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Cohomological dimension and symmetric automorphisms of a free
group*

Donald J. Collins

0. Introduction

Among a number of récent results concerning the cohomology of groups one
of the most interesting is that obtained by Gersten [10] and Culler and Vogtmann
[7] to the effect that if F is a free group of rank n then its outer automorphism
group Out F has virtual cohomological dimension 2n - 3. In this paper we shall

apply the method of Culler and Vogtmann to the subgroup of Out F consisting of
&quot;symmetric&quot; automorphisms and shall show that this group has virtual cohomological

dimension n — 2.

Let F be free with finite basis S. An automorphism a of F is symmetric if, for
every generator s in 5, the image a(s) is a conjugate of an élément of 5 US&quot;1.

Clearly the symmetric automorphisms form a group which we shall dénote by
XA(F) and we shall write IO(F) for the corresponding image in Out F.

THEOREM // the free group F has rank n then the group IO(F) of
symmetric outer automorphisms has virtual cohomological dimension n —2.

COROLLARY. vcd(IA(F)) n - 1.

Our interest in ZA(F) and IO(F) came originally from our interest in the
automorphism groups of free products. There are reasonably close parallels
between ZA{F) and AutG, where G *G, is a non-trivial free product of
indécomposable groups G,, none of which is infinité cyclic. In particular, if a is

any automorphism of G, then the image a(Gt) of any factor G, is a conjugate of
some factor G, isomorphic to G,. In [5] we show that if G * G, is a free product
of n finite groups then

(i) Aut G is virtually torsion-free;
(ii) vcd(Aut G

*The author gratefully acknowledges support frorn the Ruhr-Universitât, Bochum and the
Alexander von Humboldt-Foundation during the préparation of this paper.
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It seems reasonable to conjecture that in fact vcd(Aut G) n - 1.

Another reason for studying ZA(F) stems from the fact that the braid group
Bn (see Birman [3]) is the subgroup of ZA(F) consisting of ail automorphisms
fixing the product s{s2 • • • sn, where F has basis S {su s2, • • sn}. It is shown
in [3] that Bn has a subgroup Pn (the group of pure braids) of finite index which
can be expressed as a semidirect product Pn (/„ xi/&gt;„_,, with Un a finitely
generated free group. By a theorem of Feldman [8] (see p. 70 of Bieri [2]) it
follows that

cd(Pn) cd(Un) + cd(Pn^) cd{Pn.x) + 1.

Inductively cd(Pn_]) n-2 and thus cd(Bn) n-l. So certainly, if F has

rankn, vcd(IA(F))^n-l.
The starting point of our belief that the method of [7] could be applied to

IA(F) and IO(F) was the observation that the well-known theorem of
Whitehead [14] about équivalence of éléments under automorphisms of F remains
valid when the domain of discussion is restricted to symmetric automorphisms.
(The proof of this is entirely straightforward since ail that has to be done is to
follow the proof of Whitehead&apos;s theorem as in, for example, [11] and add the
word symmetric at appropriate places. Indeed the argument is very much simpler
since many cases do not occur. Now the main technical step in the proof of
Whitehead&apos;s theorem — what we hâve called Peak Réduction in [5] and is called
the Higgins-Lyndon Lemma in [7] - is also the basic ingrédient of Culler and
Vogtmann&apos;s argument in [7]. They obtain vcd(OutF) by constructing a con-
nected contractible simplicial complex K of dimension 2n - 3 on which Out F
acts. By introducing a condition of symmetry on vertices of K, we pick out a

subcomplex A^of dimension n-2on which IO(F) acts.

The hardest part of the argument is to show that Ks is contractible. We are

grateful to Marc Culler and Karen Vogtmann for discussions from which it
emerged that it might be easier to apply the results obtained in [7] rather then

slavishly copy the proof. We are also grateful to Martin Lustig for explaining to
us how to set about proving the &quot;Poset Lemma&quot; of [7].

1. Symmetric automorphisms

Let F be free with finite basis 5. Then a e Aut F is symmetric if, for every
se S, a(s) w(s)~ïJï(s)w(s)f where jt(s)eSUS~\ Clearly the symmetric
automorphisms form a group J£A(F). If jï(s) s, for every s eS, then we call a pure
symmetric. We say a is a permutation automorphism if a(s) n(s), for every
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s € S. We call oc a symmetric Nielsen automorphism if there exist x e S and
yeSUS&apos;1 such that

y~lxy ifs—x
s otherwise

1.1. PROPOSITION
(i) The permutation automorphisms form afinite subgroup £2(F) of ZA{F).
(ii) The pure symmetric automorphisms form a torsion -free normal subgroup

PXA(F) of ZA(F) which is generated by the symmetric Nielsen

automorphisms.
(iii) IA(F) is the semidirect product PZA(F) xiO(F).

Proof (i) This is trivial.

(ii) Obviously PZA(F) is a group and is torsion-free by the theorem of
Baumslag-Taylor [1], since it lies in the kernel of the natural map from Aut F to
GL(n, Z). If a(s) w(s)~ljr(s)w(s), then

(TT ftf^T il ç i rrrr 7T I \A) ¦ TT&apos;i ç î i ï Ç 7T ¦ \AJ I Tf ç 1 i iJb Ut/t H J I ^^ JV 1 W\ JL\d tij tJJL \ \ \ //)

which yields normality. The fact that PIA(F) is generated by symmetric Nielsen

automorphisms follows from a standard cancellation argument (see Humphries
[12] for an exhaustive account).

A subset A c5US&quot;1 is symmetric if there is a unique distinguished élément
xeSUS~l such that xeA and x~l$A. Thus if y eSUS&quot;1 and y^x±l, then
either y, y~leA or y, y~l$A. Clearly A is symmetric if and only if its

complément À in SUS&quot;1 is symmetric. Given any symmetric set A with
distinguished élément x there is defined a corresponding Whitehead automorphism,

denoted by (A, x)&gt; and defined by

x~xsx ifs,s~leA
s otherwise.

1.2. PROPOSITION (Peak Réduction Lemma). Let u, v and w be n-tuples

of cyclic words of F and let a and x be symmetric Whitehead automorphisms such

that o(w) u and x(w) v. Suppose that

(i) |u|&lt;|*v|&gt;|i;|;

(ii) M&lt;|*v| or M&gt;|i/|.
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Then there exist symmetric Whitehead automorphisms d{. 62, • • 0r such that

o~lx Qfir-x •-01and\ei-- 0i(k)I &lt; M, i 1, 2, r - 1. D

We shall omit the proof since the lemma is not necessary for the subséquent

argument and, as noted earlier, is quite easily derived from, say, [11]. We do,
however, record the fact that the lemma implies, by the same kind of argument as

in the gênerai case, that there is an algorithm to détermine of any two n-tuples of
cyclic words (or indeed linear words) whether or not they are équivalent under a

symmetric automorphism.

2. Culler-Vogtmann revisited

We review hère the main ideas of Culler-Vogtmann [7], and hâve en-
deavoured to make our account as self-contained as possible. Our basic viewpoint
is combinatorial but, so as not to diverge too for from [7], we provide a

topological gloss. A graph, therefore, is a connected one-dimensional CW-
complex with vertices (0-cells) and edges (1-cells). Combinatorially, edges corne
in oriented pairs with è (or e~l) the reverse of e. If e is an edge it runs from its

source vertex s(e) to its target vertex t(e). We write V(X) for the vertex set and

E(X) for the set of (oriented) edges of the graph X and deg (v) for the degree (or
valency) of the vertex v. Ail graphs considered will be assumed to be reduced i.e.
will be assumed

(i) not homotopy équivalent to a proper subgraph;
(ii) to hâve no vertices of degree less than three;
(iii) to hâve no separating edges.

We fix the graph Y consisting of a single vertex and n loops, and identify the free

group F with K\Y&gt; regarding the set SUS&quot;1 of oriented edges of Y as an
&quot;oriented basis&quot; for F. A marking on a graph X is a homotopy équivalence
g : Y—» X (combinatorially g assigns to the edges of Y closed paths at a basepoint
so that the images generate nxX) and two markings g : Y-* X and g&apos; : Y-* X1 are

équivalent if there exists a cellular homeomorphism h:X-*Xf (combinatorially
an automorphism) such that the diagram commutes up to free homotopy. We
hâve an équivalence relation and the class of g : Y—&gt; X is denoted by (g, X).

X

y
Y

Kl
X&apos;
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The vertices of the simplicial complex K are the équivalence classes (g, X) of
markings. A collapsing map d\X-^&gt;X&apos; is a cellular homotopy équivalence which
collapses one or more edges of X. Then a &amp;-simplex of K is a (k + l)-tuple
(?o&gt; li&gt; • • • &gt; I*) of vertices such that there is a représentative g^.Y-^X, of §,

and a collapsing map dj\X}-+ X}-{, 0&lt;i&lt;k, 1 &lt;)&lt;/:, such that the diagram
below is homotopy commutative. An Euler characteristic argument shows that
dim K 2n — 3.

It is convenient hère to stress a point only briefly mentioned in [7]. Suppose
§o&gt; §i&gt; §2 are vertices of K such that (|?0, ^j) and (Ç,, Ç2) are 1-simplices. Then
we can form the diagram below where Ç2~ (82y X2), Ç\ (g\, Xl) (g[, X[),
lo^Ofo»^))» d2 and dx are coilapsing maps and h is an isomorphism. The

xr d2 V A
^ Y&apos; dl ^ YX2 » Ai &gt; Ai &gt; Ao

Y

composite dxhd2 must also be a collapsing map, and so {Ço, ^2} is a 1-simpiex.
Thus, as noted in [7], K defines a category, where an arrow is defined by a

collapsing map, and clearly the vertices of K in fact form a partially ordered set

(poset) with respect to the relation:

li &lt; £2 if {li, £2} is a 1-simplex.

We record this formally.

2.1. LEMMA. The vertices of K form a poset of finite height with %\&lt;%2 if
and only if |2 can be &quot;collapsed&quot; to 1^

There is a natural right action of Aut F on K given as follows. Any a e Aut F
can be regarded as a cellular homotopy équivalence a\Y-*Y and so given
g : y-» Jf we obtain

«] yù
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Clearly inner automorphisms act trivially, by the définition of équivalence, and so

Out F acts on K.
A rosé p is an équivalence class (a, Y), with a e Aut F. Given any tuple W of

cyclic words of F (i.e. conjugacy classes of F) there is defined on the set of ail
rosés a norm ||-||w given by ||p||w %weW k(w)|, where p (a, Y) and \a(w)\
is the length of the cyclic word ar(vv) (This is just Définition 1.3.2 of [4].) Given
W, write Kmm(w) ^Jst(p), where st(p) dénotes the star of p and the union is

over ail rosés of minimal norm. The main resuit of [7] is the following.

2.2. THEOREM. [7] (i) For any W, K is contractible to Kmm(W).

(ii) There exists W such that Kmm(W) is contractible and hence K is
contractible.

We note that according to [7], Gersten [10] also proves that K is contractible
but by somewhat différent methods with which we are not familiar.

3. Symmetric graphs and the complex K1

We call a graph X symmetric if every edge of X lies in a unique circuit (hère
we identify cyclic rearrangements of a closed path with one another.)

3.1. LEMMA. // X is a symmetric reduced graph, then deg (v) ^ 4, for every
vertex v of X.

Proof Suppose that deg(u) 3. If some loop is incident to v then the

remaining edge incident to v will be a separating edge, contradicting reducedness.
So suppose no edge incident to v is a loop. Then we hâve the situation of Fig. 1.

The unique circuit y containing e must hâve the form, say, y (e, ëx). Now
e2 does not lie in y or y since y is a circuit and so the unique circuit ô containing
e2 is distinct from y and y. But clearly any circuit containing e2 must contain ë or
ê\ which is a contradiction.

Fig 1
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3.2. LEMMA. If X is a symmetric reduced graph with fundamental group of
rank n, then \V(X)\&lt;n- 1.

Proof. We hâve HveV(x)deg(v) 2(n + \V(X)\-l) from the &quot;handshaking

lemma&quot; for graphs. Hence

4 \V(X)\ &lt; 2n + 2 \V(X)\ - 2. D

We are now ready to define Ksand establish some of its easier properties. Let W
be the n-tuple (slf. sn) of cyclic words. Then a rosé p (or, F) is of minimal
norm with respect to || — ||w if and only if a is a symmetric automorphism since

Er=iMs,)|=n if and only if \a(s,)\ l, l^i^n. Then Jfmul(Hr) Up€«^(p)
where 01 is the set of ail rosés (or, F) such that a is symmetric. (Since Aut Y just
consists of suitable permutations of E(Y)f every or in a given such rosé is

symmetric.) A vertex £ lies in Kmin(W) if and only if § (g, A&quot;) and there exists a

collapsing map d : .Y—» Y such that dg : nx Y-* nx Y is symmetric. Qearly Xmm(vv) is

invariant under the action of ZA(F).
Now the dimension of Kmm(W) is still 2n - 3 and we need to replace Kmxn{W) by

a subcomplex of smaller dimension. This is achieved by imposing the condition of
symmetry defined above. Namely, we define KxXo be the subcomplex of Kmm(w)
generated by ail vertices £ (g, X) with X symmetric. A discussion of the
motivation for the définition of AT^is given at the end of 4.

3.3. PROPOSITION, dim Ks n - 2.

Proof. This is immédiate from Lemma 3.2, since it is easy to construct a

symmetric reduced graph with fundamental group of rank n and having (n — 1)
vertices.

Certain automorphisms introduced by Gersten [9] in looking at fixed-point
subgroups play a rôle in determining the virtual cohomological dimension of
Out F. Thèse are the &quot;change of maximal tree&quot; or CMT automorphisms which

may be described as follows.
Let d:X-^&gt; Y be a collapsing map that collapses the maximal tree T and let X

hâve a given basepoint v. For each edge x of E(Y) there is a unique edge ex of X
mapped to x by d. Further there are unique paths in T from v to s(ex) and t{ex)
which may be written, respectively, in the form axbx and axcx with ax of maximal
length. The maximality implies that bxexcx is a circuit. We define d~l:Y-*X by
d~l \x*-*axbxexcxâx\ then d~x is a canonical homotopy inverse for d.

Now let d.X-^Y and d1 \X—&gt;Y be collapsing maps with corresponding
maximal trees T and T&apos; respectively. The induced automorphism d*d*l is a CMT
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Fig 2

automorphism and îs calculated by evaluating d&apos; on the closed paths d~1(x),
xeS

3 4 PROPOSITION Ks is connectée

Proof It suffices, by Proposition 1 1, to show that if a and &lt;x&apos; are symmetnc
automorphisms and a&apos; ooc, where a îs a symmetnc Nielsen automorphism, then
there îs a path in X1 from the rosé p (a,Y) to the rosé p&apos; (#&apos;, Y) So

suppose a(x) y~lxy and o(s) s for se S, s^x Then with d X-+Y and
d&apos; X-+ Y defined by the diagrams in Fig 2 we obtam a d&apos;^d^ and hence the
vertex (d~1a, X) e K2is adjacent to p and p&apos;

3 5 PROPOSITION ZA{F) acts on K* with fimte stabilisers and finite
quotient

Proof This îs proved in exactly the same way as the corresponding statement
in [7] If a stabilises (g, X) then the diagram below yields an injection oc^-^h from
Stab(g,Z) to AutZ

Y ^-*X

The quotient îs finite smce every vertex îs équivalent under XA(F) to a vertex
of the star of the trivial rosé (1, Y) D

4. Contractibility of Kz

We shall show Kx îs contractible by contracting Kmin(W), with W
(su si&gt;

&gt; sn), onto Kz The homotopy theory resuit we need îs
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4.1. LEMMA. Let P be a poset offinite height andf:P—*P aposet morphism
satisfying

(a)/(§)*£
(b)/(/(§))=/(£)•

for ail § e P. Then f induces a déformation retraction of the corresponding

simplicial complex K(P) to the simplicial complex K(f(P)).

Proof This is a spécial case of the Poset Lemma (Lemma 6.2.1 of [7]) taken

from the paper [13] of Quillen. In an appendix we sketch an elementary direct

proof of this spécial case.

We want, then, to define a retraction r:KmmiW)*-*Ks by making r a poset
morphism on the vertices of Kmm(wy So let § (g, X) e Kmm{W); we shall define a

collapsing map dz:X-*Xzso that (dxgy Xz) e tfzand then set r(§) {d*g, Xz).
In order that we know which edges of X to collapse so that Xs is symmetric, we
need an alternative characterisation of symmetric graphs.

Let A&quot; be a (reduced) graph, with T a maximal tree of X and e{) e E(T). Then

we can décompose X relative to T and e() as follows. Deleting {e(), ê()} from T
gives two components T} and T2. We define, for i l, 2, Vt V(Tt) and

Et {ee E(X); s(e), t(e) eVt}. Then Vn Et constitute the vertex and edge set of a

subgraph Xt of X, with T, as a maximal tree. Every edge of X not in Xx or X2 has

one endpoint in Xx and the other in X2. We frequently use this or similar
notation, not always with further explanation, and depict x as in Fig. 3, noting
that m ^ 1 since X is reduced. We call eu em the companion edges of e() and

say that e0 is symmetric (relative to T) if m — 1, i.e. e{) has a unique companion
edge. Clearly e() is symmetric relative to T if and only if ê() is as well.

4.2. LEMMA. The reduced graph X is symmetric if and only if for every
maximal tree T and every edge e e E(T), e is symmetric relative to T.

Fig. 3
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Proof. Suppose X is symmetric and let T and eoeE(T) be given. We

décompose X relative to T and e{) and suppose e0 has m companion edges, m &gt; 1.

For 1 &lt; / &lt; m, let yXj be the reduced path in Tx T H Xx from t(eQ) to f(ey) and

let y2/ be the reduced path in T2= T C\X2 from s(e}) to s(e0). Then it follows that

àj {eo, Y\j&gt; ëj&gt; Ï2j) is a circuit and obviously ôji=ôk when /=£&amp;, giving a

contradiction.
Conversely suppose for every maximal tree T and eeE(T), e is symmetric

relative to T. Let eoe E(X); if e0 is a loop there is nothing to prove. So suppose
e0 is not a loop; take a maximal tree T containing e0 and let ex be the unique
companion edge for eQ in the décomposition of X relative to T and e{) (see Fig. 4).

Let Y\ be the reduced path in T from t(e) to t(e}) and y2 the reduced path in T
from s(ei) to s(e). Then y (e0, yuëu y2) is a circuit containing e0. If e lies in
another circuit ô, then ô (e0, ôi, êi, &lt;52), where Ô! is a reduced path in Xx and &lt;52

a reduced path in X2. (Some of y,, y2, 6,, &lt;52 may be trivial.) Without loss of
generality suppose Yi^^x- Then yx must be non-trivial (otherwise ô is not a

circuit) and hence there is an edge e in yx that does not appear in ôx.

We consider the décomposition of X relative to T and e. By first decomposing
Xx relative to TX THX and e, we see that the décomposition of X must hâve

the form given in Fig. 5 with yx (ytI, e, y12), ^ the unique companion edge for
e, and XXXUX2U {e{), ê{)} and Z12 the corresponding two subgraphs. However
the path ôx begins in Xxx and ends in XX2 without ever leaving Xx. Consequently
it must invoive e which is a contradiction.

It actually suffices, in order that X be symmetric, that there exist at least one
maximal tree T whose edges are symmetric (relative to T). This is the content of
the next lemma.
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Flg. 5

4.3. LEMMA.
(i) Let T be a maximal tree in the reduced graph X and let e0 be symmetric

relative to T with companion edge e&apos;o. Let t (T- {e0, ê0}) U {e^, ë&apos;o}.

Then for any e e E(T), e ^ e0, ë0, e is symmetric relative to T if and only
if e is symmetric relative to t.

(ii) Let T and T&apos; be maximal trees of the reduced graph X. Then every edge of
T is symmetric relative to T if and only if every edge of T&apos; is symmetric
relative to T&apos;.

Proof Let X~XlUX2U {e0, ë0, e&apos;Qi êo} be the décomposition of X relative
to T and e0, and let e e E(T), e =t eQ, ë0. We may assume e e E{XX) and, possibly
replacing e by ë, it follows that the partion of X relative to T and e has the form
(a) or (b) given in Fig. 6, depending on whether or not t(e0) and t{e&apos;o) lies in the

Fig. 6(b)
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same part of Xx determined by decomposing X{ relative to T DX{ and e. In case

(a), e has precisely the same companion edges relative to T and t while in case

(b), e&apos;o is exchanged for ë0.

In both cases e is symmetric relative to T if and only if e is symmetric relative
tôt.

(ii) Suppose ail edges of T are symmetric relative to T and let eoeE(T)-
E(T&apos;). Let t be defined as in (i). Then, clearly ail edges of t are symmetric
relative to t. Since eô must lie in E(T&apos;), it follows that \E{t) - E{T&apos;)\ &lt;

\E(T) — E(T&apos;)\ and the resuit follows by induction.

We are now in a position to describe our retraction r:Kmm(&lt;W)—* Kz. Let
£ (g, X) e Kmm(W) and suppose d\X-* y is a collapsing map, with maximal tree
T, such that (gd)*\7ilY-*nxY is symmetric. We shall define r(§) (gds, Xe)
where dz:X-* A^is the collapsing map obtained by collapsing the unsymmetric
edges of T. Some work, though, is needed to ensure that r is well-defined.

4.4. LEMMA. Let d:X-^Y and d&apos;:X-+Y be collapsing maps with cor-
responding maximal trees T and T&apos; which induce a symmetric CMT
automorphism. If e0 e E(T) — E(T&apos;) then e0 is symmetric relative to T.

Proof. Suppose that e0 has companion edges eu e2, em, m&gt;2. Let
d(e1) =x and d(e2)=y&gt; x, y e E(Y). Then, in the notation for CMT automorphisms

introduced in 3., ex — ex and e2 ey. We consider the corresponding circuits
bxexcx and byeycy. It follows that ë0 lies in both circuits (see Fig. 7). Moreover,
since d and d&apos; induce a symmetric CMT automorphism the circuits bxexêx and

byeycy contain only a single edge not in E(Tf) which must be ë0. But then there
exists a path in T&apos; f\Xx from t(ex) to t(ey) and a path in Tf C\X2 from s(ey) to
s(ex) from which it follows that T&apos; contains a circuit contradicting the fact that T&apos;

is a tree.

Fig. 7
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Let T be a maximal tree of X. We write E^T) {e e E(T); e is

unsymmetric relative to T}.

4.5. PROPOSITION. Let d:X-&gt; Y and d&apos; :X-&gt; Y be collapsing maps, with

corresponding maximal trees T and T&apos;, which induce a symmetric CMT
automorphism. Then E-

Proof. We use induction on \E(T) - E{T% Obviously if \E{T) - E(T&apos;)\ 0

there is nothing to prove. So let eoe E{T) — E(T&apos;). By Lemma 4.3, e{) has a

unique companion edge e&apos;{) in the décomposition of X relative to T and e0, and

clearly e&apos;oeE(T&apos;)- E(T). If we define f (T- {&lt;?«„ ê0}) U {e(&apos;&gt;, ê&lt;&apos;,} and &lt;î by
â(eo) d(êl)), â(el)) - d(ê{)) and &lt;?(e) d(e), for e^e0, ê0, e^, ê&apos;{}, then ^ is a

collapsing map with maximal tree t. Furthermore, taking a basepoint in the

subgraph X2, which contains s(e0), of the décomposition of X relative to T and

e0, d and â induce the symmetric Whitehead automorphism given by

^ (x~lyx y d(e), e e E{XX) - E{T)
y \y y d(e), eeE(X2)-E(T) or y=x

where x d{e&apos;ç). Then â and d&apos; induce a symmetric CMT automorphism and so

we are done by induction if we can show that £_x(r) E-S(T). Since e&apos;{) is

clearly symmetric relative to f, this follows immediately from Lemma 4.3.

4.6 LEMMA
(i) Let T be a maximal tree in the reduced graph and let â:X-~* X be a map

collapsing a single edge e() of T. Let eeE(T), e¥^ei)} ë{). Then e is

symmetric relative to T if and only if â(e) is symmetric relative to

(ii) Let T be a maximal tree in the reduced graph X and dz:X-&gt; Xz the map
defined by collapsing ail the edges in E_S(T). Then X* is symmetric.

Proof. (i) This is essentially obvious. Let e() hâve companion edges

eu em relative to T. After contraction of an edge e e E(T) différent from e(),

ëOf clearly e0 still has companion edges eu e2, em (see for example Fig. 8).
(ii) By Lemmas 4.3 and 4.2 it suffices to show that every edge of Ts d2:(T)

is symmetric relative to Tz. This follows immediately from (i) by induction on
\E-z(T)\. D

4.7. THEOREM. Ks is contractible.

Proof We recall that with W (sus2,..., sm), Kmm{W) is contractible. We
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Fig. 8

define r : Kmin(W)-+ Kz as follows. Given § (g, X) e Kmm(W), choose d.X-* Y,
with maximal tree T, such that (dg)* is symmetric. Let ds:X—^Jif^collapse the
edges of E-Z(T) and set

By Lemma 4.6, xx is symmetric and it follows that (dzg, Jfx) e Kr. We hâve to
check that r(£) is independent of the choice of g, X and d.

So let | (g&apos;, Z&apos;) with d&apos; : A&quot;-» F be such that (d&apos;g)* is symmetric. Then we
hâve an isomorphism h:X-&gt;X&apos; such that

y
\l

X&apos;
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commutes. We claim that if T&apos; is the maximal tree for d&apos;, then E-E(T&apos;)

h(E-.s(T)) and hence that h induces an isomorphism hz\Xz—&gt;X&apos;zsuch that

X

commutes. Now the CMT automorphism {d&apos;hd~1)* is symmetric and so, by
Proposition 4.5 applied to dh~l and d\ E^{T&apos;) E_s(h(T)) h(E_Y{T)).
Thus r is well-defined.

Clearly r(£)^£ and r(r{%)) r(£) so that, to apply Lemma 4.1, it remains
only to verify that %x ^ £2 implies r(%x) ^ r(£2). Suppose we hâve

y

Choose a collapsing map d2:X2-&gt; Y so that (d2g2)* is symmetric. Then if we
put dx~d2dx2 it follows that (dxgx)* is symmetric, and r(%x) (dfgx, Xf),
r(%2) ~ (^f?2&gt; ^f)- Moreover if T2 is the maximal tree for d2i then the maximal
tree Tx for di is just the inverse image of T2 with respect to dX2. We are looking
for df2 : such that

Jfî

If w is a vertex of Jff then its inverse image under df is a subtree 7^ of Tx, ail
of whose edges are unsymmetric. By Lemma 4.6 the edges of dx2{Tw) are
unsymmetric relative to T2 and so d2(dX2(Tw)) is just a vertex v of X2. We define
df2(w) v. If e is an edge of Xf then there is a unique edge ex of Xx such that
df(^i) e and we can define df2(e) df(rfi2(
the required properties. This complètes the proof:

It is easy to check that df2 has
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Discussion: We describe hère the ideas underlying the définition of Kz. Let
d:X-+ Y be a collapsing map with maximal tree T. Given any edge e0 of E(T) let
Xx{e) and X2{e) be the two subgraphs of X occurring in the décomposition of X
relative to T and e0. Further define

Ad(e0) {d(e) : e e E(X) - E(T)f t(e) e Xl(e0)}

and let 9 9(X, d) {Ad(e0); eoeE(T)}. Then it is easy to verify that 9 is a

complète compatible family of idéal edges of E(Y), i.e. 9 is a family of subsets of
E(Y) such that:

(i) (idéal edges) for any ief, (a) there exists x e E(Y) such that x e A and

x$A, and(b)2&lt;|A|&lt;n-2;
(ii) (complète) for any A c E{Y), A e 9 if and only if its complément Àe 9;
(iii) (compatible) for zny A, B e 9, one of A D B, A D B, À n B and À (1Ë is

empty.
Ail this is to be found in [7] where an élégant converse is provided. Given a

complète compatible family 9 of idéal edges there is defined a graph X&amp; and a

collapsing map d&amp; : X&amp; —» Y from which the original family 9 is recovered by

applying the process described above. It foliows (Proposition 2.2.2 of [7]) that for
any rosé p of K, st{p) is homeomorphic to the poset complex of idéal edges of Y.

In particular collapsing an edge pair {e, e) of the graph X corresponds to
discarding the idéal edges Ad(e) and Ad(ê).

Now given d:X—*Y with maximal tree T&gt; it is clear that eeE(T) is

symmetric relative to T if and only if Ad{e) is symmetric in the sensé defined in 1.

and then, if e&apos; is the companion edge of e and x d(e&apos;), (Ad(e)f x) is a symmetric
automorphism. The graph X is symmetric if and only if the family 3F(X, d)
consists entirely of symmetric sets and, for arbitrary X, the map dz\X-*Xz
corresponds to casting out unsymmetric sets from 3F(X, d). With this interprétation

the fact that the retraction r:Kmin(w)-^&gt; K1 is a poset morphism becomes

transparent.

5. Conclusion

5.1. THEOREM. Let F be free of rank n and let IO(F) be the group of
symmetric outer automorphisms of F. Then vcdÇEO{F)) — n — 2.

Proof We hâve shown that IO(F) acts on a connected contractible complex
of dimension n-2, with finite stabilisers and quotient. Hence, see [2],
vcd(2O(F)) &lt; « — 2. The equality is obtained by observing that if F is free on
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{su s2,..., sn} then the automorphisms

i 1, 2,. n - 1 generate a free abelian subgroup of PIA(F) of rank n - 1

whose image in 2X)(F) has rank n — 2.

5.2. COROLLARY. ucd(IL4(F)) n - 1.

Proo/. J£4(F) is an extension of the free group Inn F by IO(F) and hence

vcd(ZA(F)) &lt; 1 + vcd(IO(F))n - 1.

Equality follows since cd((au #„_,)) n - 1.

6. Appendix

We sketch hère an elementary proof of Lemma 4.1 suggested to us by Martin
Lustig. We hâve a poset P of finite height and a poset morphism f:P—&gt;P

satisfying /(£)^£ and /(/(?))=/(?) for ail £eP. It suffices to show that /,
regarded as a continuous map of the complex K(P), is homotopic to the identity
map.

Step 1. Let Po {£ e F;/(^) ^ £ and £ &lt; § implies/(Ç) £}. So the éléments

of Po are the &quot;minimal&quot; éléments moved by /. Define f():P-&gt;Pby

The minimality condition ensures that ^, is a poset morphism. Moreover f{) is

homotopic to idP.

To see this note that a simplex a can meet P() in a most one point, since the
éléments of Po are incomparable. If §()&lt;§!&lt;•••&lt;§* is a simplex and §, e P()

then, possibly adjoining/(§,), we may assume £,_, =/(^#) and/, restricted to a is

just the contraction of the 1-simplex £,_, &lt; £,.

2. Put P&apos; P-P{) and define f&apos;:P&apos;-+P by /&apos;(§)=/(§)• Note that
f(P&apos;)cP&apos; since Pon/(P) 0. Then /&apos; is a poset morphism and satisfies the
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same conditions as /. Furthermore if we define ju(P, /) to be the length of the

longest chain §„ &lt; |, &lt; • • • &lt; Çk such that /(§0) =é £o then ^(P&apos;, /&apos;) &lt; /*(P, /) and

so by induction /&apos; îs homotopic to idP. However for any § e P, /(§) =/&apos;(/o(£))

whence ît follows that if h0: K(P) x /-» K(P) îs the homotopy from idP to f0 and
A&apos; : AT(P&apos;) x /-+ *:(/&gt;&apos;) is the homotopy from idp to /&apos;, then h : K(P) x /-
defined by

is a homotopy from idP to /, as required
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