford University, 1978).

University of Toronto
Scarborough Campus

1265 Military Trail
Scarborough, Ontario MIC 144

Canada

and

Queen’s University
Kingston, Ontario
K7L 3N6

Canada

Received: January 30, 1989/September 12, 1989



	Polynomial algebras over the Steenrod algebra.

