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On the nodal lines of second eigenfunctions of the
fixed membrane problem

ROLF PUTTER

Abstract. A well-known conjecture about the second eigenfunction of a bounded domain in R? states
that the nodal line has to intersect the boundary in exactly two points. We give sufficient conditions on
the domain for this assertion to hold. For special doubly symmetric domains we also prove that 4, is
simple and that the nodal line of the second eigenfunction lies on one of the axes.

1. Introduction

Consider the Dirichlet eigenvalue problem for the Laplacian on a bounded
domain Q = R? with boundary of class C%*

(1.1)

Adu+iu=0 in Q
u=0 on 01.

The set of eigenvalues can be arranged in a nondecreasing sequence of positive
numbers tending to infinity 0 <4, <A, < 4;---

The corresponding eigenfunctions {u,} , are in C>*(Q) (see [3], Theorem 6.15)
and analytic in the interior of Q. If u is an eigenfunction N(u) := {x € Q : u(x) = 0}
is called the nodal set of u; the connected components of Q\N(u) are called nodal
domains. The Courant nodal domain theorem states that the i-th eigenfunction can
possess at most i nodal domains. As a consequence of Courant’s theorem, u, has
exactly one and

u, has exactly two nodal domains. (1.2)

Cheng proved in [1] that, for any eigenfunction u, the nodal set N(x) consists of a
finite number of C'-immersed arcs ¢ : (0, 1) - Q or circles ¢ : S' - Q. When these
arcs or circles intersect or self-intersect, they form an equiangular system. As a
consequence of (1.2), we have:

If Q is simply connected, N(u,) consists of one embedded arc or
one embedded circle only. (1.3)
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A conjecture on the configuration of N(u,) states (see, e.g. [5] or [7]) that the latter
case in (1.3) cannot occur, and more precisely:

If Q is simply connected, then N(u,) intersects 0Q2 in exactly two points. (1.4)

Hitherto, the conjecture has been proved only for some special classes of domains,
all possessing an axial or rotational symmetry. L. Payne showed (1.4) if Q is
symmetric about the axis {x, =0} and convex in x,. C. S. Lin [4] proved (1.4)
provided Q2 is convex and invariant under rotation by an angle 2z /m for some m > 2.

In the paper we are concerned with proving (1.4) under a whole continuum of
possible conditions on the domain Q. For that purpose we introduce the notion of
convexity with respect to a point.

DEFINITION 1.1. Let G = R? be a domain, p € R? a point. We call G convex
with respect to p if for every circle C centered in p the intersection C NG is either
empty or connected.

We then show in Theorem 2.3: If Q is symmetric about the axis {x, =0} and
convex with respect to a point p = a - e, on this axis, p ¢ Q, then (1.4) holds. Payne’s
condition is then the limit case of our condition for a - o or a » — 0.

Closely related to the shape of the nodal line of second eigenfunction is the
multiplicity m, of 4,. It is known that m, < 3 for simply connected Q (cf. [1]) and
that (1.4) implies m, < 2 (cf. [4]). Also C. L. Shen, for the case of doubly symmetric
plane domains and under the conditions

(i) @= {(x1,x): —a<x <a, —f(lxll) <X Sf(lxlI}a
(ii) fe C(0, a]), f >0 on [0, a), f(a) =0, fis strictly decreasing on [0, a],
(iii) x2?+ (f(x))? is strictly increasing on [0, 4],

has proved the following: A, is simple and N(u,) = Q N {x, = 0}. We show here the
same under weaker geometric (but higher regularity) assumptions on the boundary
of , namely, 2 must be convex in x, and expand from {x, =0} to {x, =0} (see
Definition 3.2).

2. Domains with an axial symmetry

We first need the following observation.

LEMMA 2.1. Suppose that Q is a domain in R?, A € R and that u € C*(Q)\{0}
solves Au + iu =0 in Q. Let x, be a point in Q with u(x,) =0.



98 ROLF PUTTER

Then u changes sign near x,, i.e. in each neighbourhood U of x,, u assumes
positive and negative values.

Proof. An easy consequence of the strong maximum principle for subharmonic
functions and the fact that u actually is analytic in Q.

For the domains under consideration we now reformulate the property of
convexity with respect to a point. Set

H2={(x1,x2)eR2;x2>0}’ I:i2={(x|,X2)ER2:x220}
and let D € O(2, R) be the rotation by 90 degrees in the positive sense.

LEMMA 2.2. Suppose Q c R? is a bounded, simply connected domain of class
C'. Assume that Q is symmetric about the axis {x, =0} and that a - e,,a € R, is a
point on this axis. We then have:

Q is convex with respect to a - e, iff

VxedQNH?: {(D®x —a-e;),v(x))=20
or 2.1)
Vx e QN H?:(D®x —a-e;),v(x))<0.

Here, for x € 09, v(x) is the outer normal to 0Q at x.

Proof. Since Q is simply connected, we may parametrize 02 N H? by a regular
curve ¢ € C'([0, 1], H?). We orient c in such a way that v(c(¢)) = D°¢(¢) for all 1. We
then have

d
= le(t) —a - e, =2{c(t) —a - e, 1)) =2{D*(c(t) — a - e)), v(c(2)) ).

Hence (2.1) is equivalent to |c(f) — a - e,| being monotone on [0, 1]. This condition
is violated if and only if there is an r > 0 such that, for K(¢) = r(cos t,sint) + a - ¢,,
the set {K(?) :t€[0, n]}\(@2 N H?) decomposes into at least three connected
components. Since Q is symmetric in the axis {x,=0}, we have that
{K(2), t €[0, 2r) }\0R2 decomposes into at least four connected components. This is
equivalent to the condition that © is not convex with respect to a - e,.

Before proving the main result of this section we introduce the following
terminology: For x € 052, we say that u is positive near x if there is an open ball B
around x such that u is positive on BN Q. For I' = 912, we say that u is positive near
I' if u is positive near x for each x € I'.
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THEOREM 2.3. Suppose Q is a bounded, simply connected domain in R? of class
C?>*. Suppose further that Q is symmetric about the axis {x, =0} and convex with
respect to a point a - e;,a € R. Then if a - e, ¢ Q, (1.4) holds.

Proof. We proceed by contradiction.
Assume v is a solution of (1.1) with 4 = 4,, that is, a second eigenfunction, and

N(v) intersects 0€2 in at most one point p. We may then suppose that v is positive
near 0Q\{p}.

Consider u € C**(Q) defined by

u(xy, x3) = 3((x,, x3) + v(x;, —x,)). (2.2)
Then u is also a second eigenfunction on © and we have:

u is positive near 092 with the possible exception of two points. (2.3)
Define ug € C'*(Q) by

Ug(x) = —x, 0,u(x) + (x; — a) o,u(x) =<{D"(x —a - e;), Vu(x)>.
Then we have ug # 0, since otherwise, ¥ would be rotationally symmetric around
a - e, and 0Q2 a circle with center a - e¢,, which is impossible because a - e, ¢ Q2. Set

Qr={xeQ:x,>0}
We now claim:

VxeQ™t iug(x) #0. (2.4)
As the differential operators dg = —x, 0, + (x, + a) 0, and 4 commute, we have
Aug + 12“9 = 0 in Q. (2.5)

(2.2) implies that u is even in x,, and so

ug(x,, x;) = —ug(x,, —x,) for all x € Q. (2.6)
The condition u =0 on 02 implies

Vu(x) = d,u(x) - v(x) for all x € 02, (2.7
and, by virtue of (2.3),

J,u <0 on dQ. (2.8)
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Furthermore

deu(x) = (D*(x —a - e)), Vu(x)>
= 0,u(x){D**(x —a - e)), v(x) )Vx € 0Q. (2.9)

" Since Q is convex with respect to a-e,, we may assume by Lemma 2.2 that
(D*®(x —a-e),v(x)> =0 for all x e QN H>.
Together with (2.8) and (2.9) this implies

Oeu <0 on QN H? (2.10)

Set I'y=0Qn{x,=0},2 ={xeQ:x,<0}.
From (2.6) we obtain

ug =0 onI,. (2.11)
We now show (2.4). Assume ug(x) =0 for an x € 2*. According to Lemma 2.1
ug changes sign near x. (2.12)

Hence V*:={yeQ* :ug(y) >0} is non-empty. (2.8) and (2.11) imply that
ug =0 on dV*. Hence V" is the union of one or more nodal domains of ug. By
(26) V- :={y e :ug(y) <0} also contains one or more nodal domains of
Ug. Thus A, =4,(Q) 2 AL, (VtuV 7). (2.12) implies int (Q\(V*u V7)) # &. The
monotonicity principle for eigenvalues (see [2]) now yields that A,(VTuV~™)>
2,(€2), a contradiction, and (2.4) is proved.

To achieve a final contradiction, choose x € 2 N {x, = 0} with u(x) = 0. Taking
into account that u is a second eigenfunction and symmetric in x,, such an x
must exist. Set r=|x—a-e| and consider the curve ¢ :[0,7)—>R?
o(t) =r(cost,sint) +a-e,. There exist ¢,t,€[0,n), ¢ <t,, such that
a(t,,,) =, o(t,))=x, o(t,) ed. Thus for () =u(c(f)) we have
o(t,) = ¢(t,) =0. Hence there is a f,e(¢,,t,) such that ¢’(z,) =0, that is
ug((ty)) = 0. This a contradiction to (2.4) and the theorem is proved.

3. Doubly symmetric domains

We first cite the following simple lemma of Lin (see [4]).

LEMMA 3.1. Suppose Q cR® is a bounded C'-domain and u a Dirichlet
eigenfunction of .
Then x € N(u) noQ if and only if d,u(x) = 0.
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In this section we shall be considering doubly symmetric domains. A crucial

assumption we shall be placing upon such domains is the property of expansion
from one axis to the other.

DEFINITION 3.2. Let Q = R? be a bounded, simply connected domain of class
C'. Consider the axes T, = {x, =0}, T, = {x, =0} and the quadrant Q = {x, >0
and x, > 0}. Suppose Q2 is symmetric in T, and T,. We say that Q expands from T,
to T, if

(D%x, v(x)> = 0Vx € 32 N ). (3.1)

Remark. If we parametrize 0Q NQ by a regular C'-curve ¢ : [0, 1] - @ with
¢(0) € T, and (1) € T, then (3.1) is equivalent to d/dt|c(¢)|* 2 0, which motivates
the defintion.

In our investigation of the eigenspace of 4,(Q), we prove first:

THEOREM 3.3. Let Q < R? be a bounded, simply connected C**-domain.
Suppose Q is symmetric in T, and T,, expands from T, to T, and is not a circular disc.
Set Q3 := {x € Q:x,>0}. Then we have 1,(25) > 1,(Q).

Proof. Suppose u is a first eigenfunction on Q3 ; we may assume u >0 on Q5 .
We reflect 4 antisymmetrically along T, and obtain an eigenfunction on the whole
of Q which we call again u. Hence

Au+ A4,(QF)u=0 in Q, u=0 on 0Q, (3.2)

u(xy, x;) = —u(x;, —x;) =u(—x;, x;) Vx € Q. (3.3)
The second equality in (3.3) states that, as a first eigenfunction on Q5 , u is even
in X1 -

Set ug = —x, 0,u + x, 0,u = {(D*°x, Vu) in Q.

We have ug # 0, otherwise 2 would be a circular disc. As in (2.5) we obtain

Aug + 4 (QF ug =0 in Q. (3.4)

Since u is positive near I' = 8Q N Q we have d,u <0 on I'. By virtue of Vu =0,u - v
on 0R2 and (3.1) we obtain

ug = {D%x, Vu) = 0,u{D*x,v><0 on . (3.5)
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On account of (3.3) the following holds:

Ug(x), X3) =ug(x,, —x,) = —ug(—x,, x,). (3.6)
Set

T=QnT,, T,=02n{x,>0}.
(3.5) and (3.6) imply

ug =0 on T, ug <0 onr,. (3.7)

Choose an r such that min,,q |x| <r <max, ., |x|, and consider the curve
6:[0,7/2] > Q, o()=r(cost,sint). There is a ¢t €(0,n/2) such that
d((0,1) cQ*:=Q2nQ, o(t;) € Q. Define ¢ :[0,t,] >R, ¢(t) = u(a(f)). Since
©(0) = (1) =0, there is a t,€(0,¢) such that ¢’(¢) =ue(o(t,)) =0. Put
a(ty) = x € Q*. Lemma 2.1 implies that

ug changes sign near x. (3.8)
Set
QF =Qn{x, >0}, V:={yeQi : ug(y) >0}

V* is non-empty by (3.8) and ug =0 on dV™* by (3.7). Hence V'* is the union
of one or more nodal domains of ug. Since ug is skew-symmetric in x,,
V- ={(x,x,) €Q:(—x,,x,) € V*} also contains at least one nodal domain of
ug. Hence ug is at least a second Dirichlet eigenfunction on V =V* UV, that is
L(QF) 2 A,(V). Again, by (3.8), we have int (Q\V) # &, and so, by domain
monotonicity, A,(V) > 1,(Q), and 4,(25) > 4,(Q) is proved.

Put now E = E(4,) = the eigenspace corresponding to 4,(£2). We proceed by
decomposing E into subspaces according to the symmetry properties of the eigen-
functions.

Let 4,, A, € O(2, R) be the reflections in 7, and T, respectively and define

t={ueE:u=u-Ad}, Ef={ueE:u=—-u-A},
F={ueE:u=ucd,}, E;y={ueE:u=—u-Ad,},
E,=E{nE;, E, =EinE}, E=E{nEf, E,=EnE;.
Since ,
/
E=Ef®E;  =Ef ®@E; (direct sums),



On the nodal lines of second eigenfunctions of the fixed membrane problem 103

we have
E = Es @ El,2 @ E2,| @ Ep (dil'ect Sum).

An element of E,\{0} would have at least four nodal domains; hence E, = {0} and
the following decomposition holds:

E = ES @El,2®E2,l' (3.9)

Each u € E, , is a Dirichlet eigenfunction on Q3 , and hence u | 25 must be a first
eigenfunction, otherwise ¥ would have four nodal domains in Q. An analogous
argument holds for E, ;. Thus

dimE,,<1, dimE,, <I. (3.10)

THEOREM 3.4. Suppose Q satisfies the hypotheses of Theorem 3.3 and that in
addition Q is convex with respect to x,. Then 1,(Q) is simple and N(u,) = QnT,.

Proof. Assume there exists an eigenfunction u € E,. By Payne’s result [5], W
intersects 02 in exactly two points x,yedf2. By Lemma 3.1, we have
0,u(x) = 0,u(y) =0. As N(u) consists of one embedded arc only, d,u changes sign
near x and y. But also d,u is symmetric with respect to 7, and T,. Hence x and y
cannot lie on the axes and so there are four points on dQ in which d,u vanishes.
This is impossible, and so E, = {0} By Theorem 3.3, E,, = {0} and we obtain
E=E,,. Finally, dim E,; <1 and dim E > 1 ensure that 4,(2) is simple.
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