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Representation of links by braids: A new algorithm

PIERRE VOGEL

§0.1 Introduction

If o is a braid with n components, the closure of ¢, denoted 4, is constructed by
connecting the endpoints at the top level to the bottom endpoints with n standard
curves. This procedure yields an oriented link & having the same number of
crossings as o. A classical result of Alexander [1], [2], [3] states that every oriented
link is isotopic to a closed braid 6. In his proof Alexander modifies the diagram of
an oriented link by a sequence of elementary operations to obtain a closed braid.
During this transformation the “geometry of the picture” is completely changed. In
many applications of Alexander’s algorithms links with few crossings yield closed
braid with a large number of crossings.

On the other hand many algebraic invariants of links are first defined on braids.
If we wish to compute these invariants for a “small” link L, it will be very useful
to have the following principle:

“A ‘small’ oriented link is isotopic to a ‘small’ closed braid”.

Unfortunately Alexander’s proof cannot be used to check this principle. Re-
cently Yamada [4] proposed another proof which is much more economical. He
uses two types of elementary operations which don’t change the number of Seifert
circles and for which the change in the number of crossings is not too large.

In this paper we will give another proof which use only one type of elementary
operation. This operation is very easy to describe. It preserves the number of Seifert
circles and adds only two crossings to the diagram (by a type II Reidemeister
move). Moreover there is an explicit (small) bound for the total number of
operations. This procedure is more economical as Yamada’s construction. It is
much simpler and can be easily programmed on a computer.

§1. Description of the elementary operation

Let L be an oriented link in R? represented by a regular projection D of L in the
plane. Near each crossing x of D, the diagram D has one of the following form:

104
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et X

depending on the signe of x (positive in the first case and negative in the second
one). By making the following transformation near all crossings of D:

Koo X=X

one obtains a new picture S which is a union of disjoint circles in the plane. These
circles are called the Seifert circles of D and S will be called the Seifert picture
of D.

Consider D as a graph in the plane. The vertices of D are the crossings and the
edges are arcs in L (and in §). Let f be a face of D (i.e. a component of the
complement of D in the plane) and a and f two edges of D contained in df. Suppose
that (£, a, p) satisfy the following conditions:

(1) « and B are contained in different Seifert circles
(i) « and B have the same orientation with respect to any orientation of of

Such a triple will be called an admissible triple.
So we have one of the following picture:

o R ) o
f or f
B B

In this situation the elementary transformation T'( f, «, f) will transform D by a type
IT Reidemeister elementary move as in the following picture:

THEOREM 1-1. There exists a function y from the set of isotopy classes of link
diagrams to N, with the following properties:



106 PIERRE VOGEL
(i) If D is a diagram of an oriented link, with n Seifert circles, then:

(n+1)(n+2)

2n+1< y(D) < :

Moreover, if D is connected then y(D) is not less than 3n.
(ii) If D’ is obtained from a diagram D by an elementary transformation T, then:

x(D) < x(D’)
(iii) If D is a connected diagram with n Seifert circles such that:

<(n + 1)2(n +2)

x(D)

an elementary operation T can be performed on D.
(iv) If D is a connected diagram with n Seifert circles, then the diagram D is
isotopic in the Riemann sphere to the closure of a braid if and only if:

(n+1)(n+2)
2

x(D) =

REMARK 1-2. Let D be a connected diagram of a link L. To modify D in
order to obtain a closed braid, it suffices to perform an elementary transformation
T(f, a, p) each time we can find an admissible triple ( f, , f). When no operations
are possible we have a diagram of a closed braid. If D has n Seifert circles and p
crossings, the number of elementary operations we must do is at most

(n+l)(n+2)_3n_(n—1)(n-—2)
2 - 2

and we obtain a word in the braid group B, of length at most p + (n — 1)(n — 2).
And, if the number y(D) is greater than 3n, the number of elementary transforma-
tions needed will be smaller.

§2. Construction of the map x

Let D be the diagram of a link L. The oriented Seifert circles of D separate the
plane into many components which we will call the faces of the Seifert picture S.
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Moreover each oriented Seifert circle C bounds two faces of S: a face f;, on the left
hand side of C and a face f; on the right hand side of C. We construct an oriented
graph I' as follows: Each vertex of I' corresponds to a face of S and each Seifert
circle C represents an oriented edge from the vertex corresponding to f; to the
vertex corresponding to f,. The graph I' is clearly a tree.

e e A

) C43 S>
N J zJ ?

\__/
D

A 4

v
v

An oriented tree isomorphic to a subdivision of an oriented interval will be
called a chain. A chain has n edges (n = 0) and n + 1 vertices.
Define y(I') to be the number of chains included in I" and let (D) = y(I).

§3. Properties of x

If the diagram D has n Seifert circles, the picture S has n circles and the tree I’
has n edges and n 4 1 vertices. Hence I' contains 2n + 1 chains of length less than
2 and we have:

2n +1 < y(D)

Now suppose that D is connected. Then the boundary of each face of D is
connected. Let F be a face of S which is not a disk. The boundary of F is
disconnected and F is not a face of D. Hence F is the connected sum of; at least, two
faces of D and somewhere in the diagram we have the following picture:

XX
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Therefore there are two circles with opposite orientations in the boundary of F.
Furthermore the picture S has this property for each face with disconnected
boundary. This means that I" satisfies the following property (P): each vertex of I'
which is not an isolated vertex (i.e. a vertex of valence 1) is contained in the interior
of a chain.

LEMMA 3-1. If T is a tree with n edges (n 2 1) satisfying the property (P) then:
x(I') 2 3n

Proof. (Induction on n). The inequality is obvious if n = 1. Suppose n = 2 and
I', is the tree obtained from I by removing all free edges and their isolated vertices.
Suppose that I', is not a point and ¢ is a free edge of I', with a and n the vertices
of ¢ and a is the isolated vertex of ¢. By reversing the orientation of I', if necessary,
we may assume that ¢ is oriented from a to b. In this situation I" has p edges with
terminal vertex a (p =0) and g + 1 edges with initial vertex a (¢ = 0). Since I
satisfies the property (P), we have:

qg#0=p+#0

Now let I'” be the tree obtained from I' by removing the free edges of I
containing a. It is easy to see that I’ has n — p — q edges and satisfies the property
(P). On the other hand I" has exactly p + g vertices and p + g edges not contained
in I'’, and p(q + 1) chains of length 2 passing through a. Therefore we have:

)2y r+2p+q +plg+1)23n—p—q +3p+29+pq
=x(I')23n+(p—1)qg 23n
If the graph I'; consists of a single vertex a, I' has p edges with terminal vertex

a and g edges with initial vertex a. Because I satisfies the property (P), p and q are
positive. We have:

N=p+q+14+p+q+pg=3n+(p—1)(g—1)23n

§4. The map y and the operation T

LEMMA 4-1. Let (f, o, B) be an admissible triple of a diagram D, I' the tree
associated to D and o and t be the edges of T corresponding to the Seifert circles
containing a and b (respectively). Let u be the vertex of I' corresponding to the face
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of S containing f. Denote by D’ the diagram obtained from D by the operation
T(f, a, B) and by I'’ the tree corresponding to D’.

Then o and t have both u as initial or as terminal vertex and I'’ is obtained from
I’ by identifying o and © and by adding a new free edge 0 such that:

— if 0 and t have u as initial vertex in I, the initial vertex of 0 is the terminal
vertex of both ¢ and .

— if o and t have u as terminal vertex in I', the terminal vertex of 0 is the initial
vertex of both ¢ and 1.

REMARK 4-2. This elementary operation on I depends only on ¢ and 7 and
can be defined on every tree. The only condition on ¢ and 7 is the following:

cnt#J and o uUrtis not a chain
Such an operation will be denoted by T(a, 7).

Proof of 4-1. Let (f, a, f) be an admissible triple of D. By reversing the
orientation of D and I', if necessary, we may assume that the orientations of « and
B are compatible with the orientation of df. So the transformation T(f, a, B) is as

follows:

o

»
A

f —>

B

!

The transformation T(f, «, f) modifies the Seifert picture S in the following
way:

C
2 4 _
& A - A'-B
1 > 1 1
P TEES——————4 I— —
B, A=B 2.3

Since o and B are not in the same Seifert circles 4 and B, the new picture S’ has
the same number of components. Moreover the circles 4 and B and faces 2 and 3
become the same circle and the same face. However, we create a new circle C and
a new face 4. The corresponding transformation on the tree I' is:
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z

6
XY Zy X=Y YUZ
;\/; —> C=T
u u
X X

In the picture X, Y and Z are subtrees of I' and u, x, y and z are vertices
corresponding to faces 1, 2, 3 and 4. The tree I' is the union of X, Y, Z, ¢ and t
and the tree I'’ is the union of X, Y, Z, ¢ =t and 6. In this manner, we have
constructed the equivalent transformation 7(e, 1) on I.

LEMMA 4-3. If a tree I'’ is obtained from a tree I' by a transformation
T(o, t), x(I'") is greater than x(I').

Proof. Using the preceding notations with » the common vertex of ¢ and t and
x and y the other vertices of ¢ and 7 (in I'). The extra edge in I'” is 8 with isolated
vertex z and the images of x and o by the obvious map ¢ : I' - I'’ will be denoted
by x” and ¢’ respectively. Let C and C’ be the set of chains contained in I and I'".
As usual we may suppose that u is the initial vertex of ¢ and t. We have a map y
from C to C’ defined by:

e(U)ul if y is the terminal vertex of U

) = {(p( U) otherwise

It is easy to see that ¢ is injective and that {z} is not in the image of y.
Therefore x(I'’) is greater than x(I').

REMARK 4-4. Suppose that the trees Y and Z have no edges with terminal
vertex x or y. In this case y(I'") = y(I') + 1. In particular this occurs if I' satisfies:

(P1) —every subtree of I' with only two isolated vertices is the union of one or
two chains.

Moreover if I' satisfies (P1) then so does I'".
COROLLARY 4-5. If T is a tree with n edges, then:

(n+ 1)(n+2)
2

x(I) <

Equality holds if and only if I is a chain.
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Proof. If I is not a chain, an elementary operation T(a, ) is possible on I'. We
obtain a sequence of trees I', such that I', =T and each I, , , is obtained from I',
by an elementary operation T. This procedure stops at the pth stage if I' » 18 a chain.
Therefore

(n+ 1)(n+2)
2

) <xI',) =

with equality if I' is a chain.

§5. End of the proof

This section proves parts (iii) and (iv) of the main theorem.

5-1. Proof of (iii)

Let D be the diagram of a link L. The diagram is assumed to be connected with
n Seifert circles. If x(D) is less than ((n + 1)(n + 2))/2, then the associated tree I is
not a chain and I' has two edges ¢ and t with a common initial or terminal vertex
u. Equivalently the Seifert picture S has a face F and two Seifert circles in 0F with
the orientations agreeing with the induced orientation of JF.

Let C be a Seifert circle in 0F. This circle will be called positive (or negative)
when the orientation of C is compatible (not compatible) with the orientation of dF.
Denote by p (resp. q) the number of positives (resp. negatives) Seifert circles in dF.
By assumption either p or ¢ is greater than 1. Up to a change of orientation of D,
we may assume that p > 1.

Let x be a crossing of D. Denote by y, a line segment near the crossing joining
the two Seifert circles as in the following picture:

D S

These line segments are all disjoint and each segment joins, in a face of S, two
Seifert circles with opposite orientations. Let K be the set of line segments y,
contained in the face F. If we cut F along these segments we get a subspace F of F
with many components, each corresponding to a face of D.
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Suppose that, for each such face f, there is no admissible triple (f, a, §). That
means that each component f of F meets exactly one positive and one negative
Seifert circle in OF. Let f, be the positive Seifert circle meeting f. If two components
f and f” intersect, the associated Seifert circles f, and f7, are the same. Therefore
the map f+ f, is locally constant, hence constant. This means that 0F has only one
positive Seifert circle contradicting the assumption p > 1.

Therefore an admissible triple exists and an elementary operation T can be
performed on D.

5-2. Proof of (iv)

If y(D) = ((n + 1)(n + 2))/2 the tree I' is a chain and the Seifert picture S is, up
to an isotopy in the sphere, the union of n circles with standard orientation and
same center. With a second isotopy, we may also assume that each segment y, is
contained in a radius. Now each edge of the diagram D is transverse to every radius
and D is the closure of a braid.

REMARK 5-3. The number of elementary operations T needed to transform a
diagram D in a closure of a braid is not completely clear. It depends on the
sequence of admissible triples. The same situation holds for a tree. Another problem
is the fact that not every elementary operation on the tree I' can be lifted to an
operation on the diagram D. The only result we can verify is the following: for every
elementary operation T(o, t) on I’ there exists an elementary operation T(s’, 1")
corresponding to the same vertex of I' and the same direction of edges of I' as
T(o, t) which lifts in an elementary operation T(f, a, B).

An interesting case is the following: suppose that the associated tree I" of a link
diagram D satisfies property (P1) (see Remark 4-4). Then each transformation T
produces a new diagram D’ with the following properties:

— the associated tree I'” of D’ satisfies the property (P1)

- x(D) =xD) +1

Therefore, if D has n Seifert circles, the number of transformations needed to
transform D into a closed braid is exactly ((n + 1)(n + 2))/2 — (D). An example of

such a diagram is:
'.Y)

=

"l\
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The number of crossings is » = 2p and the number of Seifert circles is also 2p.

The Seifert picture is:
()

with p positive circles and p negative circles. The graph I is:

v

1 2 ... P

1 2 ... P

The number x(I') is exactly 1+ 4p + p2. Then, after exactly p?> — p elementary
transformations, we get a closed braid with 2p? = n?/2 crossings.
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