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Holomorphic group actions with many compact orbits

Christoph Gellhaus and Tilmann Wurzbacher

Introduction

The purpose of this note is to classify manifolds with holomorphic group
actions such that on an open set ail orbits are compact. The first resuit in this
direction which reflects the spirit of the présent article is due to Holmann: Let X
be a connected compact complex space and C x X-^&gt; X a holomorphic action such
that ail orbits are compact. Then the C-action factorizes through the action of an
one-dimensional compact complex torus (see [Ho2]), i.e. there is a torus
T &lt; Auttf (X) and the foliowing diagram commutes:

CxX-*X
l /TxX

For theorems of this type the compactness of the ambient manifold X is obviously
necessary. Even in the compact case the following example shows that an
analogous resuit is not true in gênerai: Let G be the unipotent complex group of
upper (3 x 3)-matrices and F the subgroup with Gaussian integers as entries.
Then the two-dimensional abelian subgroup A of G with a zéro as the middle

entry of the last column acts holomorphically on the Iwasawa-manifold X GIF
with compact orbits. However a direct computation shows that the i4-action does

not factorize through a torus-action.
Motivated by earlier work on automorphism groups of Kâhler manifolds

([Ma2], [S], [F]) we consider a class 9 of compact complex manifolds which
contains for example ail meromorphic images of compact Kâhler manifolds (see
§1 for the détails). Our main resuit is the following (see §3):

THEOREM. Let X be in 9 and G a connected complex subgroup of
Auttf (X). Suppose there is an open set Q in X such that the G-orbits in Q are
closed. Then:

G is a product SxT where S is semi-simple and T a compact complex

torus.
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(2) X is G-equivariant a product of a homogeneous-rational manifold Q and a

manifold M in 3F such that G SxT acts as a product on QxM.
(3) XIG — MIT is a normal complex space and M is a holomorphic Seifert

principal fibre bundle over MIT.

In particular ail G-orbits are compact. Furthermore there is a compact
subgroup of G which acts transitively on the orbits. In the case of a exaction for
arbitrary k the action always factorizes through a holomorphic torus-action.

§1. A class of compact complex manifolds

Let X be a compact complex manifold. We will dénote the group of
biholomorphic automorphisms of X by Aut^ (X) which is well-known to be a

complex Lie group. The compaetness of X implies that every holomorphic vector
field V e H°(Xf TX) has a complète holomorphic flow, thus we can identify
H°(Xf TX) with the Lie algebra aut&lt;? (X) of Autc (X).

The Albanese map tyx from X to its Albanese torus Alb (X) is Autc (X)~
equivariant, because of its universality property (see [Bl]). Thus there is a Lie
group homomorphism kx:A\xtG(X)—&gt; Aut^(AlbX), the Jacobi-homomorphism,
and an induced homomorphism of the respective Lie algebras, denoted by px.
The kernel of px is called ££(X). In the Kàhlerian case the following charac-
terization is well-known (see e.g. [Ma2])

£(X) {V e aut (X) | (o(V) 0 Vft&gt; e H°(X, &amp;*)}.

For the study of the orbit structure of a holomorphic group action on X it is

natural to consider the following compatibility condition:

DEFINITION 1.1. A compact complex manifold X is in class 9 if and only if
for every closed complex submanifold Y in X

resty (%{X) fl stabautw Y)

where resty dénotes the restriction of vector fields to Y.

Before proceeding, it is convenient to summarize some elementary facts

on tori:
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LEMMA 1.2. Let Z be a compact complex torus and Ck xZ-*Z a holomorphic

action on Z. Then

(1) AH isotropy groups Stabc* {x} are equal.
(2) Ifone orbit is closed, then ail orbits are biholomorphic équivalent to afixed

torus T and the Cl&quot;-action factorizes through a T-action on Z.
(3) Suppose V 6 aut (Z) has a zéro on Z, then V vanishes on Z.

Recall that a Lie algebra g is.a semi-direct product rxs, where the &quot;radical&quot; r
is defined to be the maximal solvable idéal and s is a maximal semi-simple
subalgebra. Let F be a closed submanifold of X, g: t£{X) n stabaut(Ar) Y, and let
py:g-»aut (Alb (Y)) be the Jacobi-homomorphism. Then py(s) {0} and pY(t)
is abelian.

Now, if X is a Hodge manifold, then X admits a «^(A^-equivariant embedding
in some PN(C) (see e.g. [Ma2]). Thus g is contained in stabaut(pN(C)) Y. The Borel
Fixed Point Theorem implies that the solvable algebra r has a common zéro in Y.
Hence by (3) of Lemma 1.2 and equivariance of rpY&gt; * acts trivially on Alb (Y).
Thus every Hodge manifold is in 3F.

The Borel Fixed Point Theorem for Kâhler manifolds [S] implies by the same
reasoning as above that Kâhler manifolds are in 9.

A compact complex manifold X is said to be in class % whenever it is the
meromorphic image of a compact Kâhler space (see [F]). For example,
MoiSezon manifolds are in class &lt;€. For smooth Xe&lt;6 one has H°(X, Qx)
rl&gt;xiH°(Alb X, Q\xhX)) and thus ï£{X) coincides with the &quot;linear&quot; vector fields in
the sensé of [F]. The proof of Proposition 6.9 in [F] shows:

PROPOSITION 1.3. Let X e % be smooth and Y a t-stable closed analytic set

in X, where r is a solvable subalgebra of !£(X). Then r has a common zéro in Y.

Thus a smooth manifold in &lt;€ is in 2F. It should be mentioned that there are
manifolds in class 3* which are not in class %, in particular manifolds for which

Proposition 1.3 is not true. Certain Inoue-surfaces without curves are examples of
this [I].

We remark that the Iwasawa-manifold X=G/T does not fulfill the com-

patibility condition under considération. The Albanese map of X is the principal
fibration of X induced by the right action of the center Z of G: i{rx:G/r-*
G/(r-Z). Let Y \px\\l&gt;x(er)) Zl(ZCir), then Alb (Y) equals Y and

i?(Y) 0. But the central vector field of the Lie algebra of G is in &lt;£(X) H

stabautW Y and acts non-trivially on Y.
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§2. Abelian group actions

To obtain the main resuit in the case of abelian Lie algebras, we need some
préparations.

LEMMA 2.1. Let X be a connectée compact complex manifold and T&lt;

Auttf (X) be a compact complex torus. Then :

(1) dim T(x) dim Tfor ail xeX.
(2) There is an open dense subset U of X with Stabr {x} {e} for ail x e U.

(3) The quotient X/T is a normal complex space and X-+X/T is a

holomorphic Seifert principal fibre bundle.

Proof Ad (1). Fix an arbitrary point x in X. Let d be a T-invariant metric on
X and e &gt; 0 such that Be(x) {y e X \ d(x, y) &lt; e} is holomorphic separable. The
connected component Tx of the isotropy of T in x has compact connected

complex orbits in Be(x). Now the holomorphic sçparability of Be{x) implies
T°x(y) =y for ail y e Be(x). Thus Tx acts trivially on Be{x) and therefore on X.

Ad (2). In the theory of smooth actions of compact Lie groups the foliowing
theorem on the principal orbit type is well-known (see e.g. [J]): In a connected
G-manifold X there is an open dense subset U such that the isotropy subgroups
on U are ail conjugate to a fixed subgroup H&lt;G and the conjugacy class (H) of
H is the absolute minimum in the partially ordered set of conjugacy classes of
isotropy subgroups of G.

In the abelian case this means that there is a fixed subgroup S&lt;T with TX S

for ail x in U. It follows S {e}.
Ad (3). This resuit is proved by Holmann (§2, Satz 1 in [Hol]).

LEMMA 2.2. Let CkxX—*X be a holomorphic action on a complex
manifold X e 3* and assume that the induced Lie algebra of vector fields on X is

k-dimensional. Suppose there is an open set flcl where ail orbits are closed.

Then the orbit dimension equals k throughout Q.

Proof Fix x € Q and dénote the isotropy algebra of C* in x by b. Since b
stabilizes the image of x in Alb (X), it acts trivially on Alb (X) by Lemma 1.2.

Hence b lies in ££(X) H stabaut(x) Y for ail orbits Y in fi and thus, X e 9 implies
that b acts trivially on Q. Therefore b acts trivially on X and b 0.

We now show that in the situation of Lemma 2.2 the action factorizes through
a torus-action:

THEOREM 2.3. Let CkxX-*X be a holomorphic action on a complex
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manifold X in class 9. Suppose there is an open set Q in X where ail orbits are
closed. Then the C*-action factorizes through the actions of a torus, Le. there is a

torus T &lt; Au^ (X) and the following diagram commutes:

CkxX &gt; X

i /TxX

Remark. For applications in the theory of completely integrable dynamical
Systems, we note that the theorem still remains true, if we only assume n(Q) &gt;0

for a suitable measure ^i on X (for example the Liouville measure induced by a

symplectic form).

Proof of Theorem 2.3. Without loss of generality we may assume that the
induced Lie algebra of vector fields on X is fc-dimensional. We will dénote the Lie
algebra of the Ck-vector fields by a c aut (X).

By Lemma 2.2 the orbit Y of a point y in Q is a fc-dimensional torus, therefore
the isotropy Fy in y is a cocompact lattice in C*. Since X e &amp; one has:

a) c (#(*) H stabautw Y) -=X 2(Y) 0,

thus 5£{X) H a is zéro and ail C*-orbits on Alb (X) are fc-dimensional tori with
fixed isotropy F&lt; Ck by Lemma 1.2. Now we restrict the Albanese map of X to
the orbit of an arbitrary point x in Q:

and

is finite.
Since the index of Fx in F is finite for ail x in Q and there are only countable

many iattices of finite index in F, say {Fn}nçN, Q is the union of countable many
closed analytic sets: Q UneN (Fix (Fn) D Q), where Fix (Fn) dénotes the fixed

point set of Fn, Thus a connected component of Q is contained in Fix (Fno) for
some n0 e N. Therefore the cocompact lattice Fno is in the ineffectivity A of the

exaction on X and the action factorizes through the action of the torus

T:**(*/A&lt;Autc(X). D
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§3. General group actions

The goal of this section is to prove the theorem stated in the introduction. As
a first step we prove the Borel-Remmert theorem for a single compact orbit.

LEMMA 3.1. Let F be a discrète subgroup in a Lie group G and A a finite
subset of F. Then ZG(A) • F is closed in G.

Proof Let {xn} c ZG(A), {yn} c F be séquences with lim,,^xn • yn z e G.

For y in A one has

z&quot;1 • y • z lim (y&quot;1 • x~l • y • xn • yn) lim (y&quot;1 • y • yn)

and therefore y&quot;1 • y • yn converges in G and thus in F. Since F is discrète this

séquence is constant for large n ^ wo(y). Thus we find anoeN with:

Ynli &apos; y • y«+i ^Yn^&apos;Y&apos;Yn for ail « &gt; «o and for ail y e A,

ie. yn+1 • y^1 € ZG(A) for n &gt; n0. This implies yn vn - yno for some vn e ZG(A)
for ail n&gt;n0. Now, with zn : jcn • un, it follows:

and

since ZG(4) is closed. Thus z z&apos; • yno is in ZG(-4) • F. D

We apply this more technical lemma to obtain:

LEMMA 3.2. Let G be a complex Lie group and F a discrète cocompact
subgroup of G. Then there is a complex subgroup H &lt;G such that H/(H DF) is a

positive dimensional compact torus in GIF.

Proof Without loss of generality we may assume G to be connected. If F is

central in G, G/Fis already a complex torus. Thus we can assume that there is an
élément ô in F\ZG.

Since the conjugation action of G on G is holomorphic, the sets

Bk(G) {x 6 G | dimc G(x) &lt; k)
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are closed analytic sets in G (see e.g. [H, O]). Taking k equal to the dimension of
G we get Bk(G) G since exp (g) is contained in Bk(G). Thus the centralizer of
an élément in G is always positive dimensional.

Let now Gx be the connected component of ZG(ô) for the above ô e F\ZG.
We hâve: dimc G &gt; dimc G! &gt; 0 and by Lemma 3.1. Gx • F is closed in G.
Therefore GJ(GX D F) is compact in GIF and by induction we find H&lt;G such

that H - (eF) H/(H D F) is a compact complex torus in GIF. U

PROPOSITION 3.3. Let X be in &amp; and G a complex subgroup of Aut^ (X).
Suppose the orbit G(x0) through a point x0 in X is connected and closed. Then

G(jc0) Txj2, where T is a complex torus and Q a homogeneous-rational
manifold.

Proof. Without loss of generality we may assume G to be connected and
the image of x0 under the Albanese map of X to be the neutral élément of
Alb (X). Furthermore let us dénote the isotropy of G in x0 by H.

We consider the Tits fibration of the compact orbit

7t:G(xo) G/H -^U G/N=:Q,

where N is the normalizer of H° in G and the base Q is well-known to be

homogeneous-rational. First we want to show that the restriction ^ iPx\n/h is a

finite map. Since tp is N-equivariant, the image tp(N/H) A^(iV) • iI&gt;x(xq) is a

subtorus of Alb(X). The image of N in the automorphism group of N/H,
denoted by M, has the same dimension as NIH. Thus ty is M-equivariant

MIL,

where L is a closed subgroup of M, which contains a discrète subgroup F.

If ^ is not finite L/F is positive dimensional and by Lemma 3.2 we find a

subgroup L&apos; of L such that Y: L&apos;I(L&apos; C\F) is a positive dimensional torus in

L/F. Consider a vector field V in g which is tangent to Y c ^(xp^xo)). Then,

since X is in class 99 V e (£(X) fl stabautW Y) -^-&gt; £{Y). But Y is a torus and

thus V|y 0 which contradicts the construction of Y. Therefore Y cannot be

positive dimensional, thus \j&gt;:N/H-+ \px(NIH) c Alb (X) is finite and N/H is a

torus.
Since K\(Q) 1, it follows that N is connected and therefore the Tits fibration

G/N Q
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is a holomorphic torus principal bundle. In order to show that n is holomorphi-
cally trivial, we consider the Albanese map of the orbit:

G(xQ) GlH -*£-» G// Alb(G(x0)).

Let G =*R • S be a Levi-Malcev décomposition of G. Now S acts trivially on
Alb (G(x0)). Thus S&lt;J° and consequently J° acts transitively on Q. Hence

dim (J°/(H H /°)) &gt; dim (J°/(N H /°)) dim Q.

By the universality of Alb (G/H) we get

dim Alb (G/H) &gt; dim tp(G/H) *&gt; dim i//(iV///) dim (N/H).

Therefore

dim (J°/(H fl /°)) dim (J/H) dim (G/H) - dim Alb (G/H)
&lt; dim (G/H) - dim {NIH) dim (J°/(N H /°)).

Hence

has discrète fibers. The homotopy séquence of this bundle yields by nx{Q) 1

that A is already biholomorphic. Thus the /°-orbit in G/H is a holomorphic
section of the torus principal bundle given by n.

The above single orbit décomposition is reflected in a striking way by the
structure of the whole manifold.

THEOREM 3.4. Let X be in 9 and G a connectée complex subgroup of
Auttf (X). Suppose there is an open set Q in X such that the G-orbits in Q are
closed. Then:

(1) G is a product S xT where S is semi-simple and T a compact complex
torus.

(2) X is G-equivariant a product of a homogeneous-rational manifold Q and a

manifold M in 9 such that G~SxT acts as a product on QxM.
(3) XIG — MIT is a normal complex space and M is a holomorphic Seifert

principal fibre bundle over M/T.

Proof. Ad (1). By Proposition 3.3 one has G(x) Q(x) x T{x) for ail x in fi.
Let 5 • R be a Levi-Malcev-decomposition for G. Since on an orbit in fi, S acts

only on the rational part and R only on the torus part, it follows that G is a
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product 5 x A, where A is abelian. Now by Theorem 2.3 A is a torus
T&lt;A\xto(X).

Ad (2). Since each 5-orbit in Q is of the form S/Pxt where Px is a parabolic
subgroup of 5, we first look for a &quot;generic&quot; P. Let K be a fixed maximal compact
subgroup of 5. Then, on Q, S and K hâve the same orbits since each 5-orbit is

simply-connected (see [Mo]). For the ^-action we hâve a principal orbit, i.e.
there is an open dense set in X with orbit type (L) for some fixed L &lt; K (see e.g.
[J]). Thus there is an open set QxcQ such that S(x) K(x) K/Lx with
(Lx) (L) for ail x in Qlm Since K/L is homogeneous-rational, L contains a
maximal compact real torus of K. The smallest complex subgroup of 5 containing
this torus is a maximal torus of 5 in the sensé of linear algebraic groups; we will
dénote this group by H. Obviously H is in Lc.

Every 5-orbit in Qx contains a point x such that Lx L. Denoting Stabs {jc}
by Px&gt; L KHPX implies H&lt;LC&lt;PX and therefore Fix (Px) c Fix (Lc)
Fix (L) &lt;= Fix (H). Furthermore 0 &lt; |Fix (H) n S(x)\ &lt; «&gt; since H is contained only
in finitely many Borel groups of 5 and each Borel group is contained only in
finitely many parabolic subgroups of 5 (for thèse standard facts on linear
algebraic groups see e.g. [Hu]). A fortiori 0 &lt; |Fix (L) D K(x)\ &lt; °° holds for ail x
in Qv

Now, since Lc is reductive, Fix (L) Fix (Lc) is the disjoint union of closed

connected complex submanifolds of X:Fix(L) [J^L1Mr We want to find a

component Ml0 of Fix (L) such that \Ml0 H K(x)\ &gt; 0 for ail jc in a possibly smaller

open set Q2aQx. Assume K(x)HMi 0 for some x in Qx. Then we find an

open ^-stable neighbourhood V of K(x) in Qx such that VDMi 0. Since

Fix (L) has only finitely many components, inductively we find the desired Q2

such that for some component M : Àfl0 of Fix (L) we hâve 0 &lt; \M (1 K(x)\ &lt; oo for
ail x in Q2- K follows dim M + dim S(x) dim X for ail x in fl2-

The above argument on algebraic groups immediately implies that Lc lies only
in finitely many parabolic groups, say Plf..., Pk. Let x be in M (1 Q2 then Px P}

for some je{l,...,k) and therefore M D Q2 U;*=i (Fix (P7) n (M n fi2)).
Thus there is a /^0 :P such that Fix (P) and M hâve a common component on

Q2. Hence M is contained in Fix (P). By the construction of Q2, on each 5-orbit
in Q2 there is a point x such that PcPx and thus by the constant orbit dimension

on Q2 we hâve (Px) (P) for ail x in 02.
The map /:5 x M-+X defined by f(s, x) s(x) factorizes through a proper

holomorphic map f:S/P x M-*X, since M is in Fix(P). Since fl2clm(f), it
follows that / is surjective by the proper mapping theorem of Remmert (see e.g.

[CAS]).
Part (2) of the theorem will be proved if we can show that / is mjective. First

we observe that ail 5-orbits on X are closed, since the surjectivity of/implies that
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each S-orbit contains a point of M. Now K acts transitively on each S-orbit in X.
Remember that by the principal orbit theorem there exists an open dense set U in
X such that (LJC) (L) (L as above!) for ail x in U. For x in Un M,
f:S/Px {x} sK/L^&gt;K/Lx S/Px S(x) is bijective. Thus (Px) (P) for ail x
in £/.

Now assume there is an x in M with PX¥^P, i.e. Lxi^L. Let d be a

L^-invariant metric on X and e&gt;0 such that Be(x) {z eX\d(z, x)&lt;e} is

holomorphic separable. Since U is dense we find a y in Be(x) flMPl (/, in
particular one has L^ L. The L^-orbit of y turns out to be complex by the
following biholomorphisms:

S(y) -4U S/P x {&gt;;} ^^ S/P x {je},

since r&lt;&gt;/&quot;1(Lx(y)) is the fibre through (eP, x) of / restricted to S/P x {*}. Thus
Lx(y) is finite and in fact equal to {y} by the homotopy séquence of the bundle
given by f\s/PX{Xy. This shows Lx L and therefore S has fixed orbit type (P) on
X. In particular we hâve that / : S/P x {x} -» S(x) is bijective for ail x in M and P
has exactly one fixed point on each S-orbit in X.

Assume (sP, x) and (s&apos;P, *&apos;) are mapped to the same point of X under/, then
it follows that the S-orbit of x and x&apos; are the same. By the uniqueness of the
P-fixed point on an S-orbit x equals x&apos;. But / restricted to S/P x {je} is injective
and thus (sP, x) equals (s&apos;P, xf) which shows the injectivity of/.

Now / : S/P xM-*Xis biholomorphic and induces an T-action on S/P x M.
Since MiiS/PxM-^S/P is T-equivariant, and a complex torus action on the
homogeneous-rational S/P is trivial, it follow that T only acts on the second
factor M. Thus / is G-equivariant with respect to the product action on S/P x M
and the given action on X.

Ad (3). This follows immediately from Theorem 2.3.
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