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A directional compactification of the complex Bloch variety

H. KNORRER AND E. TRUBOWITZ

Introduction

Let I be a lattice in R? and g a real valued function in L%(R?/I'). For each k in
R? the self-adjoint boundary value problem

(=4 +q =iy
Y(x +7) =e*”y(x), forallyin T,

has a discrete spectrum customarily denoted by
E, (k) <E,(k) < E;k) <---.

The eigenvalue E,(k), n = 1, defines a function of k called the nth band function. It
is continuous and periodic with respect to the lattice

r*:={beR¥Ky,bye2nzZ forallyin '}

dual to I.
To study analytic properties of band functions, we introduce the set

B(q) := {(k, A) € C* x C| there is a nontrivial ¥ in HZ (R?) satisfying
(=4 + g =M, and Y(x +7y) = <57y (x) for all y in I'}

which is referred to as the complex Bloch variety for q. For all n > 1, the graph of
E,(k) in R?> x R is a subset of B(q). Conversely, the intersection B(g) n(R? x R)
coincides with these graphs. The Bloch variety contains all points that can possibly
be reached by analytic continuation of any band function.

In section 1 it is shown that for any ¢ in L%(R?/I'), the Bloch variety B(g) is a
transcendental complex analytic hypersurface in C2 x C. Thus, when ¢ is real, the
union of the graphs of E,(k),n = 1, is a real analytic hypersurface in R x R.

114



A directional compactification of the complex Bloch variety 115

The dual lattice I' * acts on C2x C by I'* 3 b : (k, A) - (k + b, 1). Clearly, this
actions maps B(qg) to itself. In section 3 we shall prove that for all g in L%(R?/T) the
irreducible components of B(g) are translates of each other by elements of I' *, in
other words B(q)/I'* is an irreducible complex analytic variety. Therefore, when ¢
is real, the analytic continuation of any given band function is B(g), from which all
the other band functions can be found. That is, one band function determines all
other band functions.

By the remark above, each of the functions E,(k),n =1, is piecewise real
analytic on R?. For ¢ =0 and all n > 1, every real analytic piece of E, (k) continues
to an entire function on C?, namely a translate of k2 + k2 by I' *. It will be shown
in section 3 that when ¢ is real and B(g) contains a component that is the graph
of an entire function, then ¢ must be constant. Thus, ¢ is constant, if a single
real analytic piece of any one of the band functions extends to an entire function
on C2

To gain some perspective, let us recall the one-dimensional situation. For p in
L¥(R/Z),

B(p) = {(k, 2) € C x Clthere is y € H.(R) satisfying
—y" 4+ p(x)W =W, x € R, and Y(x + n) = e*"Y(x) for all n e Z}

1s a transcendental curve [6]. It is immediate from the equation for B(p) given at the
end of section 1 that B(p)/Z* is irreducible. Here, the statement that for real
valued p, the function p is constant if and only if B(p) contains a component that
is the graph of an entire function is equivalent to a well known theorem of Borg [2].
The connection is made in detail in Section 1.

The most important part of this paper is section 2, where we directionally
compactify B(q). The idea is to construct a cradle by inserting C?> x C in P* and
blowing up a set of points on P* determined by the lattice I'. The points to be
adjoined to B(g) lie in the exceptional planes of the blown up space. However,
B(g) is transcendental, so it is only possible to approach the exceptional planes
along B(q) “directionally” through a special family of cones. Once the cradle and
cones have been specified the directional compactification BT(}) can be computed.
The divisor B(g) — B(g) “at infinity” is the union of curves; one curve for each
primitive lattice vector y in I' (a lattice vector y is called primitive if there is no
d € I' such that y = m - 6 for some m € Z, |m| 2 2). The component corresponding
to y is isomorphic to the one-dimensional Bloch variety for the one-dimensional
potential [} g(x + ty) dr obtained from ¢ by averaging in direction of y. These
curves lie in different exceptional planes and are attached to B(q) in an essentially
C'! way. The results discussed above are proved by exploiting the structure of this
compactification.
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Section 4 complements the calculation of the directional compactification of
B(q) by describing how the two-dimensional spectral problem degenerates via a
geometric optics limit to a one-dimensional problem on the exceptional planes.

When the continuum Laplace operator is replaced by the difference Laplacian,
many properties of the corresponding algebraic Bloch variety, including its com-
pactification have been worked out in [5], which, together with [4], served as a
motivation for the constructions presented here.

It is a pleasure to thank D. Bittig and J. Feldman for useful conversations, and
J. J. Duistermaat for help with Section 4.

1. The complex analytic structure of the Bloch spectrum

Fix a lattice I' in R?. Without loss of generality we may assume that the torus
R?/I" has area one. Let

r*={beRKb,y)e2nZ for all y in I'}
be the dual lattice. We want to show that for every g in L2 = L*(R?/I'), the Hilbert
space of complex valued, square integrable functions on the torus R?/I', the

corresponding Block variety

B(q) = {(k, A) € C* x C]| there is a function ¥ in HZ (R?) satisfying
(=4 + g =AYy and Y(x +7y) =e**7yY(x) for all y in I'}

is a complex analytic hypersurface in C2 x C.
To do this, it is convenient to put the boundary conditions into the operator.
For each k in C? set
Ak:'_': a4+2k -V __k2’
where k2 = k3 + k2. If ¢ € H¥(R/I') then the function Y(x) : = ¥ *¢p(x) satisfies
AY(x) = %2 4, ¢(x)
and

W(x +79) = <MY (x)

for all y in I'. Clearly,
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B(q) = {(k, 2) € C* x C| there is a function ¢
in H2(RY/T) with (— 4, + q)p = Ae).

For all k in C?, the exponentials > *> b € I' *, are a complete set of eigenfunc-
tions for — 4, in L*(R?/T'). The associated eigenvalues are (k + b)2, b € I' *. Hence,
the Bloch variety B(0) for ¢ =0 is the union (J, .+ B, of the quadrics

B,:={(k,A)eC*xC|(k +b)>—1=0}, bel™

Observe that only a finite number of these quadrics can intersect any bounded
subset of C? x C. Therefore, B(0) is a locally finite union of algebraic hypersurfaces
and consequently a complex analytic hypersurface in C* x C.

For general g in L? we first obtain an analytic equation for the part of B(q) lying
in

C2 x C\B(0) = C? x a:\ U B,

bel#

On this set, the product
(=M +q =2 (=4 =N "=14+q (=4 -

is defined. Furthermore, the operator q - (—A4, — A1) ! is Hilbert—Schmidt since

2

g —o)

Y ekt g (— A —A) ! eie N =y m

b,cel’# b, c

) 1
=2 MOF 2 o =ap

1
= “quggl(k e c)2_ )‘lz < ©

where

fk) = f(x) ek dx, for fe LR*T).

R2/I

The determinant of 1 + A4 where 4 is a trace class operator on a Hilbert space
is given by the convergent sum
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det (14 4) = ) tr A"(A).

nz20

Here, A"(A),n 20, is the nth exterior power of A. If A is Hilbert—Schmidt
(1 + A)e—* —1 is trace class and one defines the regularized determinant

det, (1 + A) := det((1 + A) - e~ 1).

It has the property that det, (1 + 4) # 0 if and only if 1 + A is invertible (see, [9]).
So,

B(g) n(C? x C\B(0))
= {(k, ) € C2 x C\B(0)| det, (= 4y + g — 1) - (=4, — 1)) =0}

To analyze det,((—d4,+qg—4)-(—=4,—2)"Y it is useful to present
(—4,+q—A)-(—4,—24)"" as a matrix with respect to the Fourier basis
e ®-*> b eI'*, of L%R?/IN). It has entries

1 4(b —
(—de+g =D (=8 =) e = 8o + 20

and acts on /(I'*). We enumerate the elements of I' * so that c appears later in the
list than b if |c| > |b|.

Let P, be the orthogonal projection onto the subspace of L*(R%*/I') spanned
by e“®* |b| < r. The truncated operator 1+ P, - q - (—4, —4) ™' - P, has matrix
entries

5 4 =9
[1+P, g (=4 =AD" Ple={ " (k+c)?—14
O e |b| or lc‘ >r

, bl e| =

It is the direct sum of a principal minor and an identity matrix.

Let L} be the linear subspace of all functions ¢ in L? with mean zero, i.e.,
(&2/r q(x) dx = §(0) = 0. Since the Bloch varieties of g and g — §(0) only differ by
the translation 4 —» 4 + §(0) there is no loss of generality in discussing only those
potentials with mean zero.

THEOREM 1. The finite determinants

.
det (5,,c + 202l < r),
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converge uniformly on closed bounded subsets of (C?x C\B(0)) x L3 to
det, (—4di +g—4) (=4, =7

Proof. Observe that
detZ(ﬂ +Pr ' q (-Ak —A)—l Pr)

_ d (A — )1 _s __F
= det (1] +P,. q ( Ak '{) Pr) exp( q(O) MZSr(k + C)2 _ A)
4(b — o)

=det|d —_—
: ( bc+(k+c)2_l,|b|,|c|sr)

since det, (1 + A4) =det (1 + 4) e "4 for trace class operators.
Next we claim that

- Qb — o)
det,(1+q-(—4,—A)"'-P)=det <5bc +m; |b|, |C| SI‘).

The operator 1+ ¢q - (—4, —A) ~' - P, has matrix entries

_4b+o
k+c)?—1
6bc3 'C!>r

Ope + , el=sr

[ﬂ+q'(—-Ak_}‘)_l.Pr]bc=

The columns for |c| > r have a single nonzero entry and that is J,. = 1. By adding
multiples of these columns to those with |c| < r, this matrix can be reduced to that
of 1+ P, -q-(—4,—4) "' P,. If we were in a finite number of dimensions their
determinants would be the same and the claim would be obvious. Here, first notice
that for s > r

det,(1+ P, g (=4 =)' P)

=det(5bc+(—]-(-q%;7cz—z;|b($s, |c|$r:5bc;|b|<s,r<|c|Ss)

i —o
= —_— <
det (8, + A0 pl e < )

by column reduction for finite matrices. Next,

14(6 — o)
e+ 97 =P

le|sr

"‘I’(—Ak—i)—l‘Pr“Ps"I'(Ak“'l)—l'Prnfis‘—‘
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tends to zero as s goes to oco. But det, (1 + A4) is Lipschitz in 4 with respect to the
Hilbert-Schmidt norm; in fact,

|det, (1 + A) — det, (1 + B)| < |4 — Blus exp [a(| 4 |us + | Bllus + 17

where a > 0 is a universal constant. This proves the claim.
Finally,

2

(b
detz((—Ak*‘Q“'{)(_-Ak‘l)—l)*det<5bc (E%Z)T_ lbl |c|Sr)

=|det, (-4 +q— (=4 —A) ") —det,(1+q - (=4, — 1) ! - P,)J?

< 1ol 2 rrarp) = 2Cla - (~ 4= D s+ 17

c>r

as above. Now |¢|3 X, -, 1/|(k +¢)>*— A tends uniformly to zero on closed
bounded subsets of (C*>x C\B(0)) x L} while ||g - (—4, — A) ~'||us is uniformly
bounded on them. This finishes the proof.

COROLLARY 1. det, (=4, + g — 4) - (=4, — 4) ") is a holomorphic function
on (C?> x C\B(0)) x L. For each q in L} its zero-set equals B(q) n(C? x C\B(0)).

Proof

6bc +qA(b ‘“C)
: <
det((kﬂ)z“i 1], || r)

is a holomorphic function on (C? x C\B(0)) x L3.
For each finite subset G of I' * set

UG:=C2XC\ U Bb'

bel #\G

In particular, Uy = C? x C\B(0). These sets form an open cover of C? x C. Let Py
be the projection onto the subspace spanned by e“**> b € G, and define a partial
resolvent by

(—de =G = Pg +(—d — 2)~'(1 — Pg)

for (k, 4) in Ug. Its matrix representation is
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Ope beG
5bc
k+b)>2>-1°

(=4 = DG ') =
b¢G

and
(=dk+q—2) (=4 —=Dg' =1+q (=4 =5 + (=4 — 12— 1)P;

The operator (—4, —A);' is defined so that (k, 1) € B(q) U, if and only if
(=4 +q—A)-(—4,—A)g' is not invertible, that is

B(q) nUg ={(k, ) € Ug|det, (=4, + 9 —2) - (=4, — D' =0}

THEOREM V1'. Let G be a finite subset of ' *. Then

el TT ((k +b)2 — 2) exp (A — (k + b)?) det (5,,C +(7‘j_(:’—:f2-—z; b, |e| = r>,

be G C)2—-

r>max, . |b|, converges uniformly on closed bounded subsets of Uz x L} to
det, (=4 +9—4) - (=4 — D5 ").

Proof. As above.
COROLLARY I’
det, ((—de +g —4) - (=4 — g ")
= e'GIbﬂG (k+b)2—A)exp(A —(k+b))det,(—de +q—A) (=4 — 1))
is a holomorphic function on Ug x L}. For each q in L} its zero set equals B(q) N\ Uy.
The determinants
det, (=4 +9 =1 (=4 =5
for finite subsets G of I' * give local equations for B(g) in the cover of open sets Uj;.

Therefore, B(q) is a complex analytic hypersurface of C* x C.
We now obtain a global equation for B(q). For be I'* set

2k, by + k2 =4 —1\ 1 [2¢,bY +k?— A —1\?
R”(k"l):e"p(‘( b2+ 1 +3 b2+ 1 '



122 H. KNORRER AND E. TRUBOWITZ
Then the infinite product

(k +b)°—2)

bel # b? +1

R, (k, A)

converges to an entire function of finite order on C? x C whose zero set equals B(0).

THEOREM 2. For each q in L},

k+b)?*—A
Fo )= ] (k+b)"—4)

bel# b2+1

Ry(k, A) det, (—4p +q—2) - (=4, =AD"

is an entire function of finite order on C* x C whose zero set is B(q).
Proof. By Corollary 1’, for any finite subset G of I' *
((k +b)>—4) B exp (k + b)* — )
F(k, A, q) = Ry(k, A e Ry(k, A
( @ (belrl\o b*+1 o 4) |\ e bI;IG b*+1 o 4)
det, (=4 +q—2) - (=4 — V3.

It follows that F is holomorphic on Ug; and vanishes precisely on B(q) N Us.
Consequently, F is an entire function on C? x C whose zero set is B(qg).
We apply Hadamard’s inequality to obtain

, _ lal3
,detz((_Ak'{"q_’l) (_Ak—'l) l)lzsbel_r[# (1+|(k+b)2-—).|2 :

Thus

[k +5)>— AP 1 ( lq 3 )
‘F("’“‘zs,,ﬂ# b2+ 1)? lR”le# 1+](k+b)2—,1|2

el

) Pl llqu%,
bel* (b*+1)°

%
from which one concludes by elementary estimation that F is of finite order.

We have actually shown that F(k, 4, g) is an entire function of finite order on
(C*xC) x L3.

We say that X < C” is a complex analytic hypersurface of finite order if it is the
zero set of an entire function of finite order on C”. Suppose Y is a component of X.
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Since X is the zero set of a function of finite order its indicator of growth is of finite
order (cf. [7] 3.6). Therefore, the indicator of growth of Y is also of finite order and
hence by the solution of the “Cousin problem with finite order” ([7], 3.30) Y is the
zero set of an entire function of finite order. That is, the components of a
hypersurface of finite order are also hypersurfaces of finite order.

Suppose X < C" x C is a hypersurface of finite order defined by f(z, w) =0. Let
Ux(z) be the number (possibly infinite) of w’s (counted with multiplicity in f(z, -))
for which (z, w) € X. Geometrically, u,(z) is the number of sheets lying over z when
X is projected onto C". If no fiber of the projection is all of C then ([7], 3.44) for
eachm 20 X, := {z € C"|u,(z) < m} is either C" itself or contained in an analytic
subvariety of positive codimension.

THEOREM 3. Let q be a real valued function in L*(R?/T"). Then, the ““real Bloch
variety”

Br(q) : = {(k, A) € R? x R|there is a ¢ in H}(R*/T') with (— 4, + )¢ = Ap}

determines the complex Bloch variety B(q).

Proof. By analytic continuation Bk(gq) determines all the components of B(q)
that meet Bi(q).

It follows from Theorem 2 (we may assume that the average of g is zero) that
every component Y of B(q) is a hypersurface in C? x C of finite order. Moreover,
for fixed k € C?, ({k} x C) n Y is discrete since the corresponding values of A belong
to the spectrum of — 4, + q. Therefore, (with the notation introduced above) Y, is
either C? itself — in which case Y is empty and there is nothing to prove — or is
contained in an analytic subvariety of C* of positive codimension.

For real k, —A4, +gq is self adjoint so that Bg(q) = B(g) n(R* x C) and
Y " Bg(q) = Yn(R? x C). If Yn(R?>x C) =, then R*c Y,. By the last para-
graph C2c Y, which implies once again that Y = . Thus, every nontrivial
component of B(q) intersects Bgr(q).

Later on we will need some information about one dimensional Bloch varieties.
So, let ¢ € LAR'/Z). The associated one dimensional Bloch variety is

B(g) = {(k, 2) € C x C] there is a function ¥ in H{,.(R")
satisfying —y” + q(x)¥ = Ay and Y(x +n) = e*Y(x) for all n}

= {(k, ) € C x C| there is a function ¢ in H*(R'/Z)
with (—D} + 9)¢ = 19}

where D, = (d/dk) + ik. Once again
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B(O)= () B,
beZ#*

B,={(k,) eCxCl(k +b)2—i=0}, beZ* =2nZ

Now, in contrast to the two dimensional case, there is a simple equation for B(0),
namely,

B(0) = {(k, A) € C x C| cos k —cos ﬁ = 0}.
Notice that the order of cos k — cos ﬂ is smaller than what we would obtain had

we simply imitated the estimates used in the two dimensional case.
In general, let y,(x, 4, q) and y,(x, 4, q) be the solutions of

—y" +q(x)y = Ay (1

satisfying the initial conditions

»1(0,4) =y3(0,4) =1
¥1(0, 4) = »,(0, 1) =0.

Then, any solution can be written
¥ =y(0)y, + ¥'(0)y.

It follows that Y(x + 1) = e*Y(x), x € R, if and only if

Vo) _ i,c(w(O))
d “)(w'(m) v

where F(A) is the Floquet matrix

. (L, 4 (1, 4)
F”)"(y;(l,z) y;(1,1)>

Set

4(4, q) = tr F(4)
=yi(1,4) +y3(1, 4).
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The characteristic polynomial of F(1) is
det (F(4) —&I) = &2 — A(W)¢ + |F(2)|
=&2—A4)¢ +1

Therefore,

B(q) = {(k, 1) € C x Cle* is a root of £2— A(A)¢ + 1 = 0}
= {(k, 2) € C x C|2 cos k — 4(4) = 0}.

The final task is to connect this equation for B(g) with a determinant.

THEOREM 4. The holomorphic functions

4 — o)

(2cos k — 2 cos ﬁ) det (6,,c +m;

|b], |e| < r), r>0,

converge uniformly on closed bounded subsets of

(CxC) x Ly(RYZ) to(2cos k —2cos ﬁ) det,((—=Dz+q—A)(—=D2 -1
Furthermore,

(2cosk —2cos \/2) det, ((—D2+q —2) - (D2 — A)~") =2 cos k — A(A)

It is easy to see that g - (— D37 — 1) 1) is trace class so that the determinant need
not be regularized in the statement of the theorem.

Proof. The first part goes just as before. For the second, notice, by examining
the matrix, that

(2cos k —2cos \/A) det, ((=Di+q—A4) - (=D} =AY )

is an even, periodic (period 2n) function of k. For each 4, 2 cos k — A(Z) has simple
roots in k unless k =nn,n =0, £1, ..., in which case they are exactly double. By

1
Y4(b) = f gqx)e~?*dx, be2nZ
0
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evenness and periodicity (2) has at least double roots at these points. Therefore,

2cosk—-2005ﬂ
2cos k — A(4)

det, (—-Di+q—A) (=D -7 (3)

is an entire function (bearing in mind that the zero set of (2) is exactly B(q)). For
each A let k =k’ +ik" go to +i® with 0 <k’ < 1. The determinant goes to 1, the
factor (2 cos k — 2 cos ﬁ) /(2 cos k — A(4)) also goes to 1. Therefore, (3) is bounded
everywhere in k by periodicity. The theorem follows from Liouvilles theorem.

It is well known ([8] Theorem 1.4) that

W
A(A)=2COS\/1+O(W)
So,
det, (—D}+q —1) - (=Di— A~} =1 e 0( 1)
et,(—Di4+q—A) - (=Di—2)"H=1+
2 L , (2cosk—2cosﬁ) |A|'2

and we obtain a sharp estimate on the order of the holomorphic function defining
B(q).

Suppose g in L*(R'/Z) is real valued. Then the spectrum of —(d?/dx?) + q(x)
acting on L?(R') is absolutely continuous and is the union of bands determined by
|4(2)| < 2. For generic functions ¢ there are infinitely many complementary gaps. It
is a classical theorem of Borg [2] that ¢ is constant when there are no gaps at all.

The obvious generalization of Borg’s result, that is, a real valued ¢ in L%(R?/I')
is constant if the spectrum of — A4 + g is a ray, is false. In fact, the spectrum of any
q in L®°(R?/I') with sufficiently small norm is a ray. Furthermore, no matter how
large ¢ is there are never more than a finite number of gaps, [3]. Nevertheless, there
is a geometric reformulation of Borg’s theorem that can be generalized to higher
dimensions.

It is easy to see that the absence of gaps in one dimension is equivalent to the
condition that all the roots of 4%(1) — 4 = 0 are real and double except the smallest
which is simple. If this condition is satisfied, the projection B(q) - C, (k, A) =k has
rank one at each of the local branches of B(q) passing through any of its points.
Therefore, each local section of the projection can be analytically continued to an
entire function 4 = A(k) parametrizing a component of B(g). Conversely it is easy to
see that whenever B(q) contains such a graph, there are no gaps. So, we may
reformulate Borg’s result geometrically as the statement that B(q) contains a
component that is the graph of an entire function A = A(k) if and only if ¢ is constant.
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2. Directional compactification

In order to “complete” the Bloch variety B(q), ¢ € L*(R%/I'), by adding points
“at infinity” in a meaningful way we will construct a compactification X of the
ambient space C? x C, together with cone-like subsets 2(0),0 <@ < r of C? x C.
We shall then say that the directional compactification of B(q) is the space obtained
from B(q) by adding the point-set closure of B(g) nX(®) in X. The pair
Xg := (X, Z(O)) is referred to as a cradle for directional compactification.

It is helpful to motivate the construction by describing its analogue in one
dimension. In that case the space X is the two-dimensional complex projective space
P2, and C x C is embedded in X = P? by

C x C-P? (k, ) > (k, A —k%1).
We use the homogeneous coordinates (k, /, u) on P2. The embedding of C x C has

been such that the closures of the components B, of the free Bloch variety are the
lines with the equation

2kb + ub? —1=0, beZ* =2nZ
They intersect the line ‘“at infinity” L. := {(k,/, p) € P?/u =0} at the points

(1, 25, 0).
For a general potential g € L*(R'/Z) the equation

2cosk —A4(A;9) =0
of the Bloch variety given in the previous section has essential singularities along
L., . However, suitably modified it extends continuously over most of L, provided

one permits k to go to infinity only along rays in the complex plane that have a
non-zero angle with the real axis. More precisely, let us define for 0< @ <=

Z(0) := {(k, ) € C x C/the argument of k* does not liec between —& and O }.

Recall that for a finite subset G of 2nZ

[T (k+b)>— 1) det, (—Di+q—4) (=Di =)~ =0

beG

is a local equation for B(g) on the open subset Ug of C x C.
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LEMMA. Let q € LR'/Z) with [; q(x) dx = 0. The restriction of

k +b)>—A
I (( )
beG

- )'detz(("Di‘*q—'{)'(—Dlzc“')»)-l)

to 2(O) extends continuously to
L \{(0,1,0)}u{(1,2b,0)/b ¢ G}

and vanishes there only at the points (1, 2b,0), b € G.

Proof. Consider the affine chart C?a(u,v) > (1,u,v) on P2 In this chart
L,\{(0, 1,0)} is the line given by v =0. The coordinate change between the (k, 1)
and the (u, v) coordinates is

1 1
=—(1 k==,
A vz( + w), »

By Theorem 1.4

2cosk — A(4)

det, (=D +q—4)-(=D:—-2)"YH=
2 b= (=De =47 ZCosk——Zcos\/I

Since

A(R) =2 cos /7 + O(M)

a1

our function equals

1 ((k+b)2__,{).<1+0( 1 )( expllmﬂl )
beG k 412 \sin Lk + /2) - sin 3k — /2)

In the (u, v)-coordinates this becomes

[T (26 +u + b%)

beG

1+0( i ) exp [lm 1oy/1 +w)|
12
|1+ wo Sin%(1+mysin2lv(l—‘/1+uv)
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It now follows that everything extends continuously to points with v =0 and
u/2 ¢ 2nZ\G provided that one restricts v to the region arg v’ ¢ (— @, ), which is
2(0).

By the lemma the closure of B(q) N Z(@) clearly intersects L \{(0,1,0)} at
most in the points (1, 24, 0), b € 2nZ. With a little more work one sees that all these
points occur and moreover that in a neighborhood of each of them B(q) n Z(®)
looks like the cone {z € C| |z| < 1 and arg z? € (— @, @)}. The proofs of the last two
statements are similar to those we give in the two-dimensional case, so we won’t
carry them out here.

We now return to the construction of the two-dimensional cradle.
The first step in constructing the total space X is — as in one dimension — to
embed C? x C in the projective space P> by

C2xC-P3, (kA —>(k;A—k% 1) =(ky, kys A —k3—k3, 1)

On P*? we introduce homogenuous coordinates (k; /, u). For b € I'* the closure B,
of B, in P’ is given by the equation 2¢k, b> + b%u — [ = 0. It intersects the “plane
at infinity” H, := {(k;/, p) € P|u = 0} along the line

BynH, ={(k;1,0)e H,/2{k,b) — 1 =0}.

These lines in H_, are not in general position: The points where two or more lines
B, n H_, intersect form the set

I:={(y;4nm, 0)/y is a primitive vector in the lattice I' and m e Z}.

A point (y; 4nm, 0) of I lies on infinitely many of the components B, namely all
such components with b e I' * and (b, y) = 2nm.

The intersection pattern of the B, will be improved if the points of I are blown
up. So, for each finite subset S of I let X(S) be the manifold obtained from P? by
blowing up the points of S. The exceptional set P, ,, over a point (y; 4nm, 0) of S
is a projective plane whose points are in a one-to-one correspondence with the
tangent directions in P at the point (y; 4nm, 0). The inclusion of C? x C in P3 used
above defines an embedding of C? x C in X(S). The closure B, of B, in X(S) is the
strict transform of Bj = P3. (The bar — will always denote closure in some space
X(S), where the set S will be determined by the context).

Whenever B, passes through (y; 4nm) the strict transform B, meets P, ,, in the
line that corresponds to the tangent plane of B, at (y; 4nm, 0). One easily checks
that all these tangent planes are in general position, and so the same holds for all
these lines. Precisely, if b,, b,, b, are different elements of I'* with {b;, y) =2nm
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then B, nB,,nB, NP, , = . This shows that in X(S) the closures B,,beI'*
with (b, y) = 2nm for some (y; 4nm, 0) € S are effectively separated. Therefore, it is
natural to introduce as the compactification X of C2 x C the inverse limit of all the
spaces X(S) defined by the natural maps X(S,) - X(S,) for S, < S,. However, we
are not going to use this inverse limit, but work directly with the manifolds X(S)
throughout. This completes the definition of the ambient space X for the cradle.
The cones X(@®) are defined in almost the same way as in one dimension. We set

2(0):={(k\, k,, ) e C* x C|arg (ki + k3) ¢ (— O, ©)}.

For each finite subset S of 7 and 0 < @ < © we define the cradle Xg(S) as the pair
(X(s), 2(@)), and call

B(g):= B(g) U B(g) N 2(O))

the directional compactification of B(q) in the cradle Xg(S).

For each (y, 4nm, 0) € S let E, ,, be the affine piece of the exceptional plane P, ,,
corresponding to all tangent directions of P? at this point that are not tangent to
H_,. We will primarily be interested in the intersection of B(g) with E, ... To reduce
the analysis of this intersection to one calculation in local coordinates we use the

action of I'* on C? x C defined by
T*35b:(k A) -k +b,A).

Notice that the I *-action maps B(g) to itself and that all the definitions given in
this section are compatible with this action. Precisely,

(1) Foreach 0 < ® < and each b € I'* there is a compact subset K of C*> x C
and 0 < @,, @, <7 such that 2(@,) - K c b - (2(O) — K) < X(O,).
(2) The action extends to P? by
r*sb:(k;lp) -k +ub; 1 — 2k, b) — pb?, p).
The extended action preserves the set I.
Hence, each b € I' * induces an isomorphism b* : X(S) — X(b - S). One checks that

(3) for (y; 4nm, 0) € S this isomorphism b* maps E, ,, t0 E, ,, _1/2m)¢y, b>--

We can now use the I'*-action to reduce considerations about E, ,, and its
intersection with B(q) to the case m = 0. Furthermore the original lattice I can be
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rotated so that the first component of y becomes zero, i.e. y = (0, y,). Then local
coordinates around the point (y;0,0) =(0,1,0,0) of P? are k,/k,, l/k,, pjk,.
Blowing up produces coordinates (x,u,v) around E,, in X(S) such that
E,o={v =0} and

k’—xv 1 u
K, = kz-uv, =v

So the coordinate change between the new coordinates and the original coordinates
on C*x C is

One sees that for b = (b,,b,) € I' * the intersection B, N E, , is empty if b, # 0, and
for b, = 0 this intersection is given by the equation (x + b,)> — u = 0. Observe that
these are the equations of the free Bloch variety in dimension one.

This concludes our discussion of the cradle Xg(S).

Let us now determine the boundary points of BT(}) lying in E, . In order to
describe the local structure of BTc}) at these points we introduce the following
notion: A triple of topological spaces is called a locally cone-like space of dimension
n if it is homeomorphic to the triple (Z, Z,, Z,) where

Z:={zeC't'zj<lfori=1,...,n+1}

TMEPREREL|

Zz:= {Z EZI/Z]=0}

(see Figure 1).
If g € L? and y is a primitive vector of I' the average of ¢ in direction of y is the
function on {x € R*/{x, y>} =0 given by

1
X J gx +m)di= 3} qb)e>
0

bel#
{b,y>=0

Now project the lattice I to the line {x,y) =0 and let « be the projected lattice
vector of minimal length such that the pair («,y) gives the standard orientation
of R Observe that |x|-|y|=|R%I|=1, and that 2zn(a/|e®) is a generator of
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Z2 4 Im(zn+ l)

Figure 1

{be*|(b,y> =0} (see Figure 2). The map t—t(x/|a|) is a length-preserving
parametrization of the line {x, y>0. In the z-variable the averaged function

+ o
Z q 27(']1’1 —s . e27ci(mt/|a|)
o s 1
is periodic with periodic |x|. Consider the one-dimensional operator

d? + o %\ pmioms
—_— A s ni(mt/|o)
7 + ) q(an Mz) e .

m = — o0

Setting s = (¢/|«|) this operator becomes

1 d?
P\ "as? +4,(5)
where

+ oo o )
q,(5):= Y |oclzzj<27rm Ta—lz) e

m= —

is periodic with period 1.
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(* denotes points of I') ]
[ ]
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Figure 2

THEOREM. Let g € L}, y a primitive vector of I' and m € Z, and let S be a finite
subset of 1 containing (y, 4nm, 0). Then for any 0 < ® <1

B(g)nE,,,

is a complex curve isomorphic to the Bloch-variety B(q,) of the one-dimensional
potential q,.

Every smooth point of Bf@)nEy‘,,, has a neighborhood U such that the triple
U, UnZO),UnZO) r\B’G)) is a locally cone-like space of dimension 2.

Proof. We may suppose by rotating the lattice I' and using the I' * action that
y = (0, y,) and m = 0. Recall that the coordinates (x, u, v) with

1 1

have been introduced above in a neighborhood of E, , in X(S).

Let p be a point of E, , and U a small neighborhood of p in X(S). Then there
is a finite set G = {b € I' *|b, = 0} such that for all b € I' *\G the componente B, of
the free Bloch variety does not meet E, ,nU. For (k,u,v) € U the matrix of
(=4, +q—A) (=4, —A)g"' may be organized in the following way

~

vg(b —¢) :
5b“+2c2+v((x+c,)2+c%——u) if e, 0
(=4 +q—2) (=4 = V)5 'lsc =4 4gb —¢) P
Ope w(x+c,)2—u ifc,=0,c¢G
((k+¢)>—uwdy. +4(b—c) ifceG

S
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We split it up into blocks

.._.___—_._—_.)C

Cy = Cziéo
A A
I -

l b, =0 {(A(x, u,v) - rB(tc, u, l?))

b, #0 {\C(c,u,v) : D(x,u,0)

Observe that B(xk, u, 0) =0, D(x, u, 0) =1, so that for v = 0 the matrix above has
the form

(A(x, u, 0) 0‘)
* 1

where A(x, u, 0) has entries

(S qA(bl_cl;O)
A, 1,00, =4 (kK +¢) —u
((K+cl)2_u)6bc+qA(bl_cl9O) if(Cl,O)EG.

if (c,,0) ¢ G

Apart from scaling this is the matrix for (—D2 +¢, —u) - (—DZ —u);'. By the
same kind of argument as used in the proof of Theorem 1.1 one sees that

det, (A (1)) = det, 4

*

We set
- A(x, u,v) B(k, u,v)
J(%, u, v) 1= det, (C(K, u,v) D(k,u, U))

Then
f(K9 u, 0) = detZ A(K’ u, 0)

is a meromorphic function on E, , and up to scaling of coordinates it coincides with
one of the local equations of B(g,) as discussed in section 1.

For v # 0 the function f(k, u, v) is an equation for B(g). Therefore we want to
show that it is continuous at E, , if we approach E, , through the cone X(O).
Furthermore after reparametrization it is continuously differentiable in the cone.
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Once such regularity has been established it will be possible to show that its zero-set
is a locally cone-like space.

The square of the Hilbert—Schmidt norm of the difference

(A(K, u,v) B(x,u,v)\ (A(x,u,0) B(x,u,0)
C(k,u,v) D(k,u,v) C(x,u,0) D(k,u, 0))
is

12

2. v
la2 cezr:# 12¢, + v((k + ;)2 + 3 —uw)f
cy#0

Write v in polar coordinates: v =t e™. Then for any ¢ > 0 there is 6 > 0 such that
il

P 20+ 0((k + )2+ 3 —w)f?
cy#0

uniformly on points (x, u, v) of U satisfying ¢ <« < n — ¢ and |¢t| < §. We shall verify
this estimate for (kx, u) = (0, 0); the general case is a straightforward elaboration.
The sum

ol

L e+ ol
c2#0

is comparable to the integral

.[ dx
x| =1 2%+|x|22

Let t =2/s, i.e. v = (2/s)(cos a + i sin «). Then the integral becomes

dx
=1 X[+ 25x; x| cos o + 52x3

_ ©dr (" do
), r ), r?4s?sin? ¢ + 2rs cos a sin @

—J‘oo dr J‘2n d(p
B r 2rs cos o sin @
1 Jo 2 2 ain2

(r*+s*sin qo)(l+ r2+szsin2<p>
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But

2r|s| |sin o]
el sl B it o
r’+s2sin? ¢ !

so that

2rs cos a sin @

1 —
r’+s?sin? ¢

21— |cos a| =0(e?)

Therefore the last integral is bounded above by

© dr 2r d(p o Jr 4n
-2 - = -2 — ] -
0 J; r (J; r? + 52 sin? (p) 0z~ J; " (r(r2 n Sz)1/2>

1 [*®dr 1
=0(e‘2);f ﬁ=0(8—2)—s-=0(8”2) “Jo].
1

The estimate

|UI2 — 0( ——2)' I
o Py tolefP T 0
c2#0

holds uniformly for ¢ <o <m —¢ and |t| < for any fixed J. It is clear from the
form of the sum that the real axis must be avoided because the singularities
v = 2¢,/|c|* all lie on the real axis and cluster at 0. When (k, «) # 0 the singularities
move off the real axis but lie underneath a parabola. So once ¢ has been chosen
must be made so small that the truncated cone {re®||r|<de <o <m —e} is
bounded away from the singular set.

Notice that

UnZ(@O) = {(x, u,v) € U| arg (x2+ 12)¢(~@, @)}

v

is comparable to the cones of the form {(x,u,te”)|e <a <n—¢ and |t| <6}
Therefore our estimate (*) shows that f(x, u,v) is continuous in UnZ(O). In
particular

B(g)n2(@)n(UNE,,)

is contained in the zero set of f(x, u, 0) = det, A(k, u, 0), that is the piece of the
one-dimensional Bloch variety B(q,) that intersects U.
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We now prove the opposite inclusion. For this purpose let us first assume
that p = (ko, 4y, 0) is a smooth point of the complex analytic curve {(x,u,0) €
Ev.0| f(x, u, 0) = 0}. Then the partial derivatives of f with respect to x and u do not
vanish simultaneously at p. The estimate (%) also shows that the function
(x, u, T, ) = f(k, u,7>€™) is C! in the variable 7 as long as e<a <m—¢ or
7 +¢& < a < 2n —o. By similar estimates one can show that this function is actually
continuously differentiable in all variables if « is restricted to the intervals above.
Now, regard f(x, u, t? ™) as a map from C?> x R?=R* x R to C =R2 At any
point (x, 4,0, a) with e <o <7 —¢ or ® + ¢ <a < 2m — ¢ its Jacobian has maxi-
mal rank, and the kernel of the Jacobian is transversal to the hyperplane t = 0. By
the implicit function theorem at all such points the zero set of f(x, u, 72 e™) is a real
4-dimensional manifold transversal to the hyperplane t =0 in R* x R?. The image
of this manifold under the map R* x R? 3 (k, u, t° ™) - (k, u, 12 ™) is a locally
cone-like space because this map contracts the a-direction for T =0.

To summarize, we have shown that B(q) n 2(®) is a locally cone-like space at
each smooth point of the zero-set of f(x, u, 0) in E, ,. In particular all these smooth
points lie in the closure of B(q) N X(@). It is easy to see from the discussion in
section 1 that the equation defining the one-dimensional Bloch variety B(g,) is
reduced. Therefore the smooth points are dense in the zero set of f(x, u, 0) and the
proof is complete.

3. Applications

It follows immediately from the theorem of section 2 that the Bloch variety B(q)
determines the Bloch varieties B(q,) of all the averaged potentials g,. This result has
been proved in [4] using analytic methods. In the directional compactification the
curves B(q,) are attached to B(g) in a geometric way. We use this to deduce
properties of the Bloch variety B(q) itself.

THEOREM 1. Let g € LAR?/I"). Then for any two irreducible components
C,, C, of B(q) there is beI'* such that b - C, = C,.

This result — which will be proven in a moment — can be expressed more briefly
by saying that B(q)/'* is an irreducible complex analytic variety. Thus, B(q) is
determined by any of its irreducible components. If g is real valued then the germ
of Bg(q) at any of its points determines — by analytic continuation — at least one
component of B(q). So,

COROLLARY. Let q,, g, be real valued potentials, p a point of Bg(q,) and U a
neighborhood of p in R? x R. If Bg(q,) nU = Bg(q,) " U then B(q,) = B(q,)-
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This corollary may be reexpressed by saying that the analytic continuation of an
arbitrarily small piece of any single band function yields the entire complex Bloch
variety and in particular all the other band functions. In this sense it is much
stronger than Theorem 3 of Section 1.

The generalization of Borg’s theorem suggested at the end of section 1 is

THEOREM 2. Let q € L? be a real valued potential. Assume that there is an
entire function A : C> - C such that the Bloch variety B(q) is the union of the graph
of A and its translates under I' *, that is

Bl@)= |J {(k4) eC?xC/i=AKk+b))

bel#

Then q is a constant function.
Both theorems are consequences of the

PROPOSITION. Let q € L}, y a primitive vector of I' and 0 < © < n. Then, for
each component C of B(q) there is m € Z such that the point set closure of C N Z(@)
in X({y, 4nm, 0}) contains at least one irreducible component of BT(})nEq,,,,.

In particular the directional compactification of every component of B(q) meets
some exceptional plane E, ,,.

We now show that Theorem 1 follows from this proposition. Let C,, C, be two
components of B(g). As usual, we may assume that | ¢ = 0. By the proposition there
are integers m,,m, such that C;nZ(@)nE, , contains a component C; of
B?é)nEy, m,- As we observed in the previous section there is b, € I'* such that
bf,\; E, . =E,,, Then b -Cj and C) are both components of the curve
B(g@)nE, ,,,, which — by the theorem of the last section — is isomorphic to B(g,).
The analogue of Theorem 1 holds in one dimension, and therefore there is b, e I' *
with {(b,, > =0 such that b, - (b, - C}) = C5. Put b:= b, - b,. Then the closure of
b - C,n Z(O) also contains C5. Since B(Efn 2(0) is a locally cone like space (in the
sense of section 2) at each smooth point of C; the two components b - C, and
C, of B(q) have an open subset in common. Hence, they are equal, proving
Theorem 1.

The proof of Theorem 2 is similar in spirit. Again we assume that | g = 0. The
graph of A is a component C of B(q). Below we will show that for each primitive
v in I there is m € Z such that C " X(@) N E, ,, contains the graph of an entire
function. This implies that B(g,) contains a component which is the graph of an
entire function. Then by Borg’s theorem g, is identically zero. As this holds for all
primitive vectors y the potential g is identically zero.
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To prove that Cn 2(@) N E, ,, contains the graph of an entire function use the
I' *-action and rotation of the lattice I" to reduce everything to the case y = (0, 7,)
and that Cn2(@)NE, , contains a component C’ of BE)(\EM,. In the coordi-
nates k, u, v with k, =k, k, = 1/v, A = u + 1/v? introduced in Section 2

C= {(KZ, u,v)fu =A<rc,l)—i2, v #0}.
v v

Since BE) is a locally cone like space at all smooth points of C’ this implies that

. 1 1
lim Ak, - | ——-

argv2 ¢ (-6, 6) v v
v—0

exists for all k. This expression defines a continuous function k¥ — U(x) whose graph
is contained in B(g)N E, ,. Since this set is a complex analytic curve the function is

in fact analytic and parametrizes a component of BTZ])(\E% 0, completing the proof
of Theorem 2.

Now, for the proof of the proposition assume that y = (0, y,) with y, > 0. First
we want to show that near real points of the planes E, ,, the Bloch variety B(g) is
contained in a tubular neighborhood of the free Bloch variety B(0). More precisely,
let n : C> x C - C x C be the projection (k, 1) -k = (k,, k,) and embed C x C into
C x P! by (k, k,) = (k;, (1, k;)). Observe that, n extends continuously to a map
f:C*x CUE, , —»C x P'. For m =0 this map is described in the coordinates
(x, u, v) by (k, u, v) = (x, (v, 1)).

LEMMA. Fix a compact interval K, = R, and let q € L}. Then there is R > 0 and
there are closed subsets T,, , of {(k,, k,, %) € Z(O@)/k, € K,, |k,| 2 R} with the follow-
ing properties:

(i) B(@) n{(k, D) € ZO)/ky € Ky, [ks| > R} < Uy n T

(i) User#, b yy = 20m (By 0 {(k, 4) € Z(O) [k, € Ky, |kz| 2 R} < U o T, for all

meZ.

(iii) T, , O Ty v =& if (m, n) #(m’, n’).

(iv) The closure T,, , of T, , in X({(y, 4nm, 0)}) is compact, and the restriction

of @ to T, is a trivial fibre bundle over {(k,, (v, 1)) €K, x P!||v| < 1/R and
arg ki + (1/v%) ¢ (-0, 0)}.

Intuitively speaking the picture — as represented in Figure 3 — is that near each
plane E, ,, the directional compactification BTZ]) is the union of an infinite number
of distinct branches, each lying over the v-plane and each close to a branch of B(0).
We emphasize that there is a domain uniform in n over which all these branches lie.



140 H. KNORRER AND E. TRUBOWITZ
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Figure 3
Proof of the Lemma. The square of the Hilbert—Schmidt norm of the operator
g - (—4,—H1""'is

1
||¢I||§'b62” (k + ) — AP

Since det, is continuous in the Hilbert—Schmidt norm there is an ¢ > 0 such that
detz((—Ak +q —A,) ° (—Ak “I{)—l) #O
whenever

1
..
DI sy ik

Clearly, in this case (k, A) ¢ B(g).
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If k, is real and b € I' * then (k + b)? has
(kl + b1)2 + (Re k2)2 bt (Im k2)2 + 2b2 * RC k2 + b%

as real part, and 2b, Im k, as imaginary part. As b,y, € 2nZ for b € I' * the “polar”

set of T 1/|(k +b)>— A]> as a function of A is a countable union of sequences
(Cmn)neZ Where

4
Ime,, =—(Imk,) - m
2

and for each m € Z the sequence |c,,,| grows like 4n?y3 - n2. (see Figure 4)
As in Section 2 one sees that there is p > 0 such that for real k, and Imk, >
PY2/T

1 €
V. [k+b=iF 2

|lm}.——2b21mk2|2p

+Im A
(1] L] [ ] L[] [ ] [ ] . L ]
e 0 [} [ ) ] [ 3 . .

4
—EImkz oo o '] . [ . . .
Y2

- o . - Re A

L X ] [ ] L ] » ® [ ] L] [ ]

(points (k +b)%, beT'*)

Figure 4
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In other words one can ignore all contributions from horizontal strips having
distance more than p from A. Choose R so big that Imk, > py,/n for all
k =(k,, k;) € K; x C with |k,| 2 R and arg (k1 +k3) ¢ (— 6, ©).
For me Z, set
< p}

4
Tm:={(k,,1)eZ(@)/kleK,,lkZ[ZR and Iml—l(lmk2)~m

2

Clearly
B(@)n{(k, ) e ZO) [k e K\, |k 2R} |) Tps TunT,y= if m#m’,
melZ
and
U B, n{(k, A) eZ(@)lk, eKl,Ik2]2R}ch.
berlr#
(b, y> =2mm

Furthermore a point (k, 1) of T,, does not lie on B(q) unless

1 >
b,zeﬂ ik +b)7— P 2

by, 2Crly,ym)e I #

For (k, 2) € T, this sum is less or equal to

b] eR
by, @r/yyymyer #

1
2
(k,+b)*— [Re A ((Im k,)?>—(Rek,)? - :’_n (Re k,)m —%—mz)]
2

2

X

2

Therefore we consider the function

1
b,zetn ](k1+b1)2_t|2

by, 2nlyy)myer #

t—

It has infinitely many “poles” on the real axis, but the gaps between them are
growing linearly. Since K, is compact we may choose

<me<BmO<aml<ﬂml<”‘

such that for all k € K|
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1 .
Z I(kl + b2)2 _ tlz <—£2_ lf t ¢ U [amn’ ﬂmn]'

b]ER nz20
(by,2rm/yy) el #

Therefore, put
Tpn:= {(k, A)eT,/Rei+
4 4z’
- ((Im k)~ (Reky)*— = (Re ky) - m —7’2—m2>e [a,..,,,ﬁ,.,,.l}
2 2

(see Figure 5)

With this definition the conclusions (i) —(iii) of the lemma are obviously fulfilled.
We check conclusion (iv) in the case m = 0. In the coordinates «, u, v the closure
T, , is described by the conditions

1 1
|UIS§, arg(k%+")—2>¢(—@,@), kIEKls

—p<Imu<p, &,, < Reu<p,,.

*Imi

*y . L4 L] . ° .

Figure §
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This set is clearly compact and fibers trivially over

{(k, (v, 1)) € PY| |v] S% and arg (k%+—vlz-) ¢(—0, @)}

Let us now complete the proof of the proposition. Suppose C is a component of
B(g), and choose a non-empty compact interval K; = R. In Section 1 we showed
that C is the zero set of an entire function of finite order, and that therefore n(C)
is dense in C x C. In particular by the lemma above

cCnl T..#9.

melZ
nz0

Choose m, n such that CnT,,, # &. Since

B(g) n{(k, }) e Z@) ke Ky, |ky| > R} = | T,

the intersection C nT,,, is a complex subvariety of T,,,. The restriction of 7 to
CnT,, is proper since T, is compact. Therefore n(C N T,) = {(ky, ky) € K, x
C/lks| > R, arg (ki + k3) ¢ [— O, O]}. By part (iv) of the lemma this implies that
CnT,, meets E, , and that K, x {(0, 1)} = *(C N T,,). Therefore C n2(O) con-
tains smooth points of BTé)mEy,m. Since BT&) is a locally cone-like space of all
smooth points of BTé)nEy,m the intersection C N Z(@) contains a component of
BTZ])r\Ey,,,, whenever it contains one of its smooth points. This concludes the proof
of the proposition.

Remark. The constructions and results presented in Sections 1 and 2 carry over
with only minor modifications to the case of three dimensions. To apply the implicit
function theorem in the proof of the theorem of Section 2 one needs the fact that
the derivative of the equations of B(g,) does not vanish at a generic point of
B(g,) — a fact which for two-dimensional averaged potentials follows directly from
Theorem 1. In contrast the estimates in the proof of the lemma above, on which the
results of this section are based, use the fact that we are in dimension 2.

4. Degeneration of the spectral problem at infinity

In this section, for the sake of simplicity, we shall assume that ¢ in L? is real and
(if necessary by adding a constant) that the operator — A4 + g is positive.

The definition of the Bloch variety may be rephrased in a slightly different form.
For yerl let S, be the shift-operator acting on functions ¢ € H},.(R? by
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S,@(x) = @(x + y). These operators all commute with each other and with —4 +q.
For each (k, ) e C* x C denote by o/ ;, the commutative C*-algebra of operators
generated by S, —e“*?” y eI and —4 + q — A. Then a point (k, 4) lies on B(g) if
and only if there is ¥ € Hy,.(R?) such that 4 - ¥ =0 for all 4 € ;.

Our purpose here is to extend this description of B(g) continuously over () to
the exceptional planes E, ,,. To do this assume without loss of generality that
vy =(0,1) and m =0. Choose a vector 6 =(d,, 4,) € I' such that y and 6 form a
basis of I'. Then o/, ,, is generated by the three operators

S, —ekr S5 —ekk® A 4q—2
The coordinates «, u, v on a neighborhood U of E, , with

1

have been introduced in Section 2. For points in the intersection C2 x Cn U the
algebra &/ , is also generated by

A=e X&. g |

Ay=v-(—4+q—174)

A3I=(—-A +q)1/2,(1__ei(—A+q)l/2.S?—l)____l_ /1____u02(1_ei(l/v)(,/lauvz—l))
v

because v #0 there. On C>x CnU we conjugate the algebra o ; by the
multiplication operator e**”*. If ¥ € HL (R?) with 4 - ¢ =0 for all 4 € o ,, then
e - ¥ lies in the kernel of all the operators of the conjugated algebra
e’ - of . 5 e " Clearly (k,2) is in B(g) if and only if the kernel of the
conjugated algebra is non-zero.

On E, ,, that is for v = 0, the one-dimensional Bloch variety B(q) N E, , = B(g,)
is described by algebras o/, , generated by the operators

2

o 1
‘";1‘;%‘4-.’; q(x,, t) dt —u,

— and e -8 1
dX2

where S is the shift operator S (x,, x,) = @(x; + 8;, X,).
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THEOREM. The conjugated algebra e™" - of , ,, - e **"* degenerates to oA, ,
when v goes to zero along the imaginary axis. Precisely, for any Schwartz class
Sfunction @, and any (x,u) e C x C

lim (e =" - 4, (k, u, ic) - e"“¥9)g(x) = (e~ - §5° — D)o(x)

e—-0

: 0
lim (e =29 - A4, (k, u, ic) - '*2N)p(x) = —2i — @(x)

£—0 axZ
. 1 02 !
lim (e ~/"29 - 4,(k, u, ie) - '“?N)p(x) = = —z=+ | q(x, ) dt —u |o(x)

Proof. The first two limits are trivial to compute, so we only verify the last
statement. Denote by ~ the Fourier transformation

A .__}___ —i(¢é, x
(<) =5 Lz o(x) e 6> dy

Then
(e—i(xz/e) . (_A)l/z . (1 _ e.-(__A)l/z ] Sy_l) . ei(xZ/e)(a) A(é)

— (é% + (52 + %)2)1/2(1 — et‘((é? + &2+ /N2 — (£ + (l/s))))q*,(é)
Expanding the square root
2 1 %\ 12,2 3
el &1+ fz‘i"; =1+ e +3¢80¢ +0(|8|)
we get for fixed ¢ in R?

2
e(éill N (éz 4 %) )l/Z(ﬂ _ ei((5f+(€2+(l/e))2)l/2—fz+(l/s)))) —_ i%t_; 6%8 + 0(82).

Therefore, by the Lebesgue dominated convergence theorem

lirrtl) 2i e'2/9) - (— Q)12 - (1 — 'V Sy_') - e'*2/9¢(x)
&
2

o )
~2n f 26(6) € dx =~ 0(x)
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Since — 4 + q is positive its square root is well defined so that (—4 +¢)'?is a
classical pseudodifferential operator of order one. Let

roi= (=449 —(-4)'"
Then

—4+g=—A4+2A=N" ro+[ro, (=A)"] +75.
or

ro=3(—4) "2 q == 2) " [ro, (=)' = }(—2) "' 1}
It follows that r, is a pseudodifferential operator of order — 1 with principal symbol
q(x)/2¢|-

Set

R(t) 1= "4+ 9. g—i(=D12_1q

r(t) ‘o eit(~4)1/2 Ty e—it(-A)llz
Differentiating, one obtains

d .
a—tR—-(ﬂ+R)'tr

so that

R@) = J t ir(s) ds + Jl R(s) - ir(s) ds

0 0

By Egorov’s theorem, ir(¢) is a pseudodifferential operator of order —1 for all t and
has principal symbol

iq(x - Q_)
4

2/¢]

Now
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2ie ') (—A 4 )2 (1 -4+, S7Y - e'™2Pp(x)
=2ie " itx2/o) . (_A)I/Z (1 - ei(—D2, Sy“l) . ei(xz/e)(p(x)
—2ie~ 2. (—A)2. R(1) - /219 . (¢ ~itx2l®) . el—M2 . S)T' - ' %2/ gp(x)
+2ie~"2/ . r . (1= (1 + R(1))) - 20

(e~ T2l L QI A2 g1 pitxal0) ()

The first term tends as above to —d2/dx? as v goes to 0. In the same way one sees
that e~—/x2/9 . g/(=AV2. g -1 . ¢ix2/ goes to the identity operator. The factor
2ie 2.y - (1 4+ R(1))) - e*2/® goes to zero. To see this, use the identity

. . 1
a(et(lle)f(x) A - e~z(l/s)f(x)) — a(A)(x, C % Wpa fo)
E

valid for any pseudodifferential operator 4 and any function f and the fact that
R is generated by solving a Volterra equation. Finally the factor —2ie—/*2/9.
(—4)'72 RO . ¢i2/0 converges to [§ q(x,, r) dt. This follows from the fact that the
leading order term of R(1) (in powers of ry) is the pseudodifferential operator
{8 ir(f) dr whose principal symbol is

i (! Et
— — 2 d.
zmﬁ"(" |f|)’

Remark. The theorem may be reformulated and extended by introducing a
vector bundle & over (@) UE, , with fibre HL,.(R?) that is trivial on X(®) and on
UnZ(®) and has the multiplication operator e*2’* as transition function. The
algebras &/ ,) and &, ,) glue together to a subbundle o/ of the endomorphism
bundle End (%) of this vectorbundle. The kernel of o/ defines a sheaf on X(©)
whose support is B(q) nZ(@) and whose stalk over a point of B(q) nZ(®) is
generated by the Bloch solutions at this point. It is natural to ask how the Bloch
solution behaves as one approaches the exceptional plane. This behavior is given by
a geometric optics Ansatz which we have codified in the theorem. For the discrete
Laplace operator this has been worked out in detail in [1].
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