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On the genus of représentation sphères

Thomas Bartsch

0. Introduction

Let G be a topological group and X a G-space. The (G-) genus of X, yG(X), is

the minimal number n such that there exist subgroups Hx ,...,//„ of G and a
continuous equivariant map X-^G/Hl * • • • G/Hn. We require that each Ht is the

isotropy group of some élément of X. A * B dénotes the join of the topological
spaces A and B. In this note we provide lower bounds for the genus of sphères of
(orthogonal) représentation spaces of G when G is a cyclic group.

If G Z/2 acts via the antipodal map on Sn~l then the Borsuk-Ulam theorem
tells us that yG(S&quot;~l) =w. More generally, in [Ba] it is has been proved for a

compact Lie group G acting freely on a représentation sphère SV that
yo(SV) ^ (dimR F)/(l + dim G). The situation gets more complicated if the action
of G on SV is not free (but has no fixed points). Already for G Z/4, the simplest
nontrivial example, yG(SV) will in gênerai be smaller than dimR V.

For G Z/2 the concept of genus is well known (cf. [K]) although sometimes
under différent names like 2?-index [Y], coindex [CF], level [DL]. In [PS] estimâtes

for the Z/2-genus (level) of projective spaces are given. As a corollary of our
theorem we obtain lower bounds for the Z/2-genus of lens spaces. This generalizes
the resuit in [PS].

For G S1 a notion closely related to the genus (it is called index) has been

used in [Be] to prove the existence of critical points of G-invariant functionals
SV -? IR. This type of applications is one of the main reasons to study yG (aside from
its intrinsic interest).

1. Statement of résulte

For a topological group G and a G-space X we use standard notations: XG

dénotes the set of fixed points and X/G the orbit space. We write I(X) for the set

of conjugacy classes (H) of those subgroups H of G which are the isotropy group
of some élément of X. We now define two versions of the genus.
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86 THOMAS BARTSCH

DEFINITION 1.1. If X 0 then yG (X) : yG (X) : 0. If X * 0 then

yG(X) : min {n g N : there exist (//\),..., (Hn) g I(X) and a continuous
equivariant map X ^G/Hx * • • • * G///„},

yG(X) : min {n g N : there exist closed subgroups Hu Hn of G, Ht ^ G,

and a continuous equivariant map X-^G//f, * • • • * G/Hn).

We use the convention min 0 oo.

Obviously, yG(X) ^ yG(X) if XG 0 and yG(X) 1, yG(X) oo if XG ^ 0.
Furthermore, yG(X) =yG(X) if XG 0 and if every closed subgroup H of
G, H t£G, is contained in an isotropy group of some élément of X.

As mentioned in the introduction for G Z/2, yG has long been known under a

variety of names. We prefer to call it genus for several reasons. First for free

G-spaces X yG(X) has been introduced by Fadell in [F] as G-genus. Second, index
théories abound. In addition it has become customary to speak of an index theory
i (in the context considered hère) if it has a number of properties (cf. [Be]), e.g. the

monotonicity property: If there exists a G-map/: X-+ Y then i(X) ^ i(Y). This is

not true for yG. It is true, though, for yG. In fact, yG is an index theory in the sensé

of [Be]. It is even équivalent to the one defined there for G S1.

Now let G Z/n be cyclic and V a G-module, i.e. a finite-dimensional orthogonal

représentation space of G. Let SV dénote the unit sphère of V and d : dimR V.

We assume SVG 0.

THEOREM 1.2. (a) // n pk is a power of a prime p then yG(SV)&gt;

(p d + n-p)/n.
(b) If n is arbitrary suppose t := gcd{\G/H\ : (H) e I(SV)} ^ 2 and let p be a

prime dividing t. Let np =pk be the highest power of p dividing n. Then

REMARKS 1.3. (a) If np =p then Theorem 1.2 gives yG(SV) î&gt; dimR V. It is

easy to see that equality holds.

(b)Let G Z/4 act on S3 c C2 by scalar multiplication; H : Z/2 c G. In [Ba]
a G-map S3-+G/H * G/H * G/H has been constructed (see also [BCP]). Thus
yG(S3) ^ 3 and the theorem yields equality. Since G acts freely on S3 it is easy to
see that yG(S3) 4. More generally, if G acts on S2d~l a Cd with only one orbit
type, G or G/H, then yG{S2d~x) 2d. I do not know the exact value of yG(S2d~l)

if both orbit types occur on S2d~l.

(c) The following results are known for other groups G. If G is an elementary
abelian p -group, G Z/p x • • • x Z/p, p a prime, which acts continuously and

without fixed points on a sphère Sn~l then yG(Sn~l) yG(Sn~l) n.
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If G is a torus, G S1 x - - - x S\ acting continuously and fixed point free on
S2n~ l then yG(SV) yG(SV) n. A proof can be found in [CP]. In the case when
the action of G is linear thèse two results can be easily obtained via a réduction to
the case Z/p.

If G is a compact Lie group and V a, G-module such that the sphère SV is a free

G-space then yG(SV) ^ (dimR F)/(l +dimG) (cf. [Ba]). See also [M] for related
results.

A simple corollary of the theorem is the following resuit. Let G Z/2n act on
F £ Cd such that ail isotropy groups on SF are contained in H := Z/n. The orbit
space LV : SV/H is called a lens space (in particular when the action of H on SV
is free). There exists a free action of Z/2 s G/// on LV.

COROLLARY 1.4. (a) yz/2(LV) 2&gt; dimR V if n is odd.

(b) ym(LV) :&gt; 1 -h (dimR V)/2r ifn=T- odd, r &gt; 0.

If n 2 and the action of G is free, LK (RP2é/~ \ we recover a resuit of [PS].

2. Réduction to an algebraic problem

We first prove part (a) of the theorem. Thus we consider the case G Z/n cz S1

has prime power order, n =pk,k ^ 1.

Let F be a real G-module with VG {0}, SV its unit sphère, d:=dimu V.

If y :=yG(sV) there exist subgroups Ht of G, H, /G, and a G-map /: SF-»
G//*! * • • • * G///y. We hâve to show y £ (p • rf + n -p)/n.

The complex irreducible représentations of G are denoted by Fo,..., Vn_l9
where ail F, £ C and G acts on F, via C *—*^ C-

LEMMA 2.1. There exists a G-map cp : SVdv-+SVym, m n/p.

Proof. First consider the map

/*/: S(F0 V)^SV* SV-+GIHx * • • • * G/HY * G//^ * • • • * G/Hy

* G///, * • • • *

Next observe that V@V can be considered as a complex représentation of G.

Hence, it can be decomposed into Vx,..., Vn _,. Fo does not occur since VG {0}.
The maps Vx^zv-*zl € V, induce a G-map SFf-+ S(F© F). Moreover, there exists

a G-map

G/J/, * G/Ht-&gt;G/H G/H-+SVm.
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Hère H Z/m, ail H, c //. This gives the left map. The right one is induced by the

map

G/H * G/H s [tx, glH, t29 g2H] ^ tlg? + t2g2»e«&gt;?2 e Fm\{0}.

It is easy to check that this map is well defined, continuous and equivariant
(tt £ 0, tx + t2 1). Putting ail thèse maps together yields q&gt; : SVdx-+ SV7m. D

We now apply equivariant AT-theory KG to the map (p in order to get the

required inequality. AH facts about KG which we need can be found in [A] and [S].
For a complex G-module W one can compute KG(SW) as follows. The Gysin
séquence of W yields the exact séquence

The map denoted by ew is simply multiplication with the Euler class of W. Since the
Euler class is multiplicative, %lS^ %1

&apos;

ew^ we only hâve to compute eVr
Now KG{pt) ^RG ^Z[jc]/(1 —xn) and the représentation Vt corresponds to the

monomial x\ The Euler class ew corresponds to the élément I^fTo* AJW where

AJW is the j-th exterior power of W. In particualr, eVi corresponds to Fo— Vn
i.e. to 1 -x\ Thus ^(SFf) s Z[jc]/(1 - xn,{\ -x1)*). Next the homomorphism
q&gt;* : ^(SFJ,) -+KG(SVi) is simply given by (p*(x) x. To see this observe that q&gt;

induces the identity

KG(pt) s

Hère DJF dénotes the unit dise of FF. So we hâve a homomorphism

&lt;p* : Z[jc]/(1 - jcm, (1 - xmy) -*Z[jc]/(1 - xn, (1 - jc)j)

with ç *(x) jc. This implies of course that

(l-Xm)v€(l-JCw,(l-JC)rf).

In the next section (Proposition 3.1) we shall show that this implies

(m-l)(y-l)^d-y or y
;&gt;*/ + m~&quot;1

Using m » n/p this is the desired inequality needed to prove (a).
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To prove (b) let G Z/n with n eN arbitrary. If the prime p divides

gcd{\G/H\ : (H) g I(SV)} it also divides n. Let Gp := Z/np c G, np =pk the highest

power of p dividing n (Gp is the p-Sylow subgroup of G). It is easy to see that
yG(SV) ^ yGp(SV)- This is true for ail abelian groups G and ail closed subgroups of
finite index. It is false for y. Gp acts without fixed points on SV since p divides \G/H\
for ail (H) g I(SV). Thus we can apply (a) to get (b).

Finally we prove the Corollary. Hère G Z/2n DZ/n=i/,n=2r- odd. Writing
y &apos;•= y-Lii^LV) there exists a Z/2-mapLF-+S&apos;v~1. Hère we consider the antipodal
action of Z/2 on Sy ~1. This induces a G-map SV-&gt;Sy~l where G acts on S7 ~! via

G-*GjH. We need only consider the 2-Sylow subgroup G2 of G since G2 acts

without fixed points on SV; \G2\ 2r+1. So we know

(2 • dimR F + T+l -
F + 2r~l)/2r. D

3. Computations in Z\x\

The goal of this section is to prove the following proposition which we needed

in Section 2. Fix a prime p and let nbea power of /?, m : n/p, and y, rf be natural
numbers.

PROPOSITION 3.1. If(\ -xm)y is an élément of the idéal generated by 1 - xn

and{\~ x)d in Z[x] then (m - 1) • (y - 1) ^ d - y.

Proof. First observe that 1 — xm divides 1 — xn. Hence, under the assumptions of
the Proposition

(i - xmy-l g (î + xm + - - - + x{p-l)m, (i - x)d-l).

Now assume y ^ d, (If not the proposition is true). Hence,

(1 + x + • • • -h xm~ ly~ l e (1 -h xm 4- • • • + x^p-1)w, (1 - x^-O.

We now setû:=y — 1, b := d — y and hâve to show 6 ^ (m — l)a. Substituting

y i — x dénote

ï and ^ -Y (1 ~
,=-0 i 0
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Now

oo

(paE(\j/9yb) iff (pa/\j/= ^T styl

is such that s0,..., sb_, g Z. Set

LEMMA 3.2. (a) For ail i ^ 1 on&lt;/ ail 0 £./ &lt; (p - \)mi\ p&apos;r, e Z.

(b) For ail i ï&gt; O:p&apos;+lr(p_l)mi g ± 1 +pZ.

Proof. We use induction on / to prove both statements simultaneously. If i 0

then p - r0 1 by définition of rf. The first statement is trivially true.

Suppose the lemma is true for 1 ^ 0. We hâve to show:

(i) For ail 0 £j &lt;(p- l)m(i + 1) : /: p&apos;
+ \ e Z,

(i) is true by induction for ail j ^ (p — l)/m. Takej &gt; (p — \)mi and suppose (i)
is true up to j — 1. Then by définition

Hère and in the sequel we use the convention that I J is zéro for b &gt; a. We now
compute mod 1. ^ ^

V-l

The first congruence holds by induction. The second is true since for

p-l /um\
&lt;(p-l)m: X )epZ&gt;

M&quot; 1 \ V /
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(see Lemma 3.4). And p&apos;+1r;_veZ by induction on/ To prove (ii) we compute
moàp.

{p- \)rn p-\ /,.m\

Ail congruences hold by induction (and Lemma 3.4).

LEMMA 3.3. Set Ja:=(m-\) • a. Remember: q&gt;al^ JLf

(a) For allO^j&lt;Ja :s,eZ.
(b) For ail i ^ 1 and ail 0 &lt;j &lt; (p - \)mi :p&apos;sJa+J e Z.

(c)
&quot;

Proof. We use induction on a.

If a 0 then Ja 0 and s, r,. Hence, (a) is trivial and (b) and (c) correspond
to (a) and (b) from Lemma 3.2.

Now suppose the lemma is true for a ^ 0. We write (pa+l/\// T&apos;?Lotlyl and
hâve to show (a), (b) and (c) with a + 1 instead of a and tt instead of st. The tt and

st are related by the équation

/ ao \ /m — 1

We first prove (a). We only treat the case p\m. If m 1 (i.e. n =p) then
•f« Ja+ i 0- This case is easier (and Theorem 1.2 is known for n =/?).

Ifj &lt; Ja then tj s Z since it is true for ail sJ9j &lt; Ja. Now take Ja &lt;&gt;j &lt;Ja+ï and

suppose tJ_leZ. Then

7 m-l /.A j-lm-l /u\



92 THOMAS BARTSCH

If v &lt; m — 1 then

m
v

and p &apos;

Sj_ v e Z since y — v &lt; Ja+, &lt; Ja + (p — l)w.
If v ^ m — 1 theny — v &lt; Ja+ x — (m — 1) Ja, hence ^_ v € Z. This yields t} € Z

as required.
We next prove (b). Take i ^ 1 and 0 &lt;&gt;j &lt; (p — \)mi. Set k := Ja + l +j. Then

If v ^ m - 1 then k — v &lt;&gt;Ja -hy, hence p&apos;^_
v 6 Z.

If v &lt; m — 1 then

ïCH:,)--
Since h-v &lt;&gt;k &lt;Ja + {p - \)m(i + 1) we hâve p1 +1 • s*_v e Z.

Finally, we prove (c). Take i ^ 0 and set j : Ja +1 -h (/? — l)/wi\ Then

v 0 ^«-v \V/

If v &lt; m — 1 then

and

since /?I+l^_v €Z.
If v m — 1 we hâve j — v Ja + (p — l)/wi, hence /?&apos;+ !^ _ v € ± 1 -f pZ. This

yields /&gt;l+1f, 6 ±1+/&gt;Z. D

The proposition is now a conséquence of Lemma 3.3(c). Namely, if i 0

then p &apos;

sJa€ ±l+pZ which implies sJa$Z. As mentioned before Lemma 3.2

(pfl 6 (^, yb) iff 50, ,.M^_,eZ. We obtain è ^ /a (w - 1) • a as required.

In the proof of Lemma (3.2) we used a property of the binomial coefficients
which we now prove.
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LEMMA 3.4. For allO^v&lt;(p- \)m :
&apos;%

Proof. Remember that m is a power of p, m =pl.

Claim 1: For ail / ^ 1 and ail v $p~l\ y jspZ.

This is clear for / 1. We compute mod p.
Using

we get

Claim 2: For ail \x ^ 1 and ail v $pZ: y Je

For \i 1 this is just Claim 1. Mod p we hâve

\ ™ (m\( nm \ « /mV /*m \

Claim 2 proves Lemma 3.4 if v

/a\ (pa\
Claim 3: For ail a, b e N: f 1 s F \ mod/?.

This is trivial for a 0. Computing mod/&gt; we get

¦eH^O-C:1)
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Now, if v epZ\mZ, i.e. v kpr with À $pZ and r &lt; /, then

{um\ (upl r\-Mi )=o-

The first congruence is true because of Claim 3, the second because of Claim 2.

Finally, if v km with 0 &lt;&gt; À &lt; p — 1 we hâve mod p

4. Problems and remarks

(4.1) The assumption / : gcd{\G/H\ : (H) e I(SV)} ^ 2 in Theorem 1.2 al-
lowed us to reduce the problem to the case of a cyclic group of prime power order.
What can be said if t 1? Of course, one still has to exclude fixed points (SVG 0).

(4.2) As mentioned in Remark 1.3(c) yG(SV) has been computed for elementary
abelian subgroups and tori. This can be done with elementary methods. It is natural
to consider more gênerai groups. The most promising to attack are/?-groups. From
the point of view of applications, e.g. the dihedral groups or other subgroups of 0(3)
are important.

(4.3) Related to the genus yG(X) is the equivariant Lusternik-Schnirelman
category catG (X). This is the smallest integer n (or oo) such that there exists a

numerable covering of X consisting of n invariant subsets of X which can be

equivariantly deformed inside X to an orbit. It is easy to see that catG (X) ^ yG(X);
cf. [CP] or [Ba] for properties of catG, some computations and applications (in
particular for G a 0(3)). In [BCP] equivariant stable cohomotopy is used to show
that catG (SV) oo for ail /?-groups G and infinite-dimensional G-modules V with
KG {0}. Unfortunately, the argument there does not give any estimâtes of
catG (5F) for finite-dimensional V. In the very spécial case G Z/pk Theorem 1.2

implies yG(SV) oo if dim V oo.

(4.4) For applications lower estimâtes of yG(SV) are more important than upper
estimâtes. Still it would be very interesting to give upper estimâtes or even to compute
yG(SV).

(4.5) Another problem is to compute yG(X) for other G-spaces X, e.g. G-mani-
folds. If G Z/2 and X UP2n ~ \ CP2n ~l see [PS]. What if G acts nonlinearly on
a sphère?
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