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Ein Tauber-Satz mit Restglied fiir die Laplace-Transformation

ALBERT STADLER

1. Einleitung

In dieser Arbeit wird eine Verallgemeinerung des nachstehenden klassischen
Satzes von Wiener-lIkehara [10], [21] bewiesen:

Sei A(x) eine in x =0 definierte, nicht negative und nicht fallende Funktion
derart, dass das Integral

f(s)= f:A(x)e"“ dx, s =0 +it,

fir 0> o =0 konvergiert. Existiert nun eine reelle Zahl a so, dass f(s) —
a/(s — «) reguldr ist in o = a, so gilt:

A(t) ~ ae”, t— o (1)

Die Verallgemeinerung zielt in zwei Richtungen. Erstens wird die Singularitit
a/(s — ) ersetzt durch eine Funktion fy(s), die Laplace-Transformierte einer
Funktion Ay(x) sein soll, und zweitens wird unter gewissen Annahmen beziiglich
Regularitédtseigenschaften und Wachstumsverhalten der Funktion g(s) =f(s) —
fo(s) eine Abschitzung fiir |[A(x) — Ay(x)| nach oben gegeben (in Verschirfung
der asymptotischen Aussage (1)).

Der Tauber-Satz wird schliesslich verwendet fiir die Bestimmung des Haupt-
und Resttermes fiir

S d), I ?n), 3 A®), cm), p(n),

n=x n=x n=x

wo d(n) die Anzahl der positiven Teiler von n, t(n) die Ramanujansche
Funktion, A(n) die von Mangoldtsche Funktion, p(n) die Anzahl der Partitionen
von n und c(n) (bis auf einen konstanten Faktor) den (n—1)-ten
Fourierkoeffizienten der absoluten Invarianten J(t) bezeichnet. Es zeigt sich,
dass die durch den Tauber-Satz erzielten Restglieder nur unwesentlich schwicher
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2 ALBERT STADLER

sind als jene Restglieder, die man durch die klassischen Methoden der Funktio-
nentheorie erhilt ([1], [2], [3], [4]).

Diese Arbeit ist eine iiberarbeitete Fassung meiner Dissertation, die ich bei
Prof. K. Chandrasekharan geschrieben habe. Ich mo6chte ihm und seinem

friitheren Assistenten Dr. P. Thurnheer danken fiir Ermutigungen, Anregungen
und wertvolle Hinweise.

2. Resultate

SATZ 1. Sei A(x) eine fiir x =0 definierte, nicht negative und nicht fallende
Funktion. Das Integral

A(x)e ™ dx, s=o0+1it,
0

besitze die Konvergenzabszisse o, 0= a <, und konvergiere fiir 0> o nach
f(s). Sei Ay(x) eine reellwertige, messbare Funktion mit folgenden Eigenschaften:

) f()(s)—-:J Ao(x)e ™ dx, s=o+it, besitze die Abszisse der absoluten
0

Konvergenz a.

(ii)) Es gibt eine fiir x =0 definierte, nicht negative und messbare Funktion
By(x) mit folgenden Eigenschaften:

(@) [Ao(y)| = Bo(y) fiir alle y = 0.

(b) Es gibt eine absolute Konstante M, >0 so, dass |Ao(y +h) — Ay(y)| =
M, |h| By(y) fiir alle y =4 und alle h, —2<h <2.

(c) Es gibt absolute Konstanten M,=1, w=a so, dass By(y+h)=
M,By(y)e“"™ fiir alle y =4 und alle h, h=1—y.

(d) foBo(y) dy <.

(e) By(y)=1, y=4.

Sei fiir ein festes c aus dem offenen Intervall (0, 1/22 + w + «a)))

h(x)=e*(x eR), A(t) = f i h(x)e™ dx = \/’;’e—“““) (t e R).

Seien T, AeR, A=T=1. Sei g(s)=f(s)—fo(s). Dann ist g(s) analytisch in
Res>a, und es gilt fiiry=4, a<o=a+1:

IAD) — Ao9)I = Ms 3 Bo(y) + MA(T) (Bo) + 7 [ h(t)lg(o +in) i)

-0

+ M;e” max
x=xT/A

f h({-)e""”’g(o +it) dtl ,
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wo M; eine positive Konstante ist, die unabhdngig ist von y, A, T und o. Geniigt
g(s) zusdtzlich der nachstehenden

Voraussetzung (*):

(i) g(s) besitzt eine analytische Fortsetzung nach Res> B, wo B=a, die

zudem stetig ist in Re s = .
(ii) Zu jedem &>0 gibt es eine Konstante M(g)>0 so, dass |g(o +it)| <

M(e)e®, gleichmiissig in B <0<« + 1, so gilt fiir y = 4:

IAG) — Ag)| = My Buly) + MA(T)(Biy) + )

= (B—a+if\
f h(p———f'f———‘f)eﬂy”)g(ﬁm) dt|,

+ M,e?” max
iA

x=+T/A

wo M, eine positive Konstante ist, die unabhdngig ist von y, A und T. Aus Satz 1
konnen folgende Korollare abgeleitet werden:

KOROLLAR 1. Seien A(x), f(s), a, h(x), A(t) wie in Satz 1 definiert, wobei
¢ im Intervall (0, 1/(4a + 6)) fest gewdihlt sei. Man setze voraus, dass f(s) eine
meromorphe Fortsetzung nach Res = f8 (B = a) besitzt mit endlich vielen Polen
S1, 82, - . ., 8, in B=Res = a. Der Hauptteil von f(s) ins; (1=j=gq) sei

a, U
2_:0m(a ENO, 1<]-_q,U!KEC 0<K<a 1<]<q)

Man kann annehmen, dass B =Res, =Res,_;<---=Res;=aist. Man setzt

g(S) f(S) Z 2 s)x+1

j=1k= 0

und nimmt an, dass g(s) Voraussetzung (*) in Satz 1 erfiillt. Seien T, A€R,
A=T =1. Dann gilt fiir y = 4:

< M,y e“"( +ﬁ(T))

[j h(ﬁ:_%iit_z) #y+x)g(B +it) dt|,

A(y) - Z 2 LEyte”

j=1 k= o K

+ Mse?” max
x=+T/A
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wo M; eine positive Konstante ist, die unabhdingig ist von y, A, T, und wo
L = maxges-q a; die um eins verminderte hochste Ordnung derjenigen Pole von f
ist, deren Realteil =« ist.

KOROLLAR 2. Seien A(x), f(s), &, h(x), h(t), c wie in Korollar 1 definiert.
Es gebe Zahlen p >0, (peR), k=0, (ke Z), b eR so, dass

b 1 \¥
86) =/ )~ =35 (l08;=5)

s-.—

die Voraussetzung (*) in Satz 1 erfiillt. (Hier sei s— log(1/(s — a)) der Haupt-
zweig der Logarithmusfunktion, definiert durch

1
'+iArg )

1
o5 $—

=log

S — S—o

1 1
——n<Args__a<Jt und (S__a/)p=exp (p logs_a)).

Seien T, A€ R, A=T =1. Dann gilt fiir y = 4:

v—1

=M1+ y”“‘)(log"y)e“y<%+ ﬁ(T))

= B—a+if)
f h(ﬁ—i%———l—)e“(“")g(ﬁ +it) dtl ,

IA(y )~ bew(‘é%)kzy*(v)

v=p

+ Mge®” max
x=xT/A

wo M eine positive Konstante ist, die unabhingig ist von y, A, T.

3. Beweise

LEMMA 1. Seien A(x), Ao(x) in x =0 definierte, reellwertige, messbare
Funktionen. Die Integrale

£(s) = I:A(x)e’”dx, £is) = EAO(x)e-dex, S=o+it

seien absolut konvergent fiir 0 > a, wo 0 < @ < sei. Sei

g(s)=f(s)—fo(s), Res>a,
R(x)=A(x)—Ay(x), x=0.
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Die Funktionen h(x), h(t) seien fiir ¢ >0 wie in Satz 1 definiert. Dann gilt fiir
o>a, A>0, yeR:

t

[_Zhﬁ)e(”’"”g(o +it) dt = f:R(y - %)e"“/‘ﬁ(u) du. )

Besitzt g(s) eine stetige Fortsetzung nach Re s = o und gibt es zu jedem & >0 eine
Konstante M(€) > 0 so, dass

lg(o + it)| =< M(e)e”, gleichmissigin e <o<a +1, (3)

so gilt fiir A>0, y e R:

o Ay N
f h(%)e‘“””yg(a +it) dt = f R<y - —;)e‘”"*h(u) du. (4)

Beweis. Sei s = o+ it und 0> «. Dann ist

gls) = fCR(x)e”’“ dx
und

* t . * N :
f h(—i)e“’*”)yg(a +it)dt = f h G)e(‘”“”f R(x)e ™+ dx dt
—cc —c 0

= [ R(x)e°™ f h(—}:)e"(y"’ dt dx = J R(x)e’Y~OAR(A(y — x)) dx
0 —o0 0

g

unter Verwendung der Substitution x =y — (¢/1), dx = —(1/A) du. Die Vertau-
schung der Integrationsreihenfolge ist gestattet wegen der absoluten Konvergenz
des Doppelintegrals.

(4) folgt aus (2), indem man den Limes o— «a bildet und sich iiberlegt, dass
man unter der Voraussetzung (3) und der Stetigkeit von g(s) in Res = a den
Limes unter die Integrale ziechen kann.

LEMMA 2. (i) Seiena, b, te R, b>0, t =(1+ a)/(2b). Dann gilt:

o0
f eau—buz du < eat—th.
t
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Im Folgenden seien «, y, A, T, ¢, Ay, By, h, h wie in Satz 1 definiert. Sei
as=o=<a+1. Esgilt:

(ii) f_TT
(iif) f:

T T
Ady) — Aoy £7-7)| ) du=c,By) 5

e ""*h(u) du

T u
Ao(yi‘ﬁx)

= [ Buly £+ 5 )e @) du = coBUnA(T),

@ [ Ay 47 -5)] e hta) du = BRD),

v) f:y“ Ao(y I 3) ™ MA(u) du = c,Bo(y)A(T).

Hierin sind die Konstanten c,, c,, c3, ¢4 unabhdngig von y, A, T und o.

Beweis.

(1) f e™ % du Sf (2bu — a)e‘"‘“b“2 du = e "
f t

(i) [

e h(u) du=<M,By(y) f e”*h(u) du

Ao(y) - Ao(y * %" —A_)

A 3[

S2MlBo(y)1-e"T’*[ Tﬁ(u) du < c,BO(y)—Xwegen o<=a+lundA=T=1.

_auaﬁ(u) du <J B(,(y + : A)e’ou/Aﬁ(u) du

(iii) f An(y + :+ A)

< Nl B w oc s
i st + T/A /A — N 4¢
: o(y)f 2 H:(TM)+(u/A)|,’l‘(u) du MzB()(Y)e w(T/A) \/;Le(u Yw — (u~/(4¢)) du
T

< MZBO(y)e:tw(T/l) \/_‘;f ew(TIA)—(TZ/(‘k‘)) < CzB()(y)E(T)y
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da nach (i)
12T2122+w+a.>_1+w
L 1
4c 4c

T

Ay+T
e h(u) duSL Bo(y 177

. Ay+T T u
@ J, jadrei-)

rAy—A-&-T Ay+T Ay—A+T
— (J + f ) cdu < M2Bo(y)f w|(T/).)—(u/A)|eau/Aﬁ(u) du

T Ay—A+T

et

+ sup T(e"““ﬁ(u)) . BO( +Z—-——) du < c;By(y)A(T),

u=Ay—A+ Ay—A+T A, A

wenn man den ersten Summanden auf der linken Seite der letzten Ungleichung
wie unter (iii) abschétzt und fiir die Abschéitzung des zweiten Summanden
verwendet, dass u— e“*A(u) fiir u =2co/A monoton fillt sowie

Ae® WDy ~ A+ T)<csh(T), A=T=1, a=o=a+l, y=4
(v) wird dhnlich wie (iv) bewiesen.

Beweis von Satz 1. Sei « = 0= a + 1 und sei die Annahme getroffen, dass im
Falle 0 = a g(s) eine stetige Fortsetzung nach Re s = a besitzt und es zu jedem
£ >0 eine Konstante M(g) > 0 so gibt, dass

lg(0 + it)] = M(g)e*”, gleichmissigin e < o< a + 1.

Ersetzt man nun in Lemma 1 y durch y+(T/A) beziechungsweise durch
y —(T/1), so gewinnt man folgende Identititen:

) h t (o+it)(y+(T/A)) ) _ casl T oullﬁ d
. z e g(o+it)dt= : Ry+x—z (u) du, (5)
st (o+it)(y—(T/A)) - _ s T u oulrfy

h -): e g(o+it)dt= R —X—A e (u) du. (6)

In einem ersten Schritt beweist man die Ungleichung:

j (;)e("“”(”(m”g(o + it) dt'). (7

R(y)= c(,(B(,(y)( + ﬁ(T))
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Dazu schitzt man die rechte Seite in (5) wie folgt nach unten ab:

[ hy - teiaen [ ea oy TSt

zA(y)f:ce"““ﬁ(u) du — f:”AO( +%—I) A (u) du

=(A-A))| e h(u) du

e h(u) du

T u
+ —_—
A"(y A A)

e®*h(u) du

~ o)l [ ey au- [

- f_TT Ao(y) — Ao(}’ +I %)

Ay+T T u
‘L Ao(“rz)

wo in der vorletzten Ungleichung die Monotonie von A benutzt wurde. Schitzt
man nun in der letzten Ungleichung jeden der Subtrahenden mit Lemma 2 ab
und verwendet die Abschitzung

e h(u) du,

f_ie"“"ﬁ(u) du = folﬁ(u) du >0,

so entsteht zusammen mit der linken Seite von (5) die Ungleichung (7). Wihlt
man in (7) speziell T = A =1, so findet man die Abschitzung

RO)=co(Bo(y) +e7 [ e ig(o+in) ). ®

Erfiillt g(s) die Voraussetzung (*) in Satz 1, so kann das Integral in (7) mit
Cauchy’s Satz umgeformt werden, und man erhilt:

f—x (t+l(a’ ﬁ)) (ﬁ+n)(y+(T/A))g(5+it) dtl)'
(9)

R(y)=es( B)(5+A(T)) +

Wihlt man in (9) speziell T = A =1, so findet man die Abschédtzung:

R(y) =co(Bo(y) + €?). (10)
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In einem zweiten Schritt beweist man die Ungleichung

RO = —co( )5+ (D)) + (D [ e g(o+ i) d

—oc

+

f h(i)e“’“"‘y‘”’”)g(a + it) dt‘). (11)

Dazu schitzt man die rechte Seite in (6) wie folgt nach oben ab:

[T mtirien sty Tt
< f__:(A —A) (y f Z) WA () du
+ J:A:T Ay(y) — A(,< - ;T_ %) e h(u) du

Ay—T

+A=A)Y)| R du =1+ b+,

wo in der letzten Ungleichung die Monotonie von A verwendet wurde. Um /[,
abzuschitzen, verwendet man (8) sowie Lemma 2:

T .
h=e,|  (By-5-5)+eommwm [ o= (ot in)]de}e™ i) du
Sc,,ﬁ(T)(B(,(y) + e f e lg(o+it)|dt). (12)

I, wird mit Lemma 2 abgeschitzt:

¥ T u
1 Sf A - A < ———-——)
2 Ly u(}’) 0 12

=& T u
*L Ao( *z‘z)

Verwendet man die Abschitzung:

Ay—T
e™ h(u) du + |Ao(y)| J e h(u) du

e (u) du = c.zBo()’)< + h(T)>

Ay—-T ] .
j e®*h(u)du=| h(u)du>0
0

-T
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sowie die Abschitzungen fiir /;, I, so entsteht zusammen mit der linken Seite
von (6) die Ungleichung (11).

Erfiillt g(s) die Voraussetzung (*) in Satz 1, so kann man die Abschitzung
(11) fiir R(y) verfeinern zu

RO) = —cp(Bo) (5 + A(T)) + A(T)e?

N h(t +i(a — ﬂ))e(mn)(y—(m»g(ﬁ +it) dt

), (13)

indem man erstens statt (12) die Abschitzung
L= 014’;(T)(BO()’) + &)

verwendet, die sich unmittelbar aus (10) und Lemma 2 ergibt, und zweitens das
entstehende Integral wiederum mit Cauchy’s Satz umformt. Die Behauptung des
Satzes 1 folgt nun, wenn (7) und (11) kombiniert werden beziehungsweise (9) und
(13) im Falle, wo g(s) die Voraussetzung (*) in Satz 1 erfiillt.

Beweis von Korollar 1. Nach einem Satz von Landau [12], S. 536, ist s = a
eine Singularitdit der Funktion f(s). Nach Voraussetzung sind die einzigen
Singularitdten von f(s) in Res=p Pole, sodass Res; = a. Sei nun mit den
Bezeichnungen von Korollar 1

Ao(y)= ZZ T)’Ke y eR.

j= =1 k=0 K

Ao(y) ist reell fiir reelle y, da vermdge f(s) = f(§) fiir alle s #5; mit Re s = 8 der
Hauptteil der Laurententwicklung von f in jedem Pol s; komplex konjugiert ist zu
jenem in §;. Setzt man

fols) = 2 2

/1 520 (S — SJ)K+1 4

so ist fo(s) = [§ Ao(x)e ™ dx, Re s > a.

Setzt man nun By(y) = cis(y" + 1)e™ (wo ¢;5 =1 so gross gewiihlt wird, dass
|Ao(¥)| = Bo(y), y =0, und L wie in Korollar 1 definiert ist) sowie w = a + 1, so
verifiziert man ohne weiteres die Voraussetzungen von Satz 1. Es folgt die
Behauptung.
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Beweis von Korollar 2. Fiir Res > «, v >0 gilt:

11
(s—a)° I(v)

j yv—le—(s—a)y dy-
0

Differenziert man beide Seiten k-mal nach v und setzt v = p, so entsteht:

1 1 k oc d k yv—l
P ——— —(s—-a)y
(s —a)” <logs - a) fo (dv) (F(v)) vzpe 4.
Sei nun
d kyv——l
o (e ay
Ao(y) (dv) Tl

Setzt man nun By(y) = c;6(1 + y?~)(1 + [log y|*)e® (wo c1¢ =1 so gross gewihlt
wird, dass |Ayo(y)|=By(y), y=0) sowie w =a+1, so verifiziert man ohne
weiteres die Voraussetzungen von Satz 1. Es folgt die Behauptung.

4. Anwendungen

4.1. Lperd(n), L= t°(0)

Die Bestimmung der Haupt- und Restglieder fiir ¥,-,d(n) und %,-, 7°(n)
kann unter folgendem allgemeineren Gesichtspunkt betrachtet werden (vgl. [13]):
(1) (a,).=: sei eine Folge nicht negativer reeller Zahlen.

(ii)) ¢(s) = X,= a,/n’ konvergiere absolut fiir 0 > a =0.

(iii) ¢(s) sei meromorph nach C fortsetzbar und die Anzahl der Polstellen in
jedem festen Streifen o, < 0 < 0,, wo 0,> 0, ist, sei endlich.

(iv) Es gebe reelle a4, ay, ..., a,, positive By, B2, ..., B, (u=1), reelle
Y1> Y2, - - - » Vv, poOSitive 8;,8,,...,08, (v=1), eine Folge (b,),~,
komplexer Zahlen sowie ein d >0, sodass }},-, b,n* fiir 0 <0 absolut
konvergiert und fiir o0 <0 gilt:

I'(ay+ Bis)(az+ Bos) - - - T'(ay, + Bus)o(s)

=TI'(y,— 6:8)[(y2— 65) -+ - I'(y, — 6,5) 2 b,(dn)’.

n=1

(v) Fiir jeden Streifen 0, = 0 =< 0, endlicher Breite und jedes € > 0 gelte eine
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Abschitzung der Form
|p(0 + it)] < c1q(g, 01, 02)e, 0,=0=0,, ] = t,.
(iii) und (iv) implizieren nun, dass ¢(s) in C nur endlich viele Pole besitzt. Sei
A(x)=X,<,a,. Dann ist ¢(s)/s =[5 A(e’)e ™ dy, Res>a. Sei f(s)=¢(s)/s

und bezeichne fy(s) die Summe der Hauptteile der Laurententwicklung von f(s)
in ihren endlich vielen Polen. Sei Ay(e”) jene Funktion, fiir die gilt:

7o) = [ Adee ay.
Mit Korollar 1 schliesst man, dass fiir y =4, A=T =1:

IA@) — A(e)] = Mey*e( 1+ A(T))

) w(L4+i%= B e"Org(B+it)dt|, (14)
—e \A A

+ Mse” max
x=xT/A

worin bedeuten: Ms eine positive Konstante, die unabhiingig von y, A, T ist, L
die um eins verminderte hochste Ordnung derjenigen Pole von f(s), deren
Realteil =« ist, B eine feste reelle Zahl <min (0, v,/8,, y»/65, ..., ¥,/6,) und
g(s) =f(s) — fo(s). Man wird nun in einem ersten Schritt das Integral in (14) in
Funktion der Parameter y, 7, A abschitzen, indem man fiir g(s) die in 0 <0
giiltige Darstellung

_ I(y1— 618)I(y,— 6,8) - - I'(y, — d,5) s
B = P+ BT ez Bas) - Tl + Bys) i 2 ~)

benutzt, und in einem zweiten Schritt die freien Parameter geeignet als
Funktionen von y wihlt. Die Methode soll an zwei Beispielen demonstriert
werden.

4.1.1. ¥,=.d(n)
Sei

d(n) = ;1: 1, D)=, d(n).

n=x

d>0
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Man wird sehen, dass
D(x)=xlogx + 2y — Dx + O(x*(logx)"®),  x—,

worin y die Eulersche Konstante ist. Es ist
2 a0
§-—@=f D(e’)e™" dy, s =0+Iit, o>1.
s 0
Aus der Theorie der Riemannschen Zeta-Funktion [19] ist bekannt, dass

% 1 2y—1 1
i) gl)= 3 s(s) — Go17 - sy_ T evine ganze Funktion ist,

(ii) (;Z(s)nﬂﬁ(%) = (1 - s)n‘"ll"z(—l%g-),

(i) [C2(o+it)|<cgltl?, -l=o=2, |f|=L

Wihlt man B8 = ~1 und ¢ = 55, so gilt nach Korollar 1 firy =4, A=T=1:

T
|ID(e”) —ye* — 2y —1)e¥ — }| < Msyey(i- + 8e“5rz)

+ Mse™ max J h(i%—%)e”‘y“)g(*l +it)dt|, (15)

x=+T/A

worin man fiir g(—1 +it) die in o <0 giiltige Darstellung

1-s5
()
1 . 2

1 2y-1 1
i T e 28 s—1
g(s) o

r() 2" T 51 &
2

verwenden wird. Mit der Stirlingschen Formel [14], S. 12,
7 _ 7
I'(o+it)=V(Q2a)|t|°~"? exp (—-—2— |t] + z(t log |t| — ¢t + Ssgnt- (o0 - %)))

x(l+0(ﬁ>), > (16)
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schliesst man

g(—-l + it) = 2n2itcz(2 _ it)e—Zitlog(ltI/2)+2it + O(Itl): Itl—)oo'

1 t
@y

Es ist daher

= (t+ 20\ ! +
f h( l)eu(y+x)g(_1 +if) dt‘ SJ h(t 21)

-1 Q0! 3
e I(f +f )e——(t2+4it—4)/(20;12)eit(y+x)(i) t2n2itC2(2 _ it)e—Zitlog(|t|/2)+2it dtl
- 1 27
* t+2i
weu]_[H(5)

wo G(f) =2~ F (1) = t(2 log 2me) +y +x — (1/(5A%)) —2log t + log n).
Es ist nun

lg(—1 + it)| dt

1| dt__czo(l + 3 40

n=1 n

f G(£)e™® dt|+12), 17)
1

d 1 2
c—i;E,(t)—Zlog(ZJt)+y+x~Slz+logn-—210gt d2 ,,(t) -
d
—E, (¢
dt n()

53

d 1 iaon ( ( t* )
— =—e' -2
oA 1022
1
X (y +x - 5A:,_+2]og (2m) +logn — 210gt> 2)

Dabei hat die Funktion

2
h:t—-)(l(;AZ—Z)(y +x—575+210g(2n)+10gn—210gt>—-2

in ¢t =1 hochstens S reelle Nullstellen, da

a3 4 t?
=3 (2 - 10A2>
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hochstens deren 2 in ¢ = 1 hat. Ferner gelten wegen A = T = 1 die Abschiitzungen:

'%Fn(t)l =2log(2a)+y —2+logn —2log (2n'?e’*)=2log m — 2,

1=t=2n'"%", (18)

10
(%Ez(t)' =2log (20n'%e”?) —y —2—2log (2n) — logn =2 log; ~2,

t=20n"%e"?, (19)
t 2 2 2 2
G(t) — AZ(X) e—t 1(20A%) < A2 sup uZe—u 120 — CZ]AZ, t= 1’ (20)
u=0
1 < I 120372 2)
d2 n(t) t W’ t=<20n"<e s ( 1)

su G(t) = cppne’e """, (22)

2n\2ey2<t<20n"2ey?

Nun ist

2n12e¥12 20n 252
’”"dt'sf ---dt|+ f ~-'dt‘
1 2n12ey2

r . .d,| = 1,(n) + L(n) + K(n). (23)
20n12¢y"2

+

Mit Lemma E in [6] (, das man allerdings in einer leicht erweiterten Form fiir den
Fall unendlicher Intervalle benétigt), findet man wegen (18), (19), (20):

L(n) + L(n) < c;A% (24)
Mit Lemma G in [6] findet man wegen (21), (22):
Iz(n) < C24n5/4e(5/4)ye—ney/(SAZ). (25)

Setzt man (24) und (25) in (23) und (23) in (17) ein, so wird:

d e
f h(t ;2’) iy +0)g (~ 1+zt)dtl<C2s<l2+ > '(l’j)n""e‘y"‘e*"“““). (26)
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Mit partieller Integration und der trivialen Abschidtzung D(x) <c,6x(1 + log x),
x =1, findet man:

E d(n)e_m_,y/(512) — fxD(u)e—ueV/(512)<§u-7/4 + ey )du
1

3/4 4 5 AZ u 3/4

n=1

x N eyt
< czﬁf (1 +log* (u))e 4" /GA )(— u M+ — ) du
0 4 S5A

& 3
= c26f (1+log* (lze“yv))e“”"s(:—‘ v+ % v”“)()tze’y)”4 dv
0

/12
= 027<1 +log” (;;))A”ze"”"‘, wo log* (1) = max (0, logu), u>0.
Setzt man dies in (26) und (26) in (15) ein, so hat man

. T 2
|ID(e’) — ye* — 2y — 1)e¥ — 4| = M5yey(1—+ 8e T )

1,2
+ czg(/lze“” + )L“Z(l + log™* (—;)))
e

Wihlt man nun A = ey T =y'? so folgt:

ID(e”) = ye’ — 2y — 1)e”| < cpe”°y"™.
Dies ist bis auf einen Faktor y"® Voronoi’s Resultat [20]. Wollte man stérkere
Restglieder als das obige erzielen, miisste man das Integral

[“Genoa
1

(z.B. mit der Methode der stationdren Phase) asymptotisch entwickeln und die
Hauptbeitrige mit Methoden aus der Theorie der Exponentialsummen
abschitzen.

4.1.2. ¥,=, (1)

Sei 7(n) Ramanujan’s Funktion, die definiert ist durch die Taylorentwicklung
des unendlichen Produktes

g [11-¢9*=2 w(n)g", lgI<l.

n=1 n=1
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Man wird sehen, dass

2 TZ(n) =Ax12+ O(xlz—(Z/S)(log X)7/20), x—> %,

n=x

worin A eine an spiterer Stelle definierte numerische Konstante ist. Sei

T*(n)
fs)=> —~» Res> 12,  Z(s)=&@2s)f(s + 11),
n=1
Es ist
Z(s)= D, e,n",Res>1, woe,= > pu ''13(n). (27)
n=1 uvi=n
Es gilt nun:

(i) Z(s), definiert in Res>1 durch (27) und daselbst analytisch, ist
meromorph nach C fortsetzbar.
(i) Z(s) — (2m*A/(s — 1)) ist ganz.

3 (4.77:)11

A= r(2)

Jf y'°|A(x + iy)|? dx dy; hierin bedeuten
D

D={x+iy| —3=x=4y>0, [x+iy|=1},
A(‘L’) =eZﬂi‘C H (1 _ eZnikr)24’ Imz7>0.

k=1

(i) I(s)['(s + 11)Z(s) = 27)* 20 (1 — s)[(12 — 5)Z(1 — 5).
(iv) |Z(o+it)| <cy |t]'?, o= =13, |t| =1.
Sei nun E(x) = ¥,=.e,. Esist Z(s)/s =[5 E(e”)e > dy, Res > 1.

Z(0)= —4A, da wegen (iii)

Z(0) = lim QRm)*r(1-s)r(12—-s)z(1 —s) _

- 4A.
s—0 F(S + 11)F(S)

Wendet man nun Korollar 1 mit B=—3, ¢c=7% an, so folgt die fiir y =4,
A=T =1 giiltige Bezichung:

|E(e”) — 2nAe” + Y A| < Mse’ (—)75+ 8e‘5T2)

+M5e—y/3 max I e-—(l+(4i/3))2/(20/\2)eit(y+x)g(__:1;_ +lt) dt , (28)

x==%TI/A
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wo g(s)=Z(s)/s —2a*A/(s —1) + 11A/(2s) und Ms eine von A, T und y
unabhingige Konstante ist. Mit (iii) schliesst man nun

(27) 1934 (4 — i)[ (12 + § — it)
rG+i)r(1—3%+ir

Z(E—it) + o(

1
—3+in)= )
g(—3+ir) 1+ 1)

|t| = oo,

und zusammen mit der Stirlingschen Formel (16) folgt:

. _ . e e
g(__% e lt) — (Zﬂ) 10/3+4it |t|7/3 le'( 4rlog|t|+4t) Sgl‘lt 2 n4/3n_it
n=1

+0(*?),  |t]—o -
Setzt man diese Entwicklung in (28) ein, so entsteht:

r 2
E(e”) —2n°Ae’ + FA| < Mse’ (} +8e ™7 )

l oc

_ i/3))2 2 . =

+ Mse_y/:;(f |e (t+(4i/3))4/(20A )I lg(_% ] lt)l dt + C31J e 12/(2()/12)t4/3 dt
-1 1

+ 2 max
x=+T/A

= . 2 _ . (o e
f e (¢ +(4i/3))2/(20A )ett(y+x)(2n.) 10/3+4”t7/3€’( 4tlogt+4ar) | Z 4/;_” dt’)
1

n=1"1

2

j G(1)e'™ di
1

T 2 (&
<cpne| 4+ e T ) + e ?PAP + cpe™” max D, —5
27 \A 2 32 =7/ g n*?
X = n=1

wo diesmal

- 2
G(t) =e £3/(20A )t7,3,

2
E,(t) = —4tlogt + (4+y +x— 15/12+4log (2n)+logn)t.
Durch analoge Ueberlegungen wie im Dirichletschen Teilerproblem findet man

—_pn12py2 2
5033(1.7/3 + nl/Sey/8n7/12e7y/IZe n'ceY4/(2A ))

l f G(1)e'™® dt
1

Mit partieller Summation und Verwendung der Abschitzung

|[E@)|=0(x), x—>,
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ergibt sich

€, 1209124222
/ 8. 7/12 7y/ - Ve 343
2 " pV8e¥y 2e7¥12 =" < (Y32

n=1

Dabher ist

T
|E(e”) — 2m*Ae” + Y A| < c35e”<x + e“5T2> + c35e PATR + c3sAA

Wihlt man nun A =e?”y¥?, T =y!2 so folgt schliesslich
IE(ey) _ 27t2Aeyl < C3(,€3y/5y7/20.

Wie in [9] folgt daraus, dass

z Tz(n) - Ax"?| = C37x‘2—(2/5)(10gx)7’2",

Bis auf einen Faktor (log x)”* ist dies Rankin’s Resultat {16].

4.2. Der Primzahlsatz

Der Primzahlsatz ist ein klassisches Anwendungsbeispiel des in der Einleitung
beschriebenen Satzes von Wiener~lkehara. Denn mit

Y)= X logp
nz!;,;prim

gilt:

_E(s)
s&(s)

RO
s¢(s) s-—1

=J Y(e’)e > dy, Res>1 und
0

ist analytisch in Re s = 1, sodass mit dem Satz von Wiener—Ikehara folgt:
yE)~e, yow (29)

Dies zeigt, dass in (29) im wesentlichen nur die Eigenschaft (1 +ir) #0, reR,
einfliesst. Will man die asymptotische Formel (29) verbessern zu einer Aussage
mit Haupt- und Restglied, so muss man mehr Eigenschaften der Riemannschen
Zetafunktion benutzen. In Lemma 3 sind die zusitzlich zu verwendenden
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Eigenschaften beschrieben. Folgende Form des Primzahlsatzes soll bewiesen
werden:

Sei 7(t) eine in ¢t =0 definierte, monoton fallende, stetig dlfferenzwrbare
reellwertige Funktlon mit

() 0<n()<i

(i) 1'())—0, (<,

(iii) 1/n(t) =csglogt, t=e,

(iv) &(s)#0in {o+it| o=1—n(jt|)}.
Sei w(x)=inf,., (n(¢)logx +logt). Dann gilt: Y(x)=x + O(xe ¥*™), x— o,
worin ¢3¢ >0 eine absolute Konstante ist. Fiir den Beweis dieses Satzes benotigt
man zwei Lemmata:

LEMMA 3. Sei n(t) eine in t=0 definierte, monoton fallende, stetig
differenzierbare, reellwertige Funktion mit den Eigenschaften (i)—(iv) des obigen
Satzes. Sei p eine feste Zahl mit 0 < p <1. Dann gilt:

(%) 0] zetit (o) oat. k=0

in {o+it| o=1~pn(lt]), |t| = e},

wo 0 =Res, t =Ims und c4 weder von k noch von t abhiingt.

Beweis. Lemma 3 ist eine verallgemeinerte Form des Theorems 5 in [6], S.
78.

Es seien daher die wesentlichen Beweisschritte nur skizziert. Sei 0.E.d.A.
t>0. Sei zunichst s € {0 + it | 0 =1+ pn(r)}. Aus der Darstellung
%(s) =—> A(m)n™,Res>1,

n=1

folgt durch k-maliges Ableiten:
k -0 k+1 1
= > A(n)logknn " =ch'k! ——— k=0, t=e,

| <%)m“) MOy

indem man den vorletzten Term partiell summiert und die Tschebyscheff-
Abschitzung Y.<, A(n) = O(x), x — =, verwendet.

Sei nun se€ {o+it|1—pn(t)<o=1+pn(t)}. Die Funktion Z(s) = log {(s)
ist regulidr in D = {o +it | 0>1—n(t), t >0} und Z(s) =log &{(s) =X, . 1/mp™
o>1.
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Sei T >1 und n(T) = H. Man wihlt den Punkt so=1+ pH +iT als Zentrum
zweier konzentrischer Kreise mit Radien r =2pH und R =3(1+3p)H. Wie im
Beweis des Theorems S in [6] beweist man, dass

(i) beide Kreise in D liegen fiir T > T;,

(ii) [Re Z(so)l <1/pH,

(iii) Re Z(s)<log T, falls T > T, und |s —so| <R.

Anwendung des Satzes von Borel-Caratheodory ([6], S. 41, Lemma B) liefert

Ew)"
Z**5(s) ¢ 2R
k+1! | kD) l SR =y g T —Re Z(so))

Insbesondere folgt fiir s = 0 +iT, wo T =max (T, T5) =Ty, |0 — 1| = pn(T)

) e

Zu beweisen bleibt Lemma 3 somit noch in

1
<k!C§;lW—llog T.

F={o+it||lo—-1=pn(t), est=T)}.

Nun folgt mit Cauchy’s Satz:

—‘:—'(w)

g\ & k!
(&) gl mmen seR k=0

worin r, 0 <r <1, so klein gewdhlt wird, dass die Kreisscheibe mit Zentrum s,
s € F, und Radius r ganz in {o +it| 0 =1— ((1+ p)/2)n(t)} liegt, sodass
IRe w—1|=((1+p)/2)n(Imw)

(2)"l-

LEMMA 4. Sei H,,(x)=(-1)"e":(d/dx)"e”‘2, xeR, n=0, das Hermite—
Polynom vom Grade n. Sei U=V ((n/2) + 1). Dann gilt:

CI
4

su =ckik!, seF, k=0.

sup |H,(u)| < ca2U".

-U=u=sU
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Beweis. Es ist
H,(u) ——-2—'!— r (u+ it)”e"2 dt
" Vr ).

(siehe [14], S. 252/254). Fiir —U <u =< U ist daher

n+1
|H,,(u)|s 2)n/28—t2 dt< ([ J )(U2+t2)n/2 -2 dt
n+l * n+1
= V7 (2U2)"’zf e dt+ y f (262)"2e~" dt

2(3n/2)+1
< 23n/2 n J' 2 2
Ur+ 1+2sug(te (1+1¢9)).

Die Funktion t—t"e™"(1+¢*) fillt monoton fir ¢=U und es ist
Sup,=y (t"e (1 + 12)) = Ure V(1 + U?) < cis U™

Beweis des Primzahlsatzes. Korollar 1, angewendet auf

£'(s)
- sE(s)

liefert mit a=B=1,c=75, A=T=1, y=4:

[ y(e’)e ™ dy, Res>1,

(&) )l = Me*(7

7 + 8e“572) + Mse” max 1 X

x=+Tly
f i e @i+ )5 (1 4 jf) dt' , (30)
worin ’
g(1+lt)——-—+—7t(i (1+it )+%—‘f)

Integriert man das letzte Integral n-mal partiell, so entsteht:

J’x e—tzl(ZOAz)eit(y-Fx)g(l & lt) dt = (—l)n Ix eit(y+x) . 2 n!
e (i(y +x))" J_» ny+ngrns=n N1 03! Ny!
n,=0,j=1,2,3

<((@) ) (@) (@) Gario =) e e
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Es ist
@ T )
(7) (Fa+ios S0 =(5)av i s, + S (34)

Mit den Bezeichnungen von Lemma 3 besteht eine Ungleichung der Art

1
(n(max (e, |¢)))“""’
teR, k=0. (35)

() (5 avin+157) | = ekt tog (max . 1)

Setzt man (32), (33) und (34) in (31) ein und verwendet Abschitzung (35), so

entsteht:
([ e s L
+f )e-—l /(Z(M). N
+ )n 0 Az n|+n3+n;=nnl!

n,=0,;=12.3

[ e_tz/(znkz)eit(y“)g(l + it) dtl =

me1_10g (max (e, [t]))
H"‘(\/2OA ' 1+ i % ((max (e, J2))™"

dt.

(vaoa)

Setzt man voraus, dass A =max (e, V20 (n + 2)), so kann obige Abschitzung mit
Lemma 4 und der Voraussetzung, dass n(¢) monoton fallend ist in =0 und
1/n(t) = ¢35 logt, t = e, wie folgt fortgesetzt werden:

2n! 1 1 \™ A\
< 23n,/2(___) ny+ 1
(y +x)" ,,,,L,,zzﬁu,,x =n 1! (\/20 A) Cur V20 Cag

n,=0, j=1,2,3
log A2 f“ dt 2n! 1 ( 1 )"'C e
OOy i) T (5 4 1) myeiTmeen il \V202)

n=0,j=1,2,3

A N CZ?,H ci'n! (log A)?
X t4/(20A) ny+1 l t ny+2 dt <
Lz (\/20 A) ’ 1+ (080 y" ()"
+ cis'n! fx <...t_.)"e~12/(2()/12) (log t)szt et n! (logA)*
22 t n( (AZ))n+l




24 ALBERT STADLER

In der vorletzten Ungleichung wurde benutzt, dass

A2

(y+x)2y-lzx, Z 1s(n+1)2,J =3log A

2 nmy+ny+ni=n 0 '1 + ltl
n=0,j=1,2,3

und in der letzten, dass

e 3 n 2 " )
f (iz') e 11208 (log )™ dt < sup ((tlozg t) +2e—t2/(2(M2))j A—:dt
A2 A t =22 A w b

< Sup (t log (Azr))l/vzoe—(lth/ZO) < sup (u lOg (uZ))u/\/ZOe_(uZ/ZO) < o
=1 u=1

Setzt man nun die gewonnene Abschitzung fiir (31) in (30) ein, so entsteht die
fir T=1, n=1(neN), A=max (T, e, V20 (n +2)), y =4 giiltige Ungleichung:

(log A)?

~ W , Caoo=1. (36)

T
ly(e”) — €| sMSey(/1 +8e~5T ) + Mse’cis! n!

Sei Q(y)=inf,., (n(t)y +logt). Das Infimum Q(y) existiert fiir jedes y >0, da
t—>n(t)y +logt stetig ist flir £=1 un gegen o strebt fiir r—o. Q(y) ist als
Funktion von y monoton wachsend und lim,_,.. £(y) = «. Man setzt nun

A= e1920), =1+ [Q(y )] T =e®a0)
S¢49

und stellt fest, dass die an T, A und n gestellten Bedingungen erfiillt sind fiir
y Zy,=4. Zudem gilt:

Q) _ 2(y) _n(?y +log (A% _
oD = 2 wegen

Nun ist

1Q(y)
= @ 37)

0<

yn(‘::z:i))n = (y:t(‘); ))" =exp (1 + [2(y)/(5c)])(log cqo + log (1 + [L2(y)/(Scao)])

—log y —log n(3%)))
= exp ((1 + [2(y)/(Sca)])(log (282(y)/ (Syn(A*)))))

=exp ((1+[£2(y)/(5ca9)]) log (4/5)) =exp (- c5022(y)),  €50>0,
(38)



Ein Tauber-Satz mit Restglied fiir die Laplace-Transformation 25
fiir y = y; wegen (37).

(log 4)°
n(A%)

Setzt man (38) und (39) in (36) ein, so wird

= cylog (A%)(log A)* =2c35(32(y))° = ¢ 2(y). (39)

‘W(ey) - eyl = C52eye—0539(}))’ y = max (y()) yl)’ Cs3 > O

Beriicksichtigt man noch Q(log x) = w(x), so folgt der Primzahlsatz.

4.3. ¢(n), p(n)

Die Bestimmung der Haupt- und Restglieder fiir c(n) und p(n) kann unter
folgendem allgemeineren Gesichtspunkt betrachtet werden:

Gegeben sei eine Folge (a,),-o monoton wachsender, nicht negativer, reeller
Zahlen derart, dass fiir ein reelles & =0 und alle € >0 gilt: |a,| < css(g)e™***)
Man definiere fiir reelles x =0: a(x) = a,,, falls n = [x]. Dann gilt:

1—e

2 a,e ™, Res > a.

n=0

j a(x)e ™ dx =
0

Nun ist Satz 1 anwendbar. Es zeigt sich, dass in Analogie zur Kreismethode von
Hardy-Littlewood das analytische Verhalten der Potenzreihe },-¢a,z" in der
Nihe des Konvergenzkreises |z| = e~ * entscheidend fiir den Hauptterm in der
asymptotischen Entwicklung von a,, ist.

4.3.1. c(n)

Ist T € C mit Im 7 >0 und sind g,(t), gs(t) die Invarianten definiert durch

82(t) =60 2 (m +n7)™,

(m,n)eZxZ—{(0,0)}

g3(7) = 140 > (m+nt)~°,

(m,n)eZxZ—{(0,0)}

so ist die absolute Invariante J(t) definiert durch

J(t) = iz((:)) . wo  A(r)=gi(r) - 27g%(r) %0.
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J(t) ist holomorph in Im 7>0. Ferner ist J((at + b)/(ct + d)) =J(7) fiir alle
a, b, c, d e Z mit ad — bc = 1. J(7) besitzt folgende Fourierentwicklung:

1 . .
J(1)= o5 e‘z’”’(l + > c(n)ez"””) , Imz>0.

n=1

Die Koeffizienten c(n) sind nicht negativ und ganzzahlig [7]. Man wird mit Satz 1
schliessen, dass

e4n\/n log n
) =7 (1+0(5)). = 0

Diese Aussage wurde von Petersson [15] mit dem Restglied O(e**V"/n¥**'7?)
bewiesen. Fiir den Beweis von (40) sind einige Lemmata notwendig:

LEMMA S. Es gilt c(n)>c(m), n>m=1.

Beweis. Man verwendet folgende Darstellung fiir J(7), [7]:

10 =g (IL e+ 1 a =gy +g2 [T a4, @)

n=1 n=1 n=1

wo g =e™*, Im 7>0.,
Sei nun n € Z, n =0. Sei «, die Anzahl der Lésungen von

16
n=>y > TS x,v €1{0, 1}, u=1, 1=v=16,

u=zl v=1

sowie 8, die Anzahl der Losungen von

16
n=> > Cu-1Dy.. Yuv€{0,1}, u=1, 1=v=16.

uzl v=1

Dann gilt:
(i) Xnt1 > a,, n 20)
(i) Bon+2=Pon, n =0,
(iii) Bon+3=Pon+1, n =0,
(i) a=y (1+9")° = .20 @aq”, 191 <1,
(V) ozt (1 +¢71) 0= B0 Baq”, Iq1 <1,
(IV) anl (1 - q2n~1)16 = Znao ﬁn(”l)nqn! |‘I| <L
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Mit diesen Bezeichnungen kann (41) geschrieben werden in der Form

2B, n=0
J(1)= 29332(2 Ynd )’ WO y"={2/3(2) +2%q, ,, n=1.

n=0

Aus (i) und (i1) folgt sofort, dass y,.,>y,, n=0. Deshalb ist auch §,,,>§,,
n=0, wenn &, definiert ist durch (X,=¢v.q”")’ = X.=06.9>", |q| <1. Es folgt
Lemma 1.

LEMMA 6. Sei Res >0. Es gilt:

o e4n’\/y

VR L =e*" + p(s);

p(s) ist analytisch in Re s > 0 und stetig in Res =0, s #0, und es gilt:

c%(l +|s| e*™ ) |s| =1, Res=0.

Beweis. Fiir s >0 gilt:

et Vy o\ 174 . 2
f V2y Tl Cdy= <'S') Vn D—l/z(vz%_))em' *, wenn (42)

—(z44)

e~ H—(12)—v—1 dt, Re v <0,
I'(—=v)Jo

D,(z) =

die parabolische Zylinderfunktion bezeichnet. Da z— D,(z), Re v <0, eine
ganze Funktion ist, stellt (42) die analytische Fortsetzung des Integrals nach
C-R. dar. Fiir D,(z), Re v<0, gelten folgende asymptotische Entwicklungen
[14]:

2 2r 2
DV(Z) — Zve--(z /4)(1 + 0(|Z|_2)) I\{(( ; mvez /4 —v—l(l 4 0(|Z|_2)):
5
|z]— oo, s +6_argz<5—n——6<—-]—t (43)

4 4 4 4
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s 2 o
D,(z)=z""“"™(1 + 0(|z| %) — _______\/( ) e etz (1 4+ 0(z|7?)),
r(—v)
|z]—> o, —Z£<——Z]-t+ésargzs-—4—]f——6<—-;. (44)

Falls Res =0, Ims =0, so ist —4x/V(2s) € {re'? |r=0,3nx/4=< ¢ = x}, sodass
nach (43)

1p()] = cse(1 + |s| e**F),  |s|=<1, Res =0, Ims =0.

Falls Res=0,Ims=0, so ist —4x/V(2s)e {re’®|r=0, —n=¢ < —3x/4},
sodass nach (44):

Ip(s)] = cse(1+ 5| e*7),  |s|=<1, Res =0, Ims =<0.

Aus der Tatsache, dass z— D, (z), Re v <0, ganz ist, folgt sofort

|p(S)| SCSS, |S| = 1: Res ZO.

Dies beweist Lemma 6.

LEMMA 7. Seien die Zahlen c(n), n=1, wie in der Einleitung definiert.
Dann gilt:

(i) (1 + D, c(n)e‘"’) = e““'*""’z""’(l + c(n)e‘"“‘"z"")), Re s > 0.

n=1 n=1
i 2 2442 2
(ii) f e ) | g+ it| dt < c5,07%e* 7, 0<o=1.
(4]
T
(iii) e NI N (n)e AT dr < coue™,  0<o=1.
0 n=1
n ) ,
(iv) f lo+it] {1+ D, c(n)e "M dt <c50™%*°, 0<o0=1.
0 n=1
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Beweis. (i) Dies folgt sofort aus der Definition der Koeffizienten ¢(n) und

is -1
)%
27 is
2n
® 2 2 2 g 2 2 2 r 2 2
(ii) p o WA |o + it| dt SJ' eV YOND o dt + f e "2 +im| dt
g

0 0
1 1
< \/2 0,2 f e4nzl(o(l+t2)) dt + Il + l.TL'I 62:::2/05\/2 02e4n2/oj e-—4n2t2/(20) dt
0 )]

+ |1+ in| €20 < c g™ 2e* ™,

(iii) Fir 0=t=Vo gilt:

2 c(n)e4.7120(1——n)/(02+t2)S 2 c(n)e4n2(l——n)/(l+o)5c60<oo (45)

n=1 n=1

Fir Vo<t=<a gilt:

Z c(n)eatnza(l»-n)/(02+t2)S 2 c(n)e4“2"“"")’(02+ﬂ2)

n=1 n=1

Se4.rt20/(02-¢~nz)(1 + 2 C(n)e—4:r2cm/(az+n2)>

n=1

___e(02+n2)/o(1 + 2 C(n)e—(02+nz)n/o)

n=1
< cee™", indem man Identitit (i) verwendet. (46)
Dabher ist

n
f e4nzo/(oz+rz) 2 C(n)e—4n1no/(az+13) dt
(

n=1

)
Vo n
S([ +I ) ¢ ’dts\/UC(,()+nC(,len‘/cSC_ssenﬁlo.
0 o

(iv) Aufgrund der Identitat (i) ist

Se_a+(4ﬂ20/ls|2)(l + z C(n)e—(4n2cm/|s|2)>.

n=1

|1 + 3 c(n)e™@+0

n=1
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Verwendet man dies sowie die Abschitzungen (45) und (46), so wird
1+ D, c(n)e "+

T \/0 JT
f |o + it] dtS(j +f >|o+it|e“’
0 n=1 0 Vo

X (e4n20/|s|2+ 2 c(n)e4n20(l—n)/|s|2) dt

n=1

g

4
< f |o + it] e*** 7" dr + j Ceo |0 + it| dt
0 0
T 2 2
+I Cer1€”™ 7|0 + it| dt = c590”°%*™ " nach (ii).
g

Dies beweist Lemma 7.

Beweis der Aussage (40). Setzt man c(x) = c(n), falls n = [x] (wo ¢(0)=1), so
gilt:

1—-e"°

2 c(n)e ™™, Res>0.

n=0

[ e ay=
0
Sei co(y) = e**V?/(V2y¥), y >0. Sei fiir Re s > 0:

-—S

l1—e

2 c(n)e-—ns _ e4n2/s_p(s)

) n=0

gls) = fo I(C(y) —co(y))e ™ dy =

(wo p(s) wie in Lemma 6 definiert ist und den dortigen Abschidtzungen geniigt).
Es gelten folgende Abschétzungen:

lg(o +it)| = Cez(l + |s| et 4 c(n)e“"z"‘l‘"”'"‘"’z) :

n=1

O<o=1, lt|=m, (47)

Hl—e”

> c(n)e™ , O<o=1, |t|=mx; (48)

n=0

lg(o+it)| =cez +

(48) folgt sofort aus Lemma 6. (47) folgt aus Lemma 6 und der Darstellung

-5

- e

e—-se4n2/5(1 + z C(n)e-—(4nzn/s)) _ e4n2/s__ p(S)

n=l1

b

1
(o +in)l =
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die sich unmittelbar aus Lemma 7(i) ergibt. Man wendet nun Satz 1 an mit o =0,
w=1, c=1 Ayy)=Boy)=coly) =e*"V/(V2y¥), y>0. (Man priift ohne
weiteres, dass die Voraussetzungen von Satz 1 erfiillt sind). Damit gilt fiir y =4,
0<o=1, A=T=1:

o0

) — el = cueo)(7+€77) +ce” [ e g vty @9)

0

Verwendet man nun (47) und (48), so folgt:

2k +rn

f e~ |g(o + it)| dt < Ig(o +it)| dt + e |g (o + it)| dt
0

k=1 2nk—n

i oc
. 2 2442 2 _ 2.,,2 5
gj C62(1 + |o + it| elriolo+) 4 Z c(n)e“” o(1—-n)/(o*+t )) dt + ij e ~rPNBAY) dt
( 0

) n=1
‘1 _ e—o-il|

T
+ o~ (1+27k)(8A?)
2 |o + i(t + 27k)|

k=1J—

2 C(n)e—n(o+it)

n=()

(50)

Y=y € CFERIIED ) 6 4 (¢ + 27k)| konvergiert gleichmiissig fiir f € [—, n] und
es gilt fiir t € [, 7]:

- 2 2 — Y. 2
e (t+27k )*/(8A?) e 2k —m)“/(8A%)

l 1 —n2k?/(8A%)
= -, e < (1+log A).

Verwendet man dies sowie Lemma 7 in (50), so entsteht:

f —1%/(8A%) lg(U + lt)l dt <C(,5(1 + 05/2 472 /o+ en’-/n+ A+ (1 + lOg 1)05/264::3/0).
0

< ce(A + (1 + log 1) 0”%e*779),

Setzt man dies in (49) ein, so entsteht die fiir y =4, 0<o=1, A=T =1 giiltige
Beziehung:

T o ]
lc(y) = coy)| = CMC«)()’)('}: + e‘”‘) + ce7(A + (1 + log A)o™%e*™7)e ™.

Wihlt man A =y?, T =y, o =2n/\y, so folgt (40).
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4.3.2. p(n)

Bezeichnet p(n) die Anzahl der Partitionen der natiirlichen Zahl n, so gilt:

Ep(n)t"=gl(1—t")“, <1, p(0)=1.

n=0

Die Funktion n— p(n) ist monoton wachsend. Mit Satz 1 kann bewiesen werden,
dass

aV(2n/3)
e logn
por= Sy 1+ 0(22). e

Diese Aussage wurde von G. H. Hardy und S. Ramanujan bewiesen [9] mit dem
Restglied O(e™V®n~%?). Der Beweis von (51) ist jenem fiir (40) Zhnlich. Es
seien daher die zu Lemma 6 und Lemma 7 analogen Lemmata zitiert:

LEMMA 6'. Sei py(x) = e™VA+D3/(4\/3 (x + 1)), x = 0. Es gilt in Re s > 0:

es+(n2/((xs~))

L Po(x)e " dx = ‘“\'/—(2‘”—)‘*\/8 + p(s);

p(s) ist analytisch in Re s > 0 und stetig in Res =0, s #0, und es gilt:

cese” IsI, Is|=1, Res =0,
IP (s) I = 3/2 _m&lo/(61s)?)
Ceo(l + 5|7 € ), Is|]=1,Res=0,s+#0.
LEMMA 7'.
() 3 pln)e™ = BN\ S pin)em 4, Res >0,
n=0 T p=0

JT
.. 2 2 2
(“) f (0,2 + t2)3/4en o/(6(0%+12)) dt < C7()0'3€n /(60)’
0

n
coe - 2
(lll) f eazal(6(02+¢2)) Z p(n)e 4nlon/(o?+1%) dt Sc7lea2/(120)’ 0<o=1,
0

n=1

> p(n)e M| < 0%, 0<o<l.

n=0

(iv) Ln|a+it]
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(51) folgt nun in gleicher Weise aus Satz 1, Lemma 6’ und Lemma 7' wie (40) aus
Satz 1, Lemma 6 und Lemma 7 folgte.
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