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Cohm;lological dimension and symmetric automorphisms of a free
group

DonNaLD J. CoLLINS

0. Introduction

Among a number of recent results concerning the cohomology of groups one
of the most interesting is that obtained by Gersten [10] and Culler and Vogtmann
[7] to the effect that if F is a free group of rank n then its outer automorphism
group Out F has virtual cohomological dimension 2n — 3. In this paper we shall
apply the method of Culler and Vogtmann to the subgroup of Out F consisting of
“symmetric’’ automorphisms and shall show that this group has virtual cohomolo-
gical dimension n — 2.

Let F be free with finite basis S. An automorphism « of F is symmetric if, for
every generator s in S, the image a(s) is a conjugate of an element of SUS™".
Clearly the symmetric automorphisms form a group which we shall denote by
2A(F) and we shall write 2O(F) for the corresponding image in Out F.

THEOREM . If the free group F has rank n then the group XO(F) of
symmetric outer automorphisms has virtual cohomological dimension n — 2.

COROLLARY. vcd(ZA(F))=n—1. O

Our interest in XA(F) and 2O(F) came originally from our interest in the
automorphism groups of free products. There are reasonably close parallels
between XA(F) and Aut G, where G = *G; is a non-trivial free product of
indecomposable groups G;, none of which is infinite cyclic. In particular, if « is
any automorphism of G, then the image a(G;) of any factor G, is a conjugate of
some factor G; isomorphic to G;. In [5] we show that if G = * G is a free product
of n finite groups then

(i) Aut G is virtually torsion-free;

(ii)) vcd(AutG)=n —1.

*The author gratefully acknowledges support from the Ruhr-Universitit, Bochum and the
Alexander von Humboldt-Foundation during the preparation of this paper.
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It seems reasonable to conjecture that in fact ved(Aut G) =n — 1.

Another reason for studying ZA(F) stems from the fact that the braid group
B, (see Birman [3]) is the subgroup of ZA(F) consisting of all automorphisms
fixing the product s;s, - - - 5,, where F has basis S = {s,, s,, ..., s,}. It is shown
in [3] that B, has a subgroup P, (the group of pure braids) of finite index which
can be expressed as a semidirect product P, = U, xXP,_;, with U, a finitely
generated free group. By a theorem of Feldman [8] (see p. 70 of Bieri [2]) it
follows that

cd(P,)=cd(U,)+ cd(P,_,) =cd(P,_,) + 1.

Inductively cd(P,_;)=n—2 and thus cd(B,)=n—1. So certainly, if F has
rank n, vcd(ZA(F))=n — 1.

The starting point of our belief that the method of [7] could be applied to
2A(F) and 2O(F) was the observation that the well-known theorem of
Whitehead [14] about equivalence of elements under automorphisms of F remains
valid when the domain of discussion is restricted to symmetric automorphisms.
(The proof of this is entirely straightforward since all that has to be done is to
follow the proof of Whitehead’s theorem as in, for example, [11] and add the
word symmetric at appropriate places. Indeed the argument is very much simpler
since many cases do not occur. Now the main technical step in the proof of
Whitehead’s theorem — what we have called Peak Reduction in [5] and is called
the Higgins—Lyndon Lemma in [7] —is also the basic ingredient of Culler and
Vogtmann’s argument in [7]. They obtain vcd(Out F) by constructing a con-
nected contractible simplicial complex K of dimension 2n —3 on which Out F
acts. By introducing a condition of symmetry on vertices of K, we pick out a
subcomplex K* of dimension n — 2 on which SO(F) acts.

The hardest part of the argument is to show that K~ is contractible. We are
grateful to Marc Culler and Karen Vogtmann for discussions from which it
emerged that it might be easier to apply the results obtained in [7] rather then
slavishly copy the proof. We are also grateful to Martin Lustig for explaining to
us how to set about proving the “Poset Lemma” of [7].

1. Symmetric automorphisms

Let F be free with finite basis S. Then a € Aut F is symmetric if, for every
s€S, a(s)=w(s)"'n(s)w(s), where m(s) e SUS~'. Clearly the symmetric auto-
morphisms form a group ZA(F). If n(s) =s, for every s € S, then we call « pure
symmetric. We say « is a permutation automorphism if a(s)= n(s), for every
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s€S. We call « a symmetric Nielsen automorphism if there exist x € S and
y € SUS™! such that

ylxy ifs=ux
s otherwise

a(s) ={

1.1. PROPOSITION
(i) The permutation automorphisms form a finite subgroup Q(F) of ZA(F).
(ii) The pure symmetric automorphisms form a torsion-free normal subgroup
PZA(F) of XA(F) which is generated by the symmetric Nielsen
automorphisms.
(iii)) ZA(F) is the semidirect product PXA(F) X Q(F).

Proof. (i) This is trivial.

(i) Obviously PXA(F) is a group and is torsion-free by the theorem of
Baumslag—Taylor [1], since it lies in the kernel of the natural map from Aut F to
GL(n, 2). If a(s) =w(s)~'n(s)w(s), then

(w ™ am)(s) = ™ (w(z(s))) ™ 's ™ (w(a(s)))

which yields normality. The fact that PXA(F) is generated by symmetric Nielsen
automorphisms follows from a standard cancellation argument (see Humphries
[12] for an exhaustive account). [J

A subset A cSUS™! is symmetric if there is a unique distinguished element
xeSUS™! such that xe A and x "¢ A. Thus if ye SUS™! and y #x*, then
either y, y™'eA or y,y '¢A. Clearly A is symmetric if and only if its
complement A in SUS™' is symmetric. Given any symmetric set A with
distinguished element x there is defined a corresponding Whitehead automorph-
ism, denoted by (A, x), and defined by

-1 . -1
x sx ifs,sT €A
(A, x):s— [ )

) otherwise.

1.2. PROPOSITION (Peak Reduction Lemma). Let u, v and w be n-tuples
of cyclic words of F and let o and © be symmetric Whitehead automorphisms such
that o(w) = u and t(w) = v. Suppose that

(1) lul=|w|=vl;

(i) |u| <|w| or |w|>|u|.
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Then there exist symmetric Whitehead automorphisms 6, 0,, ..., 0, such that
c't=6,6,_,---0,and |0;--- 0,(w)|<|w|,i=1,2,...,r—1. 0O

We shall omit the proof since the lemma is not necessary for the subsequent
argument and, as noted earlier, is quite easily derived from, say, [11]. We do,
however, record the fact that the lemma implies, by the same kind of argument as
in the general case, that there is an algorithm to determine of any two n-tuples of
cyclic words (or indeed linear words) whether or not they are equivalent under a
symmetric automorphism.

2. Culler-Vogtmann revisited

We review here the main ideas of Culler—-Vogtmann [7], and have en-
deavoured to make our account as self-contained as possible. Our basic viewpoint
is combinatorial but, so as not to diverge too for from [7], we provide a
topological gloss. A graph, therefore, is a connected one-dimensional CW-
complex with vertices (0-cells) and edges (1-cells). Combinatorially, edges come
in oriented pairs with é (or e~ ') the reverse of e. If e is an edge it runs from its
source vertex s(e) to its target vertex t(e). We write V(X) for the vertex set and
E(X) for the set of (oriented) edges of the graph X and deg (v) for the degree (or
valency) of the vertex v. All graphs considered will be assumed to be reduced i.e.
will be assumed

(1) not homotopy equivalent to a proper subgraph;

(ii) to have no vertices of degree less than three;

(iii) to have no separating edges.

We fix the graph Y consisting of a single vertex and »n loops, and identify the free
group F with m,Y, regarding the set SUS™' of oriented edges of Y as an
“oriented basis” for F. A marking on a graph X is a homotopy equivalence
g:Y— X (combinatorially g assigns to the edges of Y closed paths at a basepoint
so that the images generate ;. X) and two markings g:Y—>Xand g’':Y— X' are
equivalent if there exists a cellular homeomorphism h:X— X' (combinatorially
an automorphism) such that the diagram commutes up to free homotopy. We
have an equivalence relation and the class of g: Y — X is denoted by (g, X).
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The vertices of the simplicial complex K are the equivalence classes (g, X) of
markings. A collapsing map d:X— X' is a cellular homotopy equivalence which
collapses one or more edges of X. Then a k-simplex of K is a (k + 1)-tuple
(&0, &1, - - ., &) of vertices such that there is a representative g;: Y — X, of §;
and a collapsing map d;: X;— X,_;, 0=i<k, 1=j<k, such that the diagram
below is homotopy commutative. An Euler characteristic argument shows that
dim K =2n - 3.

Xk-—‘—lf—’Xk_l————) e ~> Xl dlj‘ X()
Y

It is convenient here to stress a point only briefly mentioned in [7]. Suppose
&o» &1, &> are vertices of K such that (&, &,) and (§,, &,) are 1-simplices. Then
we can form the diagram below where &, =(g,, X3), & =(g,, X)) =(g}, X)),
Eo= (80, Xu), d, and d, are collapsing maps and 4 is an isomorphism. The

d h ' d
X, 4 X, > X1 —5 X,

e N A A
Y

composite d,hd, must also be a collapsing map, and so {&, &,} is a 1-simplex.
Thus, as noted in [7], K defines a category, where an arrow is defined by a
collapsing map, and clearly the vertices of K in fact form a partially ordered set

(poset) with respect to the relation:

£, <& if (&, &} isa l-simplex.
We record this formally.

2.1. LEMMA. The vertices of K form a poset of finite height with §, <&, if
and only if &, can be “‘collapsed” to §,. [

There is a natural right action of Aut F on K given as follows. Any a € Aut F
can be regarded as a cellular homotopy equivalence a:Y—Y and so given
g:Y— X we obtain

Y 4> X

iy

Y
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Clearly inner automorphisms act trivially, by the definition of equivalence, and so

Out F acts on K.
A rose p is an equivalence class (@, Y), with o € Aut F. Given any tuple W of

cyclic words of F (i.e. conjugacy classes of F) there is defined on the set of all
roses a norm ||—||w given by ||pllw = Nwew |@(w)|, where p =(a, Y) and |a(w)|
is the length of the cyclic word a(w). (This is just Definition 1.3.2 of [4].) Given
W, write Kninw) = U st(p), where st(p) denotes the star of p and the union is
over all roses of minimal norm. The main result of [7] is the following.

2.2. THEOREM. [7] (i) For any W, K is contractible to K inw)-
(ii)) There exists W such that K,w) is contractible and hence K is
contractible. ]

We note that according to [7], Gersten [10] also proves that K is contractible
but by somewhat different methods with which we are not familiar.

3. Symmetric graphs and the complex K~

We call a graph X symmetric if every edge of X lies in a unique circuit (here
we identify cyclic rearrangements of a closed path with one another.)

3.1. LEMMA. If X is a symmetric reduced graph, then deg (v) =4, for every
vertex v of X.

Proof. Suppose that deg(v)=3. If some loop is incident to v then the
remaining edge incident to v will be a separating edge, contradicting reducedness.
So suppose no edge incident to v is a loop. Then we have the situation of Fig. 1.
The unique circuit y containing e must have the form, say, y={(e, ..., €;). Now
e, does not lie in y or ¥ since v is a circuit and so the unique circuit § containing
e, is distinct from y and y. But clearly any circuit containing e, must contain é or
¢, which is a contradiction. [J
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3.2. LEMMA. If X is a symmetric reduced graph with fundamental group of
rank n, then |V(X)|=n —1.

Proof. We have Y,.yx)deg(v)=2(n +|V(X)| —1) from the “handshaking
lemma” for graphs. Hence

AVX)|<2n+2|V(X)| -2 O

We are now ready to define K * and establish some of its easier properties. Let W
be the n-tuple (sy, . . ., s,) of cyclic words. Then a rose p = (a, Y) is of minimal
norm with respect to || — ||w if and only if « is a symmetric automorphism since
i—1la(s;)|=n if and only if |a(s;)|=1, 1<i<n. Then K inw)=U,pea st(p)
where 2 is the set of all roses (a, Y) such that « is symmetric. (Since Aut Y just
consists of suitable permutations of E(Y), every « in a given such rose is
symmetric.) A vertex § lies in Kinw) if and only if & = (g, X) and there exists a
collapsing map d: X — Y such that dg: ;Y — 7, Y is symmetric. Clearly K yin(. is
invariant under the action of ZA(F).
Now the dimension of K ,inw) 1 still 2n — 3 and we need to replace K inw) by
a subcomplex of smaller dimension. This is achieved by imposing the condition of
symmetry defined above. Namely, we define K * to be the subcomplex of K inw)
generated by all vertices § = (g, X) with X symmetric. A discussion of the
motivation for the definition of K*is given at the end of 4.

3.3. PROPOSITION. dimK*=n-2.

Proof. This is immediate from Lemma 3.2, since it is easy to construct a
symmetric reduced graph with fundamental group of rank n and having (n — 1)
vertices.

Certain automorphisms introduced by Gersten [9] in looking at fixed-point
subgroups play a role in determining the virtual cohomological dimension of
Out F. These are the ‘“‘change of maximal tree” or CMT automorphisms which
may be described as follows.

Let d: X— Y be a collapsing map that collapses the maximal tree T and let X
have a given basepoint v. For each edge x of E(Y) there is a unique edge e, of X
mapped to x by d. Further there are unique paths in T from v to s(e,) and t(e,)
which may be written, respectively, in the form a,b, and a,c, with a, of maximal
length. The maximality implies that b.e.c, is a circuit. We define d~':Y— X by
d~':x+—a,b.e.c.a,; then d”' is a canonical homotopy inverse for d.

Now let d:X—Y and d':X—Y be collapsing maps with corresponding
maximal trees T and T’ respectively. The induced automorphism d,d; "' is a CMT
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Fig. 2

automorphism and is calculated by evaluating d’ on the closed paths d™'(x),
x €.

3.4. PROPOSITION. KZis connected.

Proof. 1t suffices, by Proposition 1.1, to show that if & and o’ are symmetric
automorphisms and «’ = o, where o is a symmetric Nielsen automorphism, then
there is a path in K% from the rose p =(a, Y) to the rose p’' =(a’, Y). So
suppose ag(x)=y 'xy and o(s)=s for se€S, s#x. Then with d:X—Y and
d':X— Y defined by the diagrams in Fig. 2 we obtain o =d.,d;' and hence the
vertex (d'«, X) € K*is adjacent to p and p'. [

3.5. PROPOSITION. ZA(F) acts on K* with finite stabilisers and finite
quotient.

Proof. This is proved in exactly the same way as the corresponding statement
in [7]. If « stabilises (g, X) then the diagram below yields an injection a+> A from
Stab (g, X) to Aut X.

Yy 5 X

T
Y -}—* X
The quotient is finite since every vertex is equivalent under ZA(F) to a vertex

of the star of the trivial rose (1,Y), O

4. Contractibility of K~

We shall show K* is contractible by contracting K min(w), With W =
(51, 82,...,5,), onto K= The homotopy theory result we need is:
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4.1. LEMMA. Let P be a poset of finite height and f : P— P a poset morphism
satisfying

(a) f(§)=§,

() f(F(8)=£(8).

for all E€ P. Then f induces a deformation retraction of the corresponding
simplicial complex K(P) to the simplicial complex K(f(P)).

Proof. This is a special case of the Poset Lemma (Lemma 6.2.1 of [7]) taken
from the paper [13] of Quillen. In an appendix we sketch an elementary direct
proof of this special case. [

We want, then, to define a retraction r: K i, (w)— K * by making r a poset
morphism on the vertices of Kninw). So let &= (g, X) € Kyin(w); We shall define a
collapsing map d*: X — X *so that (d*g, X*) € K% and then set r(£) = (d’g, X*).
In order that we know which edges of X to collapse so that X * is symmetric, we
need an alternative characterisation of symmetric graphs.

Let X be a (reduced) graph, with 7 a maximal tree of X and e, € E(T). Then
we can decompose X relative to T and e, as follows. Deleting {e,, &,} from T
gives two components 7; and 7,. We define, for i=1,2, V,=V(T}) and
E; = {e € E(X); s(e), t(e) € V;}. Then V,, E; constitute the vertex and edge set of a
subgraph X; of X, with T; as a maximal tree. Every edge of X not in X, or X, has
one endpoint in X, and the other in X,. We frequently use this or similar
notation, not always with further explanation, and depict x as in Fig. 3, noting
that m =1 since X is reduced. We call ey, . . ., e,, the companion edges of e, and
say that e, is symmetric (relative to T) if m =1, i.e. e, has a unique companion
edge. Clearly e, is symmetric relative to 7 if and only if é, is as well.

4.2. LEMMA. The reduced graph X is symmetric if and only if for every
maximal tree T and every edge e € E(T), e is symmetric relative to T.
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Proof. Suppose X is symmetric and let T and e,e€ E(T) be given. We
decompose X relative to T and e, and suppose e, has m companion edges, m > 1.

For 1 =j=m, let y,; be the reduced path in T, = T N X, from t(e,) to ¢(e;) and
let y,; be the reduced path in T, =T N X, from s(e;) to s(ep). Then it follows that
0; = (eo, Y1)» €, Y2;) is a circuit and obviously 6;# 6, when j#k, giving a
contradiction.

Conversely suppose for every maximal tree T and e € E(T), e is symmetric
relative to T. Let e, € E(X); if e, is a loop there is nothing to prove. So suppose
e, is not a loop; take a maximal tree T containing e, and let e, be the unique
companion edge for e, in the decomposition of X relative to T and e, (see Fig. 4).

Let v, be the reduced path in T from t(e) to t(e,) and y, the reduced path in T
from s(e;) to s(e). Then y = (e, 1, €;, ¥2) is a circuit containing e,. If e lies in
another circuit 8, then & = (e,, 8;, é;, 8,), where 8, is a reduced path in X, and 6,
a reduced path in X,. (Some of y,, v,, 6,, 6, may be trivial.) Without loss of
generality suppose y,# 8,. Then y, must be non-trivial (otherwise é is not a
circuit) and hence there is an edge e in y, that does not appear in §,.

We consider the decomposition of X relative to 7 and e. By first decomposing
X, relative to T, =T N X and e, we see that the decomposition of X must have
the form given in Fig. 5 with y, = (v, e, v12), e; the unique companion edge for
e, and X,, U X,U {e,y, &} and X,, the corresponding two subgraphs. However
the path 6, begins in X, and ends in X, without ever leaving X,. Consequently
it must involve e which is a contradiction. [J

It actually suffices, in order that X be symmetric, that there exist at least one
maximal tree T whose edges are symmetric (relative to T'). This is the content of
the next lemma.
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Xy o T
T Ty ? 12 m

2
-

4.3. LEMMA.

(i) Let T be a maximal tree in the reduced graph X and let e, be symmetric
relative to T with companion edge e Let T = (T — {e,, &}) U {e}, &}.
Then for any e € E(T), e # ey, &,, e is symmetric relative to T if and only
if e is symmetric relative to T.

(i) Let T and T' be maximal trees of the reduced graph X. Then every edge of

T is symmetric relative to T if and only if every edge of T' is symmetric
relative to T'.

Proof. Let X =X,U X, U {ey, é, €, €} be the decomposition of X relative
to T and e, and let e € E(T), e #e¢,, €,. We may assume e € E(X,) and, possibly
replacing e by ¢, it follows that the partion of X relative to 7 and e has the form
(a) or (b) given in Fig. 6, depending on whether or not t(e;) and t(e;) lies in the

d
-‘?—_( X12 /\

e

~

Fig. 6(b)
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same part of X, determined by decomposing X, relative to T N X, and e. In case
(a), e has precisely the same companion edges relative to T and T while in case
(b), eg is exchanged for é,.

In both cases e is symmetric relative to T if and only if e is symmetric relative
to T.

(ii) Suppose all edges of T are symmetric relative to 7 and let eye E(T) —
E(T'"). Let T be defined as in (i). Then, clearly all edges of T are symmetric
relative to 7. Since ej must lie in E(T'), it follows that |E(T)— E(T")| <
|E(T) — E(T")| and the result follows by induction. [

We are now in a position to describe our retraction r:Kyinw)— K Z Let
& = (g, X) € Kninow) and suppose d: X— Y is a collapsing map, with maximal tree
T, such that (gd),:m,;Y— m,Y is symmetric. We shall define r(&) = (gd* X?*)
where d*: X — X* is the collapsing map obtained by collapsing the unsymmetric
edges of T. Some work, though, is needed to ensure that r is well-defined.

4.4. LEMMA. Let d:X—Y and d':X—Y be collapsing maps with cor-
responding maximal trees T and T' which induce a symmetric CMT
automorphism. If ey€ E(T) — E(T') then e, is symmetric relative to T.

Proof. Suppose that e, has companion edges e,, e€,,...,€,, m=2. Let
d(e,) =x and d(e;) =y, x, y € E(Y). Then, in the notation for CMT automorph-
isms introduced in 3., e; = ¢, and e, =¢,. We consider the corresponding circuits
b.e.C, and b,e,C,. It follows that €, lies in both circuits (see Fig. 7). Moreover,
since d and d’ induce a symmetric CMT automorphism the circuits b.e.é, and
b,e,C, contain only a single edge not in E(T') which must be &,. But then there
exists a path in 7' N X, from t(e,) to t(e,) and a path in T' N X, from s(e,) to
s(e,) from which it follows that T' contains a circuit contradicting the fact that T’
isatree. O

Fig. 7
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Let T be a maximal tree of X. We write E_o(T)={eeE(T); e is
unsymmetric relative to 7}.

4.5. PROPOSITION. Let d:X—Y and d': X— Y be collapsing maps, with
corresponding maximal trees T and T', which induce a symmetric CMT
automorphism. Then E_s(T)=E_x(T').

Proof. We use induction on |E(T) — E(T')|. Obviously if |[E(T) - E(T')|=0
there is nothing to prove. So let e € E(T)— E(T'). By Lemma 4.3, ¢, has a
unique companion edge e, in the decomposition of X relative to T and e,, and
clearly eje E(T') — E(T). If we define T = (T — {e,, &,}) U {e), &} and d by
c?(e(,) = d(ey), d(e) = d(é,) and d(e) =d(e), for e #e,, &, el &, then d is a
collapsing map with maximal tree 7. Furthermore, taking a basepoint in the
subgraph X,, which contains s(e,), of the decomposition of X relative to T and
eo, d and d induce the symmetric Whitehead automorphism given by

H{x”‘yx y=d(e), eekE(X,)—E(T)
1y y=d(e), ecEX,)—E(T) or y=x

where x = d(e{). Then d and d’ induce a symmetric CMT automorphism and so
we are done by induction if we can show that E_s(T)= E_s(T). Since e, is
clearly symmetric relative to T, this follows immediately from Lemma 4.3. O

4.6 LEMMA

(i) Let T be a maximal tree in the reduced graph and let d: X — X be a map
collapsing a single edge e, of T. Let e€ E(T), e+ey, é,. Then e is
symmetric relative to T if and only if d(e) is symmetric relative to
T =d(T).

(i) Let T be a maximal tree in the reduced graph X and d*: X — X * the map
defined by collapsing all the edges in E_x(T). Then X* is symmetric.

Proof. (i) This is essentially obvious. Let ¢, have companion edges
ey, ..., e, relative to T. After contraction of an edge e € E(T) different from e,
€o, clearly e, still has companion edges e, e,, . . ., e,, (see for example Fig. 8).

(ii) By Lemmas 4.3 and 4.2 it suffices to show that every edge of T*=d*(T)
is symmetric relative to T2 This follows immediately from (i) by induction on
|E_=(T)|. O

4.7. THEOREM. KZis contractible.

Proof. We recall that with W = (s, 55, ..., 5,), Kminw) is contractible. We
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define 7: K pinowy— K= as follows. Given & = (g, X) € Kpinw), choose d: X—Y,
with maximal tree 7, such that (dg), is symmetric. Let d*: X — X* collapse the
edges of E_s(T) and set

r(§)=(d%, X*).

By Lemma 4.6, x* is symmetric and it follows that (d%*g, X*) € K* We have to
check that r(&) is independent of the choice of g, X and d.

Solet £E=(g’', X') with d': X'— Y be such that (d'g), is symmetric. Then we
have an isomorphism A : X — X' such that
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commutes. We claim that if T’ is the maximal tree for d’, then E _=(T")=
h(E_5(T)) and hence that & induces an isomorphism 4 %*: X*— X' such that

g

commutes. Now the CMT automorphism (d'hd™"), is symmetric and so, by
Proposition 4.5 applied to dh™' and d’, E_s(T')=E_s(h(T))=h(E_x(T)).
Thus r is well-defined.

Clearly r(§) <& and r(r(§)) = r(§) so that, to apply Lemma 4.1, it remains
only to verify that §, = &, implies r(§,) =r(§,). Suppose we have

X,

%€!

Choose a collapsing map d,: X,— Y so that (d,g,). is symmetric. Then if we
put d,=d,d,, it follows that (d,g,). is symmetric, and r(&,)=(dfg,, X?),
r(&,) = (d3g,, X3). Moreover if T, is the maximal tree for d,, then the maximal

tree T, for d, is just the inverse image of T, with respect to d,,. We are looking
for d3,: X7 — X7 such that

Xt

&’Fg/
Y d
Kgfz

X3
If w is a vertex of X7 then its inverse image under d7 is a subtree 7,, of T}, all
of whose edges are unsymmetric. By Lemma 4.6 the edges of d,,(T,) are
unsymmetric relative to T, and so d5(d,(T,,)) is just a vertex v of X5. We define
di(w)=v. If e is an edge of XT then there is a unique edge e, of X, such that

di(e;) = e and we can define diy(e) = d3(d,,(e,)). It is easy to check that d has
the required properties. This completes the proof:

z
12
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Discussion: We describe here the ideas underlying the definition of K* Let
d:X— Y be a collapsing map with maximal tree 7. Given any edge e, of E(T) let
X,(e) and X,(e) be the two subgraphs of X occurring in the decomposition of X
relative to T and e,. Further define

Ay(eg) = {d(e):e € E(X) — E(T), t(e) € X1(eo)}

and let ¥ = F(X, d) = {Au(ey); eg€ E(T)}. Then it is easy to verify that ¥ is a
complete compatible family of ideal edges of E(Y), i.e. & is a family of subsets of
E(Y) such that:
(i) (ideal edges) for any A € %, (a) there exists x € E(Y) such that x € A and
x¢A, and (b) 2=<|A|=n-2;
(ii) (complete) for any A c E(Y), A € % if and only if its complement A € %;
(iii) (compatible) for any A, Be %, one of ANB, ANB, ANBand AN B is
empty.

All this is to be found in [7] where an elegant converse is provided. Given a
complete compatible family &% of ideal edges there is defined a graph X4 and a
collapsing map dg:Xs— Y from which the original family % is recovered by
applying the process described above. It follows (Proposition 2.2.2 of [7]) that for
any rose p of K, st(p) is homeomorphic to the poset complex of ideal edges of Y.
In particular collapsing an edge pair {e, €} of the graph X corresponds to
discarding the ideal edges A,(e) and A,(€).

Now given d:X—Y with maximal tree T, it is clear that ee E(T) is
symmetric relative to 7 if and only if A,(e) is symmetric in the sense defined in 1.
and then, if e’ is the companion edge of e and x = d(e'), (A4(e), x) is a symmetric
automorphism. The graph X is symmetric if and only if the family %(X, d)
consists entirely of symmetric sets and, for arbitrary X, the map d*: X— X~
corresponds to casting out unsymmetric sets from (X, d). With this interpreta-
tion the fact that the retraction r: K inw)— K ¥ is a poset morphism becomes
transparent.

5. Conclusion

5.1. THEOREM. Let F be free of rank n and let 2O(F) be the group of
symmetric outer automorphisms of F. Then vcd(2O(F))=n — 2.

Proof. We have shown that ZO(F) acts on a connected contractible complex
of dimension n —2, with finite stabilisers and quotient. Hence, see [2],
vcd(2O(F)) =n — 2. The equality is obtained by observing that if F is free on
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{s1, $2, - . - , S} then the automorphisms

{s,- > 55 158,

s, j#
i=1,2,...,n—1 generate a free abelian subgroup of PXA(F) of rank n —1
whose image in 2O(F) has rank n —2. [

5.2. COROLLARY. vcd(ZA(F))=n—1.
Proof. 2A(F) is an extension of the free group Inn F by 2O(F) and hence

ved(ZA(F)) <1 + ved(SO(F))n — 1.

Equality follows since cd({o,, ..., 0,_1))=n—1. O

6. Appendix

We sketch here an elementary proof of Lemma 4.1 suggested to us by Martin
Lustig. We have a poset P of finite height and a poset morphism f:P— P
satisfying f(§) <& and f(f(§)) =f(&) for all § e P. It suffices to show that f,
regarded as a continuous map of the complex K(P), is homotopic to the identity
map.

Step 1. Let Po={E€e P;f(5)# & and { <& implies f({) = }. So the elements
of P, are the “minimal” elements moved by f. Define f,: P— P by

fi(E) = {f(g) ff Eek,

3 if ¢ PR,
The minimality condition ensures that f, is a poset morphism. Moreover f, is
homotopic to idp.

To see this note that a simplex o can meet F, in a most one point, since the
elements of P, are incomparable. If §,<&,<---<§, is a simplex and &, € P,
then, possibly adjoining f(§;), we may assume §;_, = f(§;) and f, restricted to o is
just the contraction of the 1-simplex &,_, <&,.

Step 2. Put P'=P—PF, and define f':P'— P by f'(§)=f(§). Note that
f(P')c P’ since B,Nf(P)=. Then f’ is a poset morphism and satisfies the
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same conditions as f. Furthermore if we define u(P, f) to be the length of the
longest chain §,<§, <---<§&,; such that f(§,) # &, then u(P’, f')<u(P, f) and
so by induction f' is homotopic to idp. However for any § € P, f(§) =f'(fo(&))
whence it follows that if hy: K(P) X I— K(P) is the homotopy from idp to f, and
h':K(P')xI— K(P') is the homotopy from id,. to f’, then h:K(P) X [— K(P)
defined by

ho(z, 2t) 0=
h,(ﬁ](Z), 2t — 1)’ %S

IA

h(z. r)={ %1

t
t

IA

is a homotopy from idp to f, as required.
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