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Ein Tauber-Satz mit Restglied fur die Laplace-Transformation

Albert Stadler

1. Einleitung

In dieser Arbeit wird eine Verallgemeinerung des nachstehenden klassischen
Satzes von Wiener-Ikehara [10], [21] bewiesen:

Sei A(x) eine in x &gt;0 definierte, nicht négative und nicht fallende Funktion
derart, dass das Intégral

r1= A(x)f(s)= A(x)e~xsdx&gt;

fur cr&gt;ar&gt;0 konvergiert. Existiert nun eine réelle Zahl a so, dass f(s) —

al {s — oc) regulâr ist ina&gt;ûf, so gilt:

AiO-ae&quot;, f-»oo. (1)

Die Verallgemeinerung zielt in zwei Richtungen. Erstens wird die Singularitàt
a/(s — a) ersetzt durch eine Funktion fo(s), die Laplace-Transformierte einer
Funktion A0(x) sein soll, und zweitens wird unter gewissen Annahmen beziiglich
Regularitàtseigenschaften und Wachstumsverhalten der Funktion g(s)=f(s) —

fo(s) eine Abschàtzung fur \A(x)-A0(x)\ nach oben gegeben (in Verschàrfung
der asymptotischen Aussage (1)).

Der Tauber-Satz wird schliesslich verwendet fur die Bestimmung des Haupt-
und Resttermes fur

S d(n), 2 An), 2 Mn), c(n), p(n),
n^x n^x n-&amp;x

wo d{h) die Anzahl der positiven Teiler von n, t(w) die Ramanujansche
Funktion, A(n) die von Mangoldtsche Funktion, p(n) die Anzahl der Partitionen
von n und c(n) (bis auf einen konstanten Faktor) den (n - l)-ten
Fourierkoeffizienten der absoluten Invarianten /(r) bezeichnet. Es zeigt sich,
dass die durch den Tauber-Satz erzielten Restglieder nur unwesentlich schwâcher
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sind als jene Restglieder, die man durch die klassischen Methoden der Funktio-
nentheorie erhâlt ([1], [2], [3], [4]).

Dièse Arbeit ist eine ûberarbeitete Fassung meiner Dissertation, die ich bei
Prof. K. Chandrasekharan geschrieben habe. Ich môchte ihm und seinem
frûheren Assistenten Dr. P. Thurnheer danken fur Ermutigungen, Anregungen
und wertvolle Hinweise.

2. Resultate

SATZ 1. Sei A(x) eine fiir x &gt;0 definierte, nicht négative und nicht fattende
Funktion. Dos Intégral

r A(x)e~~xsdxy

besitze die Konvergenzabszisse oc, 0 ^ oc &lt; &lt;», und konvergiere fiir o &gt; a nach

f(s). Sei A0(x) eine reellwertige, messbare Funktion mit folgenden Eigenschaften:

(i)./o(s)=J A0(x)e~xs dx, s o + it, besitze die Abszisse der absoluten

Konvergenz a.
(ii) Es gibt eine fiir x^O definierte, nicht négative und messbare Funktion

B0(x) mit folgenden Eigenschaften:
(a) \Ao(y)\&lt;Bo(y)fûralley&gt;0.
(b) Es gibt eine absolute Konstante M &gt;0 so, dass \A0(y + h) — A0(y)\ ^

Mx \h\ B0(y) fiir ailey&gt;4 und aile hf -2&lt;h&lt;2.

(c) Es gibt absolute Konstanten M2^l, (û&gt;oc so, dass B0(y + h)&lt;

M2BQ{y)e&lt;ûm fur aile y ^4 und aile h, h&gt;l-y.
(d) Po B0(y)dy&lt; oo.

(e) Bo(y)&gt;l, y&gt;4.

Sei fiir ein festes c aus dem offenen Intervall (0, 1/(2(2 + co 4- a)))

h(x) e-^Xx € R), fi(t) f h(x)elxtdx
J-e~&apos;2/(4c)

(t e R).
J—oo C

Seien Tf AeR, A&gt;T&gt;1. 5e/ g(^)=/(5)-/0(5). Dann wr g(s) analytisch in
Re 5 &gt; or, wra/ e,y g/ft /wr y^4, dr&lt;cr&lt;ar + l:

\A(y) -A0(y)\ s M, - fio^) + M3^(r)^Bo(y) + e^J A(0 |g(a + it)\ dtj

\fh(j)e&quot;^g{o + it)dt\,max
x=±T/X
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wo M3 eine positive Konstante ist, die unabhângig ist von y, À, T und a. Genùgt

g (s) zusàtzlich der nachstehenden

Voraussetzung (*):

(i) g (s) besitzt eine analytische Fortsetzung nach Res&gt;f}y wo fi^a, die
zudem stetig ist in Re s ^ /3.

(ii) Zu jedem e&gt;0 gibt es eine Konstante M(e)&gt;0 so, dass \g(
M{e)eet2y gleichmàssig in p &lt; a &lt; oc + 1, so gilt fur y ^ 4:

\A(y)-A0(y)\&lt;M4jB0(y) + MMT)(B0(y) + e*&gt;)

+ MAe^ max
I f h(P ~a + lt)e«^g(p + u) dt

x=±T/k |J_oc \ IA /

wo M4 eine positive Konstante istf die unabhângig ist von y, À und T. Aus Satz 1

kônnen folgende Korollare abgeleitet werden :

KOROLLAR 1. Seien A(x), f(s), ocy h(x), fi{t) wie in Satz 1 definiert, wobei
c im Intervall (0, l/(4ar + 6)) fest gewàhlt sei. Man seize voraus, dass f(s) eine

meromorphe Fortsetzung nach Re s &gt; )3 ()8 &lt; a) besitzt mit endlich vielen Polen

sif s2, sq in /3 &lt; Re s ^ a. Der Hauptteil von f(s) in s; (1 &lt;y &lt; q) sei

Man kann annehmen, dass /3 &lt; Re sq &lt; Re sq^.l &lt; • • • &lt; Re st &lt; a ist. Man setzt

q a&apos;

und nimmt an, dass g(s) Voraussetzung (*) in Satz 1 erfullt. Seien T, keU,
A &gt; T &gt; 1. Dann gilt fiir y&gt;A:

max
1 T h(P ~

x=±T/k
T h(P ~ &quot; + U))e«y+X&gt;g{p -f it) dt
_oo \ IA /
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wo M5 eine positive Konstante ist, die unabhàngig ist von y, A, T, und wo
L maxReSj=aaj die um eins verminderte hôchste Ordnung derjenigen Pôle von f
ist, deren Realteil =ar ist.

KOROLLAR 2. Seien A(x), f(s), oc, h(x), fi(t), c wie in Korollar 1 definiert.
Es gebe Zahlen p &gt; 0, (p e R), k &gt; 0, (k e Z), b e U so, dass

die Voraussetzung (*) in Satz 1 erfullt. (Hier sei s—Mog(l/(.ï — a)) der Haupt-
zweig der Logarithmusfunktion, definiert durch

log log
s — a

1

s — oc
/ Arg

1

s — a

&lt;n und - exp(plog
-a (s - a)p \ s-oc/J

Seien Ty A 6 R, A &gt; T &gt; 1. Dann gilt fur y&gt;4:

J
max If h(^~a^lt)elt(y+x)g(p + it)dt

I J_oc \ ik 1

wo M6 eine positive Konstante ist, die unabhàngig ist von y, A, T.

3. Beweise

LEMMA 1. Seien A(x), A0(x) in x^O definierte, reellwertige, messbare

Funktionen. Die Intégrale

f(s) f A(x)e~xs dx, fo(s) f A0(x)e-xs dx,
Jo Jo

s o + it,

seien absolut konvergent fiir o&gt; oc, wo 0&lt;cc&lt;°o sel Sei

g(s)=f(s)-Ms), Res&gt;a,

R(x)=A(x)-A0(x), x&gt;0.
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Die Funktionen h(x), fi(t) seien fur c&gt;0 wie in Satz 1 definiert. Dann gilt fur
o&gt;a, A &gt;0, y eR:

du, (2)

Besitzt g (s) eine stetige Fortsetzung nach Re s &gt; a und gibt es zu jedem e &gt; 0 eine
Konstante M(e) &gt; 0 so, dass

\g(o + it)\ &lt; M(e)eet\ gleichmàssig in ar &lt; a &lt; ar + 1, (3)

so gilt fur A&gt;0, yeR:

f ^(y &quot; ^)e&quot;&quot;/AA(w) dw. (4)

Beweis. Sei 5 a 4- à und a &gt; ar. Dann ist

und

oc \A/ J—oc VA/ J()

r/»0O f + \ y* OC

J_oc Va/ Jo

unter Verwendung der Substitution x=y - (w/A), dx -(l/k)du. Die Vertau-
schung der Integrationsreihenfolge ist gestattet wegen der absoluten Konvergenz
des Doppelintegrals.

(4) folgt aus (2), indem man den Limes a—&gt; a bildet und sich iiberlegt, dass

man unter der Voraussetzung (3) und der Stetigkeit von g(s) in Res^a den
Limes unter die Intégrale ziehen kann.

LEMMA 2. (i) Seien a, b, t e R, b &gt; 0, t =&gt; (1 + a)/(2b). Dann gilt:
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Im Folgenden seien a, y, À, T, c, Ao, Bo, h, d wie in Satz 1 deftniert. Sei

-&lt;a&lt;a + l. Es gilt:

(ii)

(iii)

s | B0(y ±j + jje-au&apos;^(u) du s c2B0(y)d(T),

f(iv)

(v)

Hierin sind die Konstanten cu c2, c^, c4 unabhângig von y, À, T und a.

Beweis.

(i) f eau~hul du^\ (2bu - a)eau~bu2 du eûr-&quot;/2.

(ii) «&apos;^(ii)dusAf.

T fT
&lt; 2M1B0(.y) - eoTlk fi(u) du &lt;

A J_7-
(y) 7A

T
7 wegen a &lt; or -h 1 und A &gt; T s&gt; 1.
A

(iii) ±f du s JJbo(^ ± |+

u) du

7l2«4&apos; » s c2Bit(y)fi(T),
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da nach (i)

oc

4c 4c

(iv)
ky + T ky + T

G-ky-k+T
rky + T

+ \

r hy-x+T

rky + T / T-

du^jr B0(y+j-j
rk

^ M2B0(y)
rky-k + T

sup

wenn man den ersten Summanden auf der linken Seite der letzten Ungleichung
wie unter (iii) abschàtzt und fur die Abschàtzung des zweiten Summanden
verwendet, dass u-&gt;eoulkfi{u) fur u ^ 2ca/k monoton fàllt sowie

A + r) &lt; Csfi(T),

(v) wird àhnlich wie (iv) bewiesen.

Beweis von Satz 1. Seiar^a&lt;a+1 und sei die Annahme getroffen, dass im
Falle a a g(s) eine stetige Fortsetzung nach Re s ^ a besitzt und es zu jedem
e &gt; 0 eine Konstante M(e) &gt; 0 so gibt, dass

\g(a + ii)\ &lt; M{e)eEtly gleichmâssig in cr &lt; a &lt; ar + 1.

Ersetzt man nun in Lemma 1 y durch y + (T/k) beziehungsweise durch

y - (T/k), so gewinnt man folgende Identitâten:

r (t «0àt V+ R (5)

&quot;

du-

In einem ersten Schritt beweist man die Ungleichung:

(a + U) dt\). (7)
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Dazu schâtzt man die rechte Seite in (5) wie folgt nach unten ab:

J RV +1 &quot; ï)eOUaft(») du J
^

(A- A0)(y + - - j
^A(y)j eauafi(u) du - f *

A0(y+j-j)eau/xfi(u)du

du

eauad(u)du

- \A0(y)\ j \°»%(u) du-j

-\^\AJy)-A0(y +j~l)\ eauaHu)du

rXy + T / T U\\
-)T -H»+ï-z)I •&quot;&quot;*&lt;&quot;&gt;*•

du

wo in der vorletzten Ungleichung die Monotonie von A benutzt wurde. Schàtzt

man nun in der letzten Ungleichung jeden der Subtrahenden mit Lemma 2 ab

und verwendet die Abschàtzung

eau/xfi(u)du&gt;\ fi(u)du &gt;0,

so entsteht zusammen mit der linken Seite von (5) die Ungleichung (7). Wâhlt
man in (7) speziell T A 1, so findet man die Abschàtzung

R(y) &lt; c7(fi0(v) + e°y J e~ctl \g(a + îr)| di). (8)

Erfûllt g(s) die Voraussetzung (*) in Satz 1, so kann das Intégral in (7) mit
Cauchy&apos;s Satz umgeformt werden, und man erhàlt:

R(y) j + Ht))
(9)

Wâhlt man in (9) speziell T À 1, so findet man die Abschàtzung:

(10)
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In einem zweiten Schritt beweist man die Ungleichung

R(y) &gt; - JV&quot;2 \g(a + it)\ dt

(11)

Dazu schâtzt man die redite Seite in (6) wie folgt nach oben ab:

fy&apos;TR(y - f -l)eauah(u) du J*&apos;~\a - Att)(y - j- j
&lt; J~\a - An)(y -j--^e°»%{u) du

f T

o(y) - A0(y - f- j) | e°&quot;afi(u) du

(«) du

+ (A- A0)(y) l
&quot;

e°&quot;%(u) du /, +12 + /„
J-T

wo in der letzten Ungleichung die Monotonie von A verwendet wurde. Um /,
abzuschàtzen, verwendet man (8) sowie Lemma 2:

J — -X.

T u ~al \g(a + it)\ du

(12)

I2 wird mit Lemma 2 abgeschàtzt:

J

X

y-T

(u)du

Verwendet man die Abschâtzung:

[ eoua(i(u)du&gt; f ^(u)dM
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sowie die Abschàtzungen fur Ilt I2, so entsteht zusammen mit der linken Seite

von (6) die Ungleichung (11).
Erfùllt g(s) die Voraussetzung (*) in Satz 1, so kann man die Abschâtzung

(11) fur R(y) verfeinern zu

R(y) &gt; -c13(flb0&apos;)(f + HT)) + HT*»

(P)i{Ta)W U) dt\), (13)

indem man erstens statt (12) die Abschâtzung

verwendet, die sich unmittelbar aus (10) und Lemma 2 ergibt, und zweitens das

entstehende Intégral wiederum mit Cauchy&apos;s Satz umformt. Die Behauptung des

Satzes 1 folgt nun, wenn (7) und (11) kombiniert werden beziehungsweise (9) und
(13) im Falle, wo g(s) die Voraussetzung (*) in Satz 1 erfûllt.

Beweis von Korollar 1. Nach einem Satz von Landau [12], S. 536, ist s oc

eine Singularitât der Funktion /(s). Nach Voraussetzung sind die einzigen
Singularitâten von f(s) in Res^jS Pôle, sodass Re,y1 ar. Sei nun mit den

Bezeichnungen von Korollar 1

A0(y) ist reell fur réelle y, da vermôge f(s) =/(£) fur aile s ^s} mit Re s &gt; (3 der

Hauptteil der Laurententwicklung von fin jedem Pol s, komplex konjugiert ist zu
jenem in sr Setzt man

\*r+1

so ist fo(s) Jo A0(x)e-^ rfr, Re s &gt; a.
Setzt man nun B0(y) c15(yL + l)eO[y (wo c15 &gt; 1 so gross gewâhlt wird, dass

|ylo(y)l ~ Bo(y)&gt; y —0, und L wie in Korollar 1 definiert ist) sowie co a 4-1, so

verifiziert man ohne weiteres die Voraussetzungen von Satz 1. Es folgt die
Behauptung.
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Beweis von Korollar 2. Fur Res &gt; a, v&gt;0 gilt:

1 1 f00

— —— vv~le~{s~&lt;x)y d\
(s

Differenziert man beide Seiten &amp;-mal nach v und setzt v - p, so entsteht:

Sei nun
r \ k ,,v-l

dvl r(v)

Setzt man nun B0(y) c16(l +yp~1)(l + Ilogyl^y^ (wo c16&gt; 1 so gross gewàhlt
wird, dass \A0(y)\&lt;B0(y), y^O) sowie a&gt; ar + l, so verifiziert man ohne
weiteres die Voraussetzungen von Satz 1. Es folgt die Behauptung.

4. Anwendungen

Die Bestimmung der Haupt- und Restglieder fur Yén^xd(n) und En&lt;x ^2(^)
kann unter folgendem allgemeineren Gesichtspunkt betrachtet werden (vgl. [13]):

(0 (O/tsi se* eine F°lge nicht negativer reeller Zahlen.
(ii) c{)(s) — En&gt;i &amp;Jns konvergiere absolut fur o &gt; a ^ 0.

(iii) &lt;j&gt;(s) sei meromorph nach C fortsetzbar und die Anzahl der Polstellen in
jedem festen Streifen ax ^ a&lt; o2, wo o2&gt; ox ist, sei endlich.

(iv) Es gebe réelle au a2,. - &lt;V positive fiXy f}2&gt; - • ^ (ju &gt; 1), réelle

Vu Yi&gt; • • • &gt; Yvy positive ôu ô2, ôv (v &gt; 1), eine Folge (bn)n&gt;x

komplexer Zahlen sowie ein d&gt;0, sodass E«&gt;i bnns fur a&lt;0 absolut

konvergiert und fur o &lt; 0 gilt:

r(7l - ôxS)r(y2 - ô2s).. • r(7v - ôv5) 2 bH(dny.

(v) Fiir jeden Streifen ox&lt;o-&lt;(j2 endlicher Breite und jedes e&gt;0 gelte eine
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Abschâtzung der Form

\(t&gt;(a + ii)\ &lt; cl7(e, au o2)eet\ ox &lt; a &lt; o2f \t\ &gt; t0.

(iii) und (iv) implizieren nun, dass &lt;f&gt;(s) in C nur endlich viele Pôle besitzt. Sei

i4(*) 2ns*«». Dann ist 0(s)/s )oA{ey)e~ysdy, Rts&gt;a. Sei f(s) &lt;p(s)/s

und bezeichne fo(s) die Summe der Hauptteile der Laurententwicklung von f(s)
in ihren endlich vielen Polen. Sei A0(ey) jene Funktion, fur die gilt:

Mit Korollar 1 schliesst man, dass fur y &gt; 4, A &gt; 7 ^ 1:

\A(e&gt;) -A0(e&quot;)\ ^

max If /i(^ + i^-r^]e&quot;iy+x)g{^ + it)dt (14)

worin bedeuten: M5 eine positive Konstante, die unabhângig von y, À, T ist, L
die um eins verminderte hôchste Ordnung derjenigen Pôle von f(s), deren
Realteil =ûr ist, /J eine feste réelle Zahl &lt;min(0, y{/ôlt y2/&lt;52, • • • &gt; yv/ôv) und

g(s)-f(s)—fo(s). Man wird nun in einem ersten Schritt das Intégral in (14) in
Funktion der Parameter y, T, À abschâtzen, indem man fur g(s) die in a&lt;0

gûltige Darstellung

benutzt, und in einem zweiten Schritt die freien Parameter geeignet ais
Funktionen von y wâhlt. Die Méthode soll an zwei Beispielen demonstriert
werden.

4.1.1. Ln^d(n)
Sei

2
d\n

d&gt;0
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Man wird sehen, dass

D(x) x log x + (2y - 1)jc + O(x1/3(log x)1/6)y

worin y die Eulersche Konstante ist. Es ist

Aus der Théorie der Riemannschen Zeta-Funktion [19] ist bekannt, dass

(i) e(5) -r~ — -— eine ganze Funktion ist,
5 (j - 1 r ^ -1 45

(ii) ?(s)n-s

(iii) |Ç2(a + /0|&lt;c18|f|3, -l
Wàhlt man 0 -1 und c ^, so gilt nach Korollar 1 fur y &gt; 4, A &gt; T &gt; 1:

- ye^ - (2y - l)cy - J

+ M5e y max f h({ + f)e&apos;*y+x)8(-1 + it)dt (15)

worin man fur g(—1 -f ft) die in a &lt; 0 giiltige Darstellung

1
2,-1

V 2 /^ ,_, 1 2y-l 1

_ ^-i
5

verwenden wird. Mit der Stirlingschen Formel [14], S. 12,

|k| + /(/log |/| -r + ^sgn/- (a-
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schliesst man

g(-l + it)

Es ist daher

ALBERT STADLER

(2jz)

-1+*&gt; H L
i / r~l r°°\

4- \e
IV J-oo Ji /

1 \3
— \ t1jï)

|f|-&gt;».

it)e~2ltlogm/2)+1&quot; dt

+A2), (17)

wo G{t) t2e-&apos;2&apos;^xl\ Fn(

Es ist nun

r(2 log (2ne) +y+x- (1/(5A2)) - 2 log / + log n).

d_

dt*n +x - 2

d2 ^ 2
-2 lOg/, -T2Fn(t)= ~-&gt;

dt t

Dabei hat die Funktion

in i ^ 1 hôchstens 5 réelle Nullstellen, da
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hôchstens deren 2 in t &gt; 1 hat. Ferner gelten wegen A &gt; T &gt; 1 die Abschàtzungen:

d _,

S*&apos;»

10
&gt; 2 log (20n 17V/2) - y - 2 - 2 log (2tî) - log n 2 log 2

G(/) A2f|)VA(2()A2) &lt; A2 sup w2e-&quot;2/20 c21 A2, &gt; 1,

2 1

sup22O

2. (18)

2. (19)

(20)

(21)

(22)

Nun ist

-dt
J2n&apos;/2e&gt;&apos;/2

dt (23)

Mit Lemma E in [6] das man allerdings in einer leicht erweiterten Form fur den
Fall unendlicher Intervalle benôtigt), findet man wegen (18), (19), (20):

(24)

(25)

Mit Lemma G in [6] findet man wegen (21), (22):

Setzt man (24) und (25) in (23) und (23) in (17) ein, so wird:

I f d&apos;A^e^+&apos;igi-l + it)dt
|J_oc VA/

&quot;eW\ (26)
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Mit partieller Intégration und der trivialen Abschàtzung £&gt;(*)&lt; c26*(l + logjc),
x s 1, findet man:

&lt; C26JT(1 + log+ (u))e-&quot;&quot;&lt;

c26 f (1 + log+ (k2e-*v))e
Jq A v + ^4 j

du

2e^)1/4 dv

&lt; c21(\ + log+ (^))A&quot;2e&quot;&gt;&quot;4- wo log+ (m) max (0, log «), m &gt; 0.

Setzt man dies in (26) und (26) in (15) ein, so hat man

\D(ey) -ye&gt; - (2y - l)ey - \\ &lt;M

Wàhlt man nun A e2&gt;;/y/3, 7 =y1/2, so folgt:

\D(ey) - yey - (2y ~ 1KI ^ c29ey/3y1/6&apos;

Dies ist bis auf einen Faktor ym Voronoi&apos;s Résultat [20]. Wollte man stàrkere

Restglieder als das obige erzielen, miisste man das Intégral

(z.B. mit der Méthode der stationàren Phase) asymptotisch entwickeln und die

Hauptbeitràge mit Methoden aus der Théorie der Exponentialsummen
abschàtzen.

4.1.2. £w^T2(fl)

Sei r(n) Ramanujan&apos;s Funktion, die definiert ist durch die Taylorentwicklung
des unendlichen Produktes

?I1(1-^)24=E &lt;n)q\ \q\&lt;\.



Ein Tauber-Satz mit Restglied fur die Laplace-Transformation 17

Man wird sehen, dass

X x\n) Ax12 + O(x 12-(2/5)(log x)m% x -&gt; oc,

worin A eine an spàterer Stelle definierte numerische Konstante ist. Sei

f(s) X —7~~ &gt; ^e s ^ 12, ^(«y) Ç(2s)/(s + 11).

Es ist

Z(s) 2) ^^~5, Rej &gt; 1, wo en X i^&quot;11^). (27)
n^l iuv2=n

Es gilt nun:
(i) Z(s), definiert in Res&gt;l durch (27) und daselbst analytisch, ist

meromorph nach C fortsetzbar.

(ii) Z(s) - {2jz2AI{s - 1)) ist ganz.

(4n)n fA ~t~ y10 \A(x H- iy)\2 dx dy ; hierin bedeuten
1 i lZ* j J J

D {x + iy | -!&lt;*&lt;!, y &gt;0, \x + iy\

A(x) e2&quot;&quot; fi (1 - e2*&apos;*1)24, Im t &gt; 0.

- s)z(\ - 5).

(iv) \Z(o + it)\^cM\t\im, a&gt; -i |ï|sl.
Sei nun E(x) E»» e«- Es ist Z(s)/s Jô E{ey)e~ys dy, Re s &gt; 1.

Z(0) - ^A, da wegen (iii)

Wendet man nun Korollar 1 mit /? —|, c ^ an&gt; so folgt die fur y &gt; 4,
A a r &gt; 1 gùltige Beziehung:

j + 8e -57&quot;2)

max (28)
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wo g{s) Z{s)ls-2ji2Al{s-\) + \\Al{2s) und M5 eine von A, T und y
unabhàngige Konstante ist. Mit (iii) schliesst man nun

und zusammen mit der Stirlingschen Formel (16) folgt:

p
\t U|7/3 • /(—4rlog|f|+4f) err— + vKl ^ sgn r ^ n4^-«

Setzt man dièse Entwicklung in (28) ein, so entsteht:

\E(ey) - 2jz2Aey + %A\ &lt; M5^f- + 8e&quot;5

+ M5e^/3( f |e-&lt;&lt;+&lt;4&apos;/3&gt;&gt;W&gt;| |g(-i + ir)l dt + c31 f%-^&lt;^2)^ rfr
\J_i Ji

y&quot;00

^ l\
^ 6 (2jr) ^ ^ • 2ij 4/3 _,/ ^ I

1 «&gt;1W K

max
x ±TIX

wo diesmal

FB(0 -4Mog t + (4 + y + x -^5 + 4 log (2^) + log n)f.

Durch analoge Ueberlegungen wie im Dirichletschen Teilerproblem findet man

dt ^c33(A7/3 + ni&gt;*e&gt;&quot;sn

Mit partieller Summation und Verwendung der Abschâtzung

\E(x)\ O(x), x-»c°,
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ergibt sich

Daher ist

\E(ey) - 2n2Aey •

Wâhlt man nun A e2y/y/2i), T yl/2, so folgt schliesslich

\E(ey) - 2n2Aey\ &lt; c^y/y/2{\

Wie in [9] folgt daraus, dass

Bis auf einen Faktor (log^) ist dies Rankin&apos;s Résultat [16].

4.2. Der Primzahlsatz

Der Primzahlsatz ist ein klassisches Anwendungsbeispiel des in der Einleitung
beschriebenen Satzes von Wiener-Ikehara. Denn mit

gilt:

• 1 und — -

ist analytisch in Res &gt; 1, sodass mit dem Satz von Wiener-Ikehara folgt:

V(ey)~ey, y -*». (29)

Dies zeigt, dass in (29) im wesentlichen nur die Eigenschaft £(l + /f)=É0, te M,
einfliesst. Will man die asymptotische Formel (29) verbessern zu einer Aussage
mit Haupt- und Restglied, so muss man mehr Eigenschaften der Riemannschen
Zetafunktion benutzen. In Lemma 3 sind die zusâtzlich zu verwendenden
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Eigenschaften beschrieben. Folgende Form des Primzahlsatzes soll bewiesen
werden:

Sei rj(t) eine in t^O definierte, monoton fallende, stetig differenzierbare,
reellwertige Funktion mit

(ii) r}&apos;(

(iii)
(iv) Ç(s) # 0 in {a + it \ a &gt; 1 - rj(\t\)}.

Sei eo(jc) int&gt;1(^(01ogjc + logr)- Dann gilt: xf&gt;(x)

worin c39&gt;0 eine absolute Konstante ist. Fur den Beweis dièses Satzes benôtigt
man zwei Lemmata:

LEMMA 3. Sei rj(t) eine in t&gt;0 definierte, monoton fallende, stetig
differenzierbare, reellwertige Funktion mit den Eigenschaften (i)-(iv) des obigen
Satzes. Sei p eine feste Zahl mit 0 &lt; p &lt; 1. Dann gilt:

&apos;\(k) *+1

in {o + it | o &gt; 1 - ptj(\t\), \t\ &gt; e},

wo a Re s, t Im s und c4() weder von k noch von t abhângt.

Beweis. Lemma 3 ist eine verallgemeinerte Form des Theorems 5 in [6], S.

78.

Es seien daher die wesentlichen Beweisschritte nur skizziert. Sei o.E.d.A.
t &gt; 0. Sei zunâchst s e {a + it \ o ^ 1 + prj(t)}. Aus der Darstellung

j (5)= - 2 A(n)n-s,Res&gt;l,

folgt durch fc-maliges Ableiten:

V *

indem man den vorletzten Term partieil summiert und die Tschebyscheff-
Abschâtzung Ytn«;xA(n) O(x)i x-~*&lt;x&gt;, verwendet.

Sei nun s e {a + it 11 — prj(t) &lt; a ^ 1 + p^(r)}. Die Funktion Z(s) log £(s}
ist regulàr in D {o + if | a &gt; 1 - rç(f), f &gt; 0} und Z(s) log Ç(5) \
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Sei T &gt; 1 und r)(T) H Man wahlt den Punkt s0 1 + pH + iT als Zentrum
zweier konzentnscher Kreise mit Radien r 2pH und R |(1 + 3p)// Wie îm
Beweis des Theorems 5 in [6] beweist man, dass

(î) beide Kreise m D hegen fur T&gt;TU

(u) \ReZ(so)\*l/pH,
(m) Re Z(» &lt; log T, falls T &gt; T2 und \s -so\&lt;R

Anwendung des Satzes von Borel-Caratheodory ([6], S 41, Lemma B) hefert

2R

(* + l)&apos;

(1 + 3p)H
(R-r) -2(logT-ReZ(s0)),*+2

Insbesondere folgt fur s a + iT, wol&gt;max(r,, T2) T0, \o- 1| &lt;pt](T)

1

(c) k + l

Zu beweisen bleibt Lemma 3 somit noch in

Nun folgt mit Cauchy&apos;s Satz

*&apos; f
f(W&gt;)

I -— I -t—t dw,
2m J|VV_5)==r (w — s)

wonn r, 0&lt;r&lt;l, so klem gewahlt wird, dass die Kreisscheibe mit Zentrum s,
s e F, und Radius r ganz in {a + it \ o &gt; 1 — ((1 4- p)/2)rj(t)} hegt, sodass

(t) ; sup
|Rciv-l|=£((l+p)/2)rî(ImH&apos;)

se F, k &gt; 0

LEMMA 4 Sei Hn(x) (-l)&quot;ex (d/dx)&quot;e-x, xeU, n&gt;0, dos Hermite-
Polynom vont Grade n Sei U^ V((n/2) + 1) Dann gilt

sup
U
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Beweis. Es ist

(siehe [14], S. 252/254). Fur -(/&lt; u &lt; U ist daher

|/frt(w)| &lt;^ f (w2 + t2y/2e-&apos;2 dt &lt;^ fU + fW
r\n+\ roc jn+1 /-oc

&lt;^(2f/2)n/2 e~r2* + -^- (2f2)rt/2e
V^r Jo \n Ju

+ f2rV2

9(3n/2)+l /-oc j.
23n/2£/n+ t 2SUP(^

V-7T J(/ 1 + t t&gt;

Die Funktion t-*tne~t2{l + t2) fâllt monoton fur r&gt;(/ und es ist
-f2(l +12)) (7^-^(1 + U2) &lt; C45

de5 Primzahlsatzes. Korollar 1, angewendet auf

1&gt;(ey)*~ys dy&gt; Re J &gt; 1,
J

liefert mit ût /3 1, c ^, A &gt; T &gt; 1, y &gt; 4

M5ey max 1 x
±77y

(30)

worin

Integriert man das letzte Intégral «-mal partiell, so entsteht:

r e-t2î(2ox%tt(y*x) (1 -.y /// ^^n f e&apos;«y+*). \ ÎL:if SV + &apos;O* ii(y+x)rLe n^n^nx\n2\n,\
«,&gt;(),/ 1,2,3
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Esist

dt
L_

V20A

/rf\&quot;2 1 {-i)n2n2\
\dt) l + *f~(l + *Y)n2+1&apos;

(32)

(33)

(34)

Mit den Bezeichnungen von Lemma 3 besteht eine Ungleichung der Art

1

teR, k&gt;0. (35)

Setzt man (32), (33) und (34) in (31) ein und verwendet Abschâtzung (35), so
entsteht:

it) dt

\V20a) J cn,+
log (max (e,

jf|«2+i
46

(^(max(e,

Setzt man voraus, dass À &gt; max (e, V20 (n + 2)), so kann obige Abschâtzung mit
Lemma 4 und der Voraussetzung, dass r\{t) monoton fallend ist in (20 und

l/t](t) &lt; c38 log t, (&gt;«, wie folgt fortgesetzt werden:

2n! y 1/1 xrt|

«,&gt;(), 7 1.2,3

log A2 &apos; 2n! y 1 / 1 V»

¦it\ (.y+*)&quot;„,+„£„,=„n,! VV20A/ 44

y l,2,3
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In der vorletzten Ungleichung wurde benutzt, dass

i2in;&gt;0, 7 1,2,3

und in der letzten, dass

S SUP (T lOg (À2T
T&gt;1

Setzt man nun die gewonnene Abschàtzung fur (31) in (30) ein, so entsteht die
fur T &gt; 1, n &gt; 1 (n e N), A &gt; max (T, ey V20 (n + 2)), y &gt; 4 gûltige Ungleichung:

(^ffi. ^ 1 (36)

Sei ^2(y) inf^! (^(0^ + iogf)- Das Infimum O(y) existiert fur jedes y &gt;0, da
t-&gt;rf(t)y + logf stetig ist fur f&gt;l un gegen «&gt; strebt fur /-&gt;oo. ^2(y) ist als
Funktion von y monoton wachsend und lim^oo Q{y) °°. Man setzt nun

L 5c49 J

und stellt fest, dass die an T, A und n gestellten Bedingungen erfullt sind fur
y &gt; y0 &gt; 4. Zudem gilt:

(37)(3?)

Nun ist

exp ((1 + [£?(&gt;&gt;)/(5c49)])(log c49 + log (1 + [Q(y)/(5c49)))

-logy-ïog^X2)))
&lt; exp ((1 + [&lt;2(&gt;&lt;)/(5c49)])(log (2Q(y)/(5yr,(k2)))))
&lt; exp ((1 + [J200/(5c49)]) log (4/5)) &lt; exp - CaoO(y)), c» &gt; 0,

(38)
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fnty^y1 wegen (37).

&lt; c38 log (A2)(log kf 2c,,{\Q{y)f c5ltf(y). (39)

Setzt man (38) und (39) in (36) ein, so wird

\y(e&gt;) - ey\ &lt; c52eye~c^y\ y &gt; max (y0&gt; yx)y c53 &gt; 0.

Berùcksichtigt man noch £?(logjc) a)(x), so folgt der Primzahlsatz.

4.3. c(n),p(n)

Die Bestimmung der Haupt- und Restglieder fur c(n) und p(n) kann unter
folgendem allgemeineren Gesichtspunkt betrachtet werden:

Gegeben sei eine Folge (an)n&gt;0 monoton wachsender, nicht negativer, reeller
Zahlen derart, dass fur ein réelles ar&gt;0 und aile £ &gt;0 gilt: \an\ ^c54(e)en{a+e)
Man definiere fur réelles x &gt; 0: a(x) an, falls n [x]. Dann gilt:

a(x)e xs dx 2 ane m, Re 5 &gt; ût.

Nun ist Satz 1 anwendbar. Es zeigt sich, dass in Analogie zur Kreismethode von
Hardy-Littlewood das analytische Verhalten der Potenzreihe Enao^«^n in der
Nàhe des Konvergenzkreises \z\=e~&quot; entscheidend fur den Hauptterm in der

asymptotischen Entwicklung von an ist.

4.3.1. c(n)

Ist t e C mit Im x &gt; 0 und sind g2(*0&gt; g?fj) die Invarianten definiert durch

E
(m,n)eZxZ-{(0,0)}

g3(r) 140 2 (m + nr)-6,
(m,/i)eZxZ-{(0,0)}

so ist die absolute Invariante J(r) definiert durch

W°
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/(t) ist holomorph in Imr&gt;0. Ferner ist J((ar + b)/(cr + d)) /(r) fur aile
a, b, c, d eZ mit ad - bc 1. /(r) besitzt folgende Fourierentwicklung:

Die Koeffizienten c(n) sind nicht negativ und ganzzahlig [7]. Man wird mit Satz 1

schliessen, dass

&apos;

&quot;-*-• (40)

Dièse Aussage wurde von Petersson [15] mit dem Restglied O(e4jiy/n/n3/4+l/2)

bewiesen. Fur den Beweis von (40) sind einige Lemmata notwendig:

LEMMA 5. Es gilt c(n) &gt; c(m), n&gt;m&gt;\.

Beweis, Man verwendet folgende Darstellung fur /(t), [7]:

+v2&apos;w - 55S-2 n a+92-1)16+n (i - q2-T+9228 n

^ emt, Im r &gt; 0.

Sei nun n e Z, n ^ 0. Sei an die Anzahl der Lôsungen von

16

«=I E VXv.v, *iu,v e {0, 1}, ]m
&gt; 1, 1 &lt; v &lt; 16,

sowie j8n die Anzahl der Lôsungen von

16

Dann gilt:
(i) arn

(«0
(iv)
(v)
(iv)
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Mit diesen Bezeichnungen kann (41) geschrieben werden in der Form

1 /y 2n\3
W°

Aus (i) und (ii) folgt sofort, dass y«+i&gt;yn, n&gt;0. Deshalb ist auch ôn+l&gt;ôn9

n&gt;0, wenn ôn definiert ist durch (E^o Ynq2&quot;)3 Y*n^ànq2ny \q\&lt;\. Es folgt
Lemma 1.

LEMMA 6. Sei Re s &gt; 0. Es gilt:

F
&apos;&quot;

p(s) ist analytisch in Re s &gt; 0 «nd 5fcftg in Re 5 &gt; 0, 5 # 0, und es gilt:

F^s, |5|&gt;l,Re5&gt;0

Ic56(l + \s\ e*M), \s\ &lt; 1, Re, &gt;0.

Beweis. Fur s &gt; 0 gilt:

fe4*^ /2\I/4 / —4jt \^«e-^={-) y^Am)*1*&apos;wenn (42)

e-(22/4) /-oc

die parabolische Zylinderfunktion bezeichnet. Da z—»Dv(z), Rev&lt;0, eine

ganze Funktion ist, stellt (42) die analytische Fortsetzung des Intégrais nach

C- Rs0 dar. Fur Dv(z), Re v&lt;0, gelten foigende asymptotische Entwicklungen
[14]:

Dv(z) z&apos;e-^Kl + O(\z\~2)) -^ ^^^ (43)^&lt;j+ôargz^ô&lt;^
4 4 4 4
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Dv(z) z&apos;*-&lt;**&gt;(l + O(\z\~2)) -
—5jt — 5.7T

o —n —n&lt;+ô&lt;&lt;_—ô&lt; — (44)

Falls Re s ^ 0, Im s ^ 0, so ist — 4jt/\/(2s) e {rel&lt;t&gt; \ r ^ 0, 3jt/4 &lt; &lt;f&gt; &lt; jr}, sodass

nach (43)

IpCOI ^ c5ô(1 + \s\ e4&quot;2ans{2), \s\ &lt; 1, Re 5 &gt; 0, Im s &gt; 0.

Falls Re5&gt;0, Im,s&lt;0, so ist -4jr/V(2y)e {rel&lt;t&gt; \ r&gt;0, -^&lt;
sodass nach (44):

|p(j)| &lt; c56(l + |5| e4jr2a/|5&apos;2), \s\ &lt; 1, Re ^ &gt; 0, Im 5 &lt; 0.

Aus der Tatsache, dass z—»Dv(z), Re v &lt;0, ganz ist, folgt sofort

Dies beweist Lemma 6.

LEMMA 7. Seien die Zahlen c(n), n^l, wie in der Einleitung definiert.
Dann gilt:

(i) (l -h 2 c(n)e~m) e-*+(4*2A)(l + 2 c{n)e~n^2fAt Re s &gt;0.

(ii)
(&quot;e4&quot;2a&apos;(°2+&apos;2)

\a + it\ dt &lt; c51osae4&quot;2&apos;a, 0 &lt; a &lt; 1.

(iii) fV*2CT/(a2+&apos;2) 2 c(«)e-4jtW&lt;a2+&apos;2) df &lt; cwe^°, 0 &lt; a &lt; 1.

(iv) f |a +
nïi
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Beweis. (1) Dies folgt sofort aus der Définition der Koeffizienten c(n) und

2k

(n) \*e*&quot;2a/(a2+&apos;2) \o + tt\dt* (&quot;e4&quot;2a&apos;^2+l2W2 adt+ fV*2&lt;7/&lt;2ct2) \

J() Jo *o

&lt; V2 a2 fV&quot;2/(a(1+f2)) A + n |1 + mt| e2jr2/a&lt; V2 aV*2^ f

iJt\

(m) Fur 0 &lt; t &lt; Va gilt:

2 c(n)e4*2o(1-y(oî+&apos;1) s 2 c(n)«4*ï(I-)/(1+&lt;&apos;&gt; s C60 &lt; oo (45)
«&gt;1 «2^1

Fur VcJ^r &lt; jf gilt:

^ c6len2/a, indem rnan Identitat (î) verwendet. (46)

Daher ist

rn
I e4n2o/(o^+t2) y c/n\e-4n2nol{o&apos;+/&apos;) ^

&apos; &apos; dt~ V(7C6O +

(iv) Aufgrund der Identitat (1) ist
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Verwendet man dies sowie die Abschâtzungen (45) und (46), so wird

Jr*
/ /-Va çn \

0 n^l \Jo J\Jo&apos;

x (e4&quot;2a/M2+ 2 c(ny2a(l-n)ns[2) dt

&apos;

\o + it\ eAn a/|51 dt -f J C6o|(tH-ïÏ|A
0 •&apos;O

+ f c^e&quot;2&apos;&quot; \a + it\ dt s c59a5l2e4&quot;2&apos;° nach (ii).

Dies beweist Lemma 7.

?w der Aussage (40). Setzt man c(jc) c{n), falls n [x] (wo c(0) 1), so

gilt:

f c(y)e~ysdy
1

M, Res &gt;0.

Sei CoCy) c4WV(V2y3/4)( y &gt;0. Sei fur Res &gt;0:

(wo p(s) wie in Lemma 6 definiert ist und den dortigen Abschâtzungen geniigt).
Es gelten folgende Abschâtzungen:

\g(a + it)\ &lt; c62f 1 4-

^ \

&lt;n, (47)

(48)

(48) folgt sofort aus Lemma 6. (47) folgt aus Lemma 6 und der Darstellung

n)e-(4*2&apos;I/*)) - e4*2&apos;1 - p(s)
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die sich unmittelbar aus Lemma 7(i) ergibt. Man wendet nun Satz 1 an mit oc 0,

oi l, c i A0(y) B{)(y) c{)(y) e4jtVy/(y/2yV4)f y&gt;0. (Man prûft ohne

weiteres, dass die Voraussetzungen von Satz 1 erfùllt sind). Damit gilt fur y &gt;4,

~tW \g(a + it)\ dt. (49)
(T _7T2\

\c(y)-Co(y)\^cMc{)(y)[- + e

Verwendet man nun (47) und (48), so folgt:

rrJF çink+n
e&quot;2/(8A2) \g(a + it)\ dt &lt; \g(a + it)\ dt + £ e-&apos;2/&lt;8À2&gt; |g(a + «Y)| A

•&apos;O A srl Hnk-n

+ |cr + iY| 6 w a +/ 4- ^ c(n)e n ~n&apos; +/ ^ 1 A

r-71 M — o~°~it\
2 1 ^--(/-l-2jrA)2/(8A2) V _/_.\--nf&lt;7+in I1 e

..1 J-/

dt

es gilt fur t e[-jz, n\.
konvergiert gleichmàssig fur te[-n, jz] und

i y i e-

Verwendet man dies sowie Lemma 7 in (50), so entsteht:

e~&apos;2/m2) \g(o + i&apos;0| dt &lt; c65(l + cjV2e4jr2/a + enl&apos;° -h A -h (1 4- log k)oV2e4n2/a).
h)

&lt; c^{k + (14- log A)aV2e4&quot;2/a).

Setzt man dies in (49) ein, so entsteht die fur y &gt; 4, 0 &lt; o &lt; 1, A &gt; 7 &gt; 1 gùltige
Beziehung:

\c(y) ~ c67(A + (1 + log A)

Wàhlt man A y2, T y, a 2^/Vy, so folgt (40).
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4.3.2. p(n)

Bezeichnet p(n) die Anzahl der Partitionen der natùrlichen Zahl n, so gilt:

(»)&lt;&quot;= 11(1- p(0) l.

Die Funktion n-+p(n) ist monoton wachsend. Mit Satz 1 kann bewiesen werden,
dass

Dièse Aussage wurde von G. H. Hardy und S. Ramanujan bewiesen [9] mit dem
Restglied O(eny/(2nn)n~V2). Der Beweis von (51) ist jenem fur (40) àhnlich. Es
seien daher die zu Lemma 6 und Lemma 7 analogen Lemmata zitiert:

LEMMA 6&apos;. Sei po(x) ^v&lt;2&lt;x+1)/3&gt;/(4\/3 (jc + 1)), x &gt;0. Es gilt in Re s &gt; 0:

f&lt;

p(s) ist analytisch in Re s &gt; 0 und stetig in Re s &gt; 0, 5 # 0, «nd

1 r u&lt;!
IPU&gt;I ~ Ic69(l

LEMMA 7&apos;.

\s\ s

(i)

(ii)

Re s &gt; 0,

+ ,yV2&lt;&quot;(6(ct2+&apos;2» dt &lt; c70a3c&quot;2/&lt;6&lt;l),

(iii) [V0&apos;^2*&apos;2» 2 p(/i)e-4jlW(o2+&apos;2) A s
•&apos;O «3:1

(iv) f |&lt;r +

0 &lt; a s 1,



Ein Tauber-Satz mit Restghed fur die Laplace-Transformation 33

(51) folgt nun m gleicher Weise aus Satz 1, Lemma 6&apos; und Lemma 7&apos; wie (40) aus

Satz 1, Lemma 6 und Lemma 7 folgte
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