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Sur les fonctions propres positives des variétés de
Cartan-Hadamard

Alano Ancona

Soit M une variété de Cartan-Hadamard à courbure sectionnelle pincée entre
deux constantes strictement négatives et soit À,(Af) int {(jM \Vq)\2dv)/
(JmM2^); &lt;P g Cô(M), &lt;p i* 0} la première valeur propre de l&apos;opérateur de

Laplace-Beltrami A sur M (v désignant la mesure de volume de M). On sait que
kx(M) est strictement positif et que pour chaque réel t&lt;kx(M), il existe
&quot;beaucoup&quot; de fonctions A + ^/-harmoniques positives ([3] pour le cas f 0, et

[1]); on a même une représentation intégrale de ces fonctions à l&apos;aide d&apos;un noyau
de &quot;Poisson&quot; Pt{x&gt; £), x e M, £ parcourant la sphère à l&apos;infini de M,
habituellement notée SX(M). Ce sont ces fonctions que nous appellerons
fonctions propres sur M au niveau t, ou encore t-fonctions propres.

Dans le cas où M est à courbure sectionnelle constante —a2, il est bien connu

que ces assertions s&apos;étendent aux fonctions propres au niveau XA (et que
kx (n - l)2a2/4); de plus, on sait construire pour chaque t, 0&lt;t^ku
&quot;beaucoup&quot; de fonctions f-propres tendant vers zéro à l&apos;infini, et de classe

If(M), pour tout p &gt; 2/(1 - V(l ~ &apos;MO) (voir [5]).
Nous nous proposons dans ce travail de revenir au cas de la courbure non

constante, en complétant l&apos;étude amorcée dans [1]; nous montrerons que pour
tout niveau /, 0 &lt; t &lt; kl9 il existe des fonctions t-harmoniques sur M tendant vers
zéro à l&apos;infini; cette propriété s&apos;étend d&apos;ailleurs à des opérateurs elliptiques
d&apos;ordre deux sur M assez généraux. Néanmoins il existe une différence

importante avec le cas de la courbure constante: la vitesse de convergence vers
zéro à l&apos;infini ne peut être uniformément contrôlée lorsqu&apos;on s&apos;approche du
niveau critique kt. On verra sur des exemples qu&apos;il peut ne pas exister de
fonctions propres &gt;0 au niveau kx tendant vers zéro à l&apos;infini, aussi bien lorsque
l&apos;opérateur A 4- ktl admet une fonction de Green, que dans le cas contraire, où
toutes les fonctions propres au niveau kx sont proportionnelles. On verra aussi

que chacun de ces deux cas peut effectivement se présenter. Pour les preuves et
les constructions d&apos;exemples, nous nous appuierons essentiellement sur les
résultats de [1] (qui étaient en partie motivés par ces questions). Dans le

paragraphe 2, on s&apos;est efforcé de préciser les estimées de [1] concernant les

quotients des fonctions de Green pour différents niveaux, ce qui nous a amené à

des énoncés intermédiaires peut-être intéressants par eux-mêmes.
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Dans la dernière partie de cet article, nous indiquons une extension (très
partielle) au cadre des variétés à courbure négative de la théorie de S. J.

Patterson sur les ensembles limites des groupes Fuchsiens [11]; on montrera que
quelques unes des propriétés remarquables mises en évidence par Patterson sont
des conséquences assez simples du principe de Harnack à l&apos;infini établi dans [1].

L&apos;auteur tient enfin à remercier N. Lohoué à qui il doit le problème de
l&apos;existence de fonctions ^-propres positives sur M, nulles à l&apos;infini pour chaque
t e ]0, A^Àf)[; ce travail a bénéficié de son intérêt et de ses questions renouvelées.

1. Construction de fonctions propres, nulles à l&apos;infini

Dans toute la suite, on se placera dans le cadre suivant: on désigne par M une
variété de Cartan-Hadamard de dimension n ^ 2, à courbure sectionnelle pincée
entre les constantes —a2 et — b2y (0&lt;a^6&lt;+oo) et on note v la mesure de

volume sur M. Dans cette partie, on se donne sur M un opérateur elliptique SE du

type suivant:

SEu div {^(Vm)} + Elu + div {uC} + yu (1)

où SE- {sd(x)}xeM est une section borélienne du fibre End (T(M)), (T(M)
désigne le fibre tangent sur M), et les M{x) sont bornés, uniformément accrétifs;
B et C sont deux champs de vecteurs boréliens et bornés sur M, et y est une
fonction borélienne bornée sur M; on a donc pour une certaine constante v &gt;0

(st(x)l £&gt;^v||§||2 pour xeM, ÇeMx (2)

pour xeM, ÇeMx (3)

^V1 (4)

Un tel opérateur S£ est un opérateur adapté sur M au sens de [1].
Une classe d&apos;opérateurs de ce type peut être obtenue de la façon suivante:

supposons que sur chaque boule B(x, 1) de rayon 1 dans M, les coefficients [gtJ]

relatifs à un système de coordonnées normales en jc, soient AMipschitziens pour
un K indépendant de jc; soit {Arl}1^l^w un repère mobile (orthonormé) sur A/, tel

que les VXl{Xj) soient bornés sur M; si {atJ} est une matrice carrée d&apos;ordre n de

fonctions boréliennes bornées sur M, telle que l&apos;on ait: E atJ(x)%£f ^ e E £? pour
xeM, ÇeMn, et une constante e&gt;0, alors l&apos;opérateur SE E Xt(atJXj) est du

type décrit ci-dessus.

Outre (1) à (4), on suppose que i?(l) 0, et que SE coercif, ce qui signifie
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que:

\V&lt;p\2dv (5)

pour toute (p e Cq(M), et une constante s strictement positive. Bien entendu,
l&apos;opérateur SE que nous avons le plus en vue est l&apos;opérateur de Laplace-Beltrami
sur M.

Notons Xx la première valeur propre de SE (appelée aussi &quot;fond du spectre&quot;):

A! sup {A &gt; 0; SEk SE + kl est coercif}

(Notre terminologie n&apos;est bien justifiée que si SE est auto-adjoint) On sait (voir
[1]) que pour chaque A &lt; Xx il existe un noyau de Green GA sur M relativement à

S£k, GA :M xM-»]0, +«]. (Notre convention sera que Gk(x, y) est

enharmonique en x sur M\{y}). Posant G Go, on a les estimées suivantes [1]:

G(x,y)^cexp(-pd(x,y))Gk(x,y) pour x,yeM, 0&lt;A&lt;Ai (6)

Gx(x,y)^cexp(-I3td(x,y)) pour x,y eM,d(x,y)&amp;l (7)

GA(*, y) ^ G(x, y) &gt; Cl x,yeM, d(x, y)^l, A &gt; 0 (8)

où c, j3 et fi&apos; sont des constantes strictement positives qui dépendent de n, b, v et
A! - A. Notons que (6) est contenue dans l&apos;estimée plus générale ([1]):

GX&apos;(x,y)&lt;cexp(-pd(x,y))Gx(x,y) pour x,yeM (6&apos;)

pour A&apos;&lt;A&lt;Aj, c et p dépendant de n, b, v, A&apos;, A. (7) et (8) sont des

conséquences de (6) (tant qu&apos;on ne s&apos;intéresse pas aux valeurs optimales de p&apos;

ou c).
D&apos;autre part, il existe pour chaque A &lt; Xx un noyau continu Kk\ M x Sx-» R,

tel que les fonctions u «^-harmoniques 5*0 sur M soient en bijection avec les

mesures \i 2*0 sur Sx par l&apos;intermédiaire de la formule:

*eM (9)

peut être déterminé par le choix d&apos;un point de référence 0 € M, et la condition
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de normalisation Kk(0, £) -1 pour Ç e Sx. Nous fixerons désormais un tel point 0

et désignerons par ô(x) la distance d(0, x) pour x e M.
Si a est la mesure de probabilité sur 5^ correspondant au niveau À 0 et la

fonction constante 1, on sait ([1]) que pour / e C(Sœt R), la formule

;t), xeM (10)
M

donne la solution du problème de Dirichlet sur M, l&apos;opérateur i? et la donnée

frontière/; oest donc la i?-mesure harmonique du point 0. Il faut remarquer que
même dans le cas 5£ A, il n&apos;y a pas de relation d&apos;absolue continuité entre o et la

mesure géométrique d&apos;angle solide relative à 0 (voir [4], et d&apos;autres propriétés de

a dans [3]).
On a alors le théorème suivant:

THÉORÈME 1. Soient /eL», Ae]0, A2[; la formule u/A(jt)
JM Kk(x, §)/(£) do(^) définit une fonction 56 + Xl-harmonique, vérifiant
V estimation :

-&quot;ô(j° (11)

où C et a sont des constantes &gt;0 qui dépendent de n, a, b, v, A et Xx.

Il suffit évidemment de traiter le cas/ 1; on notera u ulk. Afin d&apos;alléger,

on ne mentionnera plus la dépendance en n des diverses constantes utilisées.
Soient y une géodésique issue de 0 et aboutissant au point £o sur la sphère à

l&apos;infini 5^, Xj le point y(kj) sur la géodésique pour j eN (k désignant un réel ^1
fixé qui sera choisi plus bas). D&apos;après les inégalités de Harnack, il suffira
d&apos;établir (11) pour les points xp pourvu que C et oc soient indépendants de la

géodésique y.
Désignons par T} le &quot;cône&quot; géodésique de sommet x] y(k(j -1) - 1) et

d&apos;ouverture n/2, lieu des points zeM, z^x&apos;Jf tels que Ét{x]t&gt;{iyx]Z)&lt; jt/2;
soient Z; l&apos;ensemble des points de la sphère à l&apos;infini S* adhérents à ce cône, et 1]
l&apos;ensemble complémentaire dans S*. Décomposons u{x}) en deux parties Ix et I2:

lx f Kk(xp £) rfa(Ç), h f Kk(xjy C) da(£) (12)

et majorons chacune de ces parties.
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Cas de Ix. On observe qu&apos;il existe 0, 0 &lt; 6 &lt; n/2, ne dépendant que de b et de

k et tel que le cône géodésique C/+1 de sommet xJ+Xi de direction -y&apos;(k(j + 1)),
et d&apos;angle au sommet 6, admette dans le compactifie M * M U 5^ une fermeture

disjointe de Sr II suffit, d&apos;après le théorème de comparaison de Rauch [6] de

choisir pour 6 l&apos;angle qui convient pour la variété modèle Hn(—b2) (et l&apos;entier k),
soit par exemple: 6 &lt; Arctg {(sh(b(k + l))&quot;&quot;1}.

D&apos;après les inégalités de Harnack à l&apos;infini de [1] (chap. 3) (voir aussi le

lemme 2 plus bas) appliqué à ce cône, et aux deux fonctions i?A-harmoniques ^0
sur Ç,+!, Kk(-, £) et GA(-, x/+1), on a:

l/(CGA(0, x/+1)) ^ Kk(x, Ç)/Gk(x, xJ+l) ^ C/GA(0, x/+1) (13)

pour tout x sur le segment géodésique Ox} et tout £ e 2} ; la constante C dépend
de û, b, k, v, A et A^

En particulier, en faisant x=xy: KA(x,, Ç)~Ga(jc;, x/+1)/GA(0, jcy+!), Vte2),
le symbole ~- signifiant que les quantités qu&apos;il sépare ont un rapport compris
entre deux constantes strictement positives (dépendant de v, ky a&gt; b, A,, A); d&apos;où

d&apos;après (8):

Kx(x,,t)~l/Gx(0,x,+i) pour Çel, (13&apos;)

Le même raisonnement appliqué au niveau A 0 donne: K{xn Ç)~
l/G(0, x/+1), pour £ e Xr D&apos;où, en intégrant:

Comme Ç^^/C^, Ç) est d&apos;intégrale 1 par rapport à o, on obtient:

/, ^ CG(0, jc;+1)/Ga(0, jc/+1) C C(k, a, b, v, A, A,)

et d&apos;après (6):

/, *s C exp (-/8/*), C C(*, a, ft, v, A, A,) (14)

Majoration de I2: On utilise à nouveau le principe de Harnack à l&apos;infini, mais
maintenant pour le cône Fj\ pour tout £ e £,&apos; on a:

Kx(xjy Ç)IKk(x,-u Ç)^CGk(xJfx;)/Gk(Xj_ux;) (15)
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où C C(a, by v, A, Âj) est une constante indépendante de k. D&apos;après (7), (8) le

dénominateur dans cette dernière expression est de l&apos;ordre d&apos;une constante

(indépendante de k)\ d&apos;où, avec les inégalités de Harnack:

Kk(xp Ç)IKk(x,-u Ç)^C0Gk(xrx^), VÇeZ; (16)

En intégrant, on obtient:

/2^CoCa(*,,*,-iM*,-i) (17)

où Co C0(a, b, v, À, Âj) ne dépend pas de k. D&apos;où, d&apos;après (7):

I2 ^ Cku(Xj-i) Coe-rku{x,-ù (18)

Fin de la preuve du théorème 1. En regroupant les deux majorations (14) et

(18), on a:

u(Xj) ^ Cku(*j-i) + ce&apos;** Cku{x,-i) + càk&gt;

Par itération, compte tenu de u(x()) 1, et supposant c ^ 1, on obtient:

a(x,) ^ c(dky + cQ(^y-! + cck2(dky~2 +... + cc/(^y-&quot; + • •

et, posant A - sup {Q, dA}: u(
Or, ^ exp(-j8A:) et Ck Coexp(-P&apos;k) exp {Ln (C())- /S&apos;A:}; d&apos;où, si

k(jc,) ^ c exp {Ln (1+y) -;()3WA: - Ln Co)} (19)

et

w(jc) ^c&apos;ô(jc)exp { - (j8&quot;- (Ln(C0)/k))ô(x)}&gt; xeM

Prenant k &gt; (Ln Co)//?&quot;, on obtient l&apos;estimation voulue (11) pour tout choix de a
tel que: a&lt;/3&quot;- {Ln (C0)/k). Ce qui achève la preuve du théorème 1.

Remarques. On verra plus loin que le meilleur exposant fi&apos; dans (7) peut
effectivement tendre vers 0 lorsque À tend vers À^ (voir plus bas, avant le lemme

4), il en ira a fortiori de même pour le meilleur exposant a dans (11).
La propriété suivante complète le théorème 1.
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THÉORÈME 2. Si u est une fonction ^-harmonique ^0 sur M&gt; alors u

converge radialement vers zéro o-presque partout sur Sx.

Preuve. On peut supposer u &gt; 0. Montrons d&apos;abord que u est un ^-potentiel,
c&apos;est à dire, puisque u est clairement J?-surharmonique (££(u) -Àw &lt;0), que
dans la décomposition de Riesz de u en somme d&apos;un i?-potentiel G(ju) et d&apos;une

fonction i?-harmonique h ^ 0, on a h 0. Comme \i — Xu dv, et que G(ju) =£ +°°,
G (A) est non identique à +» (et est donc un i?-potentiel).

Or G(jc, &gt;&gt;) et h(y)/h(x) sont pour d(jc, y) ^ 1 minorés par une constante &gt;0,

d&apos;après (8) et les inégalités de Harnack. D&apos;où, puisque M est à géométrie bornée:

G(h)(x) j G(x,y)h(y)dv(y)^Ch(x), pour jceM et une constante C&gt;0.

Comme un potentiel n&apos;admet pas d&apos;autre minorante harmonique ^0 que 0 h 0

et u est un i?-potentiel.
D&apos;après la théorie générale de la frontière de Martin ([9], [12]), le if-potentiel

u tend finement vers 0, a-presque partout sur la sphère Sx (dont on sait qu&apos;elle

s&apos;identifie à la frontière de Martin, [1]). Comme u en tant que i? + À/ solution
vérifie localement des inégalités de Harnack le raisonnement classique de [1],
§4, permet de passer des limites fines à des limites non tangentielles (et en

particulier radiales). Ce qui achève de prouver le théorème.

Remarques. 1. Les inégalités (7) et (13&apos;) montrent que les fonctions Â-

propres positives Kk(-, Ç), (£ e Sx&gt; 0 &lt; À &lt; Ax) sont non bornées.
2. L&apos;énoncé précédent est indépendant du théorème 1. Si on utilise le

théorème 1, on obtient une propriété plus précise:

THÉORÈME 2&apos;. Si 0&lt;X&lt;ku si q&gt;x(x) J Kx(x, t)da(t), etji u est &gt;0

^-harmonique, alors u/q)x est borné sur la demi-géodésique 0£, pour a-
presque tout ÇeSx. En particulier, pour tout ar&lt;inf (/?, fi&apos;), on a u(x)^
Q exp (-aô(x))f sur 0£ pour o-presque tout Ç e Sœ, (avec 0&lt; Q &lt;°°). Si v est

^-harmonique &gt;0 sur M, pour ju&gt;À, alors v/q&gt;k tend radialement vers 0,

o-presque partout sur Sx.

On sait en effet que u/(pk admet une limite fine finie en a-presque tout £ e Sx

([9], [12]). Les inégalités de Harnack montrent ensuite comme dans [1] que
l&apos;existence d&apos;une limite fine (pour la i?A-théorie) entraîne celle d&apos;une limite
radiale et même d&apos;une limite &quot;non-tangentielle&quot;. Pour la deuxième assertion, il
suffit de reprendre la démonstration du théorème 2 pour voir que v est
nécessairement un J^-potentiel, et conclure de la même manière.

En particulier uk o(uk), sur a-presque toute géodésique 0£, si À &lt; À&apos;.
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2. Précision de l&apos;allure à l&apos;infini pour % A

On établit dans ce paragraphe une estimation des quotients des fonctions de

Green sur M, relatives à un même pôle et à deux niveaux A, A&apos;, pour le cas
«S? 4; ce qui précisera un peu l&apos;allure à l&apos;infini des fonctions propres construites
au paragraphe précédent. On remarquera que les théorèmes de comparaison
standard avec les fonctions de Green analogues de Hn(—a2) et Hn(—b2) ne disent
rien d&apos;intéressant sur ces quotients en général.

On notera Ào= {(n — l)b/2}2 la première valeur propre de Hn(—b2). Le
théorème suivant est pour l&apos;essentiel dû à Yau [13]; la borne VA0 + V(A0-A)
pour le cas particulier considéré ici résulte d&apos;un examen attentif de la méthode de

Yau. (Le cas A 0 est d&apos;ailleurs explicitement mentionné dans [13]).

THÉORÈME 3. Soit u une fonction propre positive au niveau A^Ai sur la
variété M. On a, sur M: (\Vu\/u) ^ VA0 + V(A0 - A).

Rappelons pour la commodité du lecteur la méthode de Yau: on introduit la
fonction f(x) (m/|Vw|) qui est continue à valeurs dans ]0, +«&gt;]. D&apos;après le

principe du minimum de Yau [13] (dont on voit facilement qu&apos;il est applicable à

/), il existe une suite xk de points de M, tels que: (i) f(xk) tend vers
oc inf {/(jc); x e M}, (ii) Vf(xk) tend vers 0 et (iii) lim inf Af(xk) ^ 0.

En utilisant (ii), on obtient les équivalents suivants (le long de {xk}):

|V(|grad(w)|2)|~2|Vw|3/« et u &lt; Vu, V(|Vw|2)&gt; ~2 |Vw|4

D&apos;autre part, d&apos;après la formule de Bochner-Lichnerowicz et la relation

Au + ku 0: (A/) \Vu\5 ^ (5)ii |V(|V(«)|2)|2

- \Vu\2{u \\D\u)\\2 + &lt;Vu, V(|(W)|2))} + b\n - 1) \lu\\

(en tenant compte de la minoration de la courbure de Ricci). Cette relation
combinée aux équivalents précédents donne au point xk:

Af ^ (1 + e*)(|Vii|/ii) + b\n - 1)(w/|Vm|) - u \\D2u 1-3

où limfA: 0. On détermine enfin une minoration de ||Z&gt;2w||: utilisant un repère
Xu X2,..., Xn adapté en m =**, avec Xx parallèle à Vu en m, et notant
indiciellement les dérivations correspondantes, on a, en modifiant légèrement
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[13]:

\u - un)2 (l/(« - 1))(A« + m,,)2

On peut encore estimer uu en m-xky à l&apos;aide de (ii), en tenant compte de

Ul |Vm| et ut 0 si i =é 1; on obtient «u ~ {(|Vw|2)/w}. D&apos;où,

2 u2 ^ {(1 + l/(n » l))u~2 |V«|4 + 2(A/(/i - 1)) \Vu\2 + (A2/(« - I))u2}{\ + £*)}

avec une nouvelle suite £* tendant vers 0. Revenant alors à la majoration de Af,
on obtient, d&apos;après (iii), en faisant tendre k vers +&lt;», ar&gt;0 et:

0 ^ -(l/ar(n - 1)) + {b\n - 1) - 2à/(ai - 1)}* - (k2/(n - l))&lt;x3

soit, si j8 1/ar: j84 - (62(n - l)2 - 2A)^32 + A2 ^ 0. Par conséquent:

P2 ^ (i){b2(n - l)2 - 2A + y/(b\n - l)4 - 4A62(n - l)2)}

ou

p2 ^ [(b(n - l)/2) + yj{b\n - l)2/4) - A}]2

et le théorème est établi.
L&apos;énoncé suivant s&apos;étend aux opérateurs elliptiques considérés dans [1];

remarquons aussi que cet énoncé tombe en défaut si on autorise la valeur a 0.

PROPOSITION 1. On peut associer à chaque e&gt;0 un nombre r
R(e, a, b, A, A^, r &gt; 2, tel que pour toute solution positive u de Au + ku 0

(A &lt; Ax) sur la boule B{m, r) de M, il existe une fonction v X-propre et positive sur
M tout entier vérifiant \u — v\ ^ e sur B(m, 1).

Preuve. Désignons par r&apos; un réel &gt;2 fixé, qui sera déterminé ultérieurement
en fonction de e &gt; 0. Soit, en supposant r&gt;2rf, u

&apos; inf {s ; sA + A/-
surharmonique 2*0 surB(mf r), s^u sur B(m, r&apos;)}). u&apos;est un A + kl potentiel
sur B(mf r) porté par dB(m, r&apos;) et égal à u sur B(m, r&apos;). En particulier, u&apos; — GOjU

pour une mesure ju portée par dB(m, r&apos;), Go désignant la fonction de Green de la
boule B(m, r) au niveau A. Notons G la fonction de Green de même niveau pour
M tout entier. D&apos;après le iemme 1 plus bas, on a (1- e)G ^G0^G sur

dB(P, r&apos;) x B(F, 2) si r est assez grand (r&apos; étant fixé). Par conséquent, w Gfi
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est un A + kl potentiel sur M, porté par dB(P, r&apos;) et tel que: (1 — e)w
sur £(0, 2).

Reste à approcher w par une fonction ^1 + A/-harmonique &gt;0 sur M: il suffit
en fait d&apos;approcher chaque poteniel ponctuel Gx&gt; x e dB(P, r&apos;): notons q
Gx/G(x, P) et Kç la A + A/-minimale normalisée en P, associée au point g
extrémité de la demi-géodésique issue de P et traversant x. Prenant un cône de

sommet xf d&apos;ouverture Jt/4 et d&apos;axe xP, on a, en utilisant le lemme 2, et pour r&apos;

assez grand (r&apos; ^ R(e, a, b, A, Aj)):

(1 - e)K^ ^ # ^ (1 + £)/Cç sur £(P, 1)

En intégrant par rapport à v G(P, -)iif et en notant v j K^ dv(t~), on a

(1 - e)v ^ w ^ (1 + e)v sur J5(P, 1)

et la proposition est établie.

LEMME 1. Avec les notations précédentes, on a&gt; pour r&apos; fixé et r assez grand
{r&gt;R(a,b,e,r\k,kx)):

Vjc, y e B(m, r&apos;) 0 &lt; G(x, y) - G0(x, y) ^ eG(xf y)

Observons que w: &gt;&gt;—» (G(x, y) - G(){xy y)) est A-harmonique &gt;0 sur B(m, r),
majorée par G(x, y) pour y e dB(m, r). Introduisons A&apos;, A&lt; A&apos; &lt;kXt la fonction
de Green g de niveau k&apos; et pôle x sur M, et utilisons l&apos;estimée (6&apos;); on obtient

pour y e dB(m, r) et a fortiori, d&apos;après le principe du maximum pour tous les y de

B(m, r); d&apos;autre part {r&apos; étant fixé) il existe une constante c&gt;0 telle que g soit

majorée sur B{my 2r&apos;) par c&apos;G(xf •); de sorte que w(y) ^ ce&apos; exp (-/?r/2)G(x, y)
sur cette boule, et le lemme s&apos;ensuit.

Pour le lemme suivant, on peut se placer dans les hypothèses du §1.

LEMME 2. Soient y une demi-geodesique issue de 0=y(0), F le cône

geodesique de sommet 0, direction y&apos;(0) et angle au sommet 6, 0 &lt; 6 &lt; n et pour
m entier 5*1, Fm le cône analogue de sommet Am y(m) et direction y&apos;{m). Alors,

pour tout k&lt;ku et tout couple uy v de fonctions 3?x-harmoniques &gt;0 sur F, nulles
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à rinfini au sens de ££k ([1]), on a sur Fm:

u(x) &lt; (1 + Cpm)(u(Am)/v(Am))v(x)

C(a,b, v, A, À!, 0)&gt;O, e*O&lt;j3&lt;l, j3 j3(a, 6, v, A, At,

Cet énoncé est une conséquence standard du principe de Harnack à la
frontière (voir par exemple la preuve du théorème 6.2 de [3]). On sait ([1]) qu&apos;il

existe une constante c c(a, b, v, A, kx) &gt; 0 telle que:

(1 + c)-l{f(Ak)/g(Ak)}g(x) *f(x) &lt; (1 + c){f(Ak)/g(Ak)}g(x) (*)

sur Fk, pour/et g i^-harmoniques ^0 sur Fk_u nulles a l&apos;infini au sens de &amp;k.

Utilisant (*), on voit aussi que pour x, y e Fk:

Soient alors u et v comme dans l&apos;énoncé; pour s entier 2*1, notons ys la meilleure
constante ^0 telle que pour tout x, y e Fs

(1 + ysyl{u(x)/u(y)} ^ v(x)/v(y) * (1 + yM){u(x)lu(y)}

Or, puisque pour yeTs+l1 x-*{\ + Ys){u{x)lu{y)} - {v(x)/v(y)} est i?A-

harmonique &gt;0 sur Fs, on a d&apos;après (*)&apos; (avec le même y et k s 4-1):

- {t/(x)/t/(30} &gt; y,c&apos;{«(x)

pour jc, y € r,+1. D&apos;où {u(jc)/i;(^)} ^ (1 + y,(l - C)){n
Ce qui montre que y5+1 ^ y,(l - c&apos;), et finalement y5 ^ y^l - c&apos;)5&quot;1.

Le théorème 3 et la proposition 1 conduisent tout naturellement à une
estimation de la constante de l&apos;inégalité de Harnack infinitésimale &quot;locale&quot; de

Cheng-Yau ([13], [8]) pour les grandes boules de M.

PROPOSITION 2. Pour tout e &gt; 0, A &lt; ku il existe R R0(e, a, b, A, Xx) &gt; 0

tel que pour toute fonction u, A + XI-harmonique positive sur une boule B(P, R)
de M, on ait

\Vu(P)\ ^ (e + VAo + V(A0 - k))u(P)

Preuve. On peut supposer u(P) 1. Soit ô e ]0, 1[; d&apos;après la proposition 1,

si R &amp; R(ôf a, by A, Aj) il existe u, A-propre et &gt;0 sur Af, telle que \u - v\ &lt; ô u
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sur B(P, 1) Appliquant l&apos;inégalité de Cheng-Yau ([8]) pour u et v — (1 — ô)u
(qui sont positives sur B(P, 1)), on a

\Vv(P) - Vu(P)\ ^ \Vv(P) - (1 - ô)Vu(P)\ + ô |Vu(P)|

et \Vv(P) -Vu(P)\^3Côu(P), avec C C(n,b,k) On conclut alors grâce au
théorème 3

En particulier, on a une estimation optimale pour la fonction de Green

COROLLAIRE 1 Soient A &lt; kl} V la fonction de Green de M au niveau A et

de pôle P et soit e &gt; 0 Pour R ^ R0(ey a, b, A, Aa) on a

|VVn/F^£ + VAo + V(Ao-A) surM\B{P,R)

II est possible qu&apos;on puisse améliorer l&apos;estimation suivante en y remplaçant y
par y&apos; V(A0 - A) - V(A0 - A&apos;), mais nous ne sommes pas parvenu à établir (ou à

mettre en défaut) cette propriété

THÉORÈME 4 Soient A, A&apos; tels que A &lt; A&apos; &lt; kx Posons 4e (n- \)\b -
af + 4(n - \){b - a)V(A0 - A&apos;), p A - e, ti&apos;=k&apos;-e, et y V(A0 -p)-
V(A0 — A*&apos;) Pour tout e&gt;0, il existe C C{e, a, b, A, A&apos;, A^ te/ (?we powr tout

x,y eM

y)) Gk{xyy)

En particulier y^(kf - A)/[2V(A0 - ju)] et, sikf&gt;0, e^ 3(n - \)\b - a)b/4

Preuve Fixons le point x P, et notons p, n les fonctions de Green de pôles
P de niveaux respectifs A et k&apos; La fonction u —plu vérifie l&apos;équation

4w + 2jt-1V;tVu + (A-A&gt; 0 sur M\{P) (*)

Soient 5 et a les fonctions de Green analogues pour les niveaux p - e et p&apos; - e sur
l&apos;espace hyperbolique N Hn(-b2), et le pôle 0 En utilisant les applications
exponentielles en 0 et P, et une isométne quelconque de N() sur Mp&gt; on peut
considérer v =s/a comme une fonction sur M, u est alors fonction décroissante
de r d(P, x) et vérifie (puisque A - A&apos; p - p&apos;)

v&quot;(r) + {{n - \)b coth (br) + 2o&apos;(r)/o(r)}v&apos;(r) + (A - A&gt;(r) 0
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Or, pour r assez grand, on a

Av + 2jt~lVjtVv + (A&apos; - k)v

v&quot;(r) + (4r + 2jT!&lt;V*, Vr))u&apos;(r) + (A - k&apos;)v(r) «s0

En effet, à l&apos;infini \o&apos;(r)\/o(r)~ VA(, + V(A()-ju&apos; 4- e),
acoth (ar) ~ (w - l)a, et d&apos;après le corollaire 3: jT^KVjt, Vr)| ^VA{) + V(A{)-
A&apos; + ef) pour r assez grand (dépendant de e&apos;). Il reste à constater que le choix de

e assure que:

(n - l)n - 2(VAo + V(Ao - A&apos; + e&apos;)) + e&apos;^(n- 1)6 - 2(VA() + V(A() - |i&apos; + e))

pour r assez grand et e1 &lt; e.

v est donc surharmonique &gt;0 sur M relativement à (*) pour r&gt;R et, ce qui
revient au même, nv est A-surharmonique sur {x\ d(x, P) &gt; R)}. Comme p ^ Cnv
sur dB(P,2R) (pour une constante C&gt;0), cette inégalité se prolonge à

M\B(P, 2R), d&apos;après le principe du maximum de R. M. Hervé ([10], p. 429).
D&apos;où l&apos;assertion.

Remarque. Comme chaque Gk&gt; est borné à l&apos;infini, l&apos;estimation précédente
donne une majoration de chaque Gk. Mais si on connaît A, (et surtout pour A

voisin de A]) la méthode de Cheeger-Gromov-Taylor [7] conduit à un bien
meilleur résultat, à savoir:

II semble malheureusement difficile d&apos;adapter la méthode de ces auteurs au

problème de l&apos;estimation des quotients de fonctions de Green.

Application à Vestimation de oc dans le théorème 1 (pour «5?= A): d&apos;après [7],
on peut poser P&apos; V(Aj — A - e) et (d&apos;après le théorème 4):

fi b((n - l)/2){V[l + 3(1 - a/b)] - V[l + 3(1 - a/b) - {4k/b2{n - l)2)]}

en particulier

P 2*pt Xb~l(n - 1)-!(1 + 3(1 - alb))m

D&apos;après la preuve du théorème 1, tout a &lt; min {\J{kx — A), /?) convient.
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3. Un exemple de variété sans fonction de Green au niveau kx

II s&apos;agit de la fonction de Green relative à A + kJ, kx première valeur

propre du Laplacien A sur M. On prendra pour M le plan IR2 muni d&apos;une

métrique de la forme ds2 dr2 + g2(r) d62 en coordonnées polaires r, 6 usuelles,
avec une fonction g: [0, +&lt;»)—» R+ à préciser.

Fixons a&gt; by b&apos; réels tels que 0&lt;a&lt;b&apos; &lt;b; choisissons ensuite ro&gt;0 assez

grand pour que toute boule ouverte B B(x, r0) de l&apos;espace hyperbolique
H2(—a2) admette une première valeur propre kx(B) strictement inférieure à

bt2/4 Â1(//2(—bt2))\ c&apos;est possible puisque kx(B) ne dépend que de r0 et tend
vers a2/4 lorsque r0 tend vers +°°.

Posons gQ(r) sh(b&apos;r)/bf, pour r^O (g0 correspond à M H2(-b&apos;2)).

Introduisons aussi une fonction gx de classe C* sur R + de la forme suivante:

gx(r) sh(ar)/a si r**rl9 g\(r) g{)(r) pour r&gt;r2,

et

{sh(ar)/a} ^ gx(r) ^ go(r) pour rx^r^r2

où r, et r2 sont des réels tels que rQ&lt;rl&lt;r2. On impose aussi la condition:

L&apos;existence d&apos;une telle fonction gu (pour r2 assez grand, r, étant fixé) est

élémentaire. On prendra g dans la famille:

r) pour

^ étant un paramètre réel compris entre 0 et 1. Remarquons que quel que soit le
choix de t, M sera à courbure partout comprise entre —a2 et -fc2, et telle que le

complémentaire de la boule B(0, r2) soit isométrique au complémentaire dans
H2{—b&apos;2) de toute boule de même rayon; M contient donc des boules de

H2(-b&apos;2) de rayon arbitrairement grand (mais non centrées en 0). Par conséquent
k1(M)^b&apos;2/4. Pour f l, M est telle que la boule B(0, rx) est isométrique à

toute boule de même rayon dans H2(—a2), et At(Af) &lt;bt2/4.

Soit kx(gs) la première valeur propre de R2 pour la métrique ds2 dr2 +
g2s(r)d62, et soit * sup {s e [0, 1]; À,fef) fe&apos;2/4} sup {s e [0, 1]; A,(g,)^

On a A,(gl) 6&apos;2/4, la première valeur propre étant une fonction s.c.s de la
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métrique en général; en particulier t&lt;\. Supposons qu&apos;il existe une fonction de

Green pour At + (b&apos;2/4)I, (At Laplace Beltrami correspondant à g,); fixons une
fonction test q&gt; positive sur My égale à 1 sur #(0, r2); on peut alors trouver u &gt; 0

sur M, telle que Atu + (bt2/4)u -çp (u est d&apos;ailleurs de classe Cx); or, si e est
&gt;0 assez petit on aura encore:

puisque As ne dépend pas de s hors de B(0, r2). Comme l&apos;égalité (partout sur M)
est exclue, on voit qu&apos;il existe sur M une fonction &gt;0 et {At+e + (b&apos;2/4)I}-

surharmonique, non harmonique. D&apos;où kx(gt+e)^bt2/4, en contradiction avec la

définition de t. Il n&apos;y a donc pas de fonction de Green sur M au niveau At(Af

4. Exemples où les À}-fonctions propres ne s&apos;annulent pas à l&apos;infini

On va d&apos;abord construire un exemple sans fonction de Green au niveau kx.
Fixons a, b, b\ r0, rXy r2 comme dans la section précédente. Considérons l&apos;espace

hyperbolique Mo H2(-b&apos;2), muni de sa métrique h0, prenons dans Mo une
géodésique y, de vitesse unitaire, issue d&apos;un point de référence 0 y(0), et sur y
des points xk y(4fcr2), k e Z. Modifions la métrique h0 exactement comme dans
la section précédente, à l&apos;aide des fonctions g5, O^s^sl, mais en opérant
maintenant dans chacune des boules Bk B(xk, r2), à partir de son centre pris
comme point de référence, de manière à obtenir des métriques hs égales à h0 sur
les rayons issus de xk dans chaque boule Bky et sur M\[JkeZ Bk) et de courbure
constante -a2 sur les boules B(xkf rx). On peut de plus supposer les hs invariantes

par l&apos;isométrie directe T de Mo qui laisse y invariante et amène x0 sur xx (et donc

xk sur xk+i et Bk sur Bk+1 pour k e Z). Comme hs est sur chaque Bk invariante par
les symétries de Mo laissant fixe xk, hs est globalement invariante par la symétrie
a de Mo qui permutte x0 et xt. Toutes ces métriques sont à courbures pincées
entre —a2 et —b2 et de premières valeurs propres kt(hs) majorées par bf2/4 (avec
égalité si 5=0). De plus, on vérifie facilement que s-*Xx(hs) est continue sur
[0,1] en observant que pour tout e&gt;0, on a hs =^(1 + e)hs&gt;&gt; si \s&apos;— s\ est
suffisamment petit; il suffit ensuite d&apos;utiliser la définition de Xx(hs).

Soit b&quot; un réel, b&quot;&lt;b&apos;t tel que (b&quot;2/4) soit strictement supérieur à la première
valeur propre d&apos;une boule de H2(-a2) de rayon r0. On a donc Â1(/i,)&lt;è&apos;f2/4.

Soient t sup {s e [0, 1]; kx(hs) ^ b&quot;2/4}y h htetM U2 muni de h.

Il est clair que Âl(Af) Â1(Ar) 6&quot;2/4. On va voir que M n&apos;admet pas de
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fonction de Green au niveau Xx à l&apos;aide du lemme suivant:

LEMME 3. Soit G la fonction de Green de A + XI sur M (pour un A ^ b&quot;2/4);

G admet une décroissance exponentielle sur y au sens qu&apos;il existe deux réels

strictement positifs C et oc tels que:

\fkyk&apos;ely k±kf G(xky

Soient F la géodésique médiatrice du segment géodésique xoxt et JJ une

demi-géodésique issue de xx et perpendiculaire à xox2. Soit Co un cône (dans M)
de sommet xx, de direction Fx et d&apos;angle au sommet suffisamment petit pour que
Co ne rencontre pas F. Co est aussi un cône dans Mo. On a, par raison de

symétrie GXo GXx sur F\ avec le principe du maximum ([10], p. 429), on en
déduit que GXo&lt;GXx sur œ la composante de M\F contenant xx; Appliquant le

principe de Harnack à l&apos;infini aux fonctions Â-harmoniques positives GXQ et
(GXx - GXo)f sur le cône tronqué C&quot; C0\Bi de Mo (noter que le niveau À est

strictement plus petit que A^/ïq)), on obtient

GXl - GXQ ^ cGXA sur F1\B(x1, 2rx)

pour une certaine constante c &gt; 0. Quitte à diminuer c, cette estimation a lieu sur
Fx tout entière, et, de même sur F[ la demi-géodésique opposée. On a donc à

l&apos;aide du principe du maximum:

ô&gt;0

sur (o1 la région délimitée par F&apos;{ FlU F[ et contenant x2; en particulier

G(jc0, xk) *s (1 - ô)G(xu xk) pour tout t ^ 1

Utilisant l&apos;invariance de G par l&apos;action de Ty on en déduit par itération:

\fp^lfkely G(xk&gt; xk+p) *s (1 - ôfG{xky jc*+1) z&gt; G(xk, xk+p) ^ c(l - ôy

ce qui achève d&apos;établir le lemme.

COROLLAIRE 2. M n&apos;admet pas de fonction de Green au niveau A^M)

Supposons l&apos;existence de la fonction de Green G de M au niveau A^Af); soit

une fonction test s*0 sur M à support dans B(xo&gt; 2r2), égale à 1 sur Bo et soit
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V £*ez &lt;P° Tk\ le lemme précédent montre que le potentiel de Green k Gxp
n&apos;est pas identique à l&apos;infini (la série £*#o max#t{GX{} étant convergente). C&apos;est

donc une fonction C00, invariante par T, qui vérifie:

Atn + (b&quot;2/4)jt =-y (At Laplace-Beltrami de A,)

Si £&gt;0 est assez petit on aura encore At+ejï + (b&quot;2/4)jr^0 (et ^0), puisqu&apos;il

suffit de vérifier cette inégalité sur la boule Bo. L&apos;existence d&apos;une sursolution &gt;0

(qui n&apos;est pas solution) pour le niveau b&quot;2/4 entraîne que kl(gf+t)^b&quot;2/4 ce qui
contredit la définition de t.

CONSÉQUENCE 1. Une fonction w, propre au niveau À! et positive sur M
ne peut tendre vers zéro à l&apos;infini que si elle est nulle.

Comme il n&apos;y a pas de fonction de Green GA), les fonctions À,-propres &gt;0

sont deux à deux proportionnelles; donc si u est &gt;0, on doit avoir u°T cu, et

u°o — u. La suite {u(xk)}keZ est donc constante &gt;0; d&apos;où l&apos;assertion.

CONSÉQUENCE 2. Complétons la remarque après le théorème 1, en

montrant que pour tout ô &gt; 0, on a si A &lt; Ao est assez voisin de Ào: Gx(x(), xk)&gt;

Ce~ôkf pour tout k &gt; 0, et une constante C CA &gt; 0.

Pour cela, observons d&apos;abord que pour A—&gt;A,, y $ {jc,, x()},
Gx(x, y)/Gx(x{, y) tend vers u(x) l&apos;unique fonction Ârharmonique sur M,
normalisée en xx. Comme «(*,) w(jc0), on voit que limA_*Al(GA(x0&gt; y)l
Gk(xïf y)) 1 uniformément sur tout compact de M ne contenant pas jc0 ou X\.

Soit alors F&apos; la géodésique médiatrice du segment géodésique xxx2\ fixons un
cône C d&apos;axe F&apos;, de sommet sur y, et d&apos;angle assez petit pour que C ne rencontre
aucune boule Bk et fixons e &gt; 0. D&apos;après le lemme 2 et les remarques
précédentes, on aura pour À suffisamment proche de Â^

(l-e)Gx(xx,x)*Gk(xo,x)^(l + e)Gk(xlfx) (20)

pour x sur F&apos; H C et assez loin (en fonction de e) du sommet de C. Utilisant
encore les remarques précédentes et la symétrie autour de y, on voit que (20) est

vérifiée sur F&apos; tout entier dès que Ai — À est &gt;0 assez petit. Mais alors, d&apos;après le

principe du maximum:

Gk(x0, xk) s* (1 - e)Gk{xx, xk) pour k 2, 3,...
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et en itérant (compte tenu de l&apos;invariance par T):

Ga(jc0, xk) ^ (1 - ef-lGk{xk.u xk) Gx(x0, jc,)(1 - e)k~l cA(l - e)k~l

C&apos;est ce qu&apos;on cherchait à établir.

CONSÉQUENCE 3. Voyons enfin comment en modifiant la métrique h de

M sur une boule on peut obtenir une variété M&apos;, admettant une fonction de

Green Gk au niveau A kx{h), mais telle que Gk(x, •) ne tende pas vers 0 à l&apos;infini

(VjteAT)—et a fortiori telle que toute fonction A-propre &gt;0 ne tende pas vers
zéro à l&apos;infini.

Fixons une boule fermée B c M\(U*ez Bk) et une fonction q? de classe C°° sur
M, égale à 1 hors de B et telle que 0&lt; cp ^ 1, &lt;p

&amp; 1 sur M; soit /i&apos; la métrique
(conforme à h)y h&apos; ç?2/i. On peut choisir cp assez voisine (au sens C2) de 1 sur B

pour que la courbure de h&apos; soit encore pincée entre —a2 et — b2.

Soit M&apos; la variété Riemannienne obtenue en munissant U2 de la métrique h1;

son opérateur de Laplace-Beltrami est A&apos; q&gt;~2A, A désignant celui de M. Si w

est l&apos;une des fonctions propres &gt;0 de M au niveau A Âi(A/)(= —b&quot;2/4) on a:
/lw + Aw 0, donc A&apos;u^Au&lt;0 et ^w + Aw^O, 4&apos;h + Am non identiquement
nul. Ce qui entraîne que A,(M&apos;)^A et plus précisément que M&apos; admet une
fonction de Green G&apos; au niveau A. Le lemme suivant montre que G&apos;x ne tend pas
vers 0 à l&apos;infini (ce qui entraîne en particulier que A Aj(M&apos;) et achèvera de

prouver notre assertion).

LEMME 4. Soient G&quot; la fonction de Green de M\B M&apos;\B au niveau
A Xi{M), u une fonction X-propre &gt;0 sur M, et x e M\B. Il existe une constante

c cx &gt; 0, telle que Gx ^ eu au voisinage de l&apos;infini.

Comme il existe sur M une A + XI solution continue et strictement positive,
on sait qu&apos;on peut résoudre le problème de Dirichlet (correspondant à cet

opérateur) dans tout ouvert borné de M à frontière régulière. Soit B&apos; la boule
ouverte de M concentrique à B et de rayon double, et soit w la solution du

problème:

Aw + kw Q sur B&apos;\B

w 0 sur dB, w u sur dB &apos;

Notons enfin v la fonction continue sur M\B égale à w sur B&apos;\B et à m sur M\Bf.
Il est clair que v est une fonction A + A/-surharmonique sur M\B ; en fait v est
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même un i?&apos;-potentiel (JE* A&apos; + kl) sur M\B, c&apos;est à dire que 0 est la seule
minorante ^&apos;-harmonique 2*0 de v sur M\B; en effet, une telle minorante
prolongée par 0 sur B, devient une fonction 5£&apos;-sous-harmonique uf sur M, et
u — u&apos; serait ££&apos;-surharmonique (et non j^&apos;-harmonique) sur M ce qui est

impossible puisque par construction M n&apos;admet pas de fonction de Green au
niveau À.

Soit alors c&gt;0 suffisamment petit pour que G&quot;x^c v sur dB&apos;. D&apos;après le

principe du maximum de R. M. Hervé [10], v étant un J£&quot;-potentiel, onaGï^c
v sur M\B et par conséquent G&quot;^c u hors de B&apos;. CQFD.

5. Remarques sur la théorie de S. J. Patterson

On se propose dans cette partie d&apos;indiquer une généralisation très partielle
des résultats de Patterson ([11]) concernant les liens entre fonctions propres et
ensembles limites des groupes Fuchsiens sur l&apos;espace hyperbolique. Soit F un

groupe d&apos;isométries de M non réduit à {/}, opérant librement et proprement sur
M et soit N la variété riemannienne M/F. Notons LcSx l&apos;ensemble limite de T,
V! la première valeur propre de N, et kx celle de M. On a, a priori, vx ^ Xx mais

pour pouvoir utiliser les inégalités de Harnack à l&apos;infini au niveau vlf on

supposera désormais que vx&lt;Xx. On notera g(x, y) le noyau de Green de M au
niveau vx et K^(x) le noyau de Poisson de M au niveau vx, normalisé en 0 € M.

On a alors les propriétés suivantes:

THÉORÈME 5. a) // existe une mesure de probabilité fx sur L telle que la

fonction

xeM,

soit F-automorphe sur M et A + vj-harmonique &gt; 0 sur M.
b) Si F admet un domaine fondamental U c:M tel que Û H L 0, u est

Punique fonction sur M ayant ces deux propriétés et telle que u(0) 1. De plus, la
série £y€rg(y(0), y) diverge pour tout y eM, et, si L =£ £*, vx est &gt;0.

(Dans le cas Fuchsien, v^O est dû à Beardon, voir [11]). L&apos;extension des

méthodes de Patterson se fait grâce à la proposition suivante:

PROPOSITION 3. Soient jU e ]0, kx[ et e &gt; 0. // existe a(e, n,M)&gt;0 tel que
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pour 0 ^ A ^ A&apos; ^ fi, et |A - A&apos;| ^ a on ait:

Ga(jc, y) ^ exp (-ed(x, y))Gk{x, y), (x,yeM et d(x, y) ^ 1)

Remarquons d&apos;abord le lemme suivant:

LEMME 5. Si R&gt;0f e&gt;0 sont fixés, il existe ô ô(e, R, \i, M) &gt; 0, tel que
pourO^X^h&apos;^fi, et |A-A&apos;|^&lt;5, on ait; V x,yeM, l^d(x,y)^R, Gx{x,y)^
(l-e)Gk,{x,y).

Le lemme découle de l&apos;équation résolvante Gk&gt; Gk + (A&apos; - X)GxGk&gt;, et des

estimations suivantes, où X&quot; est un réel fixé avec fi&lt;k&quot;&lt;k1:

GxGk(Xi y) ^ GkGx{x} y) ^ CGr(x, v), (C (A&quot; - iu)&quot;1)

et

cx ^ Gt{x, y)^c2 pour l^d(x,y)^R, O^t^X&quot;.

Preuve de la proposition 3. Soient {yn} une suite de points sur une
demi-géodésique issue de x telle que d(x, yn) n.

D&apos;après le lemme 2, on voit qu&apos;il existe keN (dépendant de e) tel que pour
n&gt;k, O^

(1 + e)Gt{yn.k, yn)/Gt(yn-k, yn+i) ^ Gt{x, yn)/Gt(x, yn+x)

^ (1 + e)Gt(yn-kt yn)IGt{yn.ky yn+x)

Utilisant les niveaux t A et t A&apos;, on obtient:

Gr(x, yn+1)/GA.(x, ^) ^ C(l + £)2GA(x, yH+1)/Gk(x9 yn)

avec

C {Gv(^_,, yn+x)IGk.(yn-ki yn)}/{Gk(yn.ki yn+l)/Gk(yn-kf yn)}

si A&apos; - A est suffisamment petit (d&apos;après le lemme 5).
On en déduit, pour n &gt; k:
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et la proposition 3 s&apos;ensuit sans difficulté. On peut alors établir le lemme (qui
imite le lemme 3.1 de [11]):

LEMME 6. // existe une fonction croissante /i:[R + —»IR + tendant vers +&lt;» à

Vinfini, telle que:
(1) £yerexp {h(d(0, y(0))} g(y(0), y) +oo, y e M
(2) lim^oo h(x +1) - h(x) 0

D&apos;après la proposition 3, la série £y€r{exp[£d(0, y(0))] g(y(0), y)} est

divergente pour tout e &gt;0, y e M (puisque par définition de vu Eyer GA(y(0), y)
diverge ou converge selon que Â &gt; Vj ou À &lt; v,, y £ /&quot;(0))- Fixant alors une suite

£t de nombres &gt;0 décroissant vers 0, on choisira sucessivement des rayons R,

croissant vers +o°, Rt+X &gt; Rn et on posera h(t) £t(t — R,) + h(Rt) pour Rt&lt;t^
Rl+l. Il suffit de choisir les Rt (successivement) assez grands pour que, jc, étant
fixé dans M\r(0),

exp {/Kd(0, y(0))}g(y(0), jc,) ^ 1. CQFD
}

Preuve du théorème 5. a) On pose ûy exp (h(d(0, y(0)) et pour Â&lt;v,,

et vk uk{x)luk(xx) (x e M)
yer

Reprenant les méthodes de [11], on voit sand difficulté que lorsqu&apos;on fait
tendre À vers vu À&lt; v,, toute valeur d&apos;adhérence des ux est A + v,/-harmonique
&gt;0 sur Mf T-automorphe, et de mesure associée \i portée par T. Le caractère

automorphe découle de l&apos;équivalence ay =* aay pour d(0, y(0))-^ +œettve Tfixé.
b) Si U D L 0, comme ju est portée par L, on a d&apos;après les inégalités de

Harnack à l&apos;infini de [1], u(x) ^ cg(0, x) sur £/ et a fortiori

u{x) ^ c 2 #(y(0)&gt; ^) sur M tout entier.

La série de A + v}I potentiels Er6rg(y(0)&gt; ^) est minorée par une fonction
^-h v,/-harmonique &gt;0: elle doit donc être identiquement infinie. (Sinon, elle
définirait un potentiel qui, par définition, n&apos;admet pas de minorante harmonique
&gt;0). Ce résultat signifie que la variété jV MIT n&apos;admet pas de fonction de

Green au niveau v,. On sait que cette propriété entraîne que les fonctions
harmoniques &gt;0, au niveau v, sur M sont deux à deux proportionnelles, et on
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obtient la propriété d&apos;unicité de w. Enfin, si vx était nul, on aurait, d&apos;après

l&apos;unicité de w, u 1, ce qui contredit L ¥&quot; 5^.
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