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Sur les fonctions propres positives des variétés de
Cartan-Hadamard

ALANO ANCONA

Soit M une varié€té de Cartan—Hadamard a courbure sectionnelle pincée entre
deux constantes strictement négatives et soit A, (M) =inf {([, |V@|*dv)/
(Jul@l?dv); @ € Co(M), ¢ #0} la premiére valeur propre de l'opérateur de
Laplace—Beltrami A sur M (v désignant la mesure de volume de M). On sait que
A(M) est strictement positif et que pour chaque réel t<A,(M), il existe
“beaucoup” de fonctions A + t/-harmoniques positives ([3] pour le cas t =0, et
[1]); on a méme une repiésentation intégrale de ces fonctions a I’aide d’un noyau
de “Poisson” P,(x, ), xeM, { parcourant la sphére a linfini de M,
habituellement notée S.(M). Ce sont ces fonctions que nous appellerons
fonctions propres sur M au niveau ¢, ou encore ¢-fonctions propres.

Dans le cas out M est a courbure sectionnelle constante —a?, il est bien connu
que ces assertions s’étendent aux fonctions propres au niveau A; (et que
A =(n—1)’a*/4); de plus, on sait construire pour chaque ¢, 0<t<A4,,
“beaucoup” de fonctions t-propres tendant vers zéro a linfini, et de classe
L?(M), pour tout p >2/(1— V(1 —t/A;)) (voir [5]).

Nous nous proposons dans ce travail de revenir au cas de la courbure non
constante, en complétant I'’étude amorcée dans [1]; nous montrerons que pour
tout niveau f, 0 <t <4,, il existe des fonctions t-harmoniques sur M tendant vers
z€ro a l'infini; cette propriété s’étend d’ailleurs a des opérateurs elliptiques
d’ordre deux sur M assez généraux. Néanmoins il existe une différence
importante avec le cas de la courbure constante: la vitesse de convergence vers
zéro a linfini ne peut étre uniformément controlée lorsqu’on s’approche du
niveau critique A;. On verra sur des exemples qu’il peut ne pas exister de
fonctions propres >0 au niveau A, tendant vers zéro a I'infini, aussi bien lorsque
I'opérateur A + A,/ admet une fonction de Green, que dans le cas contraire, ol
toutes les fonctions propres au niveau A, sont proportionnelles. On verra aussi
que chacun de ces deux cas peut effectivement se présenter. Pour les preuves et
les constructions d’exemples, nous nous appuierons essentiellement sur les
résultats de [1] (qui étaient en partie motivés par ces questions). Dans le
paragraphe 2, on s’est efforcé de préciser les estimées de [1] concernant les
quotients des fonctions de Green pour différents niveaux, ce qui nous a amené a
des énoncés intermédiaires peut-€étre intéressants par eux-mémes.
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Dans la derni¢re partie de cet article, nous indiquons une extension (trés
partielle) au cadre des variétés a courbure négative de la théorie de S. J.
Patterson sur les ensembles limites des groupes Fuchsiens [11]; on montrera que
quelques unes des propriétés remarquables mises en évidence par Patterson sont
des conséquences assez simples du principe de Harnack a I'infini établi dans [1].

L’auteur tient enfin a remercier N. Lohoué a qui il doit le probleme de
I’existence de fonctions ¢-propres positives sur M, nulles a I'infini pour chaque

t € ]0, A,(M)[; ce travail a bénéficié de son intérét et de ses questions renouvelées.

1. Construction de fonctions propres, nulles a Pinfini

Dans toute la suite, on se placera dans le cadre suivant: on désigne par M une
variété de Cartan—Hadamard de dimension n =2, a courbure sectionnelle pincée
entre les constantes —a® et —b?% (0<a<b < +x) et on note v la mesure de
volume sur M. Dans cette partie, on se donne sur M un opérateur elliptique £ du
type suivant:

Fu =div{4(Vu)} + BVu + div {uC} + yu §))

ot £ ={A(x)}cem est une section borélienne du fibré End (T(M)), (T(M)
désigne le fibré tangent sur M), et les #(x) sont bornés, uniformément accrétifs;
B et C sont deux champs de vecteurs boréliens et bornés sur M, et y est une
fonction borélienne bornée sur M; on a donc pour une certaine constante v >0

(A(x)E, E) = v|E|I* pour xeM, EeM, (2)
I()EI<vT'IEIl  pour xeM, EeM, 3)
IBll=+IICll=+ lI¥lle< v~ (4)

Un tel opérateur £ est un opérateur adapté sur M au sens de [1].

Une classe d’opérateurs de ce type peut étre obtenue de la fagon suivante:
supposons que sur chaque boule B(x, 1) de rayon 1 dans M, les coefficients [g;]
relatifs a un syst¢tme de coordonnées normales en x, soient K-lipschitziens pour
un K indépendant de x; soit {X;},<,<, un repeére mobile (orthonormé) sur M, tel
que les Vx (X;) soient bornés sur M; si {a;} est une matrice carrée d’ordre n de
fonctions boréliennes bornées sur M, telle que 'on ait: ¥ a;(x)§.5,=¢ X E? pour
xeM, EeR", et une constante £€>0, alors 'opérateur &£ =}, X;(a;X;) est du
type décrit ci-dessus.

Outre (1) a (4), on suppose que ¥(1) =0, et que £ coercif, ce qui signifie
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que:
ax(¢, 9) = [ ((4.(79),V9) + ¢(Vg, C=B) ~ y¢?) dv(x)=¢| [Vofdv (5

pour toute @ € Cg(M), et une constante € strictement positive. Bien entendu,
I'opérateur £ que nous avons le plus en vue est I'opérateur de Laplace—Beltrami

sur M.
Notons A, la premiere valeur propre de £ (appelée aussi “fond du spectre”):

A =sup {A>0; & = L+ Al est coercif}

(Notre terminologie n’est bien justifi€ée que si £ est auto-adjoint) On sait (voir
[1]) que pour chaque A <4, il existe un noyau de Green G, sur M relativement a
%, Gy:MXM—]0, +»]. (Notre convention sera que G,(x,y) est %;-
harmonique en x sur M\{y}). Posant G = G,,, on a les estimées suivantes [1]:

G(x,y)scexp(—pd(x, ¥))Gi(x,y) pour x,yeM, 0<A<py (6)
Gi(x,y)<cexp(—B'd(x,y)) pour x,yeM,d(x,y)=1 (7)
Gi(x,y)=G(x,y)>C™"  x,yeM,d(x,y)<1, 1>0 (8)

ol ¢, B et B’ sont des constantes strictement positives qui dépendent de n, b, v et
A, — A. Notons que (6) est contenue dans 'estimée plus générale ([1]):

Gi(x, y)<cexp(=Bd(x, y))Gilx,y) pour x,yeM (6)

pour A'<A<A,, c et B dépendant de n, b, v, A', A. (7) et (8) sont des
conséquences de (6) (tant qu'on ne s’intéresse pas aux valeurs optimales de B’
ou ¢c).

D’autre part, il existe pour chaque A <A, un noyau continu K, : M X §.—> R,
tel que les fonctions u ¥,-harmoniques =0 sur M soient en bijection avec les
mesures u =0 sur S, par I'intermédiaire de la formule:

u(x) = [M Ki(x, ©)du(t), xeM 9)

K, peut étre déterminé par le choix d’un point de référence 0 € M, et la condition
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de normalisation K (0, ) =1 pour § € S.. Nous fixerons désormais un tel point 0
et désignerons par 6(x) la distance d(0, x) pour x € M.

Si o est la mesure de probabilité sur S, correspondant au niveau A=0 et la
fonction constante 1, on sait ([1]) que pour f € C(S., R), la formule

u(x) = [M Kolx, Of (5) do(t), xeM | (10)

donne la solution du probléme de Dirichlet sur M, 'opérateur &£ et la donnée
frontiére f; o est donc la £-mesure harmonique du point 0. Il faut remarquer que
méme dans le cas £ = A, il n’y a pas de relation d’absolue continuité entre o et la
mesure géométrique d’angle solide relative a 0 (voir [4], et d’autres propriétés de
o dans [3]).

On a alors le théoréme suivant:

THEOREME 1. Soient fel*(0), A€l0,Af; la formule us(x)=
[ Ki(x, E)f(E)do(E) définit une fonction ¥+ Al-harmonique, vérifiant
Pestimation :

U (x) < C || f |l %0 (11)
ou C et « sont des constantes >0 qui dépendent de n, a, b, v, A et A,.

Il suffit évidemment de traiter le cas f = 1; on notera u = u, ;. Afin d’alléger,
on ne mentionnera plus la dépendance en n des diverses constantes utilisées.

Soient y une géodésique issue de 0 et aboutissant au point {, sur la sphére a
Pinfini S., x; le point y(kj) sur la géodésique pour j € N (k désignant un réel =1
fixé qui sera choisi plus bas). D’apres les inégalités de Harnack, il suffira
d’établir (11) pour les points x;, pourvu que C et a soient indépendants de la
géodésique v.

Désignons par I le “cone” géodésique de sommet x; =y(k(j—1)—1) et
d’ouverture /2, lieu des points z e M, z#x], tels que %.(x]o, x]Z) <m/2;
soient 2; ’ensemble des points de la sphere a I'infini S. adhérents a ce cone, et 2|
'ensemble complémentaire dans S.. Décomposons u(x;) en deux parties I, et L:

L= | K Ddo@), b= K £)do(d) (12)

et majorons chacune de ces parties.



66 ALANO ANCONA

Cas de I,. On observe qu’il existe 0, 0 < 0 <m/2, ne dépendant que de b et de
k et tel que le cone géodésique C;,; de sommet x;.;, de direction —y'(k(j + 1)),
et d’angle au sommet 6, admette dans le compactifie M* = M U .. une fermeture
disjointe de 2. Il suffit, d’aprés le théoréme de comparaison de Rauch [6] de
choisir pour 6 ’angle qui convient pour la variété modele H,(—b?) (et I’entier k),
soit par exemple: 6 < Arctg {(sh(b(k + 1))'}.

D’apres les inégalités de Harnack a l'infini de [1] (chap. 3) (voir aussi le
lemme 2 plus bas) appliqué a ce cone, et aux deux fonctions £,-harmoniques =0
sur Ci.q, Ki(+, ) et Gi(+, xj41), on a:

1/(CGA(O, xj+1)) = KA(X, C)/GA(X, x,-+1) = C/GA(O: xj-H) (13)
pour tout x sur le segment géodésique Ox; et tout ¢ € 3;; la constante C dépend
dea, b, k, v, A et A,.

En particulier, en faisant x = x;: K,(x;, £) ~ Gy(x;, x41)/GA(0, x;1,), V€ X,
le symbole ~ signifiant que les quantités qu’il sépare ont un rapport compris
entre deux constantes strictement positives (dépendant de v, k, a, b, 4,, 1); d’ou
d’apres (8):

Ki(x;, ) ~1/G,(0, x;+,) pour (eX; (13%)

Le méme raisonnement appliqué au niveau A=0 donne: K(x;, {)~
1/G(0, x;.,), pour { € 3. D’ou, en intégrant:

B=C | (UG0, 5.)) do() < C(G(O, 52 )/G0, 5.0 | K, £) o)}

Comme {— K(x;, {) est d’intégrale 1 par rapport a o, on obtient:
L=< CG(0, x;41)/ G (0, x;..1) C=C(k,a,b, v, A A)
et d’apres (6):
I, < Cexp (—Bjk), C=C(k,a,b, v, A, 1)) (14)

Majoration de I,: On utilise a nouveau le principe de Harnack a I'infini, mais
maintenant pour le cone I}; pour tout £ € 2/ on a:

K;(x;, C)/Kl(xj—»h £) =< CGi(x;, x;)/GA(xj—l’ x,') (15)
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ou C=C(a, b, v, A, A,) est une constante indépendante de k. D’apres (7), (8) le
dénominateur dans cette derniére expression est de l'ordre d’une constante
(indépendante de k); d’ou, avec les inégalités de Harnack:

Ki(x, §)/Ki(xj-1, ) < CoGi(x), Xj—1),  VE€Z] (16)

En intégrant, on obtient:

L= CoGi(x;, xj—)u(x;_y) (17)
ou Cy= Cy(a, b, v, A, A,) ne dépend pas de k. D’ou, d’apres (7):

L < Cu(x;—,) = Coe P u(x;_,) (18)

Fin de la preuve du théoréme 1. En regroupant les deux majorations (14) et
(18), on a:

u(x) < Ceulx;_) + ce Pk = Cuu(x;_) + cdy/

Par itération, compte tenu de u(x,) =1, et supposant ¢ =1, on obtient:

u(x") SC(dk)j + CCk(dk)i_l + CCkZ(dk)j—Z + x4 chP(dk)j”‘P + .-+ Cij
= C( 2 Cdekj—s)
O=s=<j

et, posant A = sup {C,, di}: u(x;) <c(1+j)A".
Or, d,=exp(—pk) et C,=Cyexp(—p'k)=exp {Ln(Cy)—B'k}; d’ou, si
B"=inf{B, B’}

u(x;)<cexp{Ln(1+j)—j(B"k —Ln Cy)} (19)
et
ux)<c'édx)exp{—(B"—(Ln(Cy)/k))d(x)}, xeM

Prenant k > (Ln C,)/ ", on obtient I’estimation voulue (11) pour tout choix de a
tel que: o <pB”"—{Ln(Cy)/k}. Ce qui achéve la preuve du théoreme 1.

Remarques. On verra plus loin que le meilleur exposant ' dans (7) peut
effectivement tendre vers 0 lorsque A tend vers A,; (voir plus bas, avant le lemme
4), il en ira a fortiori de méme pour le meilleur exposant o dans (11).

La propriété suivante compléte le théoréme 1.
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THEOREME 2. Si u est une fonction ¥,-harmonique =0 sur M, alors u
converge radialement vers zéro o-presque partout sur S...

Preuve. On peut supposer u > 0. Montrons d’abord que u est un £-potentiel,
c’est a dire, puisque u est clairement Z-surharmonique (¥(u) = —Au <0), que
dans la décomposition de Riesz de u en somme d’un £-potentiel G(u) et d’une
fonction £-harmonique h =0, on a h =0. Comme u = Au dv, et que G(u) # +=,
G (h) est non identique a +x (et est donc un £-potentiel).

Or G(x, y) et h(y)/h(x) sont pour d(x, y) <1 minorés par une constante >0,
d’apres (8) et les inégalités de Harnack. D’ou, puisque M est a géométrie bornée:
G(h)(x)= [ G(x, y)h(y) dv(y) = Ch(x), pour x e M et une constante C>0.
Comme un potentiel n’admet pas d’autre minorante harmonique =0 que 0 h =0
et u est un £-potentiel.

D’apres la théorie générale de la frontiere de Martin ([9], [12]), le £-potentiel
u tend finement vers 0, o-presque partout sur la spheére S. (dont on sait qu’elle
s’identifie a la frontiere de Martin, [1]). Comme u en tant que & + Al solution
vérifie localement des inégalités de Harnack le raisonnement classique de [1],
§ 4, permet de passer des limites fines a des limites non tangentielles (et en
particulier radiales). Ce qui achéve de prouver le théoréme.

Remarques. 1. Les inégalités (7) et (13') montrent que les fonctions A-
propres positives K, (-, §), (§ € S., 0<A <A,) sont non bornées.

2. L’énoncé précédent est indépendant du théoréme 1. Si on utilise le
théoréme 1, on obtient une propriété plus précise:

THEOREME 2'. Si 0<A<Ay, si @(x)=[ K,(x, £)do(&), et si u est >0
%,-harmonique, alors u/@, est borné sur la demi-géodésiqgue 0F, pour o-
presque tout L €S.. En particulier, pour tout a<inf(B, B'), on a u(x)<
C; exp (—ad(x)), sur O pour o-presque tout £ € S.., (avec 0< C, <x). Si v est
Z,-harmonique >0 sur M, pour u> A, alors v/, tend radialement vers 0,
o-presque partout sur S..

On sait en effet que u/¢@, admet une limite fine finie en o-presque tout § € S.
([9], [12]). Les inégalités de Harnack montrent ensuite comme dans [1] que
I’existence d’une limite fine (pour la %, -théorie) entraine celle d’une limite
radiale et méme d’une limite ‘“non-tangentielle’’. Pour la deuxiéme assertion, il
suffit de reprendre la démonstration du théoréme 2 pour voir que v est
nécessairement un %,-potentiel, et conclure de la méme maniére.

En particulier u, = o(u,.), sur o-presque toute géodésique 0Z, si A< A'.



Sur les fonctions propres positives des variétés de Cartan—-Hadamard 69

2. Précision de Pallure a Pinfini pour £ = A

On établit dans ce paragraphe une estimation des quotients des fonctions de
Green sur M, relatives & un méme podle et a deux niveaux A, A’, pour le cas
&£ = A; ce qui précisera un peu ’allure a l'infini des fonctions propres construites
au paragraphe précédent. On remarquera que les théorémes de comparaison
standard avec les fonctions de Green analogues de H,(—a”) et H,(—b?) ne disent
rien d’intéressant sur ces quotients en général.

On notera A= {(n —1)b/2}* la premiére valeur propre de H,(—b?. Le
théoréme suivant est pour I’essentiel di a Yau [13]; la borne VAy+ V(4o —A)
pour le cas particulier considéré ici résulte d’un examen attentif de la méthode de
Yau. (Le cas A =0 est d’ailleurs explicitement mentionné dans [13]).

THEOREME 3. Soit u une fonction propre positive au niveau A <X, sur la
variété M. On a, sur M: (|Vu|/u) < Vio+ V(Ao —1).

Rappelons pour la commodité du lecteur la méthode de Yau: on introduit la
fonction f(x)=(u/|Vu|) qui est continue a valeurs dans ]0, +x]. D’apres le
principe du minimum de Yau [13] (dont on voit facilement qu’il est applicable a
f), il existe une suite x, de points de M, tels que: (i) f(xi) tend vers
a =inf {f(x); x e M}, (ii) Vf(x;) tend vers O et (iii) lim inf Af (x,) =0.

En utilisant (ii), on obtient les équivalents suivants (le long de {x,}):

IV(lgrad (u)|?)| ~2 |Vul’/u et w<Vu, V(|Vu|*)>~2|Vu|*
D’autre part, d’aprés la formule de Bochner-Lichnerowicz et la relation

Au+Au=0:  (Af)|Vul < @u|V(V@)P)?
= [Vu*{u ID*@)II* + (Vu, V(I(@)*))} + b*(n — 1) |[Vul*

(en tenant compte de la minoration de la courbure de Ricci). Cette relation
combinée aux équivalents précédents donne au point x;:

Af < (1 + &)(|Vu|/u) + b*(n — 1)(w/|Vu|) — u | D*u||* |Vu| >
ol lim & = 0. On détermine enfin une minoration de ||D%u||: utilisant un repére

X, X5, ..., X, adapté en m=x,, avec X, paraliele a Vu en m, et notant
indiciellement les dérivations correspondantes, on a, en modifiant légérement
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[13]:

S, = (1/n = D)3 ) = (1/n = D)Au = )= (1n = D)+ )

On peut encore estimer u;, en m = x,, a 'aide de (ii), en tenant compte de
u,=|Vu| et u; =0 si i #1; on obtient u,, ~ {(|Vu|*)/u}. D’ou,

YuZ={(1+1/(n—1))u2|Vul*+2(A/(n — 1)) |Vu>+ (A*/(n — D))u*}(1 + &)}

i=1

avec une nouvelle suite ¢, tendant vers 0. Revenant alors a la majoration de Af,
on obtient, d’apres (iii), en faisant tendre k vers +%, a >0 et:

0<—(1/a(n — 1)) + {b*(n — 1) = 24/(n — 1)} & — (A*/(n — 1))a?
soit, si B =1/a: B*— (b*(n — 1) —24)B> + A*<0. Par conséquent:
B> < (3){b*(n — 1) = 24 + V(b*(n — 1)* — 4Ab%(n — 1)*)}
ou
B2 =<[(b(n — 1)/2) + V{b*(n — 1)’/4) = A}

et le théoréeme est €tabli.
L’énoncé suivant s’étend aux opérateurs elliptiques considérés dans [1];
remarquons aussi que cet énoncé tombe en défaut si on autorise la valeur a =0.

PROPOSITION 1. On peut associer a chaque €>0 un nombre r=
R(e,a, b, A, Ay), r>2, tel que pour toute solution positive u de Au+ Au=0
(A <A,) sur la boule B(m, r) de M, il existe une fonction v A-propre et positive sur
M tout entier vérifiant \u — v| < € sur B(m, 1).

Preuve. Désignons par r’ un réel >2 fixé, qui sera déterminé ultérieurement
en fonction de &€>0. Soit, en supposant r>2r', u'=inf{s;sA+ Al-
surharmonique =0 sur B(m, r), s =u sur B(m, r')}). u’est un A+ Al potentiel
sur B(m, r) porté par dB(m, r’) et égal a u sur B(m, r'). En particulier, u’ = Gyu
pour une mesure u portée par 9B(m, r'), G, désignant la fonction de Green de la
boule B(m, r) au niveau A. Notons G la fonction de Green de méme niveau pour
M tout entier. D’aprés le lemme 1 plus bas, on a (1-€)G=<Gy<G sur
dB(P, r') X B(P, 2) si r est assez grand (r’ étant fixé). Par conséquent, w = Gu
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est un A+ Al potentiel sur M, porté par OB(P,r') et tel que: (1—e)wsu<w
sur B(0, 2).

Reste a approcher w par une fonction A + Al-harmonique >0 sur M: il suffit
en fait d’approcher chaque poteniel ponctuel G,, x € B(P, r'): notons g =
G,/G(x, P) et K. la A+ Al-minimale normalisée en P, associée au point &
extrémité de la demi-géodésique issue de P et traversant x. Prenant un cdne de
sommet x, d’ouverture /4 et d’axe E’, on a, en utilisant le lemme 2, et pour r’
assez grand (r' = R(g, a, b, A, A))):

(1-¢e)Kesq=<(1+¢)Kesur B(P, 1)

En intégrant par rapport a v=G(P, -)u, et en notant v = [ K; dv(§), on a
1-evsws<(1+e¢e)vsur B(P,1)

et la proposition est établie.

LEMME 1. Avec les notations précédentes, on a, pour r' fixé et r assez grand
(r=R(a, b, &', A, A)):

Vx,ye B(m,r') 0<G(x,y)— Gy, y)<eG(x,y)

Observons que w:y— (G(x, y) — Gy(x, y)) est A-harmonique >0 sur B(m, r),
majorée par G(x, y) pour y € dB(m, r). Introduisons A’, A<A' <A,, la fonction
de Green g de niveau A’ et pdle x sur M, et utilisons I’estimée (6'); on obtient

w(y)<cexp(—pBr/2)g(y)

pour y € 3B(m, r) et a fortiori, d’aprés le principe du maximum pour tous les y de
B(m, r); d’autre part (' étant fixé) il existe une constante ¢ >0 telle que g soit
majorée sur B(m, 2r') par ¢'G(x, -); de sorte que w(y) <cc' exp (—pr/2)G(x, y)
sur cette boule, et le lemme s’ensuit.

Pour le lemme suivant, on peut se placer dans les hypothéses du §1.

LEMME 2. Soient y une demi-geodesique issue de 0= y(0), I' le cone
geodesique de sommet 0, direction y'(0) et angle au sommet 8, 0 <0 < et pour
m entier =1, I,, le cOne analogue de sommet A,, = y(m) et direction y'(m). Alors,
pour tout A < A, et tout couple u, v de fonctions <,-harmoniques >0 sur I', nulles
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a linfini au sens de %, ([1]), on a sur I,:
u(x) <1+ CB™)(u(An)/v(A))v(x)
(0t C=Cla, b, v, A, Ay, 8)>0, et 0<B <1, B=P(a, b, v, A, A,, 6)>0).

Cet énoncé est une conséquence standard du principe de Harnack a la
frontiere (voir par exemple la preuve du theoréme 6.2 de [3]). On sait ([1]) qu’il
existe une constante ¢ = c(a, b, v, A, 4;) >0 telle que:

(1 +0) 7 {f(A)/8(A}g(x) < f(x) < (1 + c){f(AL)/8(Ai)}g(x) (*)

sur I;, pour f et g £,-harmoniques =0 sur I; _,, nulles a l'infini au sens de %,.
Utilisant (*), on voit aussi que pour x, y € I;:

f)<@+c)*{f(y)/g(y)}g(x). *)

Soient alors u et v comme dans I’énoncé; pour s entier =1, notons y, la meilleure
constante =0 telle que pour tout x, y € I

1+ v) " H{u)/u(y)} <v@)/v(y) < (L + v){ulx)/u(y)}

Or, puisque pour ye€ ., x—>(1+y){u(x)/u(y)}—-{vx)/v(y)} est Z-
harmonique >0 sur I3, on a d’aprés (*)' (avec le méme y et k =5 + 1):

A+ v ) {u@)/u(y)} = {v@)/v(y)} = v {u@)/u(y)}  ¢'=1+c)

pour x, y € I[;,;. D’ou {v(x)/v(y)} = (1 + v,(1 —c"){ux)/u(y)}.

Ce qui montre que y,,, < ¥,(1 — ¢’), et finalement y, < y,(1-c')’"".

Le théoréme 3 et la proposition 1 conduisent tout naturellement a une
estimation de la constante de I'inégalité de Harnack infinitésimale ‘“‘locale” de

Cheng-Yau ([13], [8]) pour les grandes boules de M.

PROPOSITION 2. Pour tout € >0, A<A,, il existe R=Ry(g,a, b, A, A,)>0
tel que pour toute fonction u, A+ Al-harmonique positive sur une boule B(P, R)
de M, on ait

IVu(P)| < (€ + VA + V(A — A))u(P)

Preuve. On peut supposer u(P) = 1. Soit d €]0, 1[; d’aprés la proposition 1,
si R=R(9, a, b, A, 1)) il existe v, A-propre et >0 sur M, telle que |[u —v|<d u
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sur B(P, 1). Appliquant I'inégalit¢ de Cheng-Yau ([8]) pour u et v — (1 —8)u
(qui sont positives sur B(P, 1)), on a:

IVu(P) — Vu(P)| < |Vu(P) — (1 — 8)Vu(P)| + & |Vu(P)|
< C{(v(P) — (1 - 8)u(P)) + du(P)}

et |Vu(P) — Vu(P)| <3Coéu(P), avec C=C(n, b, A). On conclut alors grice au
théoréeme 3.
En particulier, on a une estimation optimale pour la fonction de Green:

COROLLAIRE 1. Soient A<A,, V la fonction de Green de M au niveau A et
de pole P et soit € >0. Pour R=R(¢, a, b, A, A,) on a:

IVV|/V <&+ VA +V(Ag—A) sur M\B(P, R)

Il est possible qu’on puisse améliorer 'estimation suivante en y remplagant y
par ¥' = V(Ao — A) — V(A, — A'); mais nous ne sommes pas parvenu a établir (ou 2
mettre en défaut) cette propriété.

THEOREME 4. Soient A, A' tels que A<A'<A,. Posons 4e = (n — 1)%(b —
a)’+4(n—1)b—a)V(h—1"), u=A—-e, u'=~r-e et y=V(ig—pu)—
V(Ao — u'"). Pour tout £>0, il existe C=C(e, a, b, A, A", A,) tel que pour tout
x,yeM:

Gi(x,y)<Cexp(=(y—¢€)d(x,y)) Gu(x,y)
En particulier y= (A" — L)/[2V(Ag— w)] et, si &' >0, e <3(n — 1)%(b — a)b/4.

Preuve. Fixons le point x = P, et notons p, x les fonctions de Green de pdles
P de niveaux respectifs A et A’. La fonction u = p/x vérifie I’équation

Au+2n7'VaVu+(A—A)u=0 sur M\{P} (*)

Soient s et o les fonctions de Green analogues pour les niveaux u — e et u' — € sur
espace hyperbolique N = H,(—b?), et le pole 0. En utilisant les applications
exponentielles en 0 et P, et une isométrie quelconque de N, sur M,, on peut
considérer v = s/o comme une fonction sur M; v est alors fonction décroissante
de r =d(P, x) et vérifie (puisque A—A'=u —pu'):

v"(r) + {(n — 1)b coth (br) + 20'(r)/o(r)}v'(r) + (A= A")u(r)=0
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Or, pour r assez grand, on a

Av + 2~ 'VaVu + (A’ — A)v
= v"(r) + (Ar + 227V, Vr))u'(r) + (A — A)u(r) <0

En effet, a Vlinfini |0'(r)|/o(r) ~Vie+ V(he—pu'+£), Ar=(n-1)
acoth (ar) ~ (n — 1)a, et d’aprés le corollaire 3: 7 '|(Vx, Vr)| < Vi, + V(A —
A" + ¢'") pour r assez grand (dépendant de ¢'). Il reste a constater que le choix de
e assure que:

(n—1)a— 2(\/}»0 + \/(Ao —A+e)+e=(n—-1)b- 2(\/}'0 + \/(Au —u'+¢))

pour r assez grand et £' <e.

v est donc surharmonique >0 sur M relativement a (*) pour r > R et, ce qui
revient au méme, stv est A-surharmonique sur {x; d(x, P) > R)}. Comme p < Cnv
sur OB(P,2R) (pour une constante C >0), cette inégalité se prolonge a
M\B(P, 2R), d’aprés le principe du maximum de R. M. Hervé ([10], p. 429).
D’ou I’assertion.

Remarque. Comme chaque Gj. est borné a linfini, I'estimation précedente
donne une majoration de chaque G,. Mais si on connait A, (et surtout pour 4
voisin de A,) la méthode de Cheeger—Gromov-Taylor [7] conduit & un bien
meilleur resultat, a savoir:

Gy(x, y)<Cexp (—{V(L A= ¢)} d(x, y))

Il semble malheureusement difficile d’adapter la méthode de ces auteurs au
probléme de ’estimation des quotients de fonctions de Green.

Application a lestimation de « dans le théoréeme 1 (pour & = A): d’aprés [7],
on peut poser B’ = V(A — A — €) et (d’apres le théoreme 4):

B =b((n—1)/2){V[1+3(1-a/b)] - V[1 +3(1 —a/b) — (4A/b*(n — 1)*)]}
en particulier

B=p,=Aib""(n—1)""(1+3(1 —a/b))"?

D’apres la preuve du théoréme 1, tout & < min {V/(4, — 1), B) convient.
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3. Un exemple de variété sans fonction de Green au niveau A,

Il s’agit de la fonction de Green relative a A+ A,l, A, =premiére valeur
propre du Laplacien A sur M. On prendra pour M le plan R? muni d’une
métrique de la forme ds* = dr’ + g*(r) d6* en coordonnées polaires r, 6 usuelles,
avec une fonction g: [0, +o)— R, a préciser.

Fixons a, b, b’ réels tels que 0 <a <b’' <b; choisissons ensuite r,>0 assez
grand pour que toute boule ouverte B = B(x,r,) de l’espace hyperbolique
H,(—a*) admette une premiere valeur propre A,(B) strictement inférieure a
b'*/4 = A,(H,(—b"?)); c’est possible puisque A;(B) ne dépend que de r, et tend
vers a’/4 lorsque r, tend vers +o,

Posons go(r)=sh(b'r)/b’', pour r=0 (g, correspond a M = H,(—b'?)).
Introduisons aussi une fonction g, de classe C* sur R, de la forme suivante:

gi(r)y=sh(ar)/a si r=<r, gi(r)=go(r) pour r>r,,

et
{sh(ar)/a}<gr)<gyr) pour r<r<r

ou r, et r, sont des réels tels que ry<r; <r,. On impose aussi la condition:
a’<(3%g)/g, <b?

L’existence d’une telle fonction g,, (pour r, assez grand, r, étant fixé) est
élémentaire. On prendra g dans la famille:

g(r)=(1—1t)go(r) +1g,(r) pour r=0,

t étant un parametre réel compris entre 0 et 1. Remarquons que quel que soit le
choix de ¢, M sera a courbure partout comprise entre —a* et —b?, et telle que le
complémentaire de la boule B(0, r,) soit isométrique au complémentaire dans
Hy(—b'?) de toute boule de méme rayon; M contient donc des boules de
H,(—b'?) de rayon arbitrairement grand (mais non centrées en 0). Par conséquent
AM(M)<b'?/4. Pour t=1, M est telle que la boule B(0, r,) est isométrique 2
toute boule de méme rayon dans H,(—a?), et A,(M) <b'*/4.

Soit A,(g,) la premiére valeur propre de R? pour la métrique ds*=dr*+
gX(r)de?, et soit t=sup{sel0,1];4,(g,)=b"/4} =sup {s€[0, 1]; A,(g)=
b'?/4}.

On a A,(g,) = b'*/4, la premiére valeur propre étant une fonction s.c.s de la
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métrique en général; en particulier £ <1. Supposons qu’il existe une fonction de
Green pour A, + (b'%/4)1, (A, = Laplace Beltrami correspondant a g,); fixons une
fonction test @ positive sur M, égale a 1 sur B(0, r;); on peut alors trouver u >0
sur M, telle que Au + (b'*/4)u = —@ (u est d’ailleurs de classe C*); or, si € est
>() assez petit on aura encore:

Aot + (b 8u<0

puisque A, ne dépend pas de s hors de B(0, r,). Comme I’égalité (partout sur M)
est exclue, on voit qu’il existe sur M une fonction >0 et {A,,. + (b'*/4)I}-
surharmonique, non harmonique. D’ou A,(g,..) = b'*/4, en contradiction avec la
définition de ¢. Il n’y a donc pas de fonction de Green sur M au niveau A,(M).

4. Exemples ou les A,-fonctions propres ne s’annulent pas a Pinfini

On va d’abord construire un exemple sans fonction de Green au niveau A,.
Fixons a, b, b’, ry, r;, r, comme daus la section précédente. Considérons I’espace
hyperbolique M, = H,(—b'?), muni de sa métrique h,, prenons dans M, une
géodésique y, de vitesse unitaire, issue d’un point de référence 0 = y(0), et sur y
des points x, = y(4kr,), k € Z. Modifions la métrique h, exactement comme dans
la section précédente, a l'aide des fonctions g, 0<s =<1, mais en opérant
maintenant dans chacune des boules B, = B(x,, r;), a partir de son centre pris
comme point de référence, de maniere a obtenir des métriques A, égales a h, sur
les rayons issus de x;, dans chaque boule B, et sur M\ U,z By, et de courbure
constante —a” sur les boules B(x,, r;). On peut de plus supposer les k, invariantes
par I'isométrie directe T de M, qui laisse y invariante et améne x, sur x, (et donc
Xj SUT Xz ., €t By sur By, pour k € Z). Comme h, est sur chaque B, invariante par
les symétries de M, laissant fixe x;, h; est globalement invariante par la symétrie
o de M, qui permutte x, et x;. Toutes ces métriques sont a courbures pincées
entre —a’ et —b? et de premiéres valeurs propres A,(h,) majorées par b'2/4 (avec
égalité si s =0). De plus, on vérifie facilement que s— A,(h,) est continue sur
[0,1] en observant que pour tout £>0, on a hy,<(1+ ¢)h,, si |s' —s| est
suffisamment petit; il suffit ensuite d’utiliser la définition de A,(h,).

Soit b” un réel, b” < b’, tel que (b"*/4) soit strictement supérieur a la premiére
valeur propre d’une boule de H,(—a?) de rayon r,. On a donc A,(h,) <b"/4.
Soient ¢ = sup {s € [0, 1]; A,(h,) = b"*/4}, h = h, et M = R? muni de h.

Il est clair que A,(M)=A,(h,)=>b""/4. On va voir que M n’admet pas de
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fonction de Green au niveau A, a 'aide du lemme suivant:

LEMME 3. Soit G la fonction de Green de A+ Al sur M (pour un A< b"*/4);
G admet une décroissance exponentielle sur y au sens qu’il existe deux rééls
strictement positifs C et « tels que:

Vk, k' €Z, k+#k' G(xy, X)) < Ce™ K

Soient I' la géodésique médiatrice du segment géodésique xox; et I; une
demi-géodésique issue de x, et perpendiculaire a xyx,. Soit C, un cdne (dans M)
de sommet x;, de direction I et d’angle au sommet suffisamment petit pour que
C, ne rencontre pas I'. C, est aussi un cone dans M,. On a, par raison de
symétrie G,,= G,, sur I'; avec le principe du maximum ([10], p. 429), on en
déduit que G, <G,, sur o la composante de M\I" contenant x,; Appliquant le
principe de Harnack a linfini aux fonctions A-harmoniques positives G,, et
(G, — G,,), sur le cone tronqué C’'=Cy\B, de M, (noter que le niveau A est
strictement plus petit que A,(4,)), on obtient

G,, — G,,=cG,, sur [[\B(x,, 2r)

pour une certaine constante ¢ > 0. Quitte & diminuer c, cette estimation a lieu sur
I; tout entiére, et, de méme sur I'; la demi-géodésique opposée. On a donc 2
l’aide du principe du maximum:

G,<(1-9)G,, 6>0
sur w, la région délimitée par I'] = I; U I'] et contenant x,; en particulier
G(xg, X)) <(1—-6)G(x4, x,) pourtoutt=1
Utilisant I'invariance de G par l’action de T, on en déduit par itération:
Vp=1,keZ, G(xk, Xk+p) S (1= 8 G(xk, Xp11) 2 G(xk, Xpsp) <c(1 —6)
ce qui acheéve d’établir le lemme.

COROLLAIRE 2. M n’admet pas de fonction de Green au niveau A,(M) =
b"*/4.

Supposons I’existence de la fonction de Green G de M au niveau A,(M); soit
@ une fonction test =0 sur M a support dans B(x,, 2r,), €gale a 1 sur B, et soit



78 ALANO ANCONA

Y=Yz ° TX; le lemme précédent montre que le potentiel de Green & = Gy
n’est pas identique a I'infini (la série ¥,.,maxg {G, } étant convergente). C’est
donc une fonction C%, invariante par 7, qui vérifie:

Am+ (b"/4)r=—vy (A, = Laplace-Beltrami de A,)

Si €>0 est assez petit on aura encore A, .7 + (b"*/4)xr <0 (et #£0), puisqu’il
suffit de vérifier cette inégalité sur la boule B,. L’existence d’une sursolution >0
(qui n’est pas solution) pour le niveau b"*/4 entraine que A,(g,..) < b"/4 ce qui
contredit la définition de .

CONSEQUENCE 1. Une fonction u, propre au niveau A, et positive sur M
ne peut tendre vers zéro a I'infini que si elle est nulle.

Comme il n’y a pas de fonction de Green G;,, les fonctions A,-propres >0
sont deux a deux proportionnelles; donc si u est >0, on doit avoir u°T = cu, et
u°o =u. La suite {u(x,)}rcz €st donc constante >0; d’ou I’assertion.

CONSEQUENCE 2. Complétons la remarque aprés le théoréme 1, en
montrant que pour tout 6 >0, on a si A <A, est assez voisin de Ay: Gi(xg, x;) >
Ce™%, pour tout k >0, et une constante C = C, >0.

Pour cela, observons d’abord que pour A—A,, y¢{x, x},
Gi(x, y)/Gi(x,, y) tend vers u(x) l'unique fonction A,-harmonique sur M,
normalisée en x;,. Comme u(x;)=u(x,), on voit que lim,_,; (Gi(xq, y)/
G,(x, y)) = 1 uniformément sur tout compact de M ne contenant pas x, ou x,.

Soit alors I'' la géodésique médiatrice du segment géodésique x,x,; fixons un
cone C d’axe I'', de sommet sur y, et d’angle assez petit pour que C ne rencontre
aucune boule B; et fixons £>0. D’aprés le lemme 2 et les remarques
précédentes, on aura pour A suffisamment proche de A;:

(1= £)Gi(x1, x) < Gy(xp, x) < (1 + £)Gy(x,, x) (20)

pour x sur I'"' N C et assez loin (en fonction de €) du sommet de C. Utilisant
encore les remarques précédentes et la symétrie autour de y, on voit que (20) est
vérifi€e sur I'’' tout entier dés que A, — A est >0 assez petit. Mais alors, d’apres le
principe du maximum:

Gy(x0, ) = (1 — €)Gp(xy, x) pourk=2,3,...
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et en itérant (compte tenu de 'invariance par T):
Gi(x0, X)) = (1 — €)' Ga(xk—1, Xi) = Ga(xo, X)) (1 — ) ' =¢;(1 — £)*™!
C’est ce qu’on cherchait a établir.

CONSEQUENCE 3. Voyons enfin comment en modifiant la métrique 4 de
M sur une boule on peut obtenir une variété M', admettant une fonction de
Green G, au niveau A = A,(h), mais telle que G,(x, -) ne tende pas vers 0 a I'infini
(Vx € M')—et a fortiori telle que toute fonction A-propre >0 ne tende pas vers
zéro a l'infini.

Fixons une boule fermée B = M\(| )iz Bi) et une fonction @ de classe C~ sur
M, égale a 1 hors de B et telle que 0<g@ =<1, ¢ #1 sur M; soit 1’ la métrique
(conforme a k), h' = @*h. On peut choisir @ assez voisine (au sens C?) de 1 sur B
pour que la courbure de A’ soit encore pincée entre —a” et —b>.

Soit M’ la variété Riemannienne obtenue en munissant R” de la métrique h';
son opérateur de Laplace—Beltrami est A’ = ¢ ~*A, A désignant celui de M. Si u
est 'une des fonctions propres >0 de M au niveau A= A,(M)(= —b"*/4) on a:
Au+Au=0, donc A'u<Au<0 et A'u+Au<0, A'u + Au non identiquement
nul. Ce qui entraine que A, (M')=A et plus précisément que M’ admet une
fonction de Green G' au niveau A. Le lemme suivant montre que G, ne tend pas
vers 0 a l'infini (ce qui entraine en particulier que A= A,(M’) et achévera de
prouver notre assertion).

LEMME 4. Soient G" la fonction de Green de M\B = M'\B au niveau
A= A{(M), u une fonction A-propre >0 sur M, et x € M\B. Il existe une constante
¢ =c, >0, telle que G, = cu au voisinage de ’infini.

Comme il existe sur M une A + Al solution continue et strictement positive,
on sait qu'on peut résoudre le probléme de Dirichlet (correspondant a cet
opérateur) dans tout ouvert borné de M a frontiere réguli¢re. Soit B’ la boule
ouverte de M concentrique a B et de rayon double, et soit w la solution du
probleme:

Aw+ Aw =0 sur B'\B

w=0 sur dB, w=u sur dB’'

Notons enfin v la fonction continue sur M\B égale a w sur B'\B et a u sur M\B'.
Il est clair que v est une fonction A + Al-surharmonique sur M\B; en fait v est
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méme un Z’-potentiel (£’ = A"+ Al) sur M\B, c’est a dire que 0 est la seule
minorante £’-harmonique =0 de v sur M\B; en effet, une telle minorante
prolongée par 0 sur B, devient une fonction &£’-sous-harmonique u' sur M, et
u—u' serait £'-surharmonique (et non ¥’'-harmonique) sur M ce qui est
impossible puisque par construction M n’admet pas de fonction de Green au
niveau A.

Soit alors ¢ >0 suffisamment petit pour que G;=c v sur dB’. D’apres le
principe du maximum de R. M. Hervé [10], v étant un ¥’-potentiel, on a Gy =¢
v sur M\B et par conséquent G =c u hors de B’. CQFD.

5. Remarques sur la théorie de S. J. Patterson

On se propose dans cette partie d’indiquer une généralisation trés partielle
des résultats de Patterson ([11]) concernant les liens entre fonctions propres et
ensembles limites des groupes Fuchsiens sur I’espace hyperbolique. Soit I" un
groupe d’isométries de M non réduit a {I}, opérant librement et proprement sur
M et soit N la variété riemannienne M/I. Notons L c S, ’ensemble limite de I,
v, la premiére valeur propre de N, et A, celle de M. On a, a priori, v; <A, mais
pour pouvoir utiliser les inégalités de Harnack a l'infini au niveau v,, on
supposera désormais que v, <A,. On notera g(x, y) le noyau de Green de M au
niveau v, et K(x) le noyau de Poisson de M au niveau v,, normalisé en 0 € M.

On a alors les propriétés suivantes:

THEOREME 5. a) Il existe une mesure de probabilité u sur L telle que la
fonction

ut) = [ Ke() du(e), e M,

soit I'-automorphe sur M et A + v,I-harmonique >0 sur M.

b) Si I admet un domaine fondamental Uc M tel que UNL=O, u est
I'unique fonction sur M ayant ces deux propriétés et telle que u(0) = 1. De plus, la
série ¥.,.r8(v(0), y) diverge pour touty e M, et, si L # S.., v, est >0.

(Dans le cas Fuchsien, v,>0 est di a Beardon, voir [11]). L’extension des
méthodes de Patterson se fait grace a la proposition suivante:

PROPOSITION 3. Soient u€ 0, A, et €>0. Il existe a(e, u, M) >0 tel que



Sur les fonctions propres positives des variétés de Cartan—Hadamard 81
pour 0sAis<A'=su, et |A—A'|< aon ait:
Gl(x’ y) = €Xp (—Ed(x: y))GA’(x’ )’), (x’ Y€ M et d(x’ y) = 1)
Remarquons d’abord le lemme suivant:

LEMME 5. Si R>0, £€>0 sont fixés, il existe 6 = 6(¢g, R, pu, M) >0, tel que
pour 0<A<A'su, et |A—A'|<9, on ait; V x,yeM, 1<d(x,y)<R, G,(x,y)=
(1- E)GA’(x’ )

Le lemme découle de I’équation résolvante G;. = G, + (A’ — 1)G, G, et des
estimations suivantes, ou A" est un réel fixé avec u <A”"<A;:

GGy (x, y) < GiGulx, y) < CGplx, ),  (C=(A"—p)™)
et

ci1<G/(x,y)<c, pour 1=<d(x,y)<R, O=st=<A.

Preuve de la proposition 3. Soient {y,} une suite de points sur une
demi-géodésique issue de x telle que d(x, y,) =n.

D’apres le lemme 2, on voit qu’il existe k e N (dépendant de ¢) tel que pour
n>k 0<t<u:

(1 + S)Gl(yn—-kr yn)/Gt(yn—-k’ .Vn+1) = Gt(x) yn)/Gt(xr yn+1)
< (1 + E)Gt(yn——k’ yn)/Gt(y'l-k; Yn+1)

Utilisant les niveaux t = A et t =A’, on obtient:
GA'(xx ,Yn+1)/GA’(x’ yn) =< C(l + E)ZGA(X’ yn+1)/GA(x: Yn)
avec

C= {GA’(yn—-k’ yn+1)/GA'(yn—k’ yn)}/{GA(yn—k’ yn+1)/G/1(yn—k; yn)} <l+e¢

si A’ — A est suffisamment petit (d’apres le lemme 5).
On en déduit, pour n > k:

Gi(x, yo) <c(1 + e)’" MG, (x, y,)
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et la proposition 3 s’ensuit sans difficulté. On peut alors établir le lemme (qui
imite le lemme 3.1 de [11]):

LEMME 6. Il existe une fonction croissante h:R , — R ., tendant vers +x a
linfini, telle que:

(1) Xyerexp {R(d(0, y(0))}  g(y(0),y)=+x, yeM

(2) lim, . h(x +1)—h(x)=0

D’aprés la proposition 3, la série Y. -{exp[ed(0, y(0))] g(v(0), y)} est
divergente pour tout £ >0, y € M (puisque par définition de v,, X, .r Gi(v(0), y)
diverge ou converge selon que A > v, ou A<v,, y ¢ I'(0)). Fixant alors une suite
g; de nombres >0 décroissant vers 0, on choisira sucessivement des rayons R;
croissant vers +, R;,; > R;, et on posera h(t) = ¢;(t — R;) + h(R,) pour R; <t <
R;.,. Il suffit de choisir les R; (successivement) assez grands pour que, x, étant
fixé dans M\I'(0),

> exp {h(d(0, y(0))}g(¥(0), x,) = 1. CQFD

(R]<d(Y(0)10)$R1+1}

Preuve du théoréme 5. a) On pose a, =exp (h(d(0, y(0)) et pour A<v,,
x, € M\I(0):

b =2, 3,Gy(y(0), x), et vi=w,(x)/uwilx)) (xeM)

vell

Reprenant les méthodes de [11], on voit sand difficulté que lorsqu’on fait
tendre A vers v;, A <v,, toute valeur d’adhérence des u, est A + v,/-harmonique
>0 sur M, I'-automorphe, et de mesure associée u portée par I'. Le caractére
automorphe découle de I’équivalence a, = a,, pour d(0, y(0))— += et a € I fixé.

b) Si UNL =, comme u est portée par L, on a d’apres les inégalités de
Harnack a I'infini de [1], u(x) < cg(0, x) sur U et a fortiori

u(x)<c D, g(y(0), x) sur M tout entier.

vel

La série de A + v,I potentiels ¥,.g(y(0), x) est minorée par une fonction
A + viI-harmonique >0: elle doit donc étre identiquement infinie. (Sinon, elle
définirait un potentiel qui, par définition, n’admet pas de minorante harmonique
>(). Ce résultat signifie que la variété N = M/I" n’admet pas de fonction de
Green au niveau v,. On sait que cette propriété entraine que les fonctions
harmoniques >0, au niveau v, sur M sont deux a deux proportionnelles, et on
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obtient la propriété d’unicité de u. Enfin, si v, était nul, on aurait, d’aprés
'unicité de u, u =1, ce qui contredit L # S..
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