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A directional compactification of the complex Bloch variety

H. Knôrrer and E. Trubowitz

Introduction

Let F be a lattice in R2 and q a real valued function in L2(R2/F). For each k in
R2 the self-adjoint boundary value problem

^(x + y) £?&apos;&lt;*• y&gt;i//(x), for ail y in F,

has a discrète spectrum customarily denoted by

Ex(k)

The eigenvalue En(k), n ^ 1, defines a function of A: called the «th band function. It
is continuous and periodic with respect to the lattice

F # :={*€ R2|&lt;y, b) e 2ttZ for ail y in T}

dual to T.
To study analytic properties of band functions, we introduce the set

B(q) := {(k, k) g C2 x C| there is a nontrivial \j/ in ^2oc(^2) satisfying

- À + g# ^, and ^(x + y) ^&apos;&lt;*y&gt;^(jc) for ail y in T}

which is referred to as the complex Bloch variety for q. For ail n ^ 1, the graph of
£„(*;) in R2 x IR is a subset of B(q). Conversely, the intersection B(q)n(U2 x R)
coincides with thèse graphs. The Bloch variety contains ail points that can possibly
be reached by analytic continuation of any band function.

In section 1 it is shown that for any q in L2(R2/F), the Bloch variety B(q) is a
transcendental complex analytic hypersurface in C2 x C. Thus, when q is real, the

union of the graphs of En(k), n ^ 1, is a real analytic hypersurface in R2 x R.

114
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The dual lattice F # acts on C2 x C by r # 9 b : (k, X) -+ (k + b, k). Clearly, this
actions maps B(q) to itself. In section 3 we shall prove that for ail q in L2(U2/F) the
irreducible components of B(q) are translates of each other by éléments of T #, in
other words B(q)/F* is an irreducible complex analytic variety. Therefore, when q
is real, the analytic continuation of any given band function is B(q), from which ail
the other band functions can be found. That is, one band function détermines ail
other band functions.

By the remark above, each of the functions En(k),n ^ 1, is piecewise real
analytic on M2. For q 0 and ail n ^ 1, every real analytic pièce of En(k) continues
to an entire function on C2, namely a translate of k] + k\ by T#. It will be shown
in section 3 that when q is real and B(q) contains a component that is the graph
of an entire function, then q must be constant. Thus, q is constant, if a single
real analytic pièce of any one of the band functions extends to an entire function
on C2.

To gain some perspective, let us recall the one-dimensional situation. For p in
L2(U/Z),

B(p) {(k, A) g C x C|there is ^ g i/foc([R) satisfying

ty, x g R, and ${x + n) e^(jc) for ail neZ)

is a transcendental curve [6]. It is immédiate from the équation for B(p) given at the
end of section 1 that B{p)IZ* is irreducible. Hère, the statement that for real
valued /?, the function p is constant if and only if B(p) contains a component that
is the graph of an entire function is équivalent to a well known theorem of Borg [2].
The connection is made in détail in Section 1.

The most important part of this paper is section 2, where we directionally
compactify B(q). The idea is to construct a cradle by inserting C2 x C in P3 and

blowing up a set of points on P3 determined by the lattice F. The points to be

adjoined to B(q) lie in the exceptional planes of the blown up space. However,
B(q) is transcendental, so it is only possible to approach the exceptional planes

along B(q) &quot;directionally&quot; through a spécial family of cônes. Once the cradle and

cônes hâve been specified the directional compactification B(q) can be computed.
The divisor B{q) — B(q) &quot;at infinity&quot; is the union of curves; one curve for each

primitive lattice vector y in F (a lattice vector y is called primitive if there is no
S g F such that y m - ô for some m g Z, \m\ ^ 2). The component corresponding
to y is isomorphic to the one-dimensional Bloch variety for the one-dimensional

potential JJ q(x -h xy) dx obtained from q by averaging in direction of y. Thèse

curves lie in différent exceptional planes and are attached to B{q) in an essentially
C1 way. The results discussed above are proved by exploiting the structure of this

compactification.
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Section 4 compléments the calculation of the directional compactification of
B(q) by describing how the two-dimensional spectral problem dégénérâtes via a

géométrie optics limit to a one-dimensional problem on the exceptional planes.
When the continuum Laplace operator is replaced by the différence Laplacian,

many properties of the corresponding algebraic Bloch variety, including its
compactification hâve been worked out in [5], which, together with [4], served as a

motivation for the constructions presented hère.

It is a pleasure to thank D. Bâttig and J. Feldman for useful conversations, and
J. J. Duistermaat for help with Section 4.

1. The complex analytic structure of the Bloch spectrum

Fix a lattice F in U2. Without loss of generality we may assume that the torus
U2/F has area one. Let

r* {be R2|&lt;6, y&gt; e 2nZ for ail y in F}

be the dual lattice. We want to show that for every q&apos;mL2 L2(M2/F), the Hilbert
space of complex valued, square integrable functions on the torus U2/F, the

corresponding Block variety

B(q) {(k, X) g C2 x C| there is a function \j/ in H^iU2) satisfying

- A + q)\jf ty and ^(jc + y) et&lt;k&gt;y&gt;il/(x) for ail y in T}

is a complex analytic hypersurface in C2 x C.

To do this, it is convenient to put the boundary conditions into the operator.
For each k in C2 set

Ak:=A+2ik&apos;F-k2,

where k2 k\ + k\. If q&gt; g H2(U/r) then the function \//(x) := el&lt;k&apos;x&gt;q&gt;(x) satisfies

and

for ail y in F. Clearly,
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B(q) {(k, X) € C2 x C| there is a function &lt;p

in H2(U2/r) with (-Ak + q)q&gt;

117

For ail k in C2, the exponentials e&apos;&lt;b*x&gt;, b g T#, are a complète set of eigenfunc-
tions for — Ak in L2(U2/F). The associated eigenvalues are (fc -f fc)2, b e F#. Hence,
the Bloch variety J9(0) for ^ =0 is the union [)ber# Bb of the quadrics

5fc := {(jfc, A) g C2 x C|(ik -h Z?)2 - A 0}, 6 g T#.

Observe that only a finite number of thèse quadrics can intersect any bounded
subset of C2 x C. Therefore, B(0) is a locally finite union of algebraic hypersurfaces
and consequently a complex analytic hypersurface in C2 x C.

For gênerai q in L2 we first obtain an analytic équation for the part of B(q) lying
in

C2xCVB(0)=C2xC\ (J B
\b#

On this set, the product

is defined. Furthermore, the operator q • (-Ak - À)~l is Hilbert-Schmidt since

;&lt;OO

where

/(jfc) f(x) e«k- x&gt; dx, for / e L\R2/r).

The déterminant of 11 + A where A is a trace class operator on a Hilbert space
is given by the convergent sum
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det(1 + A)= £ trAn(A).

Hère, An(A), n ^ 0, is the wth exterior power of A. If A is Hilbert-Schmidt
(1 +A)e~A -i is trace class and one defines the regularized déterminant

det2 (1 -h A) : det((H +A)-e-A).

It has the property that det2 (U + A) # 0 if and only if 1 -h A is invertible (see, [9]).
So,

B(q)n(C2xC\B(0))

{(k92)eC2x C\B(0)\ det2((-Ak + q -X) • (-Ak -X)~l) 0}.

To analyze det2((-Ak +q -X) - (-Ak- X)~l) it is useful to présent
— Ak + q — A) • (-Ak -X)~l as a matrix with respect to the Fourier basis

£?&apos;&lt;*•*&gt;, è g T#, of L2(R2/O- It has entries

[(-Ak +q - X) .(-At-

and acts on l\F #). We enumerate the éléments of F * so that c appears later in the
list than b if |c| &gt; \b\.

Let Pr be the orthogonal projection onto the subspace of L2(U2/F) spanned
by el&lt;b&gt;x&gt;, \b\£r. The truncated operator 1 + Pr - q • -Ak - A)&quot;1 • Pr has matrix
entries

It is the direct sum of a principal minor and an identity matrix.
Let Ll be the linear subspace of ail functions q in L2 with mean zéro, i.e.,

JK2/r q(x) dx £(0) 0. Since the Bloch varieties of q and q — £(0) only differ by
the translation A -* X 4-^(0) there is no loss of generality in discussing only those

potentials with mean zéro.

THEOREM 1. Thefinite déterminants
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converge uniformly on closed bounded subsets of (C2 x C\£(0)) x L\ to
tet2{(-Ak+q-k){-Ak-X)-x).

Proof. Observe that

det2(1+Pr q.(-Ak-X)-&apos;Pr)

det(l + Pr q - (~Ak - X)-* - Pr) expt -q(0) £
l

\ \c\£r\K + C) —

since det2 (U -f A) det (H + A) e~trA for trace class operators.
Next we claim that

det2 + q • - Ak - A)
&apos;

&apos;

• Pr) det (èbc + (fc^~2^
A

; H H ^ A

The operator 1+^( — zJ^ — A)&quot;1^,. has matrix entries

q{b + c)

\c\&gt;r

The columns for |c| &gt; r hâve a single nonzero entry and that is ôcc 1. By adding
multiples of thèse columns to those with \c\ &lt; r, this matrix can be reduced to that
of 1 -I- Pr - q - — Ak - X) ~l - Pr. If we were in a fini te number of dimensions their
déterminants would be the same and the claim would be obvious. Hère, first notice
that for s &gt; r

det2(1+P5 .q.(-Ak-X)-l-P,)
&apos;

&apos;\l&gt;\^sAc\^r&apos;ôl\b\&lt;sr&lt;\c\Zdet

by column réduction for finite matrices. Next,
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tends to zéro as s goes to oo. But det2 (1 4- A) is Lipschitz in A with respect to the

Hilbert-Schmidt norm; in fact,

|det2 (1 + A) - det2 (1 + B)\ &lt;L \\A - B\m exp [o{\A ||HS + ||i»||HS + l)2]

where a &gt; 0 is a universal constant. This proves the claim.

Finally,

&apos;|,|c|£r*

as above. Now ||#||2 E|c)&gt;r l/|(fc+ c)2 —A|2 tends uniformly to zéro on closed

bounded subsets of (C2 x C\2?(0)) x Ll while \q • (~Ak — A)~l||HS is uniformly
bounded on them. This finishes the proof.

COROLLARY 1. det2 - Âk -h q - X) • - Ak - X) ~[) is a holomorphic function
on (C2 x C\B(0)) x Ll. For each q in Ll its zero-set equals B(q)n(C2 x C\2?(0)).

Proof

is a holomorphic function on (C2 x C\B(0)) x Ll.
For each finite subset G of f # set

f/6:=C2xC\ y 5,.

In particular, U0 C2 x C\J?(O). Thèse sets form an open cover of C2 x C. Let PG

be the projection onto the subspace spanned by eK*x&gt;, ieG, and define a partial
résolvent by

for (k, À) in UG. Its matrix représentation is
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and

(~Ak+q-X)-(-Ak -X)GX t+q-{-Ak-k)Gx +(~Ak~X-\)PG

The operator (-Ak-k)Gl is defined so that (k, k) e B(q)nUG if and only if
-Ak + q - X) • -Ak - À)à1 is not invertible, that is

B(q) nUG {(k, l) e UG\dct2((-Ak + q - X) - (~Ak - X)âl =0}

THEOREM r. Let G be a finite subset ofT*. Then

e^ fi ((* + V2 - *) exp (A - (* + 6)2) dct f^ + J^ ~c)
; |A|, \c\ £ r\

r &gt;maxfe6G \b\9 converges uniformly on closed bounded subsets of UG x L% to

Proof. As above.

COROLLARY r

beG

For each q in L\is a holomorphic function on UG x Lq. For each q in L\ its zéro set equals B(q) n VG.

The déterminants

for finite subsets G of r # give local équations for B(q) in the cover of open sets UG.

Therefore, B(q) is a complex analytic hypersurface of C2 x C.

We now obtain a global équation for B(q). For b e F* set



122 H KNÔRRER AND E TRUBOWITZ

Then the infinité product

«t +gflft€f# o

converges to an entire fonction of finite order on C2 x C whose zéro set equals B(Q).

THEOREM 2. For each q in Lg,

n ^.7 ^ R^ A&gt; det2 &quot; A* + 9 ~ X) &apos; ~ àk - k)
è6r# o H- 1

a/î entire function affinité order on C2 x C whose zéro set is B(q).

Proof. By Corollary V, for any finite subset G of T#

M,,,.( n

It follows that F is holomorphic on C/G and vanishes precisely on B(q)nUG.
Consequently, F is an entire function on C2 x C whose zéro set is B(q).

We apply Hadamard&apos;s inequality to obtain

Thus

lRbl&apos;

from which one concludes by elementary estimation that F is of finite order.
We hâve actually shown that F(k9 A, q) is an entire function of finite order on

(C2 x C) x L\.
We say that X e Cn is a complex analytic hypersurface of finite order if it is the

zéro set of an entire function of finite order on Cn. Suppose F is a component of X.
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Since X is the zéro set of a fonction of finite order its indicator of growth is of finite
order (cf. [7] 3.6). Therefore, the indicator of growth of Fis also of finite order and
hence by the solution of the &quot;Cousin problem with finite order&quot; ([7], 3.30) Y is the

zéro set of an entire function of finite order. That is, the components of a

hypersurface of finite order are also hypersurfaces of finite order.
Suppose IcC&quot;xCisa hypersurface of finite order defined by/(z, w) 0. Let

fix(z) be the number (possibly infinité) of w&apos;s (counted with multiplicity in/(z, •))

for which (z, w) g X. Geometrically, /xx(z) is the number of sheets lying over z when

X is projected onto Cn. If no fiber of the projection is ail of C then ([7], 3.44) for
each m ^0 Xm:= {z e Cn\nx(z) ^ m} is either C&quot; itself or contained in an analytic
subvariety of positive codimension.

THEOREM 3. Let q be a real valuedfunction in L2(R2/T). Then, the &quot;real Bloch
variety&quot;

Bu(q) &apos;

{(&amp;, A) g R2 x U\there is a (p in H2(U2/r) with (-Ak+q)cp A&lt;p}

détermines the complex Bloch variety B(q).

Proof. By analytic continuation BR(q) détermines ail the components of B{q)
that meet Bu(q).

It foliows from Theorem 2 (we may assume that the average of q is zéro) that

every component Y of B(q) is a hypersurface in C2 x C of finite order. Moreover,
for fixed k g C2, ({k} x C) n Y is discrète since the corresponding values of A belong

to the spectrum of - Ak + q. Therefore, (with the notation introduced above) Yo is

either C2 itself - in which case Y is empty and there is nothing to prove - or is

contained in an analytic subvariety of C2 of positive codimension.

For real k, -Ak + q is self adjoint so that Bu(q) B(q)n(U2 x C) and

YnBu(q) Yn(U2 x C). If Yn(U2 x C) 0, then R2 c Yo. By the last para-
graph C2 c Yo which implies once again that Y 0. Thus, every nontrivial

component of B(q) intersects BR(q).

Later on we will need some information about one dimensional Bloch varieties.

So, let q g L\UljZ). The associated one dimensional Bloch variety is

B(q) {(k, A) g C x C| there is a function ^ in //?„.( R1)

satisfying -ifr&quot; -h q(x)il/ ty and *l/(x -h n) ^VW for ail n}

{(k, k) g C x C| there is a function cp in H2(U{/Z)
with (-D2k

where Dk (d/dk) + ik. Once again
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5(0) (J Bb,
beZ*

~X=0}, b eZ#

Now, in contrast to the two dimensional case, there is a simple équation for B(0);
namely,

B(0) {(k, X) e C x C| cos k - cos Jl 0}.

Notice that the order of cos k — cos yfk is smaller than what we would obtain had

we simply imitated the estimâtes used in the two dimensional case.

In gênerai, let yi(x9 A, q) and y2(x, K &lt;Ù be the solutions of

satisfying the initial conditions

/i(&lt;U)=&gt;&gt;2((U)=0.

Then, any solution can be written

It follows that \l/(x + 1) elk\l/(x), x e R, if and only if

where F(X) is the Floquet matrix

Set
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The characteristic polynomial of F(À) is

det (FOI) » il) e- A(X)Ç + \F(X)\

Therefore,

B(q) {(*, A) € C x C|e* is a root of £2 - A(X)Ç + 1 0}

{(A:, A) g C x C|2 cos k - J(A) 0}.

The final task is to connect this équation for B(q) with a déterminant.

THEOREM 4. The holomorphic functions

(2 cos * - 2 cos Jl) det ^ + (^~^ ; |*|, |c| &lt; À r &gt; 0,1

converge uniformly on closed bounded subsets of

(C x C) x L20(Ul/Z) to (2 cos k - 2 cos Jl) det2 -D\ + « - A)( -D\ - A)

It is easy to see that #•(-/)£-A) ~*)is trace class so that the déterminant need

not be regularized in the statement of the theorem.

Proof. The first part goes just as before. For the second, notice, by examining
the matrix, that

(2 cos k - 2 cos y/ï) det2 -D\ + q - A) • -D2k - A) ~ *) (2)

is an even, periodic (period 2n) function of k. For each A, 2 cos k - A{X) has simple

roots in k unless k nn, n 0, ± 1,..., in which case they are exactly double. By

]q(b) I q(x)e~lbxdx, bzlnZ
Jo
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evenness and periodicity (2) has at least double roots at thèse points. Therefore,

is an entire function (bearing in mind that the zéro set of (2) is exactly B(q)). For
each k let k k&apos; + ik&quot; go to + /°° with 0 £ &amp;&apos; £ 1. The déterminant goes to 1, the

factor (2 cos k — 2 cos y/J)/(2 cos k — A(k)) also goes to 1. Therefore, (3) is bounded

everywhere in k by periodicity. The theorem follows from Liouvilles theorem.

It is well known ([8] Theorem 1.4) that

;|i/2\ ri
So,

and we obtain a sharp estimate on the order of the holomorphic function defining
B(q).

Suppose q in L2(Ul/Z) is real valued. Then the spectrum of -(d2/dx2) + q(x)
acting on L2((R1) is absolutely continuous and is the union of bands determined by
\A(k)\ &lt; 2. For generic functions q there are infinitely many complementary gaps. It
is a classical theorem of Borg [2] that q is constant when there are no gaps at ail.

The obvious generalization of Borg&apos;s resuit, that is, a real valued q in L2(IR2/r)
is constant if the spectrum of — A + q is a ray, is false. In fact, the spectrum of any
q in L°°(IR2/r) with sufficiently small norm is a ray. Furthermore, no matter how

large q is there are never more than a finite number of gaps, [3]. Nevertheless, there
is a géométrie reformulation of Borg&apos;s theorem that can be generalized to higher
dimensions.

It is easy to see that the absence of gaps in one dimension is équivalent to the

condition that ail the roots of A 2{k) — 4 0 are real and double except the smallest
which is simple. If this condition is satisfied, the projection B(q) -&gt; C, (k, k)-+k has

rank one at each of the local branches of B(q) passing through any of its points.
Therefore, each local section of the projection can be analytically continued to an
entire function k k(k) parametrizing a component of B{q). Conversely it is easy to
see that whenever B(q) contains such a graph, there are no gaps. So, we may
reformulate Borg&apos;s resuit geometrically as the statement that B(q) contains a

component that is the graph of an entire function k k(k) if and only if q is constant.
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2. Directional compactification

In order to &quot;complète&quot; the Bloch variety B(q\ q e L2(U2/r\ by adding points
&quot;at infinity&quot; in a meaningful way we will construct a compactification X of the
ambient space C2 x C, together with cone-like subsets T(6&gt;), 0 &lt; 0 &lt; n of C2 x C.

We shall then say that the directional compactification of B(q) is the space obtained
from B(q) by adding the point-set closure of B(q)nl(0) in X. The pair
X0 : (X, !(&amp;)) is referred to as a cradle for directional compactification.

It is helpful to motivate the construction by describing its analogue in one
dimension. In that case the space X is the two-dimensional complex projective space
P2, and C x C is embedded in X P2 by

CxC-P2, (k,Â)-+(k,À-k2, 1).

We use the homogeneous coordinates (k, /, //) on P2. The embedding of C x C has

been such that the closures of the components Bb of the free Bloch variety are the
lines with the équation

fib2-l 0, beZ* 2nZ

They intersect the Une &quot;at infinity&quot; L^ : {(k, /, fi) e P2/^ 0} at the points
(l,2/&gt;,0).

For a gênerai potential q eL2(Ul/Z) the équation

2cosk-A(À;q) =0

of the Bloch variety given in the previous section has essential singularises along

L^. However, suitably modified it extends continuously over most of L^, provided

one permits k to go to infinity only along rays in the complex plane that hâve a

non-zero angle with the real axis. More precisely, let us define for 0 &lt; 0 &lt; n

1(0) := {(k, À) 6 C x C/the argument of k2 does not lie between —0 and 0}.

Recall that for a finite subset G of 2nZ

((k + b)2- À) det2 ((-D\ +q-X)(-D\ - k)~x) 0]1
beG

is a local équation for B(q) on the open subset UG of C x C.
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LEMMA. Let q e L2(Ul/Z) with JJ q(x) dx 0. The restriction of

to 1(0) extends continuously to

vanishes there only at the points 1, 26, 0), b eG.

Proof. Consider the affine chart C2a(w, t?) -?(1, w, i?) on P2. In this chart

&gt; 1,0)} is the Une given by v 0. The coordinate change between the (k, A)

and the (w, t;) coordinates is

—(1-fMv), *=-

By Theorem 1.4

2 cos k — 2 cos

Since

&apos;expl

112

our function equals

K[o \ k M ll^rAsin \bK[o \ k M ll^rAsin \(k + VI) • sin\{k -
In the (w, r)-coordinates this becomes

(2b + m + 62t;)
beG

exp |Im l/u^/l H- wt?|

sin — (l +J1 + wr) • sin~-(1 — vl + wt;)
2t; ^ 2v ^



A directional compactification of the complex Bloch variety 129

It now follows that everything extends continuously to points with v 0 and
u/2 i 2nZ\G provided that one restricts v to the région arg v2 $ -&lt;9, &lt;9), which is
1(0).

By the lemma the closure of B(q)nl(0) clearly intersects Lœ\{(0, 1,0)} at
most in the points 1, 2b, 0), b e 2nZ. With a little more work one sees that ail thèse
points occur and moreover that in a neighborhood of each of them B(q) n 1(0)
looks like the cône {z e C| \z\ &lt; 1 and arg z2 e -0, 0)}. The proofs of the last two
statements are similar to those we give in the two-dimensional case, so we won&apos;t

carry them out hère.

We now return to the construction of the two-dimensional cradle.
The first step in constructing the total space X is — as in one dimension — to

embed C2 x C in the projective space P3 by

C2 x C - P3, (k, À) -&gt;(jk; A - k2, 1) (kx, k2; k - k\ - k\, 1)

On P3 we introduce homogenuous coordinates (k; /, jn). For ief# the closure Bb
of Bb in P3 is given by the équation 2&lt;&amp;, Z&gt;&gt; -f b2\i — l 0. It intersects the &quot;plane

at infinity&quot; Hœ : {(k; /, //) e P\fi 0} along the line

B&apos;hnH^ {(k; /, 0) e HJ2(k, b}-l 0}.

Thèse lines in Hœ are not in gênerai position: The points where two or more lines
Bb n H^ intersect form the set

/:= {(y; 4nm, 0)/y is a primitive vector in the lattice F and m e Z}.

A point (y; 4nm, 0) of / lies on infinitely many of the components B&apos;b, namely ail
such components with b e F* and &lt;è, y} 2nm.

The intersection pattern of the Bb will be improved if the points of / are blown

up. So, for each finite subset S of I let X(S) be the manifold obtained from P3 by
blowing up the points of S. The exceptional set Pym over a point (y; 4nm9 0) of S
is a projective plane whose points are in a one-to-one correspondence with the

tangent directions in P3 at the point (y, 4nm, 0). The inclusion of C2 x C in P3 used

above defines an embedding of C2 x C in X(S). The closure Bb of Bb in X(S) is the
strict transform of B&apos;b c P3. (The bar - will always dénote closure in some space

X(S), where the set S will be determined by the context).
Whenever Bb passes through (y; 4nm) the strict transform Bb meets Pym in the

line that corresponds to the tangent plane of Bb at (y; 4nm, 0). One easily checks

that ail thèse tangent planes are in gênerai position, and so the same holds for ail
thèse lines. Precisely, if bub2, b3 are différent éléments of T# with (bny} 2nm
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then BblnBb2nBb3r\Pym 0. This shows that in X(S) the closures Bb,bsF*
with &lt;è, y} 2nm for some (y; 47im, 0) g S are effectively separated. Therefore, it is

natural to introduce as the compactification X of C2 x C the inverse limit of ail the

spaces X(S) defined by the natural maps X(Sy)-+X(S2) for S2a S,. However, we
are not going to use this inverse limit, but work directly with the manifolds X(S)
throughout. This complètes the définition of the ambient space X for the cradle.

The cônes 1(0) are defined in almost the same way as in one dimension. We set

For each fini te subset S of I and 0 &lt; 0 &lt; % we define the cradle Xe(S) as the pair
(X(s\ 1(0)), and call

ÉCq):=B(q)uB(q)nI(0))

the directional compactification of B(q) in the cradle XG(S).
For each (y, 4nm, 0) e S let E7t m be the affine pièce of the exceptional plane Py m

corresponding to ail tangent directions of P3 at this point that are not tangent to
H^. We will primarily be interested in the intersection of B{q) with Eym. To reduce
the analysis of this intersection to one calculation in local coordinates we use the
action of F # on C2 x C defined by

Notice that the Y*-action maps B(q) to itself and that ail the définitions given in
this section are compatible with this action. Precisely,

(1) For each 0 &lt; 0 &lt; n and each 4ef# there is a compact subset K of C2 x C

and 0 &lt; 0U 02 &lt; n such that 1(0,) -Kab- (1(0) - K) c I(02).
(2) The action extends to P3 by

The extended action préserves the set /.

Hence, each b ef# induces an isomorphism b* : X(S) -&gt; X(b • S). One checks that

(3) for (y; 4nm, 0) 6 S this isomorphism b* maps Ey§m to Eyjm_(l/2nKYiby.

We can now use the T#-action to reduce considérations about Eym and its
intersection with B(q) to the case m 0. Furthermore the original lattice F can be
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rotated so that the first component of y becomes zéro, i.e. y (0, y2). Then local
coordinates around the point (y; 0, 0) =(0, 1, 0, 0) of P3 are kx/k2,l/k2, \i\k2.
Blowing up produces coordinates (*, m, v) around E7tQ in X(S) such that
Ey, o {v 0} and

kx 1 u
-t=kv9 Y^UV&gt; Y v
/v2 l\,2 f\,2

So the coordinate change between the new coordinates and the original coordinates
on C2 x C is

One sees that for b (bl, b2) e F # the intersection 2?6 n £y 0 is empty if b2 # 0, and
for b2 0 this intersection is given by the équation (k + ftj)2 — w 0. Observe that
thèse are the équations of the free Bloch variety in dimension one.

This concludes our discussion of the cradle X0(S).

Let us now détermine the boundary points of B(q) lying in Eym. In order to
describe the local structure of B(q) at thèse points we introduce the following
notion: A triple of topological spaces is called a locally cone-like space of dimension

n if it is homeomorphic to the triple (Z, Zx, Z2) where

Z:={ze C&quot;+ 7|*,| &lt; 1 for i 1,. n H-1}

Z2:={zgZ1/z1=0}

(see Figure 1).

ïfqeL2 and y is a primitive vector of F the average of q in direction of y is the

function on {x e M2/(x, y)} 0 given by

¦r q(b)e&apos;&lt;

b e r
&lt;b, y&gt;

Now project the lattice F to the Une &lt;jc, y) 0 and let a be the projected lattice

vector of minimal length such that the pair (a, y) gives the standard orientation

of IR2. Observe that |a| • |y| |lR2/r| 1, and that 27t(a/|a|2) is a generator of
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&apos; Zn

Figure 1

{b GT#|&lt;è, y&gt; 0} (see Figure 2). The map / —? r(a/|a|) is a length-preserving
parametrization of the Une &lt;x, y&gt;0. In the /-variable the averaged function

is periodic with periodic |a|. Consider the one-dimensional operator

dt2 m^-o, \ (a 17

Setting s (f/|a|) this operator becomes

where

:- +f

is periodic with period 1.
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Figure 2

THEOREM. Let q e Ll,y a primitive vector ofF and m eZ, and let S be afinite
subset of I containing (y, 4nm, 0). Then for any 0 &lt; @ &lt; %

is a complex curve isomorphic to the Bloch-variety B(qy) of the one-dimensional
potential qy.

Every smooth point of B(q) n Ey&gt; m has a neighborhood U such that the triple
(U, UnZ(0)9 UnE(0)nB(q)) is a locally cone-Hke space of dimension 2.

Proof We may suppose by rotating the lattice F and using the F # action that
y (0, y2) and m 0. Recall that the coordinates (k, m, v) with

1

hâve been introduced above in a neighborhood of Ey 0 in X(S).
Let p be a point of Ey&gt; 0 and V &amp; small neighborhood of p in X{S). Then there

is a finite set G c {b g F * \b2 0} such that for ail b e F #\G the componente Bb of
the free Bloch variety does not meet Ey,Qc\U. For (k, u,v)eU the matrix of
- Ak + q - X) • -Ak - A)g may be organized in the following way

vq(b-c) if

«6c if c2 0, c i G

¦c) if c e G
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We split it up into blocks

-&gt; c

c2 0 c2 # 0

(k, m, t;)\
(k, m, i?)/

B(K,u,vy

Observe that B(k, u, 0) 0, D(k, u, 0) 1, so that for v — 0 the matrix above has

the form

A4(k,m,0) 0\

where A{k, u, 0) has entries

((K + c,)2 - u)ôbc + q{bx - cx, 0) if (c, 0) e G.

Apart from scaling this is the matrix for (— D2K + qy - u) - (-D2K — u)ôl. By the

same kind of argument as used in the proof of Theorem 1.1 one sees that

det2 T det7 A
A 0\
• &gt;)¦¦

We set

t9 v) D(k

Then

,u,v))

is a meromorphic function on E7t 0 and up to scaling of coordinates it coincides with
one of the local équations of B(qY) as discussed in section 1.

For v # 0 the function /(k, u, v) is an équation for B(q). Therefore we want to
show that it is continuous at E7t 0 if we approach E7t 0 through the cône 1(0).
Furthermore after reparametrization it is continuously differentiable in the cône.
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Once such regularity has been established it will be possible to show that its zero-set
is a locally cone-like space.

The square of the Hilbert-Schmidt norm of the différence

A(k, u, v) B(k, u, v)

C(k, u, v) D{,

k9 u,v)\_ U(k, w, 0) B(k9 m,

k,u,v)J \C(k9u,0) D(k,u9

is

&quot; &quot; c/r*\2c2 + v((K+Cl)2 + c22-u)\2

Write v in polar coordinates: v t em. Then for any e &gt; 0 there is ô &gt; 0 such that

l,,|2

uniformly on points (k, m, v) of U satisfying e &lt; a ^ n - s and \t\ ^ ô. We shall verify
this estimate for (k, m) (0, 0); the gênerai case is a straightforward élaboration.

The sum

is comparable to the intégral

dx
L

Let f 2/5, i.e. v (2/s)(cos a -h i sin a). Then the intégral becomes

f
M * 1

i+ 1sx2\x\2 cos a -f s1x\

dcp
_

C™dr C2«_
~ Ji r Jo r 4- s2 sin2 q&gt; + 1rs cos a sin &lt;p

dcp

-&gt; ¦&gt; &lt;&gt;
xA 2r.s cos a sin&lt;p\

(r2 -h s2 sin2 ç&gt;) 1 -f — 2 - 2
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But

2r|s|lsin&lt;?l
•y 0 &apos; &quot;7

r + s sin &lt;jp

so that

).rx nos (Y sin m
-|cosa| 0(e2)

1rs cos a sin q&gt;

^ 1 cos a 0(e2)

Therefore the last intégral is bounded above by

f*2n Â,n

0(e-2)- f°O^ 0(e-2)-
s J r s

The estimate

U, 12

holds uniformly for e &lt; a &lt; n — e and |r| &lt;&gt; ô for any fixed «5. It is clear from the
form of the sum that the real axis must be avoided because the singularities
v 2c2/\c\2 ail lie on the real axis and cluster at 0. When (k, u) # 0 the singularities
move off the real axis but lie underneath a parabola. So once e has been chosen ô

must be made so small that the truncated cône {tel(X\ \t\ &lt;Se &lt; a &lt;n —e} is

bounded away from the singular set.

Notice that

UnZ(0) i(K, u, v) g U\ arg
(k2 + ~\* (-0, 0)1

is comparable to the cônes of the form {(k, m, t el&lt;x)\e &lt; a &lt; n — s and \t\ &lt; ô}.
Therefore our estimate (*) shows that /(*, m, p) is continuous in Un 1(0). In
particular

B(q)nI(0)n(UnEytO)

is contained in the zéro set of /(k;, w, 0) det2 A(k, w, 0), that is the pièce of the
one-dimensional Bloch variety B(qy) that intersects (7.
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We now prove the opposite inclusion. For this purpose let us first assume
that p (k0, wo,0) is a smooth point of the complex analytic curve {(k, w, 0) e
£y,o|/(*&gt; w, 0) 0}. Then the partial derivatives of/with respect to k and u do not
vanish simultaneously at p. The estimate (*) also shows that the function
(k, u, t, (x)-&gt;/(k;, m, x2 etct) is C1 in the variable t as long as e&lt;a&lt;7i-e or
7i+e&lt;a&lt;27i— a. By similar estimâtes one can show that this function is actually
continuously differentiable in ail variables if a is restricted to the intervais above.

Now, regard /(je, w, t2 em) as a map from C2 x IR2 R4 x R2 to C R2. At any
point (k0, u09 0, a) with e&lt;a&lt;7i-£or7i+£&lt;a&lt;27r-eits Jacobian has maximal

rank, and the kernel of the Jacobian is transversal to the hyperplane t 0. By
the implicit function theorem at ail such points the zéro set of/(K, m, t2 em) is a real
4-dimensional manifold transversal to the hyperplane t 0 in R4 x R2. The image
of this manifold under the map R4 x R2 3 (k, m, t2 el&lt;x) -?(*:, m, t2 eia) is a locally
cone-like space because this map contracts the a-direction for t 0.

To summarize, we hâve shown that B(q) n 1(0) is a locally cone-like space at
each smooth point of the zero-set of/(fc, w, 0) in Ey0. In particular ail thèse smooth

points lie in the closure of B(q) n 1(0). It is easy to see from the discussion in
section 1 that the équation defining the one-dimensional Bloch variety B(qy) is

reduced. Therefore the smooth points are dense in the zéro set of/(k, u, 0) and the

proof is complète.

3. Applications

It follows immediately from the theorem of section 2 that the Bloch variety B(q)
détermines the Bloch varieties B(qy) of ail the averaged potentials qy. This resuit has

been proved in [4] using analytic methods. In the directional compactification the

curves B(qy) are attached to B(q) in a géométrie way. We use this to deduce

properties of the Bloch variety B(q) itself.

THEOREM 1. Let q e L2(U2/r). Then for any two irreducible components

Cu C2 of B(q) there is bsT* such that b Cl C2.

This resuit — which will be proven in a moment — can be expressed more briefly

by saying that B(q)jr* is an irreducible complex analytic variety. Thus, B(q) is

determined by any of its irreducible components. If q is real valued then the germ

of BR(q) at any of its points détermines — by analytic continuation — at least one

component of B(q). So,

COROLLARY. Let quq2 be real valued potentials, p a point of Bu(qx) and U a

neighborhood ofp in R2 x R. IfBR(qx) nU Bu(q2) n U then B(qx) B(q2).
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This corollary may be reexpressed by saying that the analytic continuation of an

arbitrarily small pièce of any single band function yields the entire complex Bloch

variety and in particular ail the other band functions. In this sensé it is much

stronger than Theorem 3 of Section 1.

The generalization of Borg&apos;s theorem suggested at the end of section 1 is

THEOREM 2. Let q e L2 be a real valued potential. Assume that there is an

entire function A : C2 —? C such that the Bloch variety B(q) is the union of the graph

of A and its translates under F *, that is

B(q)= y {(k,A)eC2xC/l=A(k + b)}
bzT*

Then q is a constant function.

Both theorems are conséquences of the

PROPOSITION. LetqeL\,ya primitive vector ofr andO&lt; 0 &lt;n. Then, for
each component C of B(q) there is m e Z such that the point set closure of C n 1(0)
in X({y9 4nm, 0}) contains at least one irreducible component of B(q)nEq m.

In particular the directional compactification of every component of B(q) meets

some exceptional plane Eym.
We now show that Theorem 1 follows from this proposition. Let Cx, C2 be two

components of B(q). As usual, we may assume that J q 0. By the proposition there

are integers mum2 such that ClnI(0)nEymi contains a component C\ of
B(q)nEY m. As we observed in the previous section there is bxeF* such that
bx - Ey mi Ey mr Then bx-C\ and C2 are both components of the curve

B(q)nEy m2, which — by the theorem of the last section — is isomorphic to B(qY).
The analogue of Theorem 1 holds in one dimension, and therefore there is b2 e r #

with &lt;*2, y} 0 such that b2 • (bx • C\) =^C2. Put * := b2 -bx. Then the closure of
b - CxnZ(&amp;) also contains C2. Since B(q)r\Z(&amp;) is a locally cône like space (in the

sensé of section 2) at each smooth point of C2 the two components b • Cx and

C2 of B(q) hâve an open subset in common. Hence, they are equal, proving
Theorem 1.

The proof of Theorem 2 is similar in spirit. Again we assume that j q 0. The

graph of A is a component C of B(q). Below we will show that for each primitive
y in F there is m € Z such that C n 1(0) n £y m contains the graph of an entire
function. This implies that B(qy) contains a component which is the graph of an
entire function. Then by Borg&apos;s theorem qy is identically zéro. As this holds for ail

primitive vectors y the potential q is identically zéro.
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To prove that C n 1(0) n E7t m contains the graph of an entire function use the
r#-action and rotation of the lattice F to reduce everything to the case y (0, y2)

and that C n 1(0) n Ey 0 contains a component C&quot; of B(q)nEy 0. In the coordi-
nates k, m, v with kx k, k2 l/v, X u + l/v2 introduced in Section 2

C Uk, u, v)/u â(k, - J - -2, v * oi.

Since 5(5) is a locally cône like space at ail smooth points of C&quot; this implies that

lim A\ k, - —r
argt;2*(-6&gt;,e) V VJ V*

exists for ail k. This expression defines a continuous function k -? C/(k:) whose graph
is contained in B(q)nEy Q. Since this set is a complex analytic curve the function is

in fact analytic and parametrizes a component of B(q)nEy 0, completing the proof
of Theorem 2.

Now, for the proof of the proposition assume that y (0, y2) with y2 &gt; 0. First
we want to show that near real points of the planes Ey% m the Bloch variety B(q) is

contained in a tubular neighborhood of the free Bloch variety B(0). More precisely,
let n : C2 x C -&gt; C x C be the projection (k, X) -* k (k{, fc2) and embed C x C into
C x Pl by (fcl5 k2) -+(ku(\,k2)). Observe that, n extends continuously to a map
n : C2 x Cu£y&gt;m-&gt;C x P1. For m =0 this map is described in the coordinates
(k, m, v) by (k, m, y) -? (k, (v, 1)).

LEMMA. F/x a compact interval Kx cz R, a«J fer q € Lq. Then there is R&gt;0 and
there are closed subsets Tm n of {{kx ,k29À)e Z(0)/k{ g Kx \k2\ ^ R} with thefollow-
ing properties :

(i) B(q)n{(kA)€l(S)lkxeku\k2\&gt;R}cz{}m^tmyn
(ii) l)ber*,&lt;b,y&gt; 2nm(Bbn{(k,X)eZ(0)lkxeKx,\k2\ * R} c= U^o Tmnfor all

m g Z.
(iii) Jm, „ n rm,t „, 0 if (m, «) # (m&apos;, n&apos;).

(iv) r/ie closure Tmn of Tm n in X({(y9 4nm, 0)}) is compact, and the restriction

ofn to Tmn is a trivial fibre bundle over {(kl9 (v, 1)) eKx x Pl\ \v\ &lt;&gt; l/R and

Intuitively speaking the picture — as represented in Figure 3 — is that near each

plane Eyt m the directional compactification B(q) is the union of an infinité number
of distinct branches, each lying over the t?-plane and each close to a branch of B(0).
We emphasize that there is a domain uniform in n over which all thèse branches lie.
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I-
-2 *. Im v

Figure 3

Proof of the Lemma. The square of the Hilbert-Schmidt norm of the operator

Since det2 is continuous in the Hilbert-Schmidt norm there is an e &gt; 0 such that

whenever

Clearly, in this case (fc, X) $ B(q).
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If kx is real and 5ef# then (k + b)2 has

(k{ + b,)2 + (Re fc2)2 - (Im Â:2)2 + 262 • Re Jfc2 + b\

as real part, and 2b2 Im &amp;2 as imaginary part. As 62y2 e 2tiZ for b g T # the &quot;polar&quot;

set of S l/\(k + b)2 — X\2 as a function of X is a countable union of séquences
(cmn)nez where

Imcmn= —

and for each m g Z the séquence |cmn| grows like An2y\- n2. (see Figure 4)
As in Section 2 one sees that there is p &gt; 0 such that for real kx and Im k2 &gt;

pyjn
1 e

&lt;-

\lm À. — 2b 2lm k 2\ ^ p
\{k+b)2-k\2 2

An,

Im À

• • • •

• •

(points (A:+6)2, b e T*)

Figure 4
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In other words one can ignore ail contributions from horizontal strips having
distance more than p from X. Choose R so big that Im k2 &gt; py2/rc for ail
k (kl9k2) eKxxC with \k2\ 2&gt; R and arg (k2 + k22) # -G, G).

For m e Z, set

: j(*, A) 6 g ^, \k2 and
4n

Im A (Im A:2) * m

Clearly

and

(J ^ n {(/r, A) e I{G)\kx e tf,,

B(q)n{(k,X)eE(e)/kleKl,\k2\i:R}&lt;= [j Tm,TmnTm- 0 if m*m&apos;,

Furthermore a point (A:, A) of Tm does not lie on B(q) unless

^ 1 8

^\(k+b)2-X\2^2

For (k, X) g Tm this sum is less or equal to

—

Therefore we consider the function

^ 1

It has infinitely many &quot;pôles&quot; on the real axis, but the gaps between them are

growing linearly. Since Kx is compact we may choose

such that for ail k g Kx
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bx eU

e

(bl,2nm/y2)er#

Therefore, put

T : &lt; (k, X)

(see Figure 5)

With this définition the conclusions (i)-(iii) of the lemma are obviously fulfilled.
We check conclusion (iv) in the case m 0. In the coordinates /c, m, v the closure

r0 „ is described by the conditions

-p Re u £ Pmn.

• • • # • •

Tmt,

[Zl Q

Figure 5

ReA
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This set is clearly compact and fibers trivially over

*, (i?, 1)) € P»| \v\ £ j and arg (k2 +

Let us now complète the proof of the proposition. Suppose C is a component of
B(q), and choose a non-empty compact interval Kx c R. In Section 1 we showed

that C is the zéro set of an entire function of finite order, and that therefore n(C)
is dense in C x C. In particular by the lemma above

Cn (J Tmn*0.
me Z
n 2: 0

Choose m, n such that C n Tmn # 0. Since

B(q) n {(*, A) g £(©)/*, g Kx |*2| &gt; R} c (J fmn

the intersection Cnfmn is a complex subvariety of f^. The restriction of 7i to
Cnfmn is proper since fmw is compact. Therefore n(Cnfmn) {(fci,&amp;2) e^x
C/|A:2|&gt;i?, arg(^f+ A:|) ^[-0, ©]}. By part (iv) of the lemma this implies that

CnTmn meets E1%m and that Kx x {(0, \)} an{Cr\Tmn). Therefore Cnl(&amp;) con-
tains smooth points of B(q)nEy m. Since B{q) is a locally cone-like space of ail
smooth points of B(q) n Ey&gt; m the intersection C n 1(0) contains a component of
B(q) n isr m whenever it contains one of its smooth points. This concludes the proof
of the proposition.

Remark. The constructions and results presented in Sections 1 and 2 carry over
with only minor modifications to the case of three dimensions. To apply the implicit
function theorem in the proof of the theorem of Section 2 one needs the fact that
the derivative of the équations of B(qy) does not vanish at a generic point of
B(qy) - a fact which for two-dimensional averaged potentials foliows directly from
Theorem 1. In contrast the estimâtes in the proof of the lemma above, on which the

results of this section are based, use the fact that we are in dimension 2.

4. Degeneration of the spectral problem at infinity

In this section, for the sake of simplicity, we shall assume that q in L2 is real and

(if necessary by adding a constant) that the operator — A +q is positive.
The définition of the Bloch variety may be rephrased in a slightly différent form.

For yeF let Sy be the shift-operator acting on functions q&gt; e H2OC(U2) by



A directional compactification of the complex Bloch variety 145

Syq&gt;(x) cp(x + y). Thèse operators ail commute with each other and with -A +q.
For each (k9 X) e C2 x C dénote by sé{k A) the commutative C*-algebra of operators
generated by Sy - el&lt;k&gt;y&gt;, y e r and -A + q - X Then a point (k, X) lies on B(q) if
and only if there is V e H^M2) such that A • V 0 for ail A e .*/(*, *&gt;.

Our purpose hère is to extend this description of B(q) continuously over 1(0) to
the exceptional planes Ey&gt;m. To do this assume without loss of generality that
y (0, 1) and m 0. Choose a vector à (&lt;5,, &lt;52) g F such that y and 5 form a

basis of T. Then j/(* k) is generated by the three operators

Sy -&lt;?&apos;&lt;*&apos;y&gt;, S, -*&gt;&apos;&lt;*&apos;*&gt;, -A+q-À

The coordinates /c, w, v on a neighborhood £/ of Ey% 0 with

1 1

V V2

hâve been introduced in Section 2. For points in the intersection C2 x C n U the

algebra sé^ À) is also generated by

A2:= v &apos; — A -\-q — X)

because v # 0 there. On C2 x C n U we conjugate the algebra s/(ky X) by the

multiplication operator eX2&apos;v. If V e //^(R2) with A - ij/ 0 for ail A e s/(ktX) then
eXl/v V lies in the kernel of ail the operators of the conjugated algebra
eX2lv &apos;J*(k.x) &apos;e~X2/v. Clearly (k9 X) is in B(q) if and only if the kernel of the

conjugated algebra is non-zero.
On Ey o, that is for v 0, the one-dimensional Bloch variety B(q)nEy 0 B(qy)

is described by algebras stK% u generated by the operators

4- and e-&apos;Kâ^S{ôl)-\
ax2

where 5^1} is the shift operator S#fy(*i&gt; x2) &lt;p(jcj -h 5^ x2).
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THEOREM. The conjugated algebra eXllv • sé^kX) • e~*2/v dégénérâtes to s/KU
when v goes to zéro along the imaginary axis. Precisely, for any Schwartz class

function (p, and any (k, u) e C x C

lim (e~liX2/é) - Ai(K, u, /e) • el{X2/Ë))ç(x) (e~lKÔX • S{P -

+0

lim (&lt;?-&apos;&lt;*2/«&gt;. a2(k, u, ie) • el^e))&lt;p(x) -2i-r~ (p(x)
e-&gt;0 OX2

lim (e ~l(x*/E) • i43(ic, m, fe) • e l^e))&lt;p(x) ^- —r-5 + | ^!, 0 A - w
o 2î\ flxf J

Proof. The first two limits are trivial to compute, so we only verify the last

statement. Dénote by C the Fourier transformation

2% JRJR2

Then

(e-W). (_A)1&apos;2 - (l -
/ / t \2\ 1/2

Expanding the square root

+ f2c + î^e2 + 0(|e|3)

we get for fixed Ç in R2

1\2V/2
~J J

_L^e+0(g2)

Therefore, by the Lebesgue dominated convergence theorem

lim 2iel(X2/e) • (-A)l/2 • (1 — el{

H
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Since — d + q is positive its square root is well defined so that — A + q)l/2 is a
classical pseudodifferential operator of order one. Let

Then

or

It follows that r0 is a pseudodifferential operator of order -1 with principal symbol

rt*)/2|{|.
Set

Differentiating, one obtains

~R O+R)ir

so that

ir(s) ds + R{s) • ir{s) ds
J J

By Egorov&apos;s theorem, ir{i) is a pseudodifferential operator of order — 1 for ail t and
has principal symbol

Now
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/£) • (-J)1/2 • (H - e&apos;(-^1/2 • S&quot;1) • e«X2/e)&lt;p(x)

ix^ • -A)112 R(l)- e&apos;(*2/e) •

H- 2/ e -l(*2/e) • r0 • 1 - 1 + R( 1))) • el

The first term tends as above to —d2/dx2 as v goes to 0. In the same way one sees

that e~t(X2/e)&apos;el{-jyl/2&apos;S~l-el(X2/e) goes to the identity operator. The factor
2ie~&apos;(X2le) - r0 • (1 + R(l))) • el(*2/£) goes to zéro. To see this, use the identity

valid for any pseudodifferential operator A and any function / and the fact that
R is gênerated by solving a Volterra équation. Finally the factor —2ie~~t(X2/e) •

(-A)lf2 *(I) • *&gt;l(*2/£) converges to $loq(xu t) dt. This follows from the fact that the

leading order term of R(l) (in powers of r0) is the pseudodifferential operator
Jo ir(t) dt whose principal symbol is

àf *(*&quot;!)*

Remark. The theorem may be reformulated and extended by introducing a
vector bundle 3F over 1(0) u£y&gt;0 with fibre ^^(R2) that is trivial on 1(0) and on
Un 1(0) and has the multiplication operator eXllv as transition function. The
algebras sé{k^ y) and séiK&gt; u) glue together to a subbundle se of the endomorphism
bundle End (&amp;) of this vectorbundle. The kernel of se defines a sheaf on I{&amp;)

whose support is B(q) n 1(0) and whose stalk over a point of B(q) n 1(0) is

generated by the Bloch solutions at this point. It is natural to ask how the Bloch
solution behaves as one approaches the exceptional plane. This behavior is given by
a géométrie optics Ansatz which we hâve codified in the theorem. For the discrète

Laplace operator this has been worked out in détail in [1].
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