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Holomorphic group actions with many compact orbits

CHRrisTOPH GELLHAUS and TiLMANN WURZBACHER

Introduction

The purpose of this note is to classify manifolds with holomorphic group
actions such that on an open set all orbits are compact. The first result in this
direction which reflects the spirit of the present article is due to Holmann: Let X
be a connected compact complex space and C X X — X a holomorphic action such
that all orbits are compact. Then the C-action factorizes through the action of an
one-dimensional compact complex torus (see [Ho2]), i.e. there is a torus
T < Autg (X) and the following diagram commutes:

CxX—>X

| /

TxX

For theorems of this type the compactness of the ambient manifold X is obviously
necessary. Even in the compact case the following example shows that an
analogous result is not true in general: Let G be the unipotent complex group of
upper (3 x 3)-matrices and I" the subgroup, with Gaussian integers as entries.
Then the two-dimensional abelian subgroup A of G with a zero as the middle
entry of the last column acts holomorphically on the Iwasawa-manifold X = G/I'
with compact orbits. However a direct computation shows that the A-action does
not factorize through a torus-action.

Motivated by earlier work on automorphism groups of Kihler manifolds
([Ma2], [S], [F]) we consider a class ¥ of compact complex manifolds which
contains for example all meromorphic images of compact Kihler manifolds (see
§1 for the details). Our main result is the following (see §3):

THEOREM. Let X be in & and G a connected complex subgroup of
Autg (X). Suppose there is an open set Q in X such that the G-orbits in Q are

closed. Then:
(1) G is a product S X T where S is semi-simple and T a compact complex

torus.
639
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(2) X is G-equivariant a product of a homogeneous-rational manifold Q and a
manifold M in & such that G =S X T acts as a product on Q X M.

(3) X/G=M|T is a normal complex space and M is a holomorphic Seifert
principal fibre bundle over M/T.

In particular all G-orbits are compact. Furthermore there is a compact
subgroup of G which acts transitively on the orbits. In the case of a C*-action for
arbitrary k the action always factorizes through a holomorphic torus-action.

§1. A class of compact complex manifolds

Let X be a compact complex manifold. We will denote the group of
biholomorphic automorphisms of X by Auts (X) which is well-known to be a
complex Lie group. The compactness of X implies that every holomorphic vector
field V e H)(X, TX) has a complete holomorphic flow, thus we can identify
H°(X, TX) with the Lie algebra aut, (X) of Aut, (X).

The Albanese map yx from X to its Albanese torus Alb (X) is Autg (X)-
equivariant, because of its universality property (see [Bl]). Thus there is a Lie
group homomorphism Ay : Aut, (X)— Autg (Alb X), the Jacobi-homomorphism,
and an induced homomorphism of the respective Lie algebras, denoted by py.
The kernel of py is called £(X). In the Kihlerian case the following charac-
terization is well-known (see e.g. [Ma2])

L(X)={Veaut(X)| w(V)=0Vw e H(X, 2%)}.

For the study of the orbit structure of a holomorphic group action on X it is
natural to consider the following compatibility condition:

DEFINITION 1.1. A compact complex manifold X is in class % if and only if
for every closed complex submanifold Y in X

resty (L(X) Nstabyyx) Y) = Z(Y),
where resty denotes the restriction of vector fields to Y.

Before proceeding, it is convenient to summarize some elementary facts
on tori:
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LEMMA 1.2. Let Z be a compact complex torus and C* X Z— Z a holomor-
phic action on Z. Then
(1) All isotropy groups Stabe« {x} are equal.
(2) If one orbit is closed, then all orbits are biholomorphic equivalent to a fixed
torus T and the C*-action factorizes through a T-action on Z.
(3) Suppose V € aut (Z) has a zero on Z, then V vanishes on Z.

Recall that a Lie algebra g is a semi-direct product r s, where the “‘radical” r
is defined to be the maximal solvable ideal and s is a maximal semi-simple
subalgebra. Let Y be a closed submanifold of X, g:=%(X) Nstab,,x, Y, and let
Py :g— aut (Alb (Y)) be the Jacobi-homomorphism. Then py(s) = {0} and py(r)
is abelian.

Now, if X is a Hodge manifold, then X admits a £(X)-equivariant embedding
in some Pn(C) (see e.g. [Ma2]). Thus g is contained in stab,,pyc) Y. The Borel
Fixed Point Theorem implies that the solvable algebra r has a common zero in Y.
Hence by (3) of Lemma 1.2 and equivariance of yy, r acts trivially on Alb (Y).
Thus every Hodge manifold is in %.

The Borel Fixed Point Theorem for Kédhler manifolds [S] implies by the same
reasoning as above that Kdhler manifolds are in F.

A compact complex manifold X is said to be in class € whenever it is the
meromorphic image of a compact Kihler space (see [F]). For example,
MoiSezon manifolds are in class 6. For smooth X € € one has H(X, Q%)=
Yx(H°(AIb X, £),,x)) and thus £(X) coincides with the “linear” vector fields in
the sense of [F]. The proof of Proposition 6.9 in [F] shows:

PROPOSITION 1.3. Let X € € be smooth and Y a x-stable closed analytic set
in X, where r is a solvable subalgebra of £(X). Then r has a common zero in Y.

Thus a smooth manifold in € is in &. It should be mentioned that there are
manifolds in class & which are not in class €, in particular manifolds for which
Proposition 1.3 is not true. Certain Inoue-surfaces without curves are examples of
this [I].

We remark that the Iwasawa-manifold X = G/I" does not fulfill the com-
patibility condition under consideration. The Albanese map of X is the principal
fibration of X induced by the right action of the center Z of G: yx:G/I'—
G/(I'-Z). Let Y=vyx'(yx(e))=Z/(ZNT), then Alb(Y) equals Y and
L(Y)=0. But the central vector field of the Lie algebra of G is in Z(X)N
stab,yxy Y and acts non-trivially on Y.
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§2. Abelian group actions

To obtain the main result in the case of abelian Lie algebras, we need some
preparations.

LEMMA 2.1. Let X be a connected compact complex manifold and T <
Auty (X) be a compact complex torus. Then:
(1) dim T'(x) =dim T for all x € X.
(2) There is an open dense subset U of X with Stab; {x} = {e} for all x e U.
(3) The quotient X|T is a normal complex space and X— X|T is a
holomorphic Seifert principal fibre bundle.

Proof. Ad (1). Fix an arbitrary point x in X. Let d be a T-invariant metric on
X and &> 0 such that B,(x) = {y € X | d(x, y) < £} is holomorphic separable. The
connected component T2 of the isotropy of T in x has compact connected
complex orbits in B.(x). Now the holomorphic separability of B.(x) implies
T%(y) =y for all y € B.(x). Thus T% acts trivially on B,(x) and therefore on X.

Ad (2). In the theory of smooth actions of compact Lie groups the following
theorem on the principal orbit type is well-known (see e.g. [J]): In a connected
G-manifold X there is an open dense subset U such that the isotropy subgroups
on U are all conjugate to a fixed subgroup H < G and the conjugacy class (H) of
H is the absolute minimum in the partially ordered set of conjugacy classes of
isotropy subgroups of G.

In the abelian case this means that there is a fixed subgroup S < T with T, = S
for all x in U. It follows S = {e}.

Ad (3). This result is proved by Holmann (§2, Satz 1 in [Hol]). O

LEMMA 2.2. Let C*xX—>X be a holomorphic action on a complex
manifold X € ¥ and assume that the induced Lie algebra of vector fields on X is
k-dimensional. Suppose there is an open set 2 c X where all orbits are closed.
Then the orbit dimension equals k throughout €.

Proof. Fix x € Q and denote the isotropy algebra of C* in x by b. Since b
stabilizes the image of x in Alb (X), it acts trivially on Alb (X) by Lemma 1.2.
Hence b lies in £L(X) N stab,yx, Y for all orbits Y in  and thus, X € ¥ implies
that b acts trivially on €. Therefore b acts trivially on X and b=0. O

We now show that in the situation of Lemma 2.2 the action factorizes through
a torus-action:

THEOREM 2.3. Let C* X X— X be a holomorphic action on a complex
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manifold X in class F. Suppose there is an open set Q2 in X where all orbits are
closed. Then the C*-action factorizes through the actions of a torus, i.e. there is a
torus T < Autg (X) and the following diagram commutes:

CrxX — X

e

TxX

Remark. For applications in the theory of completely integrable dynamical
systems, we note that the theorem still remains true, if we only assume u(2)>0
for a suitable measure y on X (for example the Liouville measure induced by a
symplectic form).

Proof of Theorem 2.3. Without loss of generality we may assume that the
induced Lie algebra of vector fields on X is k-dimensional. We will denote the Lie
algebra of the C*-vector fields by a c aut (X).

By Lemma 2.2 the orbit Y of a point y in € is a k-dimensional torus, therefore
the isotropy I in y is a cocompact lattice in C. Since X € & one has:

resty

(Z(X)Na) = (L(X) Nstab,,yx) Y) — Z(Y)=0,

thus £(X)Na is zero and all C*-orbits on Alb (X) are k-dimensional tori with
fixed isotropy I < C* by Lemma 1.2. Now we restrict the Albanese map of X to
the orbit of an arbitrary point x in £2:

'/’chk(x)ick(x) =C*/L;, LN ck/r
and

I/T, = (Wx|cxw) ™ (Wx(x))

is finite.

Since the index of I, in I is finite for all x in € and there are only countable
many lattices of finite index in I', say {I;},en, £2 is the union of countable many
closed analytic sets: £ =, (Fix (I;) N ), where Fix (I;,) denotes the fixed
point set of I,. Thus a connected component of £ is contained in Fix (I;,,) for
some n,eN. Therefore the cocompact lattice I, is in the ineffectivity A of the
Ck-action on X and the action factorizes through the action of the torus

T:=C*/A<Auts(X). O
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§3. General group actions

The goal of this section is to prove the theorem stated in the introduction. As
a first step we prove the Borel-Remmert theorem for a single compact orbit.

LEMMA 3.1. Let I be a discrete subgroup in a Lie group G and A a finite
subset of I Then Z5(A) - I is closed in G.

Proof. Let {x,} =« Z;(A), {y.} = I be sequences with lim,_,.x, - y,=z € G.
For y in A one has

z7heyez=lim (v, ox oy x, ) =m (vt v e )

n—»wx

and therefore y,!- y - v, converges in G and thus in I'. Since I is discrete this
sequence is constant for large n = ny(y). Thus we find a n, € N with:

Yol Y Yar1=7va'-v-v. foralln=ngand for all y€ A,

i.e. Yue1' ¥Yn'€Zs(A) for n =n,. This implies y, =v, * y,, for some v, € Z;(A)
for all n = ny. Now, with z, :=x,, - v, it follows:

00

n—>
2y Yng=Xn"Un"Yng=%Xn"Yn > Z
and

Z, ——> 7 Yp,=:2' € Z5(A)
since Z;(A) is closed. Thus z=2'- 1y, isin Zg(A)-I. O
We apply this more technical lemma to obtain:

LEMMA 3.2. Let G be a complex Lie group and I" a discrete cocompact
subgroup of G. Then there is a complex subgroup H < G such that H/(HNT) is a
positive dimensional compact torus in G/T.

Proof. Without loss of generality we may assume G to be connected. If I'is
central in G, G/I is already a complex torus. Thus we can assume that there is an
element 6 in '\ Zg.

Since the conjugation action of G on G is holomorphic, the sets

B,(G) = {x € G | dim¢c G(x) <k}
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are closed analytic sets in G (see e.g. [H, O]). Taking k equal to the dimension of
G we get B,(G) = G since exp (g) is contained in B,(G). Thus the centralizer of
an element in G is always positive dimensional.

Let now G, be the connected component of Z;(8) for the above é € '\ Z,.
We have: dime G >dimge G; >0 and by Lemma 3.1. G, I is closed in G.
Therefore G,/(G,NT) is compact in G/I' and by induction we find H < G such
that H - (e[')= H/(HN ) is a compact complex torus in G/I. [

PROPOSITION 3.3. Let X be in &% and G a complex subgroup of Autg (X).
Suppose the orbit G(x,) through a point x, in X is connected and closed. Then
G(xo)=T X Q, where T is a complex torus and Q a homogeneous-rational
manifold.

Proof. Without loss of generality we may assume G to be connected and
the image of x, under the Albanese map of X to be the neutral element of
Alb (X). Furthermore let us denote the isotropy of G in x, by H.

We consider the Tits fibration of the compact orbit

n:G(xo)=G/H X5 G/N=:Q,

where N is the normalizer of H° in G and the base Q is well-known to be
homogeneous-rational. First we want to show that the restriction V="yYx|lnnuisa
finite map. Since v is N-equivariant, the image Y(N/H) = Ax(N) - Yx(xo) is a
subtorus of Alb(X). The image of N in the automorphism group of N/H,
denoted by M, has the same dimension as N/H. Thus ¥ is M-equivariant

¢:N/H=M|T = M/L,

where L is a closed subgroup of M, which contains a discrete subgroup I'.

If ¢ is not finite L/I" is positive dimensional and by Lemma 3.2 we find a
subgroup L' of L such that Y:=L'/(L'NT) is a positive dimensional torus in
L/T. Consider a vector field V in g which is tangent to Y < ¥x"'(¥x(xo)). Then,

resty

since X isin class %, V € (£(X) Nstabyyx) Y) —— £(Y). But Y is a torus and
thus V| =0 which contradicts the construction of Y. Therefore Y cannot be
positive dimensional, thus :N/H—> yx(N/H) < Alb (X) is finite and N/H is a

torus.
Since 7,(Q) = 1, it follows that N is connected and therefore the Tits fibration

a:G/H X GIN=Q
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is a holomorphic torus principal bundle. In order to show that s is holomorphi-
cally trivial, we consider the Albanese map of the orbit:

G(xo)=G/H > G/J = Alb (G(xo)).

Let G=R-S be a Levi-Malcev decomposition of G. Now S acts trivially on
Alb (G(xc)). Thus S <J° and consequently J° acts transitively on Q. Hence

dim (J°/(H N J°) = dim (J°/(N N J°) =dim Q.
By the universality of Alb (G/H) we get

dim Alb (G/H) =dim y(G/H) = dim y(N/H) = dim (N/H).
Therefore
dim (J°/(H NJ°) =dim (J/H) = dim (G/H) — dim Alb (G/H)
=dim (G/H) — dim (N/H) = dim (J°/(N N J°)).
Hence

# 1= 5|y pangey: NI (H NI — T /((NNJT°)

has discrete fibers. The homotopy sequence of this bundle yields by x,(Q) =1
that & is already biholomorphic. Thus the J%orbit in G/H is a holomorphic
section of the torus principal bundle given by 7. O

The above single orbit decomposition is reflected in a striking way by the
structure of the whole manifold.

THEOREM 3.4. Let X be in & and G a connected complex subgroup of
Autg (X). Suppose there is an open set Q2 in X such that the G-orbits in 2 are
closed. Then:

(1) G is a product S X T where S is semi-simple and T a compact complex

torus.

(2) X is G-equivariant a product of a homogeneous-rational manifold Q and a

manifold M in % such that G =S X T acts as a product on Q X M.
() X/G=M|/T is a normal complex space and M is a holomorphic Seifert
principal fibre bundle over M/T.

Proof. Ad (1). By Proposition 3.3 one has G(x) = Q(x) X T(x) for all x in Q.
Let S - R be a Levi-Malcev-decomposition for G. Since on an orbit in £, § acts
only on the rational part and R only on the torus part, it follows that G is a
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product §$ XA, where A is abelian. Now by Theorem 2.3 A is a torus
T < Aute (X).

Ad (2). Since each S-orbit in £ is of the form S/P,, where P, is a parabolic
subgroup of S, we first look for a “generic” P. Let K be a fixed maximal compact
subgroup of S. Then, on £, $ and K have the same orbits since each S-orbit is
simply-connected (see [Mo]). For the K-action we have a principal orbit, i.e.
there is an open dense set in X with orbit type (L) for some fixed L < K (see e.g.
[J]). Thus there is an open set Q,c Q such that S(x)=K(x)=K/L, with
(L,)=(L) for all x in ©,. Since K/L is homogeneous-rational, L contains a
maximal compact real torus of K. The smallest complex subgroup of S containing
this torus is a maximal torus of S in the sense of linear algebraic groups; we will
denote this group by H. Obviously H is in L®.

Every S-orbit in €, contains a point x such that L, = L. Denoting Stabg {x}
by P, L=KNP, implies H<L®<P, and therefore Fix (P,)cFix (L% =
Fix (L) c Fix (H). Furthermore 0 < |Fix (H) N S(x)| < since H is contained only
in finitely many Borel groups of S and each Borel group is contained only in
finitely many parabolic subgroups of S (for these standard facts on linear
algebraic groups see e.g. [Hu]). A fortiori 0 <|Fix (L) N K(x)| < holds for all x
in Q,.

Now, since L€ is reductive, Fix (L) = Fix (L®) is the disjoint union of closed
connected complex submanifolds of X:Fix(L)= N . M;,. We want to find a
component M; of Fix (L) such that |[M; N K(x)| >0 for all x in a possibly smaller
open set £2,c Q,. Assume K(x) N M; = for some x in £,. Then we find an
open K-stable neighbourhood V of K(x) in €, such that VN M,=(. Since
Fix (L) has only finitely many components, inductively we find the desired £,
such that for some component M := M, of Fix (L) we have 0 <|M N K(x)| < for
all x in Q,. It follows dim M + dim S(x) = dim X for all x in £2,.

The above argument on algebraic groups immediately implies that LF lies only
in finitely many parabolic groups, say P, . . ., P. Let x be in M N €2, then P, = P,
for some je{l,...,k} and therefore M N Q,=J%, (Fix ()N (M N £2,)).
Thus there is a B, =:P such that Fix (P) and M have a common component on
€2,. Hence M is contained in Fix (P). By the construction of £2,, on each S-orbit
in , there is a point x such that P c P, and thus by the constant orbit dimension
on , we have (P,) = (P) for all x in £2,.

The map f:S X M— X defined by f(s, x) = s(x) factorizes through a proper
holomorphic map f:S/P x M— X, since M is in Fix (P). Since €2, =Im ), it
follows that f is surjective by the proper mapping theorem of Remmert (see e.g.
[CAS])).

Part (2) of the theorem will be proved if we can show that f is injective. First
we observe that all S-orbits on X are closed, since the surjectivity of f implies that
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each S-orbit contains a point of M. Now K acts transitively on each S-orbit in X.
Remember that by the principal orbit theorem there exists an open dense set U in
X such that (L,)=(L) (L as above!) for all x in U. For x in UNM,
f:S/Px {x}=K/L—K/L,=S/P,=S(x) is bijective. Thus (P,) = (P) for all x
in U.

Now assume there is an x in M with P, #P. i.e. L,#L. Let d be a
L,-invariant metric on X and £>0 such that B.(x)={ze X |d(z,x)<g} is
holomorphic separable. Since U is dense we find a y in B,(x)"NMNU,
particular one has L, =L. The L,-orbit of y turns out to be complex by the
following blholomorphlsms

S(y) 2= S/P x {y} ~=> S/P x {x},

since tof ~!(L,(y)) is the fibre through (eP, x) of f restricted to S/P X {x}. Thus
L.(y) is finite and in fact equal to {y} by the homotopy sequence of the bundle
given by f|s/pxx)- This shows L, = L and therefore $ has fixed orbit type (P) on
X. In particular we have that f:S/P x {x} — S(x) is bijective for all x in M and P
has exactly one fixed point on each S-orbit in X.

Assume (sP, x) and (s'P, x') are mapped to the same point of X under f, then
it follows that the S-orbit of x and x' are the same. By the uniqueness of the
P-fixed point on an S-orbit x equals x’. But f restricted to S/P X {x} is injective
and thus (sP, x) equals (s'P, x') which shows the injectivity of f.

Now f:S/P x M— X is biholomorphic and induces an T-action on S/P X M.
Since x,:S/P X M— S/P is T-equivariant, and a complex torus action on the
homogeneous-rational S/P is trivial, it follow that T only acts on the second
factor M. Thus f is G-equivariant with respect to the product action on S/P x M
and the given action on X.

Ad (3). This follows immediately from Theorem 2.3. O
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