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Rigidity of certain finite group actions on the complex projeclive
plane

Ian Hambleton(1), Ronnie Lee(2) and Ib Madsen(3)

In [HL], [W] the finite groups which act locally linearly on P2(C), inducing the
identity on homology, were found to be just the subgroups of PGL3(C). Since

any such subgroup acts on P2(C) as a group of collineations this raises the

question of rigidity: namely, is every action topologically conjugate to a linear
action? In this paper we prove that actions satisfying certain assumptions on the
singular set are rigid, and give a construction for non-linear examples, based on
the existence of knotted 2-spheres in S4 invariant under cyclic group actions [G].

We will say that a locally-linear G-action has an isolated fixed point if G has a

fixed point x0 where the local tangential représentation is free. This is a strong
assumption: by [HL; 2.5], the local représentation at an isolated fixed point
identifies G with a subgroup of £7(2) acting freely on S3. It follows that G has a

unique non-trivial central élément of order two, or G is cyclic of odd order (see

[HL; §1]).
There are also two distinct possibilities for the singular set of an action with an

isolated fixed point. When the action has an invariant 2-sphere which represents a

generator of H2(P2(C); Z) we say the action has type l, and otherwise the action
has type II. From [HL; 2.1] we see that in a type II action, G is a cyclic group of
odd order acting semi-freely on P2(C) with three isolated fixed points
{Pl&gt;P2&gt;P3}-

The linear G-actions on P2(C) are weakly complex in the sensé that the

tangent bundle has a G-£7(2) réduction. For a gênerai locally linear action it
turns out that the topological tangent bundle always has a G-vector bundle
réduction, and if it further has a G-(/(2) réduction, the action is called weakly
complex. Our main resuit is the following.

THEOREM A. Let G be a finite group with a locally linear action on P2(C),

inducing the identity on homology. If the action has an isolated fixed point and is
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Finite group actions on the complex projective plane 619

type I or weakly complex type //, then it is topologically conjugate to a linear
action.

The proof can be outlined as follows: (i) we produce an isovariant homotopy
équivalence to a linear action, which is a homeomorphism near the singular set,
and (ii) we prove (in §3) that any action with this property is topologically
conjugate to the linear model. We need to assume that type II actions are weakly
complex in step (i), to show that the local représentations at the three isolated
fixed points agrée with those in some linear action (see §2).

For a type II action, the local tangential représentations TPtP2(C) are
well-defined [MR], [HP]. They hâve complex structures, say

where the generator t of G acts on V(alf bt) C2 by

t • (zi, z2) (Ç&quot;%, Ç6&apos;z2), C exp (2W=Ï/|G|). (0.1)

Of course, there is no canonical choice of (at&gt; bt) since the action does not
distinguish between (at, bt) and (—alf —bt), or prefer an ordering of the fixed

points. We show in §1 that a type II action is weakly complex if and only if

for some choice of rotation numbers (alt bt).

If the topological tangent bundle has a G-U{2) réduction, then (0.2) follows
from (1.4) applied to the &quot;déterminant line bundle&quot; A2(r*P2(C)).

For a linear type II action, the rotation numbers hâve the form

(au bx) (a, b), (a2y b2) (-a, b - a), (a3, b3) (-6, a - b) (0.3)

with a, by anda-b units in Z/|G|. In this case, (0.2) follows by inspection.

Recently, A. Edmonds and J. Ewing [EE] hâve shown that the local

représentations in a type II action always agrée with those in some linear action,

using a more extensive analysis of the Atiyah-Singer formula. By combining their

work with ours, we conclude that every type II action is weakly complex, and

hence that Theorem A holds without this condition. It would be interesting to see

a direct proof of (0.2), and thus provide a relatively elementary argument for the

gênerai resuit.
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In the smooth category our methods do not prove rigidity, since smooth

surgery does not work in dimension 4. In addition there is the intriguing
possibility of the existence of a non-trivial smooth (inertial) 4-dimensional
s-cobordism between spherical space forms. In fact, if there is such an example
with the universal cover a product, then rigidity fails. In the topological category,
the existence of non-trivial s-cobordisms does not prevent rigidity because the
usual &quot;infinité répétition&quot; argument (see §3) overcomes this difficulty.
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Section 1: Equivariant Line Bundles

We begin with the classification of equivariant line bundles over a G-space X
(the following convenient formulation is given in [LMS]):

[X, BU(l)f [XxGEG, BU(1)]. (1.1)

The right-hand side is just the Borel cohomology group HG(X;Z) and the
left-hand side is the set of isomorphism classes of G-£/(l) bundles over X.

For type I actions on X F2(C), there exists an invariant S2. First we give a

resuit essentially due to Freedman [F], concerning the existence of
equivariant tubular neighbourhoods.

LEMMA 1.2. Let G act locally-linearly on a closed oriented A-manifold M. //
the action is orientation-preserving and S is an invariant locally-flat surface in M,
then there exist a closed equivariant neighborhood (N, dN) for 2 which is

G-homeomorphic as a pair to (D(v), S(v)) for some G-£/(l) vector bundle v over
2, G).

Proof Let G be the quotient of G which acts effectively on the invariant
surface. The singular set of the G-action on I is a finite set S of points. After
deleting a set B(S) of balls around thèse points on which G acts linearly, the

complément has a free G-action in a neighbourhood of 2-B(S). The resuit of
Freedman [F, Thm. 10] applied to the orbit space gives a closed vector
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bundle neighbourhood for (Z-B(S))/G. The covering space is then a G-vector
bundle neighbourhood for this part of I. Inside B(S) we can also find a

G-tubular neighbourhood since the action is linear there. Thèse two pièces fit
together in dB(S), by uniqueness of (smooth) G-tubular neighbourhoods in a
3-manifold. To justify the use of smoothness at the last stage, we need to know
that any locally-linear action of a finite group on a closed 3-manifold is

smoothable. But, since our action is orientation-preserving, the orbit space is also

a topological 3-manifold and hence smoothable.
To understand the equivariant Une bundles over S2, we recall that any

topological action of a finite group on S2 is conjugate to a linear action [K, p.
229]. The relevant linear models are the Hopf bundles: let V be a complex
2-dimensional G-representation (where G ç 5O(4), then

is a G-equivariant Hopf bundle.

LEMMA 1.3. Let v\S2 be a G-[/(l) bundle over S2 with Euler class ±1.
Then v is G-isomorphic to an equivariant Hopf bundle.

Proof. From (1.1) the bundle v is classified by an élément of

The group H2(G; Z) may be identified with the group of 1-dimensional (complex)

représentations L of G, or flat bundles over (S2, G). This group acts transitively
on the G-£/(l) bundles with fixed Euler class (v-&gt; v® L) and hence the linear
models represent ail éléments of H2G{S2\ Z).

We assume now (and for the rest of the section) that our action on X P2(C)

is of type IL Let G Cn be a cyclic group of odd order n with a generator t. Fix

an identification of the tangent planes TpX=V(anbù as in (0.1). If L is a

G-equivariant Une bundle over Xy we dénote the isotropy représentations at the

fixed pointpt by {tXl} for i 1,2 or 3. In the following resuit and its proof, we will
establish certain relations among the {AJ and the (an bt) expressed as con-

gruences modulo n.

PROPOSITION 1.4. There existe a G-equivariant Une bundle L over X with

L\Pi^tKifandonly if
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Proof. Let Bt dénote small open G-disks around the fixed points plt and let

Y=(X-B1UB2UB3)/G. (1.5)

Then Y is a compact 4-manifold with three boundary components Yly Y2, Y3

which are the lens spaces L3(V(an bt)). The problem of finding the equivariant
line bundle L over X is équivalent to showing that

extends over Y.

Since S^bundles over Y are classified by an élément in H\Y; Z), we must
study the image of the restriction map

However, both H\Y, dY; Z) and H2(Yr, Z) are isomorphic to Z/n, and the
natural map H2(Yl;Z)-^H3(Yf dY;Z) between them can be identified (with the

help of the linking pairing) with

Hom (fliŒ; Z), Q/Z)-&gt; Ht(Y; Z) Z/n

albl

Remark. The line bundle L is not specified uniquely in (1.4) since H2(Y; Z)
Z © Z/n. By considering intersection numbers in Y, we can see that k2 (cx(L))2
is given by

(modn). (1.7)
apl

This relation is derived in Section 2 by another method.

PROPOSITION 1.8. For a type II action, the topological tangent bundle has a

G-U(2) réduction with TpX=V(at, bt) if and only if (0.2) is satisfied.

Proof. We first notice that the topological tangent bundle of X has a

réduction to a G-vector bundle. Indeed, this follows from equivariant obstruction
theory because ^r,(rop(4)/O(4)) is 2-torsion for i &lt; 3 and \G\ is odd.
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Given such a réduction, with TpX=V(al}bt) we want to get a G-(/(2)
réduction of TX. With the notation of (1.5), we want to lift TX | BY to a G-U(2)
bundle on Y. Since G acts freely on Y (with orbit space y), the obstructions lie in

The only non-trivial group occurs for î 3, where ji2(SO(4)/U(2)) Z. The
mapping

5O(4)/C/(2)-&gt; BU(2)

is multiplication by 2 on jt2. Thus the obstruction to a G-U(2) structure is the
same as the obstruction to finding a line bundle L over X with

This was analysed in (1.4).

Section 2: Type II Actions of Cyclic Groups of Odd Order

In this section we prove that the local représentations for weakly complex type
II actions on P2(C) agrée with those in some linear action.

THEOREM 2.1. Let G be a cyclic group of odd order n acting locally linearly
and semi-freely on P2(C) with three isolated fixed points. If G is weakly complex
and induces the identity on homology, then the local représentations at the fixed
points agrée with those in a linear G-action.

Before beginning the proof, we dérive some more information about the
rotation numbers (at, bt) at the three isolated fixed points. We will see below that
our method has difficulty with &quot;small primes&quot;. However it is easy to verify
Theorem 2.1 directly for n 3r (r &lt; 3), 5, or 7, and from now on we will assume

that thèse cases are known.
The linear G-actions on P2(C) are given by the formula

t&apos;(zuz2,z3) (zutaz29tbz3) (2.2)

in terms of homogeneous coordinates. This is a semi-free action with three
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isolated fixed points provided that a¥^b are units (modn). If px (1,0,0),
Pi (0, 1, 0) and p3 (0, 0, 1), then the local rotation numbers (alf bt) are

(a, b), (-a, b - a), and (-6, a - b\ (2.3)

or

(a, b\ (b-ay- à) and (a - b, -b). (2.4)

In a possibly non-linear action (Xy G) on P2(C), we hâve the relations arising
from the G-signature Theorem [AS; Thm. 6.18J

Note that we get an équation in the ring R Z[t]/(1 + *+••• + f&quot;&quot;1) after
multiplying both sides of (2.5) by (t — l)2. Let / dénote the idéal generated by
(t - 1) in R. In order to compute the low order terms (&lt;6) in the /-adic expansion
of the resulting left-hand side, we lift this équation to Z[t], expand in powers of
(t — 1) and equate coefficients. From thèse relations we will obtain congruences
modulo n involving the rotation numbers. Note that the indeterminacy in this

procédure arises from the coefficients in the expansion of

It is sufficient to do the cases n =pr, for some prime p with n =£ 3r (r &lt; 3), 5,

or 7 (i.e. r(p — 1) &gt; 6). The expression for g(t) as a product of cyclotomic
polynomials shows that

for some h(t), k(t) e %[t]. But in R, the prime p has /-adic valuation (p — 1), so
the indeterminacy affects the terms of degree ^ r(p — 1). Since r(p — 1) &gt; 6, by
considering the terms of degree up to six and reducing modulo n, one dérives
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four congruences:

2—0 (2.6)

(2.8)

(2.9)

Since the action is assumed to be semi-free with three isolated fixed points, then

at =£ bt are units mod n (for î 1, 2 or 3).
If L is a G-invariant Une bundle over X, then the topological Index

homomorphism applied to [L] e KG(X) gives a formula for a certain character %

of G:

(2.10)

By substituting the characters {tK} for L|Pi, and our local représentations
in (2.10), we get

Let cx{Lf k2 and x e H2(X; Z) dénote a generator, then

(1 + kx + *V 2 2

If we substitute thèse expressions in (2.10) and expand, noting that

we get

a.bMt-1)2 (t-1) V 12
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By comparing terms on both sides, we get (1.4) and (1.7).
When the action is weakly complex, we can supplément (2.6)-(2.9) with

(2.11)

From (2.6), (2.7) and (2.11) we get the équations

(ax + bx-a2- b2f 9(a1b1 + a2b2)

(al + bl-a3- b3)2 9(a1b1 + a3b3) (2.12)

(a2 + b2 - a3 - b3)2 9(a2b2 + a3b3).

Indeed, from (2.6)

Q,\b\CL2b2
(213)

and then (2.11) gives

axb2a2b2 (a1^b1 a2 + b
a3 + b3=

Substituting this in (2.7) leads to the équation

[(at ^-bî-a2- b2f - 9{alb1 + a2b2)\axa2bxb2 0,

and hence the first équation in (2.12). The others are similar. We remark that
(2.6) implies that the quantities in brackets on the right-hand side of (2.12) are
units (mod n).

Proof of (2.1) for n an oddprime: Let n \G\ be an odd prime, and consider
G Cw acting on P2(C). We will show that if (au bx) {a, b) are fixed, then the

only rotation numbers satisfying the relations above are those from the linear
models (2.3) or (2.4). The cases when n 3, 5, or 7 are easy, so we leave them to
the reader and suppose that n &gt; 7.

The first step is to eliminate a3, b3 from (2.8) by using the relation

b3)2-2a3b3]2
_

a3b3 a3b
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and the above expressions for a3b3 and (a3 + b3). This gives the équation

— la2u2 1 0
{ab + a2b2)a1bïa2b2 {b + ^)

where

4 [- (û! + frO2 + 9a1b1]alb1 + [(fll + &amp;02 + 2a1b1)a2b2

Finally we use the first équation in (2.12) to express a2fe2 in terms of the sum
(and axbx). Putting

z [a2 + 62 - a - è]/3,

we get (after some simplification)

z6 + 2(0 + b)z5 + (a2 + 3ab 4- 62)z4 - aô(a2 + 3ab

- 2ab(a + ft)z - a3fc3 0. (2.15)

This équation factors as (z2-ab)(z + af{z + 6)2 0. Since z2-ab a2b2 by
(2.12), and this is a unit, we get

+ 6)2 0. (2.16)

Similarly, if w [a3 + b3 - a -1]3,

h&gt; + &amp;)2 0. (2.17)

Thèse solutions lead immediately to the linear models, and this complètes the

proof for \G\ an odd prime.

Proof of (2.1), gênerai case. Let n \G\ be an odd integer. Notice first that

a2 + ft2 a3 + 63(mod n) implies that n 3 or 9. Indeed the équations (2.12) show

that 9û262 9a3b3 and 9a2*&gt;2 - 9a3b3, hence 18a2b2 0. Since n is odd and

a2b2 is a unit this gives 9 * 0(mod «). The cases n 3, n 9 have already been

dealt with, so assume below that a2 + b2 ^ a3 + 63(mod /i).
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Write (a, b) (ai, bt) and suppose p is a prime divisor of n. The équations
(2.16) and (2.17) give

(z + a) O(modp), (h&gt; + b) O(modp)

after possibly permuting a and 6, so

a2 + b2 b-2a, a3 + b3 a-2b (modp).

On the other hand, (2.12) gives

a2b2 a(a — b), a3b3^b(b —a) (modp).

Hence we can assume

(a2, b2) (-a, b - a), (a3, b3) (-6, a - b) (modp)

LEMMA 2.19. Suppose n=prm with (p, m) l and p prime. If (2.18) is

satisfied modp then it is satisfied (mod//).

Proof. Suppose (2.18) satisfied (mod//), l&lt;f&lt;r. Hence we can write
(modp1)

a2=-a+ p&apos;x2, b2 (b - a) + p&apos;y2

a3= -b +p&apos;x3, b3 (a -6) +/?^3-

When p # 3, substituting this back into (2.12) leads to the équations

y2 (3b/a - l)x2f x3 - (è3/û&gt;2, * - (3a/6 - l)(&amp;3/a3);c2 (modp).

For p 3 we substitute into (2.6), (2.8) and (2.11) instead to obtain the same
conclusion.

Thèse relations can be substituted into (2.9), where the coefficient of x2
becomes:

U(a - 2b)(a - b)(a + b)(2a - b)b
a2

This is non-zero modp and hence x2 s 0 (modp), unless p 7 or we are in one of
the degenerate cases « 26, a -6, or 2a b. The latter are treated by a
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différent method below. For p 7, we must substitute into the degree eight
congruence derived from (2.5), and proceed in a similar way. Further détails will
be omitted.

The above lemma finishes the proof of Theorem 2.1 when G has prime power
order and reduces the case of composite order to the square-free case. Write

n=pq with (py q) 1, p prime and q square-free. Inductively we may assume

a2 - a + qx2, b2 (b-a) + qy2
(2.20)

a3 ~ b + qx3&gt; b3 (a-b) + qy3y

and that the unordered pairs satisfy

{a2yb2} {-ayb-a}y {a3y b3} {-by a-b} (modp)y

or

{ai&gt;b2} {-b,a-b}, {a3, b3} - {-a, b - a} (modp).

This gives eight choices for the ordered pairs. We must rule out seven of them,

namely the one corresponding to the cases (2.20) (modp) where:

1.

2. [0, 0, a/q, -a/q]
3. [b/q, -blq, a/q, -a/q]
4. [(a - b)/qy 2(a - b)/q, (b - a)/q, 2(b - a)/q] (2.21)
5. [(2a - b)/qt (a - 2b)/qy (b - a)/qf 2(6 - a)/q]
6. [(a - b)/qy 2(a - b)/qy (2b - a)/qy (b - 2a)/q]
7. [(2a - b)/qy (a - 2b)/qy (2b - a)/3y (b - 2a)/q].

We first dérive an équation in FP®Z[£J by substituting (2.18) back in the

signature relation (2.5) and evaluating t at a generator geG. Let t(g) Ç be

a primitive pq&apos;th root of 1. In Z[Ç], 1 - tq générâtes a p-adic idéal / and

Notice that ¥p ® Z[ÇJ décomposes into |(Z/^)X : &lt;p&gt;| factors, each isomorphic to
the field FP[ÇJ. Write

i ± r2=(i+ra) ± ra(r
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with A(x2) ((£*** - l)/(£* -1)). Then

(1 - Ç*)&quot;1 - (1 - rr^l + j-^ (Ç* - 1)A(X2)] (mod /2)

and

There is a similar calculation for (1 + £*2)/(l - £*2), and

Substituting this expression and the similar one for (a3, b3) back in (2.5) and

using that

A(x) x (mod/),

we get after clearing denominators the équation

(x2 - 2y2)ô(a) + (x3 - 2y3)ô(b) + (-2
4- è) + x2ô(a - 26) +x3ô(è - 2a) 0 (2.22)

where ô(m) £; - Ç&quot;tt, for m € i

The Galois group (Z/#)x of the extension Q(£)/Q acts on the ô(u).

LEMMA 2.23. Suppose the set {ulf. ur) c (Z/&lt;7)x w/ecte înto
&lt;±1&gt;. T/ie/î rAe wnto ÇMl~ C&quot;&quot;1,

• • tu&apos;~ l~Ur are linearly independent in

Proof. This follows easily from the fact that the éléments {ÇM:w e (Z/q)*}
form a normal basis for the extension when q is square-free.

It follows from (2.23) that the éléments ô(a), ô(b), ô(a - b), ô(a 4- b)y

ô(a - 2b) and ô(b - 2a) are linearly independent if there are six distinct éléments
in the set {1, b/a, 1-b/a, l + b/a, l-2b/a, -2-f b/a} çz(Z/q)x/(±l). This
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happens except in the spécial cases.

bla -1, b/a ±2, b/a 3, b/a 1/3, b/a 1/2, b/a 3/2 (2.24)

If we are not in the cases (2.24) we clearly get x2 x3 y2 y3 0 in fp ® Z[ÇJ.
For each of the spécial cases (2.24) one checks through the 7 cases of (2.21)
separately, and dérives a contradiction in each case. For example, if a —b then
(2.22) reduces (upon replacing t,aq by Çq) to

(jc2 - x3 + 2^ - 2^)0(1) + - 2*2 + 2r3 + y2 - y3)&lt;5(2) + (*2 - *3)&lt;5(3) 0

so x2 x3 and y3^y2(modp). Checking through (2.21) we see that this cannot
be satisfied when a= —b. The other spécial cases are similar.

We also hâve some degenerate cases left over from the proof of (2.19). Thèse

too are handled by direct substitution of our relations for a2, b2) a3 and b3

(modp&apos;) into (2.5). Recall that in the argument of (2.19) we reduced the
déviation of the (an bt) from a linear model to a single unknown x2. It remains to
show that jc2^O (modp). We write n —pqy with q =pr~1m divisible by p and

expand (2.5) in powers of / (1 — £*). This time the coefficients in the expansion
lie in

After a straightforward calculation, we find that in each of the three cases

a= —b, a 2b, and 2a by the coefficient of I2 is non-zero unless x2s0
(modp). Further détails will be left to the reader. This ends the proof of (2.1).

Section 3: The Proof of Theorem A

From the results in Sections 1 and 2, we wish first to conclude that the actions

are G-homotopy équivalent to some linear action. This leads via surgery theory to
the proof of Theorem A.

LEMMA 3.1. Suppose that a cyclic group G has a type I action on P2(C).

Then the local représentations of G atfixed points agrée with those in a {complex)

linear G-action.

Proof. By (1.2) the invariant 2-sphere has a G-normal bundle. Suppose that

the G action is non-trivial on the 2-sphere, so has two fixed points say p2 and p3.

Then by (1.3), the rotation numbers at p2 and p3 are of the form (a2, b2) and

(a2 - b2) -b2). If we substitute thèse values into (2.5), the resuit follows easily.
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PROPOSITION 3.2. Let G be a finite group acting locally linearly on P2(C)
inducing the identity on homology. Suppose that the action has an isolated fixed
point and a disjoint invariant 2-sphere representing a gênerator of H2(P2(C); Z).
Then there exists a G-homotopy équivalence to a linear action which is a
homeomorphism on a closed equivariant neighbourhood of the singular set.

Proof. Let p:G-»S0(4) dénote the local représentative at the isolated fixed
point. From [HL; 2.5] we may assume that the image of p lies in U(2), so defines
a complex représentation V and the identification P2(V © 1) « P2(C) gives a
linear action. We compare the given action to this linear model. Since the fixed
point is isolated, the local représentation is free and G must be either cyclic or
contain a unique central élément t of order 2. In either case, the linear model
contains an invariant 2-sphere disjoint from the fixed point (this is just Fix t in the
second case). Now (3.1) implies that a suitable closed neighborhood (N, dN) of
the invariant 2-sphere in the given action is G-homeomorphic to that in the linear
model. In particular, dN is G-homeomorphic to S(V). Since the invariant sphère
represents a generator of H2(P2(C); Z) it follows that

W (P2(C)-NVD(V))

is a free G-A-cobordism from dN to S(V).
If our action satisfies the assumptions of (3.2), then the proof of Theorem A

can be completed by the following argument. Let

f:(W, dW, d+W)-*(S(V)/GxI, S(N)/GxO, S(V)/G x 1)

be a homotopy équivalence. Then /1 d+W is a homotopy automorphism of the

space form S(V)/G. By [RI], [R2] / | d+W is homotopic to a homeomorphism.
After a change of / we may therefore assume that / | d+ W is a homeomorphism
such that / represents an élément of the topological structure set,

By results of Freedmann, the surgery exact séquence works in dimension 4, so

x/, d)-*[S(V)/GxI/3,

is exact. The left-hand group is a finite 2-group [Wa2] and the normal invariant

group is Z©H2(G;Z/2). The Z maps injectively forward to Lg(ZG), so we
conclude that 5^(S(F)/G x 7,5) is finite 2-group, say of exponent 2r.
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COROLLARY 3.3. In the situation above there is a homeomorphism

F:(WUdW+ x [0, oo), d.W)-*(S(V)/G x [0, &lt;»), S(V)/G xO)

which restricts tofon 3_W.

Proof. Replace the structure / by 2r+1 • /, / stacked on top of itself 2r+1 times.
This map is homotopic to a homeomorphism (rel d) by the s-cobordism theorem
[F], since 2r was the exponent of the /i-structure set, and one further doubling will
eliminate the Whitehead torsion. Now use infinité répétition:

WUdW+ x [0, oo) -2r+1 • WU2r+1 ¦ W U •...

It remains therefore to consider the case where G is cyclic and acts semi-freely
with 3 isolated fixed points.

PROPOSITION 3.4. Let G be a cyclic group acting as above on P\C)
semi-freely with 3 isolated fixed points. Suppose that the local représentations at the

fixed points agrée with those in a linear G-action. Then there exists an isovariant
G-homotopy équivalence to the linear action which is a local homeomorphism near
the fixed point set.

Proof. Write M for the G-manifold (P2(C), G) and /?, e M for the 3 fixed

points. We saw in (2.1) that there exists a linear model P2(V©1), the

projective space of the représentation V tk2~kl © tk3~ki © 1. Let qt e P2(V © 1)G

be the fixed point with z; 0 for j # i, and the notation is arranged so that

TqP2(V© 1) TpM as G-representations for / 1,2,3. The canonical Une

bundle L(V) over P2(V © 1) is G-equivariant and has fiber L(V)qi^tK at qt for
i 1,2,3. By (1.4) there exists a complex G-bundle H over M with H\Pi tXt,

/= 1,2,3.

TPlM tkî~k2 © tkl~x\ TP2M tk2~kl © tk2~k3

(3.5)

TP3M tk3~ki © tk3~k2.

The Chern class (c^if))2^! (modn) by (1.7), since this is true in the linear

model. It is now easy to adjust H so that {cx(H))2 1.

Let Ut be a neighborhood of pt in M, G-homeomorphic to TPtM. Then we can

find an embedding
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such that L(V) | {/ H | £/. The classifying G-map

f:P2(V@l)-»BU(l)

for L(V) maps qt into the component of BU(1)G which corresponds to tK. Hence
we see that

classifies H \ U. The obstructions to extending this map to a G-map from M to
P2(V © 1) lie in the Bredon cohomology group

HkG(M,U;nk(f))

where nk(f) is the coefficient System nk(f)(G/H) Jtk(fH). By excision,

HkG(M, U; *k(f)) HkG{My MG; nk(f))

Hk(M/G,MG;nk(f)).

Thèse groups vanish because nk{f) 0 for k &lt; 5 and {MlG, MG) has relative
CW-dimension 4. Then make f:M^&gt;P\V® 1) transverse to {qu q2, q3}
without changing it in a neighbourhood of thèse points. This complètes the proof
of (3.4).

Now we finish the Proof of Theorem A for the G-actions of (3.4). Again we
let M dénote the given G-space and P\V © 1) the linear model (which exists by
(2.1)). Since the G-map

/:Af-»P2(F©l)

given by (3.4) is a homeomorphism near the fixed set, we get a free G-homotopy
équivalence

/ : (M - (/, S)-+ (P\V © 1) - \\D*, 9) (Y, dY)

which is a homeomorphism on the boundary, hence an élément of
9*(Y/G, dY/G). But the Whitehead torsion of//G vanishes by [Wal, 7.2] since
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SKt(ZG) 0 [Wa2, §5.4]. Finally

dY/G;F/TOP]-*L%(ZG))

and the normal invariant of our homotopy équivalence is zéro. Indeed it is

enough to notice that / is the restriction of a self-homotopy équivalence of P2(C),
so homotopic to the identity or complex çonjugation. Both of thèse hâve trivial
normal invariant.

Section 4: Discussion

We remarked in the Introduction that the existence of knotted 2-spheres in S4

fixed under a group action would prevent rigidity in gênerai. Indeed, such knots
can be constructed smoothly for cyclic groups of odd order [G, p. 197]. Consider a
linear action of G Cp x Cp on F2(C) with an invariant projective triangle as the
singular set. One may for example send the generators 5 and T of G to the
matrices

where Ç dénotes a p&apos;th root of unity. On one of the Unes (say xx 0) pick a free

orbit of p points for the action of T, and replace the interiors of small linear balls

around thèse points by the connected sum with p copies of the knotted

Cp-invariant pair (D4, K), where K~D2 and (&lt;9D4, dK) is unknotted. It is easy

to see that the fundamental group of the complément of the singular set is now
différent from any linear model. Indeed, in the linear models the complément of
the singular set is just

7«D2xD2-(O2x0U xZ&gt;2) 51x51xD2.

If Y&apos; dénotes the new complément and r= 7tx(DA - K), then

nx{Y&apos;) (Z0Z) * T * • • • * r/(z)(p copies),

is the free product amalgamated over the standard meridian for dK in dD4. This

contains a subgroup isomorphic to T, hence is différent from {Y)
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Finally it is worth observing that rigidity can hold in at least one action
without an isolated fixed point. Consider G C3 x C3 with the linear action on
P2(C) given by the représentation

S(z0, zlf z2) (z0, (ozu (o2z2)

in PGL3(C), where co is a cube root of 1. Its singular set contains 12 points, the
fixed points for each of the 4 subgroups of order three in G.

This G-action is also rigid (we are grateful to Stefan Bauer for help with the
argument). Suppose that M dénotes P2(C) with a locally-linear G-action and

singular set Ms consisting of 12 points. Then MG is empty and the localization
theorem implies that the restriction map

H\EG x G M, Z) -» H\My Z)

has cokernel Z/3. Hence there exists a G-Une bundle over M realizing the third
power H3 of the Hopf bundle. This is in agreement with the linear model, where
the lens space S5/([S, T]) L5(Z/3)--&gt;P2(C) is the total space of a G-bundle A
restricting to H3 but H itself does not lift to an equivariant Une bundle.

To remedy this, we consider now the group F of upper triangular matrices in
GL3(F3). It is the extension of G C3 x C3 by C3

and [5, T] R générâtes C3. We view M as a T-manifold and notice that

H2(ErxrM, I)^H2(Mf Z)

is onto, because H3(BF, Z) 0. Thus we hâve a f-line bundle L over M realizing
the Hopf bundle. Let V+ and VL be the CF-modules induced up from the two
irreducible faithful représentations of C3. Then Cr CG © End(V+) © End(VL),
so

BU(1)C3 P(CG°°) Up(^ LlP(^-)&gt;

the disjoint union of the projective spaces of the indicated infinité direct sums of
représentations.

As before we look at the maps / and h which classify L and the standard
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T-Hopf bundle

We may assume that both / and h map into the component P(V&quot;). On the
singular set, the représentations agrée with the linear ones, so there exists a
G-bijection fs making the diagram

Ms

î-

P2(cy

commutative. This extends (by obstruction theory as before) to an isovariant
G-homotopy équivalence / : M-* P2(C) which is a local homeomorphism near the
singular set. Now the same argument used at the end of § 3 shows that / is

G-homotopic to a homeomorphism.
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