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The level of real projective spaces

STEPHAN STOLZ

1. Introduction

In this paper we determine the level of the real projective space RP*"~! with
the Z/2-action induced by multiplication by the complex number i. By definition
(see [DL]), the level of a topological space X with a free Z/2-action is the number

s(X) = min {n : there exists a Z/2-equivariant map f : X — §""},

where the sphere $"~! is equipped with the antipodal Z/2-action. We abbreviate
s(RP*"~1) by s(m).

The previously known results about s(m) seem to be the following, P. E.
Conner and E. E. Floyd proved s(1) =2, s(2) =3, s(3) =5 [CF] and A. Pfister
and the author obtained the estimates m + 1 <s(m)=<3(3m + 1) [PS].

The main result of this paper is the computation of s(m).*

THEOREM. Let m=2. Then

m+1 ifm=0,2mod8
s(m)=ym+2 ifm=1,3,4,5,7mod8
m+3 ifm=6mod8

Remark. The invariant s(m) is related to the following purely algebraic
invariant

there exists a complex quadratic form q: C" — C"

r(m) = min {n : }

“such that im (g) : R*"— R” is anisotropic

Here im (g) denotes the imaginary part of g which is a real quadratic form. It is
called anisotropic if im (¢)"'(0) =0. By normalizing and restricting im(g) it

* This result was also proved by M. C. Crabb using somewhat different arguments in his preprint
“Periodicity in Z/4-equivariant stable homotopy theory”.
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662 STEPHAN STOLZ

induces a Z/4-equivariant map $*”~'— $"~! where Z/4 acts by multiplication by
i (resp. —1) on the domain (resp. range). Passing to the quotient we get a
Z/2-equivariant map RP?>"~'— §"~1  This shows r(m) =s(m). The 8-periodicity
of s(m) suggests that there might be a way to use Clifford algebras to construct
Z/2-equivariant maps RP*"~!'— §°(™~1 or even quadratic forms C™ — C*™™ with
anisotropic imaginary part.

The proof of the theorem uses the following reformulation of the level of X.
Let L be the real line bundle X X, R— Y over the quotient space Y = X/Z/2. If
f:X—>S8""! is a Z/2-equivariant map then by passing to the quotient the
equivariant map id X f: X— X X §"~! gives a nowhere vanishing section of nL.
Conversely a nowhere vanishing section of nL gives rise to an equivariant map f
as above. Hence the level of X can equivalently be characterized as the smallest n
such that nL has a nowhere vanishing section. An obstruction for the existence of
such a section is the cohomotopy Euler class, which we discuss in section 2.

In section 3 we use K-theory methods to show the non-vanishing of the
cohomotopy Euler class of nL for certain n’s, where L is the non-trivial line
bundle over the Z/4-lens space L>"~', the quotient space of RP*"~!. This implies
a lower bound for s(m). It should be emphasized that these K-theory restrictions
are stronger than those imposed by the vanishing of the K-theory Euler class. A
study of the K-theory Euler class only leads to the lower bound s(m)=m + 1, the
same bound as obtained in [PS].

In section 4 we use the Adams spectral sequence and a vanishing result for its
E,-term to show that the cohomotopy Euler class vanishes in certain cases. That
leads to an upper bound for s(m) which agrees with the lower bound derived in
section 3 except for m = 4 mod 8.

Finally in section 5 we prove the inequality s(m + n) =s(m) + s(n) and use it
to compute s(m) for m =4 mod 8.

My thanks go to Bill Dwyer and Larry Taylor for helpful comments.

2. The cohomotopy Euler class

In this section we discuss the cohomotopy Euler class and its properties and
recall the definition of the (cohomotopy) Gysin sequence.

Throughout this section let X be a finite CW complex and let & be an
n-dimensional vector bundle over X. We choose a metric for & and denote by
S(a) (resp. D(a)) the sphere bundle (resp. disk bundle) of &. The Thom space
T(a) is by definition the quotient space D(«a)/S(a). The zero section of «
induces a map i: X— T(a) or, more generally, a map i: T(8)— T(a @ B) for a
vector bundle B over X. If o' is an n'-dimensional inverse bundle of o then a
trivialization of a® &’ induces a map t:T(a®D a’')—S"*". For n’' large the
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vector bundle ' is unique and we define the cohomotopy Euler class e(a) as the
composition T(a')— T(a ® a’)— $"*" of i and ¢.

If o has a nowhere vanishing section s then the zero section can be deformed
into s and hence i is homotopic to the constant map since we can assume that s is
a section of S(a). Thus e(«) is homotopic to the constant map.

At this point it is convenient to use the language of Thom spectra. A general
reference for spectra is [S]. With our assumption that X is a finite CW-complex
Thom spectra of (virtual) vector bundles over X are easily defined as follows. If a
is a n-dimensional vector bundle then its Thom spectrum Ma is the n-th
desuspension of the suspension spectrum of T'(a). Note that with this definition
the bottom cell of M« is in dimension 0. The notion of Thom spectrum can be
extended to virtual vector bundles. For example M(—a) = M(«'), where o' is an
inverse to a.

For n' large the set [T(a’), $"*"'] of homotopy classes of maps from T(a’) to
§"*"" is isomorphic to {T(a'), S**"'}, the group of homotopy classes of maps
from the suspension spectrum of T'(«') to the suspension spectrum of $"*"". Via
suspension isomorphism {T(a'), $"*"'} can be identified with {M(—a), §"} =
a"(M(—a)).

Using these identifications the cohomotopy Euler class e(«) is an element of
a"(M (- «)). We think of 7"(M(—«)) as a “twisted”” cohomotopy group of X and
hence we use the notation n"(X; —a). The big advantage of the cohomotopy
Euler class is the following.

PROPOSITION 2.1 ([C, Prop. 2.4]). If a is an n-dimensional vector bundle
over a finite CW-complex X and dim X <2(n — 1) then « has a nowhere vanishing
section if and only if its cohomotopy Euler class vanishes.

The classical obstruction for finding a non-where vanishing section of an
orientable vector bundle « is the usual Euler class of a which is an element of
H"(X;Z) (see e.g. [MS]). If a is a complex vector bundle of dimension k this
Euler class is the k-th Chern class c,(«) € H*(X; Z). The usual Euler class and
the cohomotopy Euler class are related as follows. Using the notation H"(X; —a)
for H*(Ma; Z) the Hurewicz homomorphism

h:a"(X; —a)=na"(M(—a))> H'(Ma; Z) = H'(X; —a) 2.2)

maps e(@) to a (twisted) cohomology class ez(a) which we call the cohomology
Euler class of . If « is oriented ez(a) corresponds to the usual Euler class under
the Thom isomorphism H"(X; —a) = H(X;Z).

Replacing Z-cohomology by Z/2-cohomology there is a corresponding Hure-
wicz map hz,:n"(X; —a)— H"(X; Z/2) (note that here we don’t need a to be
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oriented) and
hzn(e(a@)) = w,(a) (the n-th Stiefel Whitney class of «). (2.3)

The Euler class has the following multiplicative property. Assume that « and B
are n-dimensional (resp. m-dimensional) vector bundles over X. Then

e(a ® B) = e(a)e(B), (2.4)

where the product on the right hand side is the cup product for (twisted)
cohomotopy

n"(X; —a) @ a7(X; =)= 2" (X; —(a D B))

defined as follows. Let f, g be elements of 7"(X; —a) resp. 7™ (X; —B) which are
represented by maps of spectra f:M(a')—S" resp. g:M(B')— S™, where o'
resp. B’ are inverse bundles of « resp. f. Then their cup product is given by the
composition

M(a' ® B2 M(a' X B')=M(a') A M(B') L2585 §" A ST =S"*™,  (2.5)

where a’ X B’ is the product bundle over X X X whose Thom spectrum can be
identified canonically with the smash product M(a') A M(B'). The diagonal map
A:X—> X X X is covered by a bundle map a’' @ g'— a’ X ' which induces a
map MA between the Thom spectra. The multiplicative property (2.4) follows
easily from the definitions of the Euler class and the cup product.

Another tool we need is the Gysin sequence. Let o be an n-dimensional
vector bundle over X. Then by definition of the Thom space there is a cofibration

S(a)—2— X —— T(a) = Z"Ma, (2.6)

where p is the projection map and i denotes the inclusion of the zero section. It
induces long exact sequences

-2 7"(X; @)~ X L5 iS(a) > 7' (X; @) —> and @7

- H™(X; 0) "> H'(X; Z) 2> H'(S(a); Z) > H' " '(X; @)=, (2.8)
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which we refer to as the cohomotopy (resp. cohomology) Gysin sequence for
S(a). If a is orientable we can replace the twisted cohomology group
H™(X;a)=H"""(Ma;Z) by H™"(X; Z) using the Thom isomorphism and this
gives the usual Gysin sequence (see e.g. [MS]). More generally, if 8 is a vector
bundle over X then there is a cofibration

T(p*B)—2> T(B)—— T(a D p) (2.9)
inducing long exact sequences

—> (X o @ B) —— 7'(X; B) £ '(S(a); p*B) > ' (X; ¢ D B)

(2.10)
and

—H™(X; a ® B) > H'(X; )£ H'(S(@); p*B)—> H' "' (X; a ® B),
(2.11)

which we call the cohomotopy (resp. cohomology) Gysin sequence for S(a) with
coefficients in B. It follows from the definition of the cohomotopy Euler class that
the map i* in these sequences is the multiplication by the cohomotopy (resp.
cohomology) Euler class. '

3. A lower bound for s(m)
The goal of this section is the proof of the following.

PROPOSITION 3.1. Let L be the non-trivial real line bundle over the
Z/4-lens space L*~* with m=2. If m=2k —2 and k =0mod 4 or m =2k — 1
then the cohomotopy Euler class of 2kL is non-trivial.

This implies that 2kL does not have a nowhere vanishing section or,
equivalently, there is no Z/2-equivariant map RP>"~'— §*~'. Hence we obtain

the following estimate on s(m).
COROLLARY 3.2. Let m=2. Then

m+1 ifm=0,2,4mod8
s(m)={m+2 ifm=1,3,5,7mod8.
m+3 ifm=6mod8
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Proof of Proposition 3.1. We observe that L>*~! can be identified with the
sphere bundle of H*, the fourth tensor power of the Hopf bundle H over the
complex projective space CP™~!. Moreover the pull back of H* under the
projection map p : L*"~' = S(H*)— CP™ ' is 2L.

This can be seen as follows. The Hopf bundle H can be written as the vector
bundle associated to the standard 1-dimensional complex representation of S’
given by multiplication by z € S'. Thus H? corresponds to the representation
given by multiplication by z* and p*(H?) corresponds to its restriction to the
subgroup Z/4 of S* generated by i € S'. This representation of Z/4 is the sum of
two copies of the non-trivial 1-dimensional real representation of Z/4 whose
assocated vector bundle is L.

The naturality of the Euler class then implies p*(e(kH?))=e(2kL). To
analyze p*(e(kH?)) we use the Gysin sequence for the sphere bundle S(H®).
Writing down the Gysin sequences for cohomotopy (resp. cohomology) with
coefficients in —kH? (see (2.10) resp. (2.11)) and identifying the twisted
cohomology groups with untwisted ones using the Thom isomorphism we get the
following commutative diagram

¥ A(CP™ Y HAkH?) —— 7 (CP"™';-kH?) L % (L*"~"; -2kL) —

b } b

l't

BHZk"z(CP'"—l;Z) ; HZk(cpm—-l;Z) I"’E HZk(LZm——I;Z) .

Here the vertical map 4 is the Hurewicz map. It maps the cohomotopy Euler class
of kH? to the cohomology Euler class ez(kH?).

Recall that the cohomology of CP™' is a truncated polynomial ring
H*(CP™ !, Z) = Z[x]/(x™) whose generator x € H*(CP™~'; Z) is the first Chern
class of the Hopf bundle. Hence ez(H?) = ¢;(H?) = 2x and ez(kH?) = (ez(H?))* =
2*x*. The induced map i* in cohomology is multiplication by ez(H*) = c,(H*) =
4x.

To prove proposition 3.1 assume e(2kL)=0. Then the cohomotopy exact
sequence implies that e(kH?) is of the form i*(y) for some ye
a*~}(CP™!; H* — kH?). The commutativity of the diagram implies i*(h(y)) =
h(i*(y)) = h(e(kH?)) = ez(kH?) = 2*x* and hence h(y)=2*"2x*"1. But this con-
tradicts the following proposition.

PROPOSITION 3.3. Letm=2. If m=2k—2and k=0mod4 or m =2k — 1
then the index of the Hurewicz homomorphism h:a**~*(CP™!; H* - kH*)—
H**(CP™'; Z) = Z is multiple of 27"
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To prove this proposition we first characterize the index of A as the
“codegree” of some vector bundle and then use the K-theory methods of [CK] of
obtain estimates for this codegree. If a is an orientable (virtual) vector bundle
over a space X then cd(«), the codegree of «, is defined as the index of the
Hurewicz map n°M € - H(Ma; Z)=Z.

LEMMA 3.4. If a is some (virtual) vector bundle over CP™"! then the index
of the Hurewicz map h: x* (CP™"'; a)— H*(CP™"'; Z) is the codegree of a + rH
over CP™ "1,

Proof. Consider the cofibration

CP ' CP" ' -£5 CP™/CP L,

It is well known that the cofiber CP™ '/CP"~! can be identified with the Thom
space of the vector bundle rH over CP™~"~'. Moreover there is a corresponding
cofibration with ‘“‘coefficients in &” which induces the ‘following long exact
sequence of cohomotopy groups.

2 CPY; @) — 2O(CP™ "5 a + rH) 22 7 (CP™'; a)

— ¥ (CP 1 &)

The groups a2 (CP""'; @) and #*(CP""'; @) vanish for dimensional reasons
and hence pr* is an isomorphism. The same argument shows that pr induces
an isomorphism in cohomology, too. Hence the index of the Hurewicz map

h:a?(CP™'; a)—> H¥(CP" 1, Z)
is equal to the index of

h:x%CP" ", a + rH)— H(CP" "1, Z),
which is the codegree of a +rH. Q.E.D.

We estimate the codegree of H* — kH? + (k — 1)H using the K-theory method
of [CK]. It is based on the fact that the Hurewicz map factors through K-theory.
More precisely the Hurewicz map h:n°Ma— H°(Ma; Z) composed with the in-

clusion i : H(Ma; Z)— H*(Ma; Q) is the composition of the K-theory Hurewicz
map hy: ®°Ma— K°Ma and the Chern character ch: K°Ma— H*(Ma; Q).
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The codegree of a is by definition the index of im (k) in H°(Ma;Z) or,
alternatively, the index of im (i°h) in im (i). It is hence a multiple of the index of
im (i) Nim (ch) in im (i) which is called the K-theory codegree of a and denoted
by cd¥(a).

For computations the following characterization of cd®(«a) is useful.

LEMMA 3.5 ([CK], Prop. 3.2). Let a be a complex vector bundle over a finite
CW complex X with torsion free homology. Then

cd®(a)=min {m € N|m - ch™' Todd (— @) € K°X ® Q is integral}
Here Todd (o) € H*(X; Q) is the Todd genus of a. It is multiplicative, i.e.
Todd (a + B) = Todd («) - Todd (B),
and if L is a complex line bundle then
Todd (L) = (exp (c1(L)) — 1)/cy(L).

LEMMA 3.6 ([CK], p. 16). Let L be a complex line bundle. Then
ch™'Todd (—L)=1log (A+1)/Ac K°X®Q, where Ai=L-1eK’°X and
log (A + 1) is the standard power series of the natural logarithm.

Proof. ch(log (A+1)/A) =log (ch(A + 1)/ch(A)) =log (ch(L)/(ch(L) —1)) =
ci(L)/(exp (c1(L)) —1) =Todd (L)' =Todd (-L). Q.E.D.

LEMMA 3.7. The K-theory codegree of H* — kH* + (k — 1)H over CP* ! is a
multiple of 2.

Proof. Recall that K°CP*~ is the truncated polynomial ring Z[n]/(n*) where
n=H-1. To compute the highest power of 2 in the denominator of
ch™!Todd (—(H*— kH? + (k — 1)H)) it is convenient to rewrite everything in
terms of the new variable y = n/2. A look at the power series

l 2 3

(2&1@) S S .

n 2 3 4
shows that it represents an element in Z,)[y], where Z,, denotes the integers
localized at 2, i.e. all rational numbers whose denominator is prime to 2.
Moreover computing modulo the ideal 2Z,)[y] we have log(n +1)/n=1-y.
More generally, if A is an element of Z[7n] with vanishing constant term then

4+ e

log(l+1))_ AR LA
(B = 1= 24 S-S = 1-Smod 2Zy]
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In particular we get

log(r]+1)“_ _477+6712+4173+174

h~' Todd (-H*) = = =
c odd ( ) m+1)'—1 > 1 mod 2Z,)[ y]
and
1 + 1) 21 + n?
ch™ ' Todd (—H?) = og((n + 1)) =1 -7 1 mod 2Z,)[ y].

(n+1)*-1 2

Using the multiplicativity of the Todd genus and the fact that the Chern character
is a ring homomorphism we obtain

ch™' Todd (-H* — kH*+ (k — 1)H)) = (1 — y)* ' mod 2Z )y

Expressing (1 —y)*™' as a power series in 7 we see that m = 2%"! is the smallest
power of 2 such that m(1—y)*~' € Z)[n]/(n*). Since 2*"%(2Z,)[y]) is contained
in Z[n])/(n*) the same conclusion holds for ch™' Todd (—(H* - kH?+ (k —
1)H)). It follows from (3.5) that the codegree of H*—kH?*+ (k—1)H is a
multiple of 2. Q.E.D.

Together the lemmata 3.4 and 3.7 provide the proof of proposition 3.3 except
if kK =0mod 4. In that case we have to show that the codegree of H*— kH? +
(k — 1)H over CP*~? is a multiple of 2*~!. This sharper estimate can be obtained
by considering the KO-theory codegree which is defined analogous to the
K-theory codegree by replacing the Chern character ch: K°Ma— H*(M«; Q) by
the Pontrjagin character ph: KO°Ma— H*(Ma; Q) which is the composition of
the complexification map KO°Ma— K°Ma and the Chern character. The same
arguments as before show that the codegree is a multiple of the KO-theory
codegree which in turn is a multiple of the K-theory codegree. Hence the proof of
proposition 3.3 is completed with the proof of the following lemma.

LEMMA 3.8. Let k =0mod 4. Then the KO-theory codegree of H* — kH* +
(k — 1)H over CP*~2 is a multiple of 2.

Proof. Consider the cofibration CP*"?2— CP*"'— CP*"!/CP*"? = §%"2 and
its induced long exact sequence in KO-theory

— KO~ 1§%2 KO°CP*"!'—> KO°CP* > KO°S§* 2.

It follows that KO°CP*!— KO°CP*~? is an isomorphism since the other two
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terms vanish by Bott periodicity. Hence the KO-codegree of H* — kH* + (k —
1)H as a bundle over CP*"2 is the same as its codegree as a bundle over CP*~!
which is a multiple of 2~ by (3.7). Q.E.D.

4. An upper bound for s(m)
The main result of this section is the following.

PROPOSITION 4.1. Assume m =2k and k=0, 1mod4 or m =2k — 1. Then
the cohomotopy Euler class of (2k + 1)L over L*"~! vanishes.

By proposition 2.1 this implies that (2k + 1)L has a nowhere vanishing section
or, equivalently, that there is a Z/2-equivariant map RP?*"~'— S Hence we
obtain the following upper estimate for s(m).

COROLLARY 4.2.

m+1 ifm=0,2mod8
sm)sym+2 ifm=1,3,5 7mod8
m+3 ifm=4,6mod8

Proposition 4.1 is proved using the Adams spectral sequence, notably a
“vanishing line” for its E,-term (see 4.4). We begin by describing the properties
of the Adams spectral sequence which are relevant to us. General references are
the books of Adams [A] and Switzer [S].

Let X, Y be finite spectra and let p be a fixed prime. We say that a map
X — Y has Z/p-Adams filtration =s if it can be written as a composition

X—>Z,—»--->Z,_,—Y

of s maps which are all trivial in Z/p-cohomology. This defines a filtration on the
abelian group [X, Y] of homotopy classes of maps X— Y or, more generally, on
[X, Y], =[2"X, Y]. We denote by FE[X, Y], the subgroup of elements of
filtration =s in [X, Y],. Note that in the case where X (resp. Y) is the sphere
spectrum S° this defines a filtration of the homotopy (resp. cohomotopy) groups
of spectra.

This filtration is compatible with the smash product, i.e. if f € E[X, Y], and
f'eF[X',Y'], then fAf €eF  [XAX,YAY'],,,. This follows directly
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from the definition since if f factors as X—>Z,—---— Z,_;— Y and f' factors as
X'—>Zi—---—Z,_— Y’ then there is the following factorization for f A f’.

XANX > Z ANX' > >Z, _ AX->YAX'>YAZ;

= ->YAZ,._>YAY

The compatibility of the Adams filtration with the smash product implies its
compatibility with the cup product (see 2.5), which we state as a lemma for
further reference.

LEMMA 4.3. If « and o' are vector bundles over a space X and f, f' are
elements of n"(X; a) (res. n"'(X; a')) of Adams filtration =s (resp. =s') then
their cup product has filtration =s +s'.

Associated to the Adams filtration on [X, Y], there is a corresponding spectral
sequence E}‘(X, Y), the Adams spectral sequence. It converges to the p-primary
part of [X, Y],, i.e.

Ei;t(X’ Y) = FS‘[XJ Y]t-—s/Es+1[X’ Y]t—s:

where F,[X, Y],_, denotes the elements of filtration s in [X, Y],_,. Moreover the
intersection of all E[X, Y],_, consists of the torsion elements of [X, Y],_, whose
order is prime to p. Its E,-term is

E3'(X, Y) = Ext§' (H*Y, H*X),

where H*X (resp. H*Y) denotes the cohomology of X (resp. Y) with coefficients
in Z/p, which is a module over the mod p Steenrod algebra A. The differentials
have the form

d,: E(X, Y)— EX* (X, Y).

For p =2 let A, be the subalgebra of A which is generated by Sq' € A. This is an
exterior algebra since S¢'Sq" =0. J. F. Adams proved the following homological

vanishing theorem.

PROPOSITION 4.4 ([A], Thm. 3, p. 62]). Let M be a graded A-module
which is free over A, and (I-1)-connected, i.e. trivial in domensions <l. Then
Ext;(M, Z/2) is zero if t—s<l+ F(s), where F(s) is the numerical function
defined by F(4r) = 8r, F(4r+1)=8r+1, F(4r+2)=8r+2and F(4r+ 3)=8r+4.
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COROLLARY 4.5. Let X be a finite spectrum whose Z/p-cohomology
vanishes for p odd and whose Z/2-cohomology is free as an A,-module and trivial
above dimension d. Let a € 1" X be an element of Adams filtration s. Then o =0
provided d —n < F(s).

Proof of the corollary. Consider the Adams spectral sequence Ey‘(X, S°)
converging to [X, $°]_, =a"X. For p odd all terms are zero and hence the
cohomotopy groups of X are torsion groups whose orders are powers of 2.

From now on let p=2. E¥(X,S% is equal to Ext§(Z/2, H*X)=
Ext;(DH*X, Z/2), where DH*X is the dual of the graded A-module H*X which
is defined as follows. If M is a graded A-module and M; denotes the elements of
degree i in M then (DM;) = Hom (M_;, Z/2). The left A-module structure on M
induces a right A-module structure on DM = Hom (M, Z/2) which is then
converted into a left A-module structure using the canonical anti-automorphism yx
of the Steenrod algebra.

Our assumption that H*X vanishes in dimensions bigger than d implies that
DH*X is (—d — 1)-connected. Moreover, DH*X is free as A;-module since H*X
is Ay-free and x(Sq') = Sq'. It follows from proposition 4.4 that E3'(X, S°) and
hence E%'(X, S°) vanishes for t —s +d < F(s). This means that the filtration
quotient En"X/F,,,n"X = E%'(X, S°) is zero for d —n=d +t —s < F(s), which
implies that the element a € #”X is in the intersection of all filtration groups and
hence a torsion element of odd order. Thus «=0. Q.E.D.

After these preparations we now prove proposition 4.1. The idea is to use
corollary 4.5 to prove the vanishing of the cohomotopy Euler class e((2k +1)L) €
a"M(—2k + 1)L). We first show that M(—(2k + 1)L) satisfies the assumptions of
(4.5), i.e. that

i) H*(M(—(2k + 1)L); Z/2) is free as A;-module

ii) H*(M(—(2k +1)L);Z/p) =0 for p odd

Adi) The Z/2-cohomology ring of L**~' is Z[x]/(x™) ® E(y), where x is a
2-dimensional cohomology class, y = wy(L) is the first Stiefel Whitney class of L
and E(y) is the exterior algebra generated by y. As abelian group the
Z/2-cohomology of the Thom spectrum M(—(2k + 1)L) is isomorphic to the
Z/2-cohomology of L**~! via Thom isomorphism. It is given by multiplication
with the Thom class U e H'(M(—(2k +1)L); Z/2). The computation Sq'U =
wi(—(2k + )L)U =yU, Sq'(x*U)=x°yU for s<m shows that the Z/2-
cohomology of the Thom spectrum is a free A,-module.

Adii) Note that —(2k + 1)L is non-orientable since its first Stiefel-Whitney
class is non-trivial and hence there is no Thom isomorphism for Z/p-cohomology.
Instead we use the Gysin sequence for S(L) with coefficients in —(2k + 2)L (see
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(2.11))
— H"Y(L*Y, —(2k + 1)L)— H (L™ '; —(2k +2)L)
25 Hi(S(L); -k +2)p = L)—.

Here H'( ) is the cohomology with Z/p-coefficients. The bundle —(2k + 2)L is
orientable and hence p* can be identified with the map induced by p in
(untwisted) Z/p-cohomology whch is an isomorphism since L**~! and S(L) =
RP?*"~! have the Z/p-cohomology of a point. Thus H*(M(—(2k + 1)L); Z/p) =
H*(L*™'; —(2k + 1)L) vanishes.

Next we estimate the Adams filtration of the cohomotopy Euler class of
(2k + 1)L using the general properties of the Euler class stated in section 2. Note
that w,(2L)=w,(L)*=y*=0. This implies that e(2L) has at least Adams
filtration 1, since w,(2L) is the image of e(2L) under the Hurewicz map. Hence
e(2kL) = e(2L)* has at least filtration k by (2.4) and (4.3).

Finally we apply (4.5) to the Euler class e((2k + 1)L) € x**'M(—(2k + 1)L).
In this case d =2m — 1 (the dimension of M(—(2k +1)L)), n=2k+1and s =k
(the filtration of (2k +1)L). Thus the inequality d —n <F(s) reduces to
2k —2 < F(k) (in the case m =2k, k =0, 1 mod 4) respectively to 2k — 4 < F(k)
(in the case m =2k —1). Inspection of the numerical function F(k) (see 4.4)
shows that these inequalities hold. Corollary (4.5) then implies e((2k + 1)L) =
0. Q.E.D.

5. Determination of s(m)

An inspection of the lower and upper estimates for s(m) obtained in the last
two sections show that they agree except for m =4 mod 8 where we have the
inequalities m + 1 =s(m)=m + 3.

PROPOSITION 5.1. s(m)=m +2 for m =4 mod 8.

The main ingredients of the proof are the knowledges of s(m) for other values
of m and the following lemma.

LEMMA 5.2. s(m +n)=<s(m)+s(n)

Proof of the lemma. Let f:RP*"'— 5§71 and g:RP¥ 1§51 pe
Z/2-equivariant maps. Denote by f:52"~'— 8! resp. §:8*" 7' — 51 the
composition of f resp. g with the projection map from the sphere to projective
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space. These maps are Z/4-equivariant with respect to the Z/4-action given by
multiplication by i € C on the domain and multiplication by —1 on the range.
Then also their join

f"’*g:s2(m+n)*—1 o SZm—l *SZn—l__>Ss(m)—1 *Ss(n)--1 - SS(m)+s(n)—1

is a Z/4-equivariant map. Passing to the quotient we obtain a Z/2-equivariant
map RPXm+m~1 gstm+s(=1 showing that s(m + n) <s(m)+s(n). Q.E.D.

Proof of the proposition. Let m =4 mod 8. Then using the lemma and our
computations of s(m) we obtain the inequalities s(m)=<s(m —2)+s(2)=
m—-1)+3=m+2 and m+S=s(m+2)=s(m)+s2)=s(m)+3. Thus
s(m)=m+2. Q.E.D.
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