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Rigidity for surfaces of non-positive curvature

Christopher B. Croke

Introduction

In this paper we consider the question of boundary rigidity for surfaces of
nonpositive curvature. Given a compact manifold, M, with smooth boundary N, a

riemannian metric g0 on M induces a nonnegative real valued function, d0, on
N x N where do(p, q) is the distance in (M, g0) between p and q. A riemannian
manifold (M,g0) is called boundary rigid if for any riemannian manifold (Mugx)
with the same boundary, N, if dx d0 then gx is isometric to g0- This question was

recently considered by the author in [C] where one was led to the quesiton: &quot;Are ail
SGM manifolds boundary rigid?&quot;. The condition SGM is a condition on the

boundary distance function d0 which roughly speaking is équivalent to the condition

that ail géodésie segments in M are the unique minimizing paths between the

endpoints (see [C] for a précise définition.) By géodésie segments we mean geodesics
that intersect the boundary at most at the boundary points (i.e. they do not &quot;graze&quot;

the boundary at interior points of the segment.) Any compact subdomain in the

interior of a convex manifold with possibly empty boundary (i.e. between any two
points there is a unique géodésie) will be SGM. Hence, in particular, any subdomain
of a complète simply connected manifold of nonpositive curvature will be SGM.
Also any disk of nonpositive curvature will be SGM. In this paper we show:

THEOREM A. If{Ml, g0) is a compact, nonpositively curved, SGM, surface with

boundary then it is boundary rigid,

It should be emphasized that no assumptions are made a-priori about the

curvature (or even the topology) of the possible (M^g^. Other manifolds are

known to be boundary rigid. It has been shown by Gromov and Michel (see [G]
sec. 5.5B and [M]) that (M0,g0) is boundary rigid in any of the following three

cases: (1) Mg admits an isometric immersion into IR&quot;, (2) Mg admits a 1-1

immersion into a convex subset of the round n-sphère, (3) Ml admits a 1-1

immersion into the hyperbolic plane. Ail of the above three cases are for manifolds
of constant curvature.
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Rigidity for surfaces of non-positive curvature 151

The reader is referred to [C] for a more extensive history of this problem as well
as its relationship to other problems such as the uniqueness of &quot;géodésie lenses&quot;.

Also in [C] the reader will find a case made for the condition SGM through
examples that are not boundary rigid.

A problem related to the above boundary rigidity problem is the question of
compact manifolds without boundary whose géodésie flows are conjugate. We will
say that Mo and M, hâve conjugate géodésie flows via F if F is a C1 diffeomor-
phism, F : UMX -? UM0, between the unit tangent bundles which commutes with the

géodésie flows i.e. (o ° F — F ° C î for ail t where Çf is the goedesic flow (for time t)
on UMt.

THEOREM B. IfM0 is a compact surface (without boundary) ofgenus ^2 with

non-positive sectional curvature and Mx is a compact surface whose géodésie flow is

conjugate via F to Mo then F Ç&apos;o° dl (or dl ° Ci)» where I is an isometry from Mx
to Mo and t is a fixed number.

We emphasize that in this theorem as well there are no a-priori assumptions
about the compact surface Mx.

The question of géodésie conjugacy has corne up in many contexts recently. In
particular the récent work of Feres and Katok [F-K] extending the results of Kanai
[K] shows that if M is a compact manifold of négative quarter pinched curvature
such that at least one of the horospheric foliations is smooth then the géodésie flow
on M is smoothly conjugate to the géodésie flow on a manifold of constant négative
curvature. Hence a higher dimensional version of theorem B would answer part of
a long standing conjecture.

In the case that both Mo and M, are surfaces of négative curvature they will
hâve conjugate géodésie flows if and only if they hâve the same marked length
spectrum (see [B-K] sec. 10 and [F-O]) and hence by the above they will be

isometric if and only if they hâve the same marked length spectrum. The marked

length spectrum for a surface of négative curvature is the function that takes

éléments of nx (or conjugacy classes) to the length of the shortest closed géodésie in
the free homotopy class. The length spectrum (the image of the above function) is

not enough to détermine a surface of négative curvature up to isometry as was
shown by Vignéras [V] (also see [Su]) who gave examples of two nonisometric
surfaces of constant négative curvature — 1 with the same eigenvalue spectrum and

hence (by our curvature conditions) the same length spectrum (see [D-G] or [CV]).
The fact that two surfaces of négative curvature are isometric if they hâve the

same marked length spectrum was proved independently (and apparently some
months earlier than the author) by Otal [Ol] and had been conjectured in [B-K].
A resuit similar to Theorem A was also proved independently by Otal [O2]. The
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methods used in Otal&apos;s papers are différent from the ones used hère and the results
stated hère are more gênerai. In particular Otal makes additional assumptions about
the metric of Mx in both his theorems (some of thèse assumptions are not hard to
drop) and he needs to assume négative rather than nonpositive curvature. An earlier
version of theorem A (with additional assumptions) can be found in [G-N].

In the final section of this paper we discuss the case where Mo has genus 1 (i.e.
is a flat torus.) We show that Mx must be isometric to Mo but F need not be of the
form Co ° dl.

It should be pointed out that for gênerai surfaces there is no theorem like
Theorem B. In particular Zoll surfaces hâve géodésie flows that are conjugate to the

géodésie flow on the round sphère (see [W]).
The author would like to thank P. Eberlein and K. Burns for helpful conversations.

In particular much of the section about flat tori grew out of a discussion with
K. Burns.

I. Préliminaires

We begin with an analytic lemma that will be used in the proof of both Theorem
A and Theorem B.

LEMMA 1.1. Let j andjbe positive real valued continuons functions defined on
intervais of R1. For constants Cx and C2 with C2 &gt; 0 define f : [a, b] -* [â, B] by\

[m ds

where j is assumed to be defined at least on [a, b] andj on [a, B] u [â, B]. Then we hâve:

with equality if and only if
11/2

and - _[ (b-a) J
\_C2(5-â)\b-a

Proof Differentiating (i) with respect to / we see that
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Hence using the substitution u =/(?) gives:

(Note that C2 &gt; 0 implies/(*) &gt; 0 and hence that/-&apos;(w) is well defined.) A Hôlder
inequality applied to the right hand side, RHS, of the above yields:

J&apos;f

£-4/3 -2/ f-t(u\)2 JV W) du Ci&apos;3 • (b - a). (ii)
a J \U)

The equality above cornes from the substitution t =f~l(u). The inequality in (ii)
will be equality if and only if j(f~l(u))/(f(u)) is a constant, say F. Rearranging
(ii) yields the inequality in the lemma. If equality holds then we see that
C2&apos;F&apos;(b-a)=[C2(b-a)3/(S-â)]l/2 and hence F [(b -a)/{C2(&amp;-â)}]l/2.
Further our computation of f(t) yields in the equality case f{t) 1/

(C2 • F2) (5 - â)/(b - a). Thèse results plus the fact that/(a) à yield the equality
case in the lemma. ¦

In both applications of the lemma C2 will be 1.

The next lemma will help in interpreting the boundary term in the Gauss-Bonnet
theorem in two dimensions.

Let //:(—£,£) x (a, b) -&gt; M2 be a C2-differentiable variation of unit speed

geodesics in M. That is, for each fixed f, yt{s) H(t, s) is a unit speed géodésie in
M. Let h : -e, s) -&gt;(a, b) be a function such that a{t) H(t, h{t)) is an embedded

C2-differentiable curve transverse to yt for ail t near 0. Let N(t) be the continuous
unit normal to o at t near 0 with (y&apos;t{h{t)\ N(t)} &gt;0. We now let Kg(t) be the

géodésie curvature of a(t) with respect to N(t) and (p(t) e (-7r/2,7i/2) be the angle
between N(t) and y&apos;t(h{t)). Let /,(s) be the variation field (Jacobi field) along yt of
this variation. Let V1 -sin((p(t)) • 7V(0 +cos(&lt;p(t)) • &lt;r&apos;(0/k&apos;(0| be a unit vector

perpendicular to y&apos;t{h(t)) (see figure.)
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LEMMA 1.2. In the situation described above we hâve:

Proof. We first claim that we may assume that h(t) 0 for ail t near 0. Consider
the new variation HN(t, s) H(t, s + h(t)\ then a{i) HN(t, 0) and the new variation

field J? satisfies J?(s) =Jt(s — h(t)) + h&apos;(t)y&apos;t(s — h{t)) and hence its covariant
dérivative in y\ direction agrées with that oî Jt. Hence we may assume that h(t) 0.

We let T(t) o\t)l\of{i)\ then y&apos;,(0) cos(&lt;p(/)) * N(t) + sin(^(0) • T(t). Thus

VJt(0)y&apos;t(0) P^yJCO) -sin(^(0) • ^ • N(t)

|| +cos(V(0) • ^ • 7(0

Now from VTT Kg • iV and VTN -Kg Twe find that Fy

cos(ç&gt;(0) • |^ -

and the lemma follows.

For 0 e S1 let a(0) &lt; b(6) be bounded functions such that a is continuous and b

is C^differentiable for ail but a finite set {9{ ,02,... ,0k} where the derivatives hâve

left and right limits (b need not be continuous at 0t.) Let

Q closure{(0, s)\a(0) £ s &lt;&gt; b(0)} aSlx R1.

g has two boundary components

d0 {(0, a(0))} and 5, {(0, 6(0))}uf= {(0,, j)|j is in the interval between

the two half limits of b at 0t}.
Let H : Q -+ M2 bç a map into a two dimensional riemannian manifold with the

following properties:
(i) Each curve yd(s) H(0, s) is a unit speed géodésie in M.
(ii) On the interior of Q, H is a C1 immersion.
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(m) The image H(Q) îs a manifold whose boundary is the 1-1 image of 3,

(îv) The image of ô0 lies in the interior of H(Q)
We will let J(6, s) be the variation field //„ (d/dd) Hence for fixed 0, J(0, s) îs a

Jacobi field along ye We also choose a unit normal field y g along each géodésie y0

which we assume has &lt;/(0, s), y g
&gt; &gt; 0 for a(9) &lt; 6 &lt; b(d) (we can do this since H

îs an immersion on the interior of Q)

LEMMA 13 If in the above M has nonpositwe curvature then we hâve

2n&gt; f &lt;V7oia(e))J(09s),y£&gt;dO
Js1

If M has négative curvature then equahty will hold if and only if H is one to one on
the interior of Q and H{Q) is a disk

Proof For m m M let k(m) represent the curvature of M at m Since H may be

more than 1 to 1 and since k(m) &lt; 0 we hâve

k(m) dm^\ k(H(09 s)) &lt;/(0, s), y £ &gt; ds dd
JH(Q) Jo MO)

with equahty holding when M has négative curvature if and only if H is one to one

on the interior of Q Using the jacobi équation along y g we find that the integrand
of the nght hand side is

d ±

Hence the nght hand side becomes

% si yi &gt; dS - [2K &lt;VMm)J{0, si yi &gt; dO
f2&apos;

&lt;ry0(amm s\ yï &gt; dO - r
Since the boundary component of H(Q) is a single circle the euler charactenstic is

^ 1 (in our apphcaitons H(Q) will in fact always be a disk) and hence the left hand
side is less than or equal to 2n—boundary term, Bd, of Gauss-Bonnet Hence the

lemma follows when we see that

Bd
Jo

In the case that the boundary H{dx) and the vanation is piecewise C2 mtegrating the

resuit of Lemma 1 2 will show that this is true In gênerai we can approximate by
such and see the above resuit m each of the approximating cases and hence in the

hmit ¦
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IL The proof of Theorem A

We now consider the case of Theorem A, that îs (Mo, g0) îs an SGM nemannian
manifold of nonpositive curvature with boundary N and (M,, gx îs another

nemannian manifold with the same boundary N and the same boundary distance

function (and hence îs also SGM Since ail geodesics, y, hit the boundary we will
always parametenze them by arclength with parameter &gt; 0 and y(0) e N

Mo and M, are équivalent as lenses (see [C]) This means that for every géodésie

segment y in Mx the géodésie segment y in Mo which begins at the same boundary
point with the same angle as y intersects N again at the same point with the same

angle and at the same parameter value as y This allows us to define a natural map
F from UMX (the unit tangent bundle of Mx) to UM0 as follows Given u m UMX

let v be the unique unit vector of Mx at the boundary N such that u — y&apos;v{t) where

yv îs the géodésie of Mx with y&apos;t(Q)=v and 0&lt; t &lt; \{y) where \{y) îs the first

parameter value greater than zéro with y(\{y)) e N (In particular if y &quot;grazes&quot; N
then ît îs considered to stop there We then let F{u) yv(t) where yt îs the géodésie

in Mo with the corresponding initial condition as above It îs not hard to see that
the map F above îs continuous, it commutes with the géodésie flow, and F( — u)

— F(u) In particular Fis measure preservmg and hence Vol (UMX) Vol (UM0) so

Mx and M2 hâve the same volume Ail of the above holds m ail dimensions For
further détails see [C]

Although it îs not clear that the map F îs smooth for ail u in UMX it îs clear for
those m&apos;s such that yv îs not tangent to the boundary at 0 Further since

F( — u) — F(w), F will be smooth at ail u except those where yv îs tangent to N at
0 and \(yv) We will call a point x in Mx (or Mo) &quot;genenc&quot; if x does not lie on any
géodésie that grazes N at both endpoints Non-genenc x form a set of measure
zéro and F îs smooth at ail u that are tangent to a géodésie that passes through a

genenc x
We saw above that to each géodésie y of Mx there corresponds a géodésie F(y)

m Mo namely the one having the same end points (and hence the same initial
conditions) Hence for every jacobi field J along y we will associate the Jacobi field
&lt;P(J) coming from the corresponding variation of geodesics This means that 4&gt;(J)

îs the jacobi field along F(y) having /(0) correspond to #(/)(0) and J(l(y))
correspond to &lt;P(J)(\(y)) # îs thus hnear Note that the SGM condition guarantees
that y and F(y) hâve no conjugate points so the above correspondence can always
be made We used the fact that for q e N there îs a natural isometry between TqMx
and TqM0 which îs the îdentity on TqN and takes mward normal to înward normal
In the above it may not be the case that J&apos;(Q) corresponds to ^(/)/(0) since the
second fundamental forms of N in the two manifolds need not be the same The

relationship between J&apos;{§) and &lt;P(jy(Q) m ail dimensions îs studied in the appendix
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to [C]. It was shown in [M] that if Mo (and hence M{) is assumed to be convex then
the boundaries agrée up to second order hence in particular J&apos;(0) and &lt;P(j)&apos;(0) do
correspond.

We now restrict our attention to jacobi fields along a fixed géodésie y and its

corresponding géodésie F(y). We choose parallel unit vector fields Xy and XFiy)

along y and F(y) which are perpendicular to the geodesics and correspond at 0. We
will show that they also agrée at l(y). From now on we will only consider jacobi
fields perpendicular to the geodesics which can and will be thought of as functions
(since they are functional multiples of Xy and XFiy).) We can tell if a jacobi field
vanishes on the interior of a géodésie simply by looking at its values at the

endpoints. If it has the same sign at both endpoints then it does not vanish since it
cannot vanish twice (no conjugate points) and it cannot vanish along with its
derivative. On the other hand if it changes sign it clearly vanishes. We will let Jy{i)
be the jacobi field such that Jy(0) Jy(\(y)) 1. Since Jy never vanishes we can
define a jacobi field

Similarly we can define &lt;P(J7)°. J°y is the jacobi field with J°y(0) 0 and J°y&apos;(0) 1.

Thus Jy cornes from a standard variation of geodesics ail starting at y(0). It is clear
that the corresponding variation in Mo gives rise to a jacobi field with initial value
0 and initial derivative 1, i.e. #(/r)0 #0/°). Since #(/°) cannot vanish for / &gt; 0 we

see that &lt;P(J^)(\(y)) &gt;0, and hence that Xy corresponds to XF{y) at l(y). Further
since Jy and #(/£) correspond at

Jo •&apos;yCO Jo *(^y)l

(The n dimensional version of this appears in [C].)
Now fix a g [0, l(y)]. The jacobi field that vanishes at a and has derivative 1 at

a is

J&apos;y(t) J7(a) ¦ Jy(t)

Thus by the linearity of &lt;P, &lt;P(Jy)(f) must be

Jy{a) ¦ *(7»Xf) + /» • f° -^tj
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It is important to note that 4&gt;(Jy)(t) is not necessarily the jacobi field along F(y) that
vanishes at a (i.e. $(J°) ï &lt;P(Jy)a). We will let/y(a) e [0, 1(0] be the place where it
does vanish. We will later think of/as a function on the unit sphère bundle and
writef(y&apos;(a)) for/y(a). Similarly for u y&apos;(a) we will write J&quot; and 4&gt;(JU) for J° and
&lt;P(Jy). The above formulas give:

LEMMA 2.1

Jo *(Jy)(s)2 Jo Jy(s)2

Jy(a)

Proof. Putting the formula for &lt;P(Jy) into the formula for &lt;P(Jy) gives:

(1) follows from the fact that Jy is positive and &lt;&amp;{Jay)(fy(à)) 0.

(2) cornes from differentiating the above and using 1). ¦
If x is a generic point of Mx it will be called regular if only a finite number of

the geodesics through x graze the boundary. For a regular x let Dx closure of
{p e M^There is a géodésie segment from p to x}. The boundary ôDx is a circle

consisting of two parts: B, which is the union of intervais B, of N, and a union of
géodésie segments t,. We will let F(dDx) be the corresponding circle in Mo, i.e. it
consists of B and the F(t,)&apos;s. We will let F{DX) be the closure of {q e M0\q lies on
a ^(y) where y is a géodésie segment passing through x}.

LEMMA 2.2. If x is a regular point of M{, then F(DX) is domain of Mo with

boundary F(ôDx).

Proof We first show that F(dDx) is an imbedded circle, i.e. that if i #y then

F(xt)nF(Tj) is empty. Let pt and #, be the points on N such that t, is the géodésie

segment from pt to #, (note that pt is closer to x than &lt;?, and that t, is tangent to
Af at pt). If Ffe) intersects F{Xj) then triangle inequalities show do(pnqj) +
do(q»Pj) &lt; do(p» qt) + do(pJ9 %). On the other hand, dx(qnpj) ^ dx(qnx) -
d\(Pj,x) and d{(qJ9pt) ^ dx(qp x) — dx(pn x). Adding thèse two inequalities and

using dx(pnq)=dl(q»x)-dl(pnx) yields dx(qnPj) +dx(qJ9pt) £ dx(pn qt) +
^i(/V ?/)• However the /?&apos;s and #&apos;s lie on N hence d0 rf, and we get a contradiction.

Thus F(ôDx) is imbedded.
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We can also use the above to see that F(yu) n&gt;F(zt) c B. Assume that for some
v and i we had F(yv) intersect F{xt) in the interior. Let /c^be {u\F(yu) intersects

F{xt) in the interior}. F(xt) is the extension of some F(yw). Variations near w make

it elear that for m in a neighborhood of w, u is not in /. Thus there is a u ^ w on
the boundary of /. But it is clear that this can only happen if F(yu) does not intersect

F(xl but an extension F(t7 of it does. This contradicts the previous paragraph and

gives F(yu) never intersects F(x,) in the interior.
A similar argument says F(yu) does intersect F(yv) for ail u and v. Let / {u\F(yu)

intersects F(yv)}. Variations near v show that / includes a neighborhood of v. If
I ¥&quot; Ux then there is a boundary point w. But as before F(yw) must extend to F(xt)
which intersects F(yv) which contradicts the previous paragraph.

We can use this to show that F(dDx) is contractible in Mo and hence séparâtes

Mo. Fix v € Ux. Since each F(yu) intersects F(yv) we can homotop in the obvious way
F(ôDx) along the F(yu) so that the image lies in a small neighborhood of F(yv) and

hence can be contracted. Since the homotopy was made through points of F(DX) we

see that F(DX) contains one of the components of Mo — F{ôDx). On the other hand
since the F{yu) do not intersect F(dDx) except at endpoints we see that F(DX) is the

closure of this component and the lemma follows. ¦
Remark. The above proof shows that F(DX) is in fact a disk.

LEMMA 2.3. If x is a generic point in the interior of Mx then

ï &lt;P(J&quot;Y(f(u))du

where Ux is the circle of unit tangent vectors at x with the usual measure du.

Proof This is an applicaiton of Lemma 1.3. For u e Ux there is a number t(u)
and a géodésie yu such that y&apos;u{t(u)) u. The functions a and b in the définition of
Q are given by a(u) =/(w) - t(u), b(u) l(yu) - t(u). The reason for introducing t{u)
is that for our choice of parameter for geodesics (i.e. y(0) e N) fis not a smooth

(or even continuous) function of m, however/(w) — t(u) will be smooth when x is

generic. The fact that x is generic also guarantees that the map H : Q-+ Mo defined

by //(m, s) F(yu)(s -h t(u)) is smooth. It is an immersion on the interior since the

variation field vanishes only for s a(û). We may assume that there are finitely many
places where b is not smooth since if not we need only look at nearby regular x where

there are finitely many, prove that lemma for this x and then take limits. Let Dx,
ôDx, F(DX), and F(dDx) be as in Lemma 2.2. It is clear that F(ôDx) is the image

under H of 5,. It may appear that only part of F(yu) is in the image H(Q) but the

other part shows up as part of F(y_u) since F(yu)(f(u)) F(y_u)(f(-u)).
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Hence H(Q) is F(DX), the only thing left to show in order to apply Lemma 1.3 is

that H(d0) n ôF(Dx) is empty. But every point of H(d0) is an interior point of a

F(yu) and hence cannot intersect the boundary. ¦
Proof of Theorem A. Let (Mx,gx) be a surface with boundary with the same

boundary distance function as (Af0, g0) (i.e. dx d0.) We hâve seen in Lemma 2.3

that for ail but a set of measure 0 points x in Mx

1
Integrating this over ail x in Mx leads to

)&apos;(/(&quot;)) du &lt;: 2n - Vol (M,)
)uMx

where hère du represents the standard measure on UMX. Let F represent the space
of géodésie segments on Mx with standard measure dy. Then using Santalô&apos;s

formula (see [Sa] pp. 336-338 or [C] sec. III) the above says

&gt;dy &lt;: Vol (UMX).

Lemma 2.1 tells us that

¦dtdy &lt;Vol(UMx).IfJr Jo

Now for each fixed y use Lemma 1.1 with j JyJ O(Jy), /(/) =/(y&apos;(0)» C, 0,

C2 1, a à 0, and 6 £T= l(y) (note that Lemma 2.1 says that i holds.) This

yields Jr l(y) rfy ^ Vol (UMX) and hence equality must hold in ail the inequalities.
In particular by Lemma 1.1 we hâve /(y &apos;(0) * a°d ^y(0 ^(^yXO f°r a^
and hence the spaces are isometric. ¦
III. The proof of Theorem B

In this section we will assume that Mo is a compact surface of genus ^ 2 with
a Riemannian metric of nonpositive curvature. F : UMX-&gt;UMO will be a C1

diffeomorphism which induces a conjugacy of géodésie flows where Mx is a
Riemannian surface. Ail geodesics will be parameterized by arclength unless other-
wise stated. If y is an oriented géodésie in Mx then F will take its tangent vector
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field, Ty, to the tangent vector field of a géodésie in Mo which we will dénote by
F(y). For i 0, 1 we will let Z, be the vector field on UMl generating the géodésie
flows CJ. So FJ|t(Z1) Z0.

It was pointed out in [B-K] that for orientable surfaces of genus ^2 if Kt is

the subgroup of nx(UMl) generated by the fiber (i.e. the kernel of the projection
map) then Kt is the center of nx(UM,). In the nonorientable case K,
{a g nx(UM,)\bab~l a or a~l for ail b e n^UM,)}. In either case F+ must take
Kx to Kq. In particular we see:

LEMMA 3.1. F lifts to a map from UMX to UMQ where M, is the universal

covering space of M,.

By abuse of notation we will also refer to this lifted map as F.

Proof. The only requirement for the existence of such a lift is that (7i0 ° F) + {KX)
is trivial but this follows from the above remarks. ¦

Remark. In Section IV we will see that this is false for flat tori.

The fact that F+ Kx Kq also implies that the map F induces an isomorphism
from nx(Mx) to nx(M0) and hence the map F on closed geodesics induces an
isomorphism of free homotopy classes. In particular since two freely homotopic
closed geodesics in Mo hâve the same length the same is true for Mx.

LEMMA 3.2. Mx fias no conjugate points.

Proof By the above, every closed géodésie y is the shortest curve in its free

homotopy class. Since this applies as well to ail itérâtes of y we see that the lift y of
y to Mx is minimizing and hence has no conjugate pairs. But by [B] the set of closed

geodesics is dense in UM0 and hence via F&quot;1 in UMX. Thus there are no conjugate
points in Mx. ¦

The space of jacobi fields W along a géodésie y splits naturally as
&lt;F »p-L + ¥&quot;+¥&gt;* where V1 consists of those jacobi fields that are perpendicular
to y, W* is spanned by y&apos;, and Wb is spanned by ty&apos;. Although ail jacobi fields arise

from variations of geodesics only those in Y1 + V corne from variations of
geodesics ys which are ail parameterized by arclength.

Let / be a jacobi field along a géodésie y in W1 + V. We define a vector field
TJ along Ty in the unit tangent bundle as the variation field of the variation Tys

where ys is a variation of geodesics whose variation field is /. TJ is determined by
the fact that n+(TJ) J and that the vertical (with respect to the usual connection)
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component v(TJ) of TJ is equal to /&apos;, the covariant derivative of J with respect
to y&apos; where v(TJ) and /&apos; are thought of as tangent vectors perpendicular to yf.
(Note that /&apos; is perpendicular to y&apos; since J e V1 + y.) In particular |77(f)|2
|/(0|2 + \J&apos;(t)\2. &apos;F^ is thus the subspace of / where TJ is perpendicular to Z.

The subspace of *P consisting of jacobi fields J such that |r/(f)| goes to 0 as t

goes to oo (resp. — oo) will be denoted y5 (resp. Wu.) It is easy to see that Ws (resp.
Wu) c W± since if it had any component in W + Wb it could not vanish at oo. We
will let Wws (resp. Wwu) be those J eV^ such that |77(0| stays bounded as t goes
to oo (resp. -oo.) By définition yr*cYwsc yx.

Since F takes geodesics to geodesics (actually tangent fields to tangent fields)
then F induces a map, &lt;P9 from the jacobi fields along a géodésie y in y f + *P\ to
the jacobi fields along F(y) in *Fq + WlQ by taking variations to variations. We thus
see that FJ|t(77) T&lt;P(J) and hence no+(F+(TJ)) &lt;P(J). In particular 0 is a linear
isomorphism.

LEMMA. 3.3. Along every géodésie y of Mx &lt;P takes the sets Wi, ¥% ¥?, Wu{

and !Pp to the corresponding sets T^ *FSO, V%\ «Fg, and ¥%&quot; along F(y).

Proof. Since F is a C1 map between compact manifolds there is a number a &gt; 1

such that l/a|F|&lt;|/^(K)|&lt;a|F| for ail V e TUMl where ail norms are with
respect to the usual metric. In particular for a jacobi field /, |77(f)| goes to zéro at
oo if and only if \T4&gt;(J)(t)\ goes to zéro at oo. Thus we see &lt;P(*F\) Ws0 and similarly
&lt;P(WUX) Wq. Along a dense set of geodesics in Mo (for example those closed

geodesics that pass through a région of négative curvature — see [B]) Ws0 and Wq

span 5^ and hence &lt;P~1Wq c yf. For dimension reasons &amp;Wï Wq By continu-
ity this holds for ail geodesics. The fact that &amp;Wf5 V%s (resp. Wwu) follows from
the same argument as for Ws along with the fact that

In particular the lemma says that dF takes Z\ to Zq at each point of UMX and
hence préserves the cannonical contact form 6 and thus the canonical volume forai
0 a d0 (and thus as well the orientation.) This yields:

LEMMA 3.4. F is orientation and volume preserving.

Along a géodésie y where no pair of points on y are conjugate along y it is

natural to look &amp;t *F± W&quot;kjWz where yn consists of those jacobi fields that never
vanish and *FZ those that do.

By [Gre] or [E] along a géodésie without conjugate points a jacobi field that
vanishes must be unbounded at oo and — oo and hence Wws and Wwu are contained
in y*. Along a géodésie where K ^ 0 it is easy to find nontrivial éléments of Wws
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and Wwu (thèse éléments may coincide if the curvature is identically 0.) Via &lt;P~l we
thus see there are nontrivial éléments of y*5 and *F&quot;&quot;.

For a géodésie on a surface we can choose a parallel unit field X normal to y&apos;

along y. Every jacobi field J(t) in V1 can (and will) be written as J(t) =j(t) • X(t)
wherey(0 is a function. We will sometimes confuse the jacobi field with the function

/
For a fixed géodésie y of Mx we will from now on dénote by J\ the élément of

Wws with J\(0) 1. Similarly define /&quot; (which may coincide with /,). By the above

J\ never vanishes and so we can define a new jacobi field J\ by

Any jacobi field J in W± is a linear combination of J\ and J\. For v y&apos;(x) we let

J\ be the jacobi field along y such that j\ (x) 0 and j\&apos;(x) 1
• We see that

C°_ds_
Lj\(s)=j\{x) ¦ J\{t) +j\(x) ¦ | ——2 ¦ J\(t). (2)

l\S)

Along the géodésie &lt;P(y) we will let /o== &amp;(J\)- ^y Lemma 3.3 we know that
Js0 g Wqs a Wn. We define Jz0 from Js0 in the same way that /] was defined from J\.
We know there are constants c{ and c2 such that

*iJzi)=crJi + c2&apos;J*0. (3)

LEMMA 3.5. In the above c2=\.

Proof. The fact that Fis measure preserving, and takes Z, to Zo and Z\ to Zq
implies that is it measure preserving on Zx. This translates to the fact that

7i(0 &apos;j\\t) -j\\t) j\(t) *O&apos;ïX0 • &lt;PU\)V) - *U\)V) &apos; *O&apos;ïX0 for ail t. Using
the formula for yf in terms of j\ at t 0 yields the left hand side to be 1. For the

right hand side we get: fo(0) &apos; {cjo&apos;(O) + cjz0\0)} -/o&apos;(0) • {cj&apos;0(0) + c2jS(0)}
CitioiO) &apos;jo(0) -jo(0) -jo(0)}. Using the définition ofjz0 in terms ofjs0 we find that
the left hand side is c2 at t 0 and the lemma follows. ¦

If (as we shall show next) 4&gt;(W\) c Wz0 for ail geodesics in M! then we define a

function g : £/M! -* R as follows: for v g UMx let yy be the géodésie determined

by v. Then &lt;P(J\) will vanish once along &lt;P(yv) say at #(y,,X&apos;o)- We let E&amp;») *o-

(In the above we thought of v y&apos;(0) if instead v y&apos;(&apos;i) then take g(v) =to-tl
to be consistent with différent choices of parameter for yv.) We also define

UM0 by G(v) &lt;P(yv)&apos;(g(v)).



164 CHRISTOPHER B CROKE

LEMMA 3.6. We hâve &lt;P(Vnx) «Fg and &lt;P(VZX) *FZQ.

Further the maps G and g are continuons and hence g is bounded (say \g(v)\ ^ g0).

Proof. We first show &lt;P(W\) c *FZO and hence that we can define G and g. We
need to show that $(J\) vanishes for ail v UMX. Let y be a géodésie in Mx. Using
équations 1 (with 0 subscripts), 2, 3 and Lemma 3.5 we see that

JoJo\S) Jx J\\

Hence

Thus &lt;P(J&quot;i) will vanish somewhere if and only if there is a tx such that

ds

If such a /Xo exists for some jc0 then it must exist for ail x &gt; x0 since both sides of
the équation are monotone increasing to oo (since j% and j\ are bounded at oo).
Since we can also pick x so that the right hand side is &gt; cx we see that such tx exists

for ail large jc. Now we could hâve gone through the whole process above (starting
just before équation (1) starting with j\ in place of y* to dérive the équations
corresponding to 4 and 5 only with/J andy&apos;o replaced with j&quot; andyg (where c, may
be différent) since the only property of y* that we used was that it never vanished.

In this case since j\ and yg are bounded at — oo we see that &lt;P(JV) must vanish
somewhere for ail small (near — oo) x and hence for ail x by our previous
discussion. Thus we see that there is a tx for ail x so that équation 5 is satisfîed and
&lt;P(VZX) c Vz0.

As v varies continuously the jacobi équations (thought of as an équation on the
reals)y&quot;(0 + Kv{t) • j(i) 0, where Kv(t) represents the curvature of the surface Mo
at $(y)(t), will vary continuously. Also T&lt;P(Jv)(0) =F^(TJv(0)) varies continuously
with v and hence so do the initial conditions &lt;P(Jv)(0) and &lt;P(Jv)&apos;(0). Thus by the

theory of ordinary differential équations &lt;P(Jv)(t) varies continuously with v. On a

surface without conjugate points jacobi fields &lt;P(Jv){t) that vanish are 0 at exactly
one point and they cross the / axis transversely and hence the 0 varies continuously
with v. Thus G{v) and g(v) are continuous and in particular g(v) is bounded.

The boundedness and continuity of g imply that for any y as t varies from - oo

to oo so does g(y&apos;{t)) + t and hence 4&gt;(!Pf) Wz0. ¦
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LEMMA 3 7 There is a number R&gt;0 such that if y and a are geodesics in Mx
such that y(0) &lt;r(0) and y ^ a then F(&lt;j)(R) $ F(y)[ -g0, oo)

Proof Fix p g Mo and v g Up For any p e Mo which projects to p and

any w e Up we let % and yw be the geodesics in Mo starting at /? with initial
tangents that project to v and w respectively Lemma 3 6 guarantees the existence of
a 9V &gt; 0 such that if w makes an angle less than 9V with v then the geodesics F~x(yv)
and F~\yw) mtersect at some F~\yv)(i) for t &lt;go+ 1 and hence never intersect
for t &gt; g0 + 1 as long as they do not coïncide Easy continuity arguments along
with the compactness of UM0 allow us to choose a 6 with 0V &gt; 9 &gt; 0 for ail r in
UM0

Now let y and a be as in the statement of the lemma and let R be greater than
max{g0 -h 1, na/sm(0), go + Tia} where a is as in the proof of Lemma 3 3 Assume

F(y)(t0) F(a)(R) then the first paragraph says that F(g)&apos;(R) and F(y)&apos;(t0)

make an angle greater than 9 (since R&gt;go+l) If t0 ^ 0 then d(F(&amp;)(0)9

F(y)(0)) &gt; R sin(0) &gt; rca since Mo has nonpositive curvature If t0 &lt; 0 (here we need

to worry about the angle close to n) the triangle înequahty gives again rf(F(&lt;r)(0),

F(y)(0)) ^ R -go&gt;na On the other hand there is a path in t/M! from y&apos;(0) to
(j^O) of length &lt; n By the définition of a îts image in UM0 is a curve of length ^ rca

which when projected to Mo becomes a curve of length &lt;&gt;na from F(y)(0) to
F((t)(0) This contradiction yields the lemma

PROPOSITION 3 8 In the situation of Theorem B we hâve for every p g M, (we

parametenze geodesics yt so that y&apos;t(0) v for ail v g Up)

I &lt;P{Jv)\g(v))dv

Proof The înequahty is an application of Lemma 1 3 We can parametenze Up

as usual by 9 m [0, 2n] then a(9) will be g(9) and è(0) iî where R cornes from
Lemma 3 7 We define the map H(9, s) F(ye)(s) into Mo We need only show that
H has ail the nght properties from the fact that the jacobi fields &lt;P(J0) vanish only
at g(9) By Lemma 3 7 H maps d { in a 1-1 fashion to an imbedded circle d in Mo
which will bound a disk Z&gt;

Since 4&gt;(J0) is perpendicular to F(y0) and &lt;P(J0)(R) is tangent to 3 we see that
F(y0) is the géodésie perpendicular to d at d(9)

As 5 goes to oo F(ye)(s) goes to oo and hence eventually lies outside D By
Lemma 3 7 F(y0)(R, oo)n 5 0 and hence F(y9)(R, oo) lies outside i) and since

F(y0)[ -£0, /?) nd 0 we hâve F(y0)[ -go&gt; *) lies in D In particular #(d0) lies in
the interior of D and property îv is satisfied
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For any p e D let t be a minimizing géodésie from p to ô. Then t is perpendic-
ular to d so p ^(ye)(0 for some 8 and /. We need to show that g(8) &lt;&gt; t &lt;&gt; R. By
the previous paragraph r ^ i£. Since 4&gt;(Je)(g(8)) 0 and #(/0) is the variation field

of the variation of normal geodesics the usual variation argument will say that,
since t is the shortest path from p to ô, t cannot be &lt; g(8). Hence D is the image

of H and property iii is satisfied.
We can thus apply Lemma 1.3 to yield the inequality. ¦
Proof of Theorem B. Integrating the inequality of Lemma 3.8 over Mx we get:

2n - Vol (M,) &gt; I 0(JvY(g(v)) dv.

From the invariance of the canonical measure under the géodésie flow we get for
each L &gt; 0:

2nL - Vol (M,) ^ F F
4&gt;(Jctv)&apos;(g(Cv)) dt dv.F
4&gt;(Jctv)&apos;(g(Cv)

JO

For fixed v let y(t) be the géodésie with /(O) v so that Ç&apos;(v) y\t). Differentiating
Equation 4 with respect to /, plugging in giy\i)), and using Equation 5 yields:

(In the above one must be careful with parameters since $(jy{t)) is a jacobi field

along the géodésie F(y) with the parameter shifted by t.)

Apply Lemma 1.1 with/(f) =g(y&apos;(t)) + t,j=jsu and/=yo we find that

r 3/2

2nL&apos;Vo\(Mx)
~ &apos;L

Rearranging terms we see:

i r i
s vi (UM)

&apos;

} r icL) ()\1&apos;2
v&apos;r |

gicLv) -g(v)\1

Using a Jensen inequality for the function x~l/2 we see that
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1&gt;r__j__ r (y ,g(CM-g(t&gt;)\J&quot;|-i/2

with equality holding only if g(ÇL(v)) g(v) +c(L) where c(L) is a constant
depending at most on L. On the other hand the invariance of dv under £&apos; says

g(v)&lt;fo
£/Af

and hence we get equality everywhere and further c{L) 0 and hence g(v) g(( V)
for ail v and L. Since there are dense geodesics (see [B-B-E]) we see that g(v) is a

constant K. By composing with (* we can assume that g(v) 0 (i.e. we consider
Ç* ° F instead of F and will show it is d/.)

We claim that F covers a map/: MX^MO. To see this let x g M! and let c(0)
in £/M, be the curve of unit vectors at x. Then c\9) corresponds to the jacobi field
J° along yd and hence (tt0 ° F)J|t(c/(0)) #(/°)(0) 0. Thus (tco ° F)(c(0)) =/(*) is

independent of 0.

To finish the proof we need only note that/is an isometry and df — F. But this
follows since / takes unit speed geodesics yv to unit speed geodesics yFiv). In
particular if y is a minimizing géodésie fromp to q then/(y) is a minimizing géodésie

of the same length from/(p) to f(q).

IV. The genus one case

In this section we take up the one case of non-positive curvature not covered by
Theorem B. This is the case where Mo is a flat torus. (In the Klein bottle case for
algebraic reasons any diffeomorphism of unit tangent bundles will lift to a

diffeomorphism of the unit tangent bundles of the oriented double covers.)

EXAMPLE 4.1. If Mo is a flat two torus, say Mo U2/T for a lattice T. Let
(jc, y) be standard parameters for !R2 and 9 the angle from the jc-axis. Then
UM0 {(x,y, 9) eU2/r x Ul/2n}. Note that the géodésie flow vector field at
(x, y, 9) is cos(0) • d/dx H- sin(0) • d/dy. Hence diffeomorphisms F : (x, y, 9) -?
(jc -f a(0), y -f- b(9), 9) induce a conjugacy of the géodésie flows when a and b are
functions of 9 such that a(0) 6(0) 0 and (a(2n)9 b(2n)) e F.

It is easy to see that if (û(2tc), b(2n)) ef-(0, 0) then F is not homotopic to a
fiber preserving map so cannot be of the form dl ° (&apos;. Even if (a(2n), b(2n)) (0,0)
as long as a or b is not identically 0, F is not fiber preserving and (except for spécial
choices a{9) t{ 1 - cos(0)), b{9) - — t sin(0)) cannot be made so by following by a
fixed amount. Hence again F is not dl ° Ç&apos;.
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Although the above shows that Theorem B does not hold in its strongest form
we do hâve:

THEOREM C. If the géodésie flow of a closed surface M, is conjugate to that of
aflat torus Mo then Mx is isometric to Mo.

Proof We first show that the map on geodesics induced by the conjugacy F
induces a 1-1 correspondence between nx{Mx) and nx(M0). UM0 is homeomorphic
to S1 x S1 x S1 and nx(UM0) is isomorphic to 1? with generators a, /?, y. We can

assume that a and /? corne from tangent vector fields to closed geodesics on Mo
while y cornes from the fiber. In particular, there is a natural identification between
the Z2 spanned by a and /? and nx(M0) given by lifting a closed géodésie to its

tangent vector field in UM0. Let Pl\UMl^Ml be the projection. Then
(Px ° F~l)+ : span{a, P}-+nx(Mx) induces a homomorphism from nx(M0) to
nx(Mx). This homomorphism is onto since each élément of nx(Mx) can be repre-
sented by a closed géodésie yx and F~l(Tyx) is Ty0 for some géodésie y0 hence is in
the span of a and /?. This homomorphism must thus be mjective.

We now claim that every closed géodésie yx in M, is the shortest in its homotopy
class. To see this let xx be a closed géodésie homotopic to yx. The corresponding
geodesics y0 and t0 in Mo must be homotopic by the previous paragraph and hence

hâve the same length (since Mo is a flat torus.) Thus yx and tj hâve the same length.
Since closed geodesics are dense in UM0 they are also in UMX via F&quot;1.

Proceeding now as in the proof of Lemma 3.2 we see that Mx has no conjugate
points. By E. Hopf&apos;s theorem [H] Mx is flat. It is easy to check that two flat two
tori with the same length spectrum are isometric. ¦
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