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Propriétés génériques des fonctions propres et multiplicité
A Marcel Berger, à Voccasion de son soixantième anniversaire

Gérard Besson

0. Introduction

Pour une variété compacte X, l&apos;étude des propriétés que possèdent la
&quot;majorité&quot; des applications lisses de X dans l&apos;espace euclidien UN a été clarifiée,

par l&apos;introduction d&apos;outils puissants tel que les théorèmes de transversalité.
Rappelons les résultats qui serviront de base au travail qui suit,

si TV 1 génériquement une telle application est de Morse ([ME])
si N s* 2 dim (X) génériquement elle est une immersion ([WY])
siN^2dim (X) + 1 génériquement elle est un plongement ([WY]).

(*)

II est intéressant de restreindre la classe de fonctions considérées en tenant
compte de la structure géométrique que l&apos;on a auparavant imposé à X. Dans

[G-W], il est étudié la possibilité d&apos;obtenir des plongements d&apos;une variété non
compacte dans UN en prenant comme coordonnées des solutions de certaines

équations aux dérivées partielles elliptiques.
Dans le même ordre d&apos;idée, on peut s&apos;intéresser aux structures riemanniennes

sur X (compacte) et se limiter à l&apos;étude des fonctions propres du Laplacien
associé. Le premier pas de la démarche conduisant aux résultats (*) a été fait par
K. Uhlenbeck [UK]: génériquement dans l&apos;espace des métriques riemanniennes
toutes les valeurs propres sont simples et toutes les fonctions propres sont de

Morse.
Donc, bien que l&apos;ensemble des fonctions qui sont vecteur propre d&apos;un

Laplacien pour une métrique riemannienne ne soit pas un ouvert de l&apos;espace des

fonctions (il suffit de penser à ce que l&apos;équation qu&apos;elles satisfont impose sur leur
développement de Taylor au voisinage d&apos;un point où elles s&apos;annulent), on peut
leur imposer des propriétés génériques raisonnables.

Dans le texte qui suit nous proposons de parcourir les deux étapes suivantes
de (*). Plus précisément, nous désirons obtenir des plongements et des

542



Propriétés génériques des fonctions propres et multiplicité 543

immersions dans RN dont les coordonnées sont des fonctions propres pour une
métrique donnée et relative à la même valeur propre À. Ceci impose donc que la
multiplicité de cette dernière soit au moins N, en fait dans nos exemples ce sera N
exactement. On ne peut donc espérer des résultats de généricité dans C^X)
compte tenu de [UK]. Il est alors raisonnable de se limiter au sous-ensemble W
des métriques pour lesquelles À est valeur propre avec la même multiplicité N
(fixer la valeur propre n&apos;impose pas vraiment de contrainte car on peut utiliser les

homothéties). Afin d&apos;appliquer des théorèmes de transversalité, il faut pouvoir
faire de la géométrie différentielle sur cet ensemble, il est alors souhaitable de
demander à ce dernier d&apos;être une sous-variété de Banach, ou un germe de
sous-variété au voisinage d&apos;une métrique fixée.

Pour obtenir les résultats recherchés, il nous faut donc satisfaire à deux
conditions:

i) La multiplicité N doit être suffisamment grande.
ii) W doit être une sous-variété de l&apos;espace des métriques.
Le problème de la multiplicité de la fc-ième valeur propre pour X de

dimension deux a été initié dans [CG] puis [BN] où il est montré qu&apos;elle ne peut
être arbitrairement grande, la borne supérieure trouvée étant en fait linéaire en le

genre de la surface; dans [B-C] on exhibe des métriques telles que la première
valeur propre ait une multiplicité en racine carrée du genre.

La principale avancée récente vers une compréhension du problème est dans
la suite de résultats obtenus par Y. Colin de Verdière ([CV1-4]). Utilisant une
idée générale d&apos;Arnold [AD] il montre en utilisant la théorie des perturbations
que la multiplicité peut apparaître de manière non isolée si on dispose de

suffisamment de paramètres. Plus précisément, on construit dans [CV2] des

métriques en dimension ^3 telle que la multiplicité de la première valeur propre
soit arbitrairement grande. Le problème de la dimension 2 reste non complètement
résolu. Dans [CV2], il est conjecturé que la multiplicité maximale pour la

première valeur propre d&apos;une surface riemannienne X est C(X) -1 où C(X) est
le nombre chromatique de X (voir [RL]). Cette borne supérieure est atteinte par
la multiplicité de la seconde valeur propre d&apos;opérateurs de Schrôdinger sur X.
Dans [CV4] le problème est transporté sur les graphes, ces derniers étant les

éléments de base à partir desquels on construit les métriques qui nous intéressent.
Pour des résultats de type [B-C] n&apos;utilisant pas la théorie des groupes on peut se

reporter à [C-C] et [CS].
Dans [CV1] il est développé une notion de stabilité (Strong Arnold

Hypothesis ou SAH) qui assure la condition ii) ci-dessus.

Dans la suite tous nos opérateurs sont auto-adjoints. Nous considérons donc
différents types de variations paramétrées par un espace B, à partir et au

voisinage d&apos;une métrique g0 (W sera un germe de métrique en g0):
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i) Perturbation du Laplacien Ag0 (ici la métrique est fixée) par des potentiels
petits

H=Ag0 + V où V e Ck(X) B (k grand).

ii) Variation ponctuellement conforme de métriques

* efeo où /
iii) Variation de métriques sans restrictions

B {métriques Ck proche de g0}.

Nous utilisons des métriques Ck afin de pouvoir appliquer les théorèmes de
transversalité à des variétés de Banach et non de Fréchet (pour appliquer le
théorème de transversalité 2.1 il suffit dans notre contexte de prendre k^
dimX + 3; le lecteur peut se référer à [UK] pour les détails). La métrique g0

sera, toutefois, toujours de classe C°° avec des améliorations du résultat dans le

cas où elle est analytique réelle (on peut dans ce cas se limiter à des perturbations
à support dans un ouvert arbitraire).

Si À est une valeur propre de multiplicité N du Laplacien de g0, par petite
perturbation l&apos;espace propre Eo &quot;éclate&quot; en une somme d&apos;espaces propres Eb

pour b € B. On peut choisir une base de Eb, (ulb)i^t^N dépendant
différentiablement de b e B.

Le théorème type est alors

A. THÉORÈME. Si À est une valeur propre stable de multiplicité N, alors

pour un ouvert Wt dense dans W l&apos;application,

est

i) une immersion si N ** 2 dim (X),
ii) un plongement si N ** 2 dim (X) H-1.

Notons que puisque l&apos;on ne s&apos;intéresse qu&apos;à une valeur propre à la fois, la

propriété recherchée est vérifiée sur un ouvert dense car X est compacte.
La seconde partie du travail consiste donc à exhiber des valeurs propres

stables de grande multiplicité. Nous nous contenterons ici de vérifier que les
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exemples de Colin de Verdière satisfont à cette condition. La conséquence
principale est le

B. THÉORÈME. Sur toute variété riemannienne compacte X de dimension n
il existe une métrique riemannienne telle que X se plonge dans U2n+1 par son
premier espace propre.

Nous utilisons ici l&apos;expression &quot;plongement et immersion par espace propre&quot;

pour signifier que les coordonnées sont des fonctions linéairement indépendantes
de Eb.

Après mise en place des notions de base (1) et la position du problème (2),
nous étudions le cas des perturbations d&apos;un Laplacien par des potentiels (3).
Dans (4), nous traitons les variations conformes de métriques, et abordons
ensuite (5) les premiers exemples en dimension 2 tirés de [C-C]. La dimension
supérieure ou égale à 3 s&apos;en déduit aisément (6). Les variations de métriques
quelconques (7) conduisent aux cas non traités précédemment. Dans (8) quelques

remarques générales permettent de comprendre les propriétés des plongements
obtenus en particulier si la valeur propre est la première non nulle, tout
hyperplan de UN passant par l&apos;origine sépare l&apos;image en exactement deux

composantes connexes. Nous rapprochons cela de la notion de plongements
tendus et donnons des arguments permettant d&apos;apprécier la pertinence de la

conjecture de Colin de Verdière sur la multiplicité maximale de la première
valeur propre d&apos;une surface riemannienne.

Je tiens ici à remercier Y. Colin de Verdière pour m&apos;avoir suggéré le

problème et pour les nombreuses conversations que nous avons eues à ce sujet.

1. L&apos;hypothèse de transversalité

Rappelons les notions de stabilité faible et forte introduites par Y. Colin de

Verdière dans [CV1]; elles reposent sur des éléments de théorie des perturbations

que le lecteur pourra trouver dans la référence [KO].
Soit (Ha)a€T une famille d&apos;opérateurs autoadjoints réels sur H IHI/?®C le

complexifié d&apos;un espace de Hilbert réel, de même domaine DcH, dépendant
continûment du paramètre a variant dans l&apos;espace topologique T (on suppose que
OeT).

Soit alors Ào une valeur propre isolée de multiplicité finie n0 de Ho. Si D est un
disque de rayon e &gt; 0 et de centre Ào ne rencontrant le spectre de Ho qu&apos;en Âo, il
existe un voisinage U de 0 dans T tel que, si a e U, Ha admet dans D un nombre
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fini de valeurs propres dont la somme des multiplicités est n0. Soit Ea la somme
des espaces propres correspondant, lorsque a-+0, Ea-^&gt;E0, ce qui permet de

définir la forme quadratique qa sur £&quot;0 (dont le spectre est (spectre (Ha)) n D) par

qa(f)=(HJJ\Iaf)

où Ia est l&apos;isométrie naturelle de Eo sur Ea.

Pour les détails concernant la définition de la voir [CV1].
Si T est une variété de classe Ck (k ^ 1) et que qa est définie sur un voisinage

de 0 qui est une boule K on définit

&lt;P:K-+ Q(E0) {formes quadratiques réelles sur Eo}

Alors on a les,

1.1. DÉFINITION ([CV1]). Soit K un espace topologique, E un espace de

Banach, yoeEf &lt;P:K-*E continue, on dira que &lt;P est essentielle sur (E, y0) s&apos;il

existe €&gt;0 tel que VW:K-+E, continue avec \\W — ^Hz/x/o^e on a&gt;yo€

W(K).

1.2. DÉFINITION ([CV1]). La valeur propre vérifie l&apos;hypothèse d&apos;Arnold

forte (SAH) (resp. l&apos;hypothèse d&apos;Arnold faible (WAH)) relativement à la famille
(Ha)tteT si &lt;t&gt; est une submersion en a 0 (resp. 4&gt; est essentielle sur

1.3. REMARQUES
i) II est clair que SAH implique WAH.
ii) On peut introduire, de manière analogue, les notions de stabilité d&apos;une

famille

de valeurs propres isolées de multiplicités nt &lt; &lt;» de Ho (voir [CV1])
iii) Une condition nécessaire pour SAH et WAH est que

dimension (T)

Pour la vérification de l&apos;hypothèse SAH on a le critère suivant (dont la preuve
est immédiate)
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1.4. CRITÈRE. Pour que Ao vérifie SAH, il faut et il suffit que la
différentielle de

soit surjective en a 0.

Par la suite nous ne travaillerons qu&apos;avec &lt;P2 et la dénoterons donc par &lt;P. Par
ailleurs nous allons étudier deux types de perturbations (bien que les techniques
utilisées soient valables dans des situations plus générales):

i) les opérateurs Ha sont des Laplaciens pour des métriques riemanniennes
variant dans un voisinage d&apos;une métrique de référence.

ii) ils sont du type A + b, où A est le Laplacien pour une métrique
riemannienne fixée et b une fonction C*.

Dans le premier cas, le domaine D des opérateurs considérés dépend de a
lorsque les variations de métriques ne sont pas à volume constant, on peut
toutefois les modifier par des transformations unitaires explicites pour se

ramener à la théorie précédente.

2. Réduction du problème

Soit (X, go) une variété riemannienne compacte, on suppose que Âo est une
valeur propre du Laplacien de (X, g0) de multiplicité N (Attention! l&apos;indice 0 ne
réfère pas à la position de la valeur propre dans le spectre mais à la métrique g0),
vérifiant SAH, pour l&apos;un des deux types de familles suivant:

i) Hb A + b où b e Ck(X) (proche de bQ), Ck(X) l&apos;espace des fonctions de
classe Ck à valeurs réelles sur X. Les opérateurs Hb sont donc des opérateurs de

Schrôdinger avec potentiel b.

ii) Hg Ag où Ag est le Laplacien pour une métrique g (proche de g0) sur X
de classe C*. L&apos;espace de ces métriques sera noté Mk(X).

La conséquence principale de l&apos;hypothèse SAH, et le point de départ des

calculs, est l&apos;existence d&apos;un voisinage B de b0 dans Ck(X) (resp. de gQ dans

Mk(X)) tel que l&apos;ensemble des éléments de B pour lesquels l&apos;opérateur

correspondant a Ào comme valeur propre avec la multiplicité N est une
sous-variété de B, notée W.

Nous nous proposons de donner des propriétés génériques, elles vont donc

tout naturellement résulter de théorèmes de transversalité. En effet nous
utiliserons le,

2.1. THÉORÈME ([AM], [QN]). Soit &lt;f&gt;:FxB-+E une application C*, F,
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B et E étant des variétés de Banach avec F et E séparables. Si 0 (0 e E) est valeur
régulière de &lt;j&gt; et &lt;f&gt;b - (/&gt;(., b) est une application de Fredholm d&apos;indice &lt; k, alors
l&apos;ensemble {b e B; 0 est valeur régulière de &lt;j&gt;b} est résiduel dans B.

2.2. REMARQUES
i) Dire que 0 est valeur régulière signifie que tout point de &lt;/&gt;b1(Q) est point

régulier ou que 0 n&apos;est pas dans l&apos;image de &lt;(&gt;b.

ii) Dans notre cadre F et £ seront des variétés de dimension finie et si &lt;p est

différentiable, &lt;f&gt;b est Fredholm d&apos;indice inférieur ou égal à dim (F) — dim (E).
Dans notre cas nous aurons toujours dim(£) supérieur à dim (F), on pourra
donc choisir dans le théorème 2.2, k ^ 1 (le lecteur peut se reporter aussi à

[G-G], page 34, note 1).

iii) La technique de démonstration est une variation sur les thèmes

développés dans [UK].
Soit (i*i,..., uN) une base orthonormée de l&apos;espace propre relatif à la valeur

propre Ào de l&apos;opérateur Ho (0 représente le potentiel b0 ou la métrique g0) pour a

proche de 0 dans W, la famille

(U1&gt;a) UNta)

où wl)fl /a(uI) est une base orthonormée de l&apos;espace propre relatif à la valeur

propre Ao de l&apos;opérateur Ha.
On se propose de montrer que sous l&apos;hypothèse de transversalité, l&apos;application

x *+ (u

est un plongement si N ^ 2n +1 et une immersion si N^2n pour a dans un
ouvert W\ de W dense au voisinage de 0.

Le fait que Wt soit un ouvert est clair car X est compacte, il suffit donc de

montrer la densité.

a) Immersion* On considère l&apos;application

(*, l a) « (4

où TXX est le fibre unitaire tangent de X par rapport à la métrique de référence

g0. Si nous montrons que !?a0 pour valeur régulière alors par le théorème 2.1

avec k^l (voir remarque 2.2, ii), on a que Wa= W(., .,a) a 0 pour valeur



Propriétés génériques des fonctions propres et multiplicité 549

régulière pour un ensemble générique de a et donc si N&gt;2n-l, qui est la
dimension de TVX, ce n&apos;est possible que si l&apos;image de Wa évite 0 (voir remarque
2.2, i) ce qui est équivalent à dire que fa est une immersion.

Réduisons le problème
i) La différentielle de W en (*, §, a) est constituée de trois parties,

différentielles par rapport à chacune des variables. On ne peut pas, a priori,
espérer contrôler les différentielles par rapport à x et g car il faudrait avoir sur les
fonctions propres des renseignements qu&apos;il est très difficile d&apos;obtenir dans une
situation générale. Nous ne travaillerons donc qu&apos;avec

D3W(c) dérivée de Vau point (jc0, §0&gt; «o) dans la direction de c e TaoW.

ii) En fait, quitte à restreindre W à un ouvert plus petit, il suffit de montrer
que D3West surjective en (jc0, §o&gt; 0) avec

^o, §o, 0) ^.odo) 0 pour tout i.

L&apos;ensemble de tels (jc0, £0)&gt; n°té C est un compact (car fermé) de TXX.

Par continuité D3Wsera donc surjective dans U x Vy où U est un voisinage de

C et V un voisinage de 0 dans W.

Par ailleurs TXX\U est compact et vérifie, pour tout (je, £) e TxX\Uy dxf0(%) #
0.

Il existe donc un voisinage V de 0 dans W tel que ceci soit encore vrai pour
aeV, ce qui signifie que les points (jc, §) e TXX, tels que

*/.(§) 0 pour «eV
sont dans U et donc si aeV^V, D3W est surjective en (x, §, a) tel que
dxfa(Ç) 0 (voir aussi l&apos;appendice C pour la densité des métriques ou potentiels
C00 dans W).

iii) On supposera k toujours grand, dans ce cas le construction de Ia montre

que celle ci dépend différentiablement de a (métrique ou potentiel Ck) alors,

D3W(c) (4A(Éo))i^/v= dJ(So)

où D3W(c) est la différentielle en (x0, Ço, 0), avec

* -c.dt ,=o
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Si D3Wn&apos;est pas surjective il existe dans IR^ un vecteur (alt..., aN) non nul
et orthogonal à l&apos;image, c&apos;est à dire, pour tout c,

en posant v £ octuiy v € Eo. La non surjective est équivalente à

(il existe v e Eo\{0} tel que pour tout c, dXov(t;o) 0).

Dans chaque cas particulier il faudra donc montrer que ceci est impossible.
b) Plongement. L&apos;application à considérer dans ce cas est

W:(XxX\A(X))xW^&gt;MN
(x, y, a)^&gt;(ul&gt;a(y) - ul&gt;a(x))1^^N=fa(y) -fa(x)

où A(X) désigne la diagonale de X x X et en se plaçant en un point a (potentiel
où métrique C°) proche de 0 où la propriété d&apos;immersion est réalisée.

Le théorème 2.1 a pour conséquence que Wa est génériquement un plongement

si N 2* 2n -h 1 et si 0 est valeur régulière de W.

Par une suite de réductions analogues au cas précédent on se ramène à

montrer l&apos;impossibilité d&apos;avoir

il existe v e Eo\{0} tel que v(y) — v(x) 0 pour tout c et pour x
tels que fm(x)=fa(y)

(avec les notations précédentes).

3. Le cas des potentiels

Comme dans [UK] nous nous intéressons dans ce paragraphe à des perturbations

d&apos;un opérateur du type L A + b0, où A est le Laplacien associé à une
métrique C°° et b0 une fonction également C°° sur X, par des fonctions a de classe

Ck. Après avoir explicité la condition de stabilité nous démontrerons le théorème
A.

A. CONDITION DE STABILITÉ
a). On se place donc dans le cas où Âo est une valeur propre de multiplicité N

de L. Par le critère 1.4, celle ci est stable si l&apos;application &lt;p, défine par:

0(a) (Ha.\.)eQ(Eo)
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avec Ha L + a Qtae Ck(X), est une submersion en a 0. Or pour c e Ck(X)

où qc est la forme bilinéaire symétrique sur Eo définie par

qc(u, v) cuv

La stabilité de Ào est équivalente au fait que les qc engendrent un espace de
dimension N(N + l)/2 lorsque c parcourt Ck(X) ou à:

2 octJut(x)Uj(x) 0 pour tout x e Xo al} 0 pour tout i, y.

où (m,) est une base orthonormée de Eo. Définissons,

El espace vectoriel engendré par les utu;

la stabilité de Âo est donc équivalente à

b). On suppose donc que Âo est stable, alors l&apos;espace tangent à W en a 0 est

défini par

T0W {c € Ck(X)\(c, f) J cf 0 V/ € £§}.

B. IMMERSIONS ET PLONGEMENTS
a) Immersion. Comme il a été montré dans la section précédente, on est

ramené à prouver qu&apos;il n&apos;existe pas de fonctions propre veE0 et de point
(*o&gt; lo) e 71^ tels que,

dXQv(Ç0) 0 pour tout c.

Calculons û, si c 6 C*(Jf), ô est défini Par:

(L - A0)û + Lu (L - Ao)v + eu 0. (3.1)
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Par construction de l&apos;isométrie canonique Ia (voir [CV1]), i) est orthogonale à

Eo. L&apos;équation (3.1) est donc équivalente à

v(x0) - f G(x0, y)c(y)v(y) dy
Jx

où G est une fonction de Green modifiée pour l&apos;opérateur L — Ào (voir [UK] et
appendice A pour la définition).

Choisissons en jc0 un système de coordonnées en sorte que jc0 0 et §0 soit la
dérivation dans la direction de la première coordonnée notée dlf alors

dXov(Ço) dtv - f d1G{xQ9 y)c(y)v(y) dy.
-&gt;x

Si cette expression est nulle pour tout c e T0W alors il existe deE% tel que,

(3.2)

pour tout y eX (voir appendice A). L&apos;opérateur a été choisi à coefficients C00

(bien que les perturbations se fassent par des potentiels Ck), de telle sorte que d
et v sont C00. Par ailleurs 9XG est singulier en xQ (voir appendice A), il vient donc

que v(x0) 0.

Explicitons le développement des fonctions considérées en coordonnées
locales (x0 0) normales,

et pa est un polynôme homogène harmonique de degré a sur Un (voir [BS] ou
appendice A) non identiquement nul.

(appendice A ou [BS]), où Cn est une constante et yl la première coordonnée,

où q est polynôme homogène. Ceci étant une conséquence du fait que d est C°°.

L&apos;unicité des développements asymptotiques et limités conduit à l&apos;égalité

(3.3)
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en particulier n ne peut être que pair, en effet si teU, l&apos;égalité ci-dessus

appliquée à ty pour y fixé conduit à

L&apos;égalité (3.3) est donc une égalité entres polynômes. Or y1 qui est
irréductible divise \y\nq(y) mais ne divise pas \y\n, il divise donc q(y). Par
simplification (3.3) devient

P«(y) Mn &lt;li(y) (&lt;7i est un polynôme). (3.4)

Enfin dans la décomposition des polynômes homogènes de degré a donné, les

polynômes harmoniques appartiennent à un supplémentaire de l&apos;espace des

polynômes homogènes divisibles par une puissance (paire) de |y| (voir [B-G-M]
p. 160). L&apos;égalité (3.4) est donc impossible. L&apos;application Wde la section II.a a 0

pour valeur régulière.

3.1. REMARQUES
i) Le fait que L ait des coefficients C°° a été utilisé pour conclure que d est C°°

et donc pour écrire l&apos;égalité (3.3). En effet les développements de v et G sont
valables même si les coefficients de L sont Hôlder continus ([BS]). Si les

coefficients de L ne sont que de classe Ck, et si a + 1 - n est plus grand que
k + 1, il se peut que l&apos;on ne puisse pas écrire (3.3).

ii) Si la variété est munie d&apos;un atlas analytique réel et les coefficients de L
sont analytiques réels alors d, v et dtG (pour y ^x0) le sont, en conséquence il
suffit, par l&apos;unicité du prolongement analytique, d&apos;avoir (3.2) sur un ouvert U czX
quelconque. On peut se limiter dans ce cas à des perturbations par des potentiels
de classe Ck et à support compact dans U.

b) Plongeaient. Un raisonnement analogue au cas précédent, montre que
l&apos;application W du paragraphe précédent a 0 pour valeur critique s&apos;il existe deux

points distincts xx et x2 de X tels que

(G(xuy)-G(x2,y))v(y)-d{y)

pour tout y (avec les notations précédentes).
La conclusion s&apos;ensuit par des raisonnements similaires (et plus simples) que

pour le cas de l&apos;immersion.

Les remarques 3.1, i) et 3.1, ii) s&apos;appliquent également dans ce cas.

En conclusion on a prouvé le
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3.2. THÉORÈME. Si Xq est une valeur propre stable (SAH) de multiplicité N
de l&apos;opérateur L A + b0 à coefficients C°° sur X, alors il existe un ouvert dense

dans W de potentiels, noté Wt tel que l&apos;application fa est pour a eWlt
1) une immersion si N^ln
2) un plongement si N ^ 2n + 1.

Rappelons que W est l&apos;ensemble des potentiels a de classe Ck sur X proche de

b0 tels que A + a ait Aq pour valeur propre avec la multiplicité N, et que fa est

l&apos;application

où (ulta) est une base de ker (A + a - Âo).

4. Les variations conformes de métriques

Dans ce paragraphe, nous allons étudier des perturbations ponctuellement
conformes de métriques riemanniennes, c&apos;est-à-dire des métriques du type

où /est une fonction de classe Ck sur X et g0 une métrique de référence que nous

supposerons C00.

Ces variations s&apos;avèrent être les plus importantes pour le genre de résultat que
nous visons.

Après l&apos;énoncé de la condition de stabilité d&apos;une valeur propre multiple, nous

prouverons que l&apos;application Wa 0 pour valeur régulière dans les deux cas étudiés

(immersion et plongement).
Dans ce qui suit, Âo est une valeur propre de

de multiplicité N.

A. CONDITION DE STABILITÉ
Soit e un réel (positif), posons

ge e2*g0, feCk(X)
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et

Ae Laplacien associé à ge.

Les opérateurs Ae n&apos;opèrent pas sur le même espace L2, en effet la forme
volume 6e de ge est,

On peut toutefois se ramener facilement à la situation décrite dans le

paragraphe 1, par l&apos;isométrie

L2(X;d£)-*L2(X;e0)
u i-» e(n/2)e/w

et on définit l&apos;opérateur sur L2(X; 0O)

£/£\ _ e(n/2)ef ^e-(n/2)ef

auquel on va pourvoir appliquer la théorie des perturbations (voir [B-W] et

[BD]). Comme précédemment

&lt;Pe(u, v) (A(e)u, v) u,veE0

et

(u, v) (Au, v) avec À
e=0 de e=0

on a

^, v) ~ (A(fu), v) + (Au, v)

Â0^&lt;/«, v)-ko^{fu, v) + (Àu, v)

(Àu,v).

Comme dans [B-W] un calcul en coordonnées locales (voir Appendice B)
donne,

Au -2f(Au) - (n - 2){df \ du)
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où {df | du) est le produit scalaire ponctuel des formes df et du par rapport à la

métrique g0. Il vient donc

q(u, v) -2{f(Au), v) - (n-2)((df \ du), v)
-2ko(fu, v)-(n- 2)((df | du), v)

par ailleurs q est par construction symétrique, donc

2q(u, v) -4ko(fu, v)-(n- 2)[(df \ du), v) + ((df \ dv), u)]
-4Xo(fu, v) - (n-2)(df, d(uv))
-4A0&lt;/u, i;&gt; -(n-2)(f, A(uv))

posons

alors

q(u,v) -(M(uv),f).

La valeur propre est non stable pour les variations de métriques conformes s&apos;il

existe (al}) e R&quot;(&quot;+1&gt;/2 tel que pour tout/

S &lt;x,,q(u,, u,) 0, a,, a,,. (4.1)

avec (m,) une base de Eo. Posant d E tf(/w,w;, (4.1) &lt;=&gt; (f, M(d) 0 pour tout /
c&apos;est-à-dire

L&apos;opérateur M étant inversible, ceci est équivalent à

La condition de stabilité est ainsi la même que dans le paragraphe précédent,
c&apos;est-à-dire

dim (El)
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B. IMMERSIONS ET PLONGEMENTS PAR ESPACE PROPRE
Si la condition précédente est satisfaite, alors l&apos;espace tangent à W en a 0 est

T0W {/ e Ck(X)\(f, M{d)) 0, \/d e E20}

avec des notations maintenant classiques, on a

v(x) -ÏG(x,y)(Àv)(y)dy
Jx

v(x) jxG(x, y)[A(fv) + ^—^ ti

(voir l&apos;Appendice B pour le calcul de À).
a) Immersion. Il n&apos;y a pas immersion si pour une fonction propre v de Eo et

un point (jc0, §0) d

(4.2)

pour tout / orthogonale à M(El), c&apos;est-à-dire si il existe de El tel que,

v(A + Ao) 3iG + ^y^ ^(v 3iG) M(d)

au sens des distributions. Notons que la dérivation dx porte sur la première
variable alors que A s&apos;applique à la deuxième variable et qu&apos;en conséquence ils

commutent. Or,

(A -h AoXSxG) (A - Ao) dxG + 2A0 dxG

et

où ô(jto) est la masse de Dirac en x0, d\6iXo) sa dérivée dans la direction §0 et h

une fonction C00 (voir Appendice A), on a donc,

c(A - Ao)(3iG) (SivXxq)^ + v(x0) 5i&lt;5(,o) + v(y)*(*o, y)
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et l&apos;égalité

M(d) M(v d\G) + (d1v)(xo)6ççoy + v(x0) 3iô(jCo) + vh

et,

d — M~l(vh) v 3^ 4- M~1((31u)(jco)Ô(JCo) + v(jc0) di&lt;5(jCo)). (4.3)

(notons que le membre de gauche est C°°).

Si on dénote le noyau résolvant du Laplacien, c&apos;est-à-dire le noyau résolvant
de (A + ii)~l pour -ju $ Spec (4) par jR(ju; jc, y), (4.3) est équivalente à

- M&quot;1(t;/i)(y) v(y) dxG(x0, y)
2

_
-o&gt; y) + v(^o) 3i/?(y; x0, y)]

avec y 4ko/(n - 2), si n &gt; 2.

Etudions les singularités dans le cas n &gt; 2. La plus grosse contribution vient de

3XG et 9XR qui se comportent de manière analogue en jc0. On utilise à nouveau le

système de coordonnées centré en x0. Le terme prédominant est donc,

qui vient de v 9lG

qui vient de ,5^

qui doit être nul, donc i/(0) 0, (rappelons que nous traitons ici le cas n &gt; 2).
Ensuite on peut écrire v(y) =Pi(y) + O(\y\2) (notations du paragraphe
précédent).

Le terme prédominant est alors obtenu par

— (n - 2)Cn r^zPiiy) qui vient de v 9XG

2 Cn dpi
+ z rr, ,„_?—— (0) qui vient de

(n-2)\y\n 2dyx

posons
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où q ne contient pas yiefq dpJdy^O). Le terme principal est donc

en prenant y2 y3 ¦ • • -yn 0, on a

(2)+
ce qui implique rj 0 si n &gt; 2. L&apos;égalité (4.3) devient donc

qui est impossible (voir paragraphe précédent).
Le cas n 2 est plus simple, en effet l&apos;opérateur M n&apos;est que la multiplication

par 2Â0, on est donc ramené à la situation obtenue dans le cas des perturbations
par des potentiels. Les vérifications sont laissées au lecteur.

b) Plongement. Ce cas, plus simple, est laissé au lecteur.
Nous avons ici montré les propriétés génériques pour les fonctions propres de

A ein/2)f Ae~{nl2)f. On peut faire de même avec les fonctions propres de A, pour
cela le lecteur doit se reporter à l&apos;appendice D.

On a donc démontré le

4.1. THÉORÈME. Si Ao est une valeur propre stable de A, pour les

perturbations conformes, de multiplicité N, alors il existe un ouvert dense dans W
de métriquesy noté W1 tel que l&apos;application fa est pour a e Wîf

1) une immersion si

2) un plongement si

4.2. REMARQUES
i) Notons que dans les sections 3 et 4 nous ne nous servons de la condition de

stabilité qu&apos;au moment d&apos;appliquer le théorème de transversalité 2.1, qui
nécessite que W soit une variété de Banach. Mais la preuve montre que l&apos;égalité

(4.2) entraîne (4.3) même si El n&apos;est pas de dimension maximale, et donc conduit
à une impossibilité également.

ii) On peut s&apos;intéresser à des variations conformes à volume constant,
c&apos;est-à-dire telle que $xf — ®- Dans ce cas la condition de stabilité est que
l&apos;espace engendré par E% et les constantes soit de dimension maximale. Des

modifications élémentaires de la preuve de 4.1 montre que celui-ci est vrai si on

remplace conforme par conforme à volume fixé.
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iii) En fait 4.1 est vrai pour des variations conformes avec n&apos;importe quel
nombre fini de conditions sur /, du type {/, v 0 avec v une fonction C00 sur X.

5. Où l&apos;on décrit des exemples en dimension 2

Un des buts de ce texte étant de montrer que l&apos;on peut immerger et plonger
toute variété compacte par des espaces propres, et surtout le premier, il nous faut
maintenant trouvé des valeurs propres stables de multiplicité suffisamment

grande. Ces exemples reposent sur les métriques construites par Y. Colin de

Verdière, B. Colbois et Y. Colin de Verdière, à grande multiplicité.

A. LA SPHÈRE ET L&apos;ESPACE PROJECTIF
Dans [CV1] il est montré que toutes les valeurs propres de la sphère munie de

sa métrique canonique sont fortement stable (SAH), pour les variations de

métriques qui sont toutes conformes.
Le premier espace propre sert déjà à plonger S2 dans R3, le résultat 4.1 est

donc sans intérêt dans ce cas.

Le second espace propre de la sphère canonique (voir [B-G-M] p. 160) est

donné, dans les coordonnées de R3, par l&apos;espace engendré par les fonctions sur
S2,

(XYfZXt YZ,X2-Y2,X2-Z2)

l&apos;application f0 dans ce cas est un revêtement à deux feuillets de la surface de

Véronèse V qui est un plongement (tendu) de P2(U) dans R5. De plus la sphère
canonique est analytique et 5 ^ 2 x 2 + 1, on a donc le

5.1. COROLLAIRE. // existe sur S2 des métriques arbitrairement proches de

la métrique canonique (au sens Ck pour k grand) obtenues par perturbation de

celle-ci sur des ouverts arbitrairement petits, en sorte que Vapplication fay pour le

second espace propre, soit un plongement (proche de la surface de Véronèse).

5.2. REMARQUES
i) En d&apos;autres termes on peut &quot;désingulariser&quot; V (ce que l&apos;on sait par les

théorèmes de Whitney, voir [G-G]) mais par des plongements par le second

espace propre d&apos;une métrique aussi proche qu&apos;on le désire de la métrique
canonique.

ii) On a, bien entendu, un résultat analogue avec les perturbations par des

potentiels.
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B. LE TORE T2

II est prouvé dans [CV1] que toutes les valeurs propres d&apos;un tore plat de

multiplicité inférieure ou égale à 6 sont stables pour les variations quelconques de

métriques. En ce qui concerne les variations conformes il existe sur le tore plat à

maille carrée une première valeur propre de multiplicité 4 et des fonctions

propres correspondantes vérifiant,

— ,.2«ï-

La valeur propre n&apos;est pas stable, toutefois le premier espace propre donne
dans ce cas un plongement isométrique et minimale de T2 dans S2 (Tore de

Clifford). Le théorème 4.1 est alors sans intérêt.

C. LES SURFACES ORIENTABLES DE GENRE ^2
a). C&apos;est le cas le plus intéressant. Il repose sur le travail [C-C] où des

métriques à courbure constante —1 sont construites avec une première valeur

propre de grande multiplicité.
Rappelons la construction. On découpe la surface, munie d&apos;une métrique à

courbure constante —1,

en suivant le schéma donné par un graphe (complet dans [C-C]) où les Xt sont
des domaines correspondant aux sommets du graphe et les Za des cylindres
hyperboliques symétriques par rapport à une géodésique périodique ya de

longueur laf correspondant aux arêtes du même graphe. Les Za sont des

voisinages tubulaires des géodésiques ya.

On perturbe la métrique sur X pour obtenir la surface Xe en modifiant
légèrement la métrique des Xt et en changeant celle de Za en sorte que la

géodésique ya devienne de longueur sla, et que l&apos;on obtienne un métrique C°° sur
Xe. Définissons Xt comme la composant connexe de X\(\J ya) qui contient Jtlf
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alors

L&apos;étude du spectre se fait en injectant l&apos;espace L2 du graphe (qui est un espace
de dimension finie) dans l&apos;espace H1(Xe) de la manière suivante: on définit
l&apos;espace test

Fe F(Xe) {/ 6 H\X*)\f\jtt ^xt et/ est harmonique sur Zfl}.

En choisissant les paramètres la, si e est petit, on peut construire pour tout e

une métrique à courbure constante -1 telle que la multiplicité de la première
valeur propre non nulle soit celle du graphe muni du Laplacien combinatoire et
de la mesure de dénombrement (pour les détails voir [C-C]). De plus l&apos;espace

propre est proche en un sens que l&apos;on va préciser, de l&apos;espace Fe.

Nous allons prouver le

5.3. THÉORÈME. Ces valeurs propres vérifient SAH pour les perturbations
conformes à volume fixé et les perturbations par des potentiels d&apos;intégrale nulle.

Preuve. Soit Ee l&apos;espace engendré par les fonctions propres de Xe relatives à

la première valeur propre non nulle, et les constantes.
Soit ut 6 Fe défini par

\^v sur *&apos;avec Vt Vo1 {Xl) Vo1

LO *

(Rappelons que les éléments de Fe sont continues et harmoniques sur les Za).
Sur Fe la norme L2 correspondant à la métrique perturbée est asymptotique

lorsque e tend vers 0 à

en particulier le système (ut)t€N est asymptotiquement orthonormé et pour e assez

petit
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L&apos;espace Ee est proche de Fe comme dans [C-C], c&apos;est-à-dire il existe une

application linéaire B:Fe-*F£ telle que Ee soit le graphe de B, et qui vérifie:

000.

Soit/; B(ut) + ut. Supposons qu&apos;il existe une relation du type

avec

pour (atJ) non tous nuls et E (ocl})2 1. On pose

avec ||&lt;jPI|U2(Ar0= \\B{ut)\\ O(e). On a alors

et si on pose h E &lt;*&lt;,w,w;

(normes L1^6)), or:

||S 1 ^S Kl IIV.V/lli.^2 Kl

(rappelons que E ((XtJ)2 1), de même

on a donc
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Nous allons montrer qu&apos;un tel comportement asymptotique en e est incompatible

avec la définition des fonctions ut. Il vient,

L pour tout k

mais sur Xk un seul ut n&apos;est pas nul et c&apos;est uky donc

de la construction de Xe il résulte que Vol (Xek) est borné intérieurement d&apos;où,

\&amp;kk\ O(e) pour tout k.

Si Z|; correspond à une arête entre Xt et Xp alors

sur Z,, seuls m, et m; sont non nuls et

d&apos;où

Jz,,

0-=2

\a,,u,Uj\-( \auuf + auuj\^\ \a,,uf + arf + la^u,^ \\h\\Lx

orJ f \u,u,\^\\h\\o + \&lt;xu\ I \u,\2+\au\ f \u,\2
JZ,, JZq JZ,,

donc

\a,,\\ \u,u,\
Jz.,

on a alors,

5.4. LEMME. ^4vec les notations ci-dessus JZ(/ |m,m;| O(e |log e|).
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Preuve du Lemme =&gt; Théorème. Par le lemme 5.4 on conclut que

En particulier, si s est assez petit, tous les \akl\ doivent être petit ce qui est

contraire au choix E (ûti;)2 1.

Preuve du lemme. Pour simplifier la preuve nous allons supposer que les

nombres Vt (constants en e) sont égaux à 1 et que la n. Alors un modèle pour
Ziy est, comme dans [C-C]

ye [-a, a] xi

muni de la métrique

ge dx2 + llch\x) dd2 avec l0 m et /oc/ifa) / &gt; 0

où / est un nombre fixé.
Sous ces hypothèses simplificatrices

Uj 1 — Ut U

où

Arcsin(th(*)) 1=j4(x) 1

^ &apos;

2Arcsin(th(a)) 2 2A(û) 2

et

I m(1-m) £ (—7&quot;\ &quot;*&quot;~)(ô&quot;~ô—r~\) ftchfa)*!*

il suffit donc d&apos;étudier

f(e)
/ A2(x) \
1 2/ )ch(x) dx

\ A (a(e))/

(il ne sera plus fait mention de s dans la suite de la preuve) or,
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d&apos;où

i r
A2(s) Jo

rx (A(
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»-^(x))c*(jc)«fa

4

et en intégrant par parties on voit que

l°(A(a) - A(x))ch(x) dx j°th(x) dx a~+ma ^0 |log e\

et donc

«(l-M) O(e|loge|).
Y*

5.5. REMARQUES
i) On peut exprimer ce résultat de manière plus synthétique, et cela est utile

pour la suite du texte, de la manière suivante: soit l&apos;application linéaire L définie

par

on munit El de la restriction de la forme Ll(Xe), alors la preuve qui précède
montre qu&apos;il existe deux constantes réelles positives telles que

en particulier L est injective, ce qui est la stabilité de la valeur propre Âo par
rapport aux perturbations étudiées.

ii) Si les graphes considérés ont des valeurs propres stables, et c&apos;est le cas

pour le graphe complet utilisé dans [C-C] alors la valeur propre Âo est WAH
(voir [CV1]) par continuité; le théorème 5.3, et surtout sa preuve, affirme que
dans ce cas on a la propriété plus forte SAH.

b) Applications. Dans [OC] il est prouvé que si X est de genre ^3 on peut
la munir d&apos;une métrique à courbure constante — 1, telle que la multiplicité de la
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première valeur propre non nulle de son Laplacien soit,

E I \ ^2, y genre de X.

Il existe de plus une telle métrique pour chaque e assez petit et on peut
également utiliser les paramètres de Twist dans la décomposition en pantalons de
X. On obtient donc les théorèmes d&apos;immersion si y 5*6 et de plongement si

Y ^ 10 à l&apos;aide de ces métriques.

5.6. REMARQUES
i) La technique montre la stabilité pour les surfaces non compactes

considérées dans [C-C] des valeurs propres (isolées) ainsi construites.

ii) On a prouvé qu&apos;il n&apos;existait aucune relation du type

pour (ft) une base de l&apos;espace Ee pour s assez petit. La conséquence immédiate
(et élémentaire) est

5.7. COROLLAIRE. Les métriques Xe, pour e assez petit, ne se plongent pas
isométriquement et minimalement dans S3 par leur premier espace propre.

Il résulterait d&apos;une conjecture de Yau (voir [YU]) qu&apos;elles ne se plongent pas
du tout isométriquement et minimalement dans S3.

6. Exemples en dimension supérieur ou égale à 3

Dans ce paragraphe, nous allons utiliser la construction précédente, afin
d&apos;exhiber des valeurs propres stables de multiplicité arbitaire sur une variété

compacte de dimension supérieure ou égale à 3.

Rappelons le résultat fondamental de [CV2].

6.1. THÉORÈME. (Colin de Verdière). Si X est une variété compacte de

dimension **3 et N un entier arbitraire, il existe sur X des métriques riemanniennes

dont la première valeur propre non nulle du Laplacien est de multiplicité N.
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Par la suite nous ne nous intéresserons qu&apos;à la première valeur propre, il est
clair que les résultats se généralisent au cas d&apos;une valeur propre quelconque
(propriété AN de [CV3]).

Comme il est suggéré dans [CV3] la technique utilisée dans [CV2] pour
prouver le théorème 6.1 peut être simplifiée par l&apos;utilisation du paragraphe 5.
Décrivons la construction.

A. CONSTRUCTION DE MÉTRIQUES À GRANDE MULTIPLICITÉ
Pour N donné choisissons une surface de Riemann Y dans la classe construite

dans le paragraphe 5, en sorte que la multiplicité de sa première valeur propre
soit N.

On fixe e &gt; 0 petit et on appelle cette métrique g0. La première valeur propre
ainsi construite est SAH pour les variations conformes, c&apos;est-à-dire pour yeW
(une fonction Ck sur Y, où k est grand) la métrique

8y *r£o&gt; yeW (voir paragraphe 2)

a la même première valeur propre, avec la même multiplicité et quitte à

restreindre W vérifie aussi SAH.
Comme dans la remarque 5.5, i) on construit pour gy, y e B, une application

LY à l&apos;aide d&apos;une base (fitY}e) dépendant continûment de y (on utilise pour ce faire
l&apos;isométrie canonique du paragraphe 1). Si B est assez petit on a, e étant fixé

0&lt; C2 \&lt;x\ &lt; \LY(a)\ &lt; Cx \a\, C1} C2 des constantes.

Soit X la variété de dimension n s* 3. On plonge Y dans un ouvert de X
difféomorphe à Un (Y se plonge dans R3 et donc dans Rn pour n 5* 3) et on choisit
dans X une métrique hY dépendant différentiablement de y pour y e B (voir
paragraphe 2) qui est cylindrique au voisinage de Y.

Par cylindrique nous entendons qu&apos;il existe un réel r &gt; 0 tel que le voisinage
tubulaire de rayon r de F dans (X, hY), soit Nr Nr(Y, y) soit muni d&apos;une

métrique produit de gY par la métrique euclidienne sur une boule de rayon r, Cr.

(Nr est fixé, ne dépend pas de y).
Le spectre de (Nr, hY) pour le problème de Neumann est constitué de sommes

de valeurs propres de (Y, gy) et de valeurs propres du problème de Neumann sur
Cr. En particulier si r est assez petit la première valeur propre non nulle de Cr est

grande et la première valeur propre non nulle de Nr est celle de (Y, gY) avec la
même multiplicité. On fixe donc un tel r.

On applique ensuite le théorème III. 1 de [CV2] p. 264, pour montrer que l&apos;on

peut construire des métriques sur X induisant hY sur Nr en sorte que le TV-écart
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spectral avec hY soit arbitrairement petit (voir [CV2]) uniformément en y € B.
Ces métriques sont obtenues en multipliant hY par rj, un nombre réel petit, sur

X\Nr et en régularisant près du bord. Le spectre de tels métriques convergent
vers le spectre de Neumann de (Nr, hY) lorsque r\ tend vers 0.

Par écart spectral nous entendons en particulier des propriétés pour les

fonctions propres analogues à celles utilisées dans la preuve de 5.3 (et plus, voir
[CV2]).

Enfin, un lemme topologique permet de conclure à l&apos;existence pour rj petit
d&apos;un y tel que la métrique décrite ci-dessus hYtT) ait une première valeur propre
avec multiplicité N.

B. LA PROPRIÉTÉ SAH
Pour e &gt; 0 petit on choisit y en sorte que l&apos;écart spectral entre gY et g0 soit

inférieur à e/2 et rj en sorte que le N-écart spectral entre hyr] et gY soit inférieur à

e/2. Alors l&apos;écart spectral entre hYtt) (Af-écart) et g0 est inférieur à e.

Pour rendre précis ces convergences, il faut introduire une distance bien

adaptée à la situation entre sous-espaces, de dimension donnée, de L2. C&apos;est ce

qui est fait dans [CV5], la proximité est donc à comprendre au sens de ces

distances.

A l&apos;aide de l&apos;isométrie naturelle entre les espaces propres concernés on
construit une base (wt) de l&apos;espace propre de hYr) à partir de la base (ft) du

théorème 5.3 telle que

et

ft étant prolongée à X de la manière suivante:

• constante sur les fibres de la fibration Nr—&gt; Y

• harmoniquement sur X\Nr
pour (atJ) € uNiN+m avec E {octJ)2 1, une relation du type

aurait comme précédemment pour conséquence

f 2«*U =voi(cr)[
JNr JX
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et pour e assez petit une contradiction avec la propriété de L (pour les détails de
construction voir [CV2]).

7. Variations quelconques de métriques

Dans ce paragraphe, nous allons nous intéresser à des variations quelconques
de métrique; Le. sans nous limiter aux seules variations conformes.

Nous procéderons comme dans la section 4, en deux étapes.
Si gt est famille à un paramètre réel de métriques, on pose

alors h est un tenseur symétrique qui se décompose ponctuellement en

h h + - (traceg h)g (n dim M)
n

ou trace^A est la trace de h par rapport à la métrique g (Le. le produit scalaire
de A et g pour la structure euclidienne canonique sur les 2-tenseurs symétriques et
h un tenseur à trace nulle.

Cette décomposition revient à séparer ponctuellement les variations
conformes (de trace pure) des variations à forme volume fixée (à trace nulle). Elle
est de plus ponctuellement orthogonale.

Nous adopterons les notations maintenant standard.

A. CONDITION DE STABILITÉ
L&apos;espace des paramètres est maintenant l&apos;espace Mk de toutes les métriques

C* voisines de g, et

TgMk {h, 2-tenseur symétrique}.

La valeur propre Ao de multiplicité N est stable si l&apos;application linéaire

est surjective.
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La non stabilité est donc équivalente à l&apos;existence d&apos;un vecteur a (atJ) e
&lt;ami)/2 non nul (on posera ^ a^ tei que

2 (xtJq{ulf Uj) 0 pour tout h e TgMk

où (m,) est base de Eo.
Ceci doit être vrai en particulier pour des tenseurs h multiple de g c&apos;est-à-dire

des variations infinitésimalement conforme, d&apos;où

2 otijUtUj 0 (voir paragraphe 4). (7.1)

Si maintenant h est à trace nulle, un calcul classique (voir [UK] et [BR])
donne

où dut°dUj est le produit symétrique des 1-formes dut et du; (le produit scalaire
étant au sens de la métrique g). En se restreignant donc à de telles variations, on
obtient

2 ocl} du, o dUj s cg. (7.1 .bis)

où c est une fonction sur X. En appliquant le Laplacien à l&apos;égalité (7.1) on trouve

par ailleurs (7.1.bis) donne

2 octJ{duiy du,) ^ atJ trace^ (du^âu,) ne

d&apos;où la non stabilité implique

et (7.2)

Il est clair réciproquement que (7.2) avec a non nul implique la non stabilité.

Enfin, ces conditions sont indépendantes de la base choisie.
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B. IMMERSIONS ET PLONGEMENTS
Si la valeur propre Âo est stable pour les perturbations quelconques de

métriques, alors avec les notations précédentes:

TgW {h, 2-tenseur symétrique\

- (traceg h, M(utUj)) + (h, dut°duj) 0 pour tout i, /&apos;}

En particulier TgW contient tous les tenseurs du type fg où / est une fonction
de classe Ck sur X vérifiant

(/, M(utUj)) 0 pour tout i, ;

(il suffit, en effet de considérer les variations conformes e^g).
Soit F le sous-espace de Ck(X) (constitué de fonctions C°°) engendré par les

M(utUj). Notons que F n&apos;est pas nécessairement de dimension maximale,
c&apos;est-à-dire W(iV+l)/2.

a) Immersion. S&apos;il n&apos;y a pas immersion on a, avec les notations introduites au
paragraphe 2.a)

pour toute variation. En ne l&apos;appliquant qu&apos;aux variations de type conforme, on
obtient

v{Af) + Kfv](y) dy 0 (7.3)

pour tout / orthogonale à F, ce qui conduit à

donc à une impossibilité comme au paragraphe 4.B.a). En effet, comme il l&apos;a été

remarqué en 4.2, i) il n&apos;est pas nécessaire que F ait une dimension maximale pour
aboutir à une contradiction à partir de (8.3).

b) Plongeaient. Ce cas se traite de manière analogue.
L&apos;énoncé d&apos;un théorème similaire à celui de 4.1 est laissé au lecteur.
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C. APPLICATIONS AUX SURFACES
Dans la section 5 nous avons laissé en suspens le cas des surfaces non

orientables ou de petit genre, faute d&apos;avoir pu construire par la méthode utilisée
des valeurs propres stables de multiplicité au moins 4 ou 5.

Utilisant un travail récent de Y. Colin de Verdière [CV3] nous allons montrer
l&apos;existence sur les surfaces de genre ^1 orientables ou non de premières valeurs

propres stables de multiplicité 6, ce qui suffira à obtenir le théorème de

plongement ou d&apos;immersion par le premier espace propre.
Après description de la construction de [CV3], il sera aisé comme dans le

paragraphe 6 de prouver la stabilité.
Dans [CV1] il est montré que les tores plats de dimension 2 ont des valeurs

propres stables pour les perturbations de métriques si et seulement si celle-ci ont
des multiplicités inférieures ou égales à 6. En particulier, sur le tore plat
équilatéral la première valeur propre est de multiplicité 6 (voir [B-G-M] p. 148).

La procédure de rajout d&apos;anses ou d&apos;éclatement est la suivante:

a). On considère le tore (plat, la métrique sera notée g0) auquel on excise un
certain nombre de boules de rayon e disjoints T2\U?=i B(xn e) Ye avec

q 2/7 + r.

b). On considère la surface obtenue par identification des bords de B(xlf s) et
de B(xl+Pt e) pour l^i&apos;^p (ajout d&apos;une anse reliant xë à xt+p) et par
identification des points antipodaux de dB(xk, e) pour 2p + 1 ^ k ^ q (ajout par
somme connexe d&apos;un projectif réel de dimension 2 où plus simplement
éclatement du point xk).

c). Du point de vue spectral, on considère l&apos;extension de Friedrich de la

forme quadratique Jn \df \2 pour une métrique g sur T2 et / dans un domaine De

obtenue à partir des conditions aux bords correspondantes.

i) / a la même valeur sur les points du bord de B(xt, e) et B{xl+py e)

(l^i^p) identifié;
ii) /a la même valeur sur les points antipodaux de dB(xk, E)(2p + l**k^q).
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Ce domaine correspond à des conditions aux limites &quot;comprises&quot; entre celles
de Dirichlet et celle de Neumann. Pour plus de détails voir [CV3].

La proximité spectrale (voir [CV3]) est obtenue en utilisant des résultats dûs à

J. Rauch et M. Taylor [R-T] et I. Chavel et E. Feldman [C-F].
On montre donc l&apos;existence d&apos;une métrique g telle que le Laplacien

correspondant sur Ye (pour tout e assez petit) ait Âo pour valeur propre avec la

multiplicité 6. Comme dans le paragraphe 6 on peut prendre g, arbitrairement
proche de g0 quitte à diminuer e.

Par les procédés d&apos;adjonction d&apos;anses et d&apos;éclatements de points, on peut
obtenir toutes les surfaces de genre ^1 orientables ou non.

Il reste à vérifier la stabilité des valeurs propres ainsi construites. La méthode
développée dans le paragraphe 6 sera utilisée ici.

Nous désignerons par E et Qo (resp. Ee et Qe) l&apos;espace propre pour la
métrique plate sur T2 et la forme quadratique de Dirichlet sur H\T2) (resp. pour
la variété Ye munie de la métrique g et la forme quadratique servant à définir le

spectre décrit ci-dessus).
Tous les espaces de fonctions considérés sont plongés canoniquement (voir

[CV3]) dans H\T2).
La proximité spectrale est obtenue en montrant que les hypothèses du

théorème 1.8 de [CV2] sont satisfaites. Rappelons-en la principale conséquence:
E(e) tend vers E dans Hl(T2) lorsque s tend vers 0. Plus précisément, il existe

une constante positive C(e) tendant vers 0 avec e, telle que si (ft) est une base de

Ee et (ut) la base obtenue par projection orthogonale (pour la métrique g0) sur E
alors

Q(u,-f,)=\\dul-dfl\\^C(e)

Alors, par la stabilité de la valeur propre Âo pour les perturbations de

métriques à partir de g0 on sait qu&apos;il n&apos;y a pas de relations du type

avec ex {ocH) e RN(N+l&gt;a non nul (on pose &lt;xl} aJt).

En particulier, si on normalise oc par
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on a l&apos;existence d&apos;une constante D &gt; 0, telle que

2

575

(7.4)

(D est indépendant de a).
La non stabilité pour les perturbations à partir de ge aurait pour conséquence

l&apos;existence d&apos;un a tel que

^O et

or

JT2

et de même pour S atJdu^duJ9d&apos;où ||E û^iijMjl^i^C^c) avec Cr(e)^
contredisant ainsi l&apos;inégalité (7.4).

La stabilité est acquise ainsi donc que les théorèmes de plongements et
immersions par le premier espace propre.

7.1. REMARQUE
i) Ce qui est décrit ci-dessus est valable pour toute multiplicité correspondant

à une valeur propre stable pour les variations de métriques quelconques, où les
variations conformes (ainsi que les variations de métrique à forme volume fixée
comme on le voit dans le paragraphe 8). On peut donc faire des opérations
chirurgicales préservant la multiplicité et la propriété SAH. En particulier, à

partir des tores plats, on peut réaliser toutes les multiplicités paires inférieures ou
égales à 6. La multiplicité 3 pouvant être atteinte en opérant la sphère et la
multiplicité 5 en opérant soit le projectif réel soit la bouteille de Klein (voir
[CV3]).

ii) II serait intéressant de &quot;forcer&quot; la multiplicité en même temps que le

genre, c&apos;est-à-dire de rajouter une anse tout en rajoutant une unité à la
multiplicité (au moins dans certains cas). On pourrait ainsi éventuellement
réaliser sur des surfaces de genre g des multiplicités supérieures à
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8. Quelques remarques générales

Dans ce paragraphe, nous allons donner, en guise de conclusion, une suite de

remarques assez générales sur les techniques et résultats précédents.

A. D&apos;AUTRES RÉSULTATS DE TRANSVERSALITÉ
a). Dans les paragraphes précédents nous avons dû montrer que certaines

applications évitaient l&apos;origine de RN, ce qui s&apos;est ramené à prouver la
transversalité de &lt;P à {0} czUN. On pourrait envisager de prouver que sous
certaines hypothèses sur N on a généricité de propriétés du type suivant:

fa évite une sous-variété V c UN.

Des démonstrations du même type doivent pouvoir conduire à de tels
résultats (au moins pour certains V). L&apos;auteur n&apos;ayant en vue aucune application

précise, il ne lui a pas semblé nécessaire de systématiser cette démarche.

b). Le lecteur pourra également tenter de prouver des théorèmes du type
Whitney pour fa dont les coordonnées sont supposées appartenant à une somme
d&apos;espaces propres relatifs à des valeurs propres distinctes. La démonstration
précédente devra être reprise et adaptée à cette situation.

c). Enfin l&apos;auteur tient à signaler qu&apos;il n&apos;a pas réussi à obtenir des théorèmes
du même type pour des Laplaciens combinatoires sur des graphes (voir [CV4]).
La question suivante reste sans réponse:

sur un graphe connexe F fini et pour une valeur propre stable (parmi les

opérateurs de Schrôdinger sur F) est-il possible d&apos;avoir comme propriété
générique: pour tout sommet, il existe un fonction propre ne s&apos;y annulant pas?

La technique précédente repose entièrement sur l&apos;étude de la singularité des

fonctions de Green modifiées, or sur un graphe toutes les fonctions sont &quot;de

classe C00&quot;.

B. QUE PEUT-ON DIRE DE L&apos;IMAGE, EN CAS DE PLONGEMENT?
a). Le plongement n&apos;est pas en général isométrique, il est donc très difficile

de relier la géométrie de l&apos;image (comme sous-variété de UN) à celle de la variété
source.

Dans [GV] il est prouvé un résultat qui permet de mieux comprendre la
situation.
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Introduisons quelques notations: pour une application / d&apos;une variété rieman-
nienne X dans UN on définit

=sup -»&quot;WV-/W^// dilatationdef
x*y L dx(x, y) J

où dx (resp. dUN) est la distance riemannienne sur X (resp. euclidienne sur UN) et
si/est un homéomorphisme sur son image,

Distor (/) distorsion de/ (dil/)(dil/~1)

de sorte que la distorsion vaut 1 pour une application homothétique (au sens des

distances).
Définissons également,

\\[dx{x,y)fdxdy.
XxX

On a alors le corollaire suivant à la proposition 8.1.A, p. 115 de [GV],

PROPOSITION. Pour f un plongement par k-ième espace propre on a,

[distor (/)]2
2n(Vol (X))2

8.2. REMARQUE
La distorsion est donc d&apos;autant plus grande que la valeur propre est grande.

En particulier pour la sphère canonique Sn chaque espace propre impair permet
de plonger celle-ci isométriquement et minimalement dans SN~1 où N est la
multiplicité de la valeur propre correspondante, il est facile de vérifier que
l&apos;application &quot;enroule&quot; d&apos;autant plus Sn dans SN+1 que la valeur propre est

grande.
Da même avec les projectifs réels canoniques.
Pour des généralisations des plongements par espace propre, le lecteur peut se

référer à [B-B-G] où un plongement dans un espace de Hilbert par le noyau de

la chaleur est décrit, pour toute variété riemannienne compacte.
b). Le théorème de Courant ([C-H]) se traduit sur l&apos;image par une propriété

intéressante pour un plongement/d&apos;une surface X dans UN on dira que/possède
la propriété (TPO) (resp. (TPP)) si tout hyperplan de UN passant par l&apos;origine
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(resp. tout hyperplan de UN) sépare l&apos;image en deux composantes connexes
(resp. en au plus deux composantes connexes).

Dans le cas d&apos;un plongement par le premier espace propre le théorème de

Courant sur l&apos;ensemble nodal d&apos;une fonction propre est équivalent à la propriété
(TPO):

la propriété (TPP) (Two pièces property) est pour une surface compacte sans

bord, équivalent au fait que le plongement est tendu (voir [KR1] pour une revue
sur ce problème). On a alors,

8.3. PROPOSITION. Si Vapplicationfde X dans UN est un plongement tendu

(au sens où il a la propriété TPP) et substantiel (Le. f(X) n&apos;est pas contenu dans

un hyperplan), on a les restrictions suivantes,

i) ([KR2])sifestC2

ii) ([BF]) si f est polyhédrale

où x(X) est la caractéristique d&apos;Euler-Poincaré de X.

8.4. REMARQUES
i) Nous avons montré qu&apos;il existe des surfaces qui se plongent dans UN, de

manière C00 par leur premier espace propre donc avec la propriété (TPO) en
codimension très grande (5*3). On peut vérifier que la preuve de 8.3, i) ne
s&apos;adapte pas si on remplace (TPP) par (TPO).

ii) II est remarquable que la borne figurant dans 8.3, ii) soit C(X) — 1 où

C(X) est le nombre chromatique de X (voir [RL]) et que si N est la multiplicité
de la première valeur propre du Laplacien sur X, l&apos;inégalité 8.3, ii) est une
conjecture de Y. Colin de Verdière ([CV2]).

Appendix A

1) Pour les opérateurs considérés, du type Laplacien pour des métriques C°°

avec potentiel C°°, noté L, on définit la notion de fonction de Green modifiée
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(voir [UK]). Ses propriétés les plus utiles dans notre cadre sont:
a) G(y,x) G(x,y).
b) Sx G(y, x)Lf(x) dx =f(y) si Sx u(x)f(x) dx 0 pour tout u e ker L.
c) Sx G(y, x)u(x) dx 0 pour u e ker L.
Pour un Laplacien sur une variété compacte, par exemple, si (&lt;p,) (resp. A,)

désignent les fonctions propres (resp. les valeurs propres) de L et soit A un
nombre réel différent de À,, on appelle R(k\ x, y) le noyau résolvant de L - A, on
a alors

qui a un pôle en A À,. La fonction de Green modifiée pour L — \x où ju est une
valeur propre de L est:

Af-jU

En particulier, la singularité sur la diagonale de la fonction de Green modifiée
est la même que celle de la résolvante. Enfin on a

2) II résulte du résultat général [BS] que pour les opérateurs considérés, si

(xi,. xn) est un système de coordonnées au voisinage de )&gt;0 centré en y0

ax?
(Al)

où » (»!,..., an) est un multi-indice et / la solution fondamentale du

Laplacien dans IRn (n dim X).
Notons que si les coefficients de l&apos;opérateur ne sont que Hôlder continus, on

peut toutefois écrire (Al) avec \oc\ E oct ^2, qui est Tordre de l&apos;opérateur (voir
[BS]).

3) Si v est orthogonale à ker (L) alors

f G(x,y)w(y)dy
Jx
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par définition de G. De plus on peut dériver sous le signe intégral,

i= d1G(x,y)w(y)dy.
Jx

Appendix B

On se propose dans cet appendice de calculer la dérivée de l&apos;opérateur Ae
apparaissant dans le paragraphe 4.

Rappelons que

où Ae est le Laplacien pour une métrique

alors

À=-A^

En coordonnée locale on a

avec e°=

d&apos;où

et donc

Au -nf(Au) + (n - 2)/Au - (n - 2)(df \ du)
Au -2f(Au) - (n - 2)(df \ du)

enfin,

À(u) ^t(Au) - \ A(fu) - 2f(Au) -(n- 2)(df \ du)
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en utilisant la formule

A(fu) (Af)u +f(Au) - 2(df | du)

il vient

À(u) y{Au) - ^ A(fu) - 2f(Au) +

x[A(fu)-u(Af)-fAu)

et

À(u) -A(fu) -f(Au) -

Ce calcul figure déjà dans la référence [B-W].

Appendice C

Dans cet appendice, on se propose de montrer que les métriques de classe C°°

sont denses dans la sous-variété W définie dans le paragraphe 2.

Plus précisément, rappelons que Mk{X) est le cône des métriques rieman-
niennes de classe Ck sur la variété différentiable (de classe C00) compacte et
connexe X. Soit g une métrique de Mk(X) telle que l&apos;opérateur de Laplace-
Beltrami correspondant possède la valeur propre Âo&gt;0 avec la multiplicité
exactement N. On suppose de plus que Ao est stable pour les perturbations de

métriques quelconques (voir le paragraphe 7) alors au voisinage de g

W {h e Mk(X), proche de g/ko est valeur propre
de Ah avec multiplicité Af}

est une sous-variété de Banach. On a alors

Cl. THÉORÈME. Uensemble W H M°(X) est dense dans W pour la topoU
ogie de Mk(X). Si de plus X est munie d&apos;un atlas analytique réel alors W H sâ(X)
est dense dans W, où si(X) désigne l&apos;ensemble des métriques riemanniennes

analytiques réelles sur X.
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C.2. REMARQUE. Un théorème désormais classique permet d&apos;affirmer que
si X est munie d&apos;un atlas analytique réel alors X peut-être munie de métriques
riemanniennes analytiques réelles.

Preuve, 1) Supposons l&apos;existence d&apos;une famille d&apos;opérateurs de régularisation
Ktf c&apos;est-à-dire satisfaisant à:

Kt est opérateur de l&apos;espace 2Tk(X) des tenseurs symétriques d&apos;ordre 2 de

classe C* dans T°(X) (ou STn\X)) et pour tout h e 9~k(X), K^-j^d (dans

Alors soit geWDMk(X)t l&apos;application W du paragraphe 1 qui à une
métrique h e Mk proche de g associe la forme quadratique sur l&apos;espace vectoriel
de dimension finie Eo (espace propre de Ag correspondant à la valeur propre Aq)

est une submersion (carÀ0 est stable).

formes quadratiques
sur Eq

De plus W est, au voisinage de g, la fibre W 1(A0(.,.
Choisissons une transversale T à W en g, c&apos;est-à-dire un ouvert borné,

contenant g, d&apos;une sous-variéte de dimension N(N 4-1)/2 transverse à W en g
(par exemple un ouvert d&apos;un sous-espace vectoriel de dimension finie, transverse
à W en g). Alors W est un difféormorphisme de classe au moins C1 (on rappelle

que k est très grand) de T sur un voisinage 6 de Âo(.,.) dans Q(E0) (formes
quadratiques sur £0)-

Définissons alors la famille d&apos;opérateurs

par

V,{h)=W(K,(h)).

Il résulte des propriétés de Kt et W que

uniformément sur T
«F.
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Le lemme topologique de [CV2] permet alors d&apos;affirmer que, pour tout t
suffisamment petit, il existe hteT tel que,

c&apos;est-à-dire

Kt(ht)eWnMœ(X).

De plus Kt(ht) est proche de ht si t est petit, qui est lui-même proche de g si T est

une &quot;petite transversale&quot;.

2) II ne reste qu&apos;à exhiber un exemple de famille Kt. La variété X peut être
munie d&apos;une métrique g0 de classe C00, celle-ci définit une connexion de Levi-Civita
dont les coefficients sont de classe C° (dans une carte convenable). Alors, on
peut

i) étendre la métrique g0 au fibre lisse dont les sections sont les tenseurs

symétriques d&apos;ordre 2, c&apos;est-à-dire S2(T*X);
ii) étendre la connexion de Levi-Civita en une connexion D, à coefficients

C°°, sur les sections de S2(T*X).
Ceci pemet de définir un Laplacien de Bochner

opérant sur les sections de S2(T*X), et l&apos;opérateur e~tÀ est infiniment

régularisant et converge fortement vers Id. On prend donc,

Le cas analytique réel se traite de manière analogue.
On fait de même avec les perturbations conformes (resp. par des potentiels) si

la métrique de référence est C°° ou analytique réelle.

Appendix D

Nous nous proposons dans cet appendice de montrer que les propriétés
d&apos;immersion et de plongement dans le cas conforme sont vraies si on remplace les

fonctions propres des opérateurs e(n/2)f Age~(n/2)f (g est la métrique e2fg0) par
celles de Ag.

Le fait que les espaces L2(Xf vg0) et L2(X, vg) ne soient pas isométriques
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n&apos;intervient que dans la détermination de la condition de stabilité. Remarquons
avant de commencer que pour g e2fg0

Ag à Aq pour valeur propre avec la multiplicité N

Ag einf2)f Age (/I/2)/ à Âo pour valeur propre avec la multiplicité N.

Soit E1 l&apos;espace propre correspondant pour Ag et E celui de Ag. Si/est petite
alors E est proche de E&apos; qui est proche de Eo, c&apos;est-à-dire que E est un graphe
sur Eo. Notons que cette notion n&apos;utilise pas la structure hilbertienne de
L2(X, vg). On peut alors choisir une isométrie canonique (pour L2(X, vg0)) entre
EQ et E comme dans la section 1.

a) Immersion. L&apos;application W n&apos;a pas 0 pour valeur régulière si il existe un
point (xQ, §o) e TXX et une fonction propre v e Eo&gt; tels que

dXoUi(^o) 0 pour tout i

(Ui) étant une base de Eo et,

dxov(%o) 0 pour tout / e T0W.

Comme précédemment v est donné par l&apos;équation

{(A
— Ao)û —Àv pour tout/ e T0W

i) orthogonale à Eo

ce qui conduit à

0 jjlG(xOt y)[2f(Av) + (n - 2)(df | dv)](y) dy

utilisant le calcul de À effectué dans l&apos;appendice B. D&apos;où pour tout / e T0W

0 J dxG(x0,y)\lKfv~ —^(A(fl&gt;)-hfv-vAf)\(y)dy

c&apos;est-à-dire

0=f dlG(xo&gt;y)\vM(f)-(^-
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pour tout / orthogonale à M(El). Il existe donc de El tel que

M(v dtG) - (-y-)v(A - Ao)(3iG) M(d) (Dl)

au sens des distributions. Comme précédemment on a

(A - Ao) dxG ^iô^) + dxh(xQ, y) 3iô(,o)

avec les notations de la section 4. L&apos;égalité (Dl) conduit à

M(vd1G)-

en simplifiant par (n - 2)/2 et en utilisant le fait que 3if(*o) 0, car v e EOt on
obtient

(A + y)(v 3XG) - v(x0) dîô(xo) ke C°°(Z)

avec y 4ko/(n - 2), si n &gt; 2.

D&apos;où en développant,

(2A0 + y)v ^iG - 2(dv \ddxG) k (D2)

l&apos;expression (dv \dSxG) est une distribution qui est C°° en dehors de jc0 et du

type valeur principale en x0 car dlv(x0) 0 (il suffit de calculer le terme principal
en coordonnées locales). En dehors de x0 le membre de gauche de (D2) doit donc
être borné.

Etudions ses singularités en x0 dans le cas n &gt; 2 en prenant un système de

coordonnées normales centrées en x0, on a comme précédemment

v(y) t;(0) +Pl(y) +p2(y) + 0(\y\3)

où Pi(y) est un polynôme homogène de degré i. On a par ailleurs ([BS]),

d 9lG(0, y) ~ -
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où r-\y\ et en supposant que Cn 1 pour simplifier le calcul. Enfin par
hypothèse diPi(0) 0.

Le terme prédominant est donc (si v(

2ii(w-2)
—| [W+2

car n &gt; 2 et degré (pO 1. Ce terme n&apos;est borné que si

Le terme principal est alors

(2Ao+r)(n-2M0) ,2(n-2) 2n(«-2)
\y\n yi+-\^~dP—

soit

- 2 |

comme précédemment ce terme ne peut être que nul, donc

*[(2Ao + y) \y\2 v(0) + 4n/&gt;2] 2 |y|2 9lP2

yx divise le membre de gauche et ne divise par |j|2, il divise donc dip2, posons

dlp2 2ayl (D3)

on a donc en simplifiant par yx

u(0)(2Ao + y) l^l2-4a|y|2= -4#ip2.

Le polynôme p2 est un multiple de |y|2, de l&apos;égalité (D3), on déduit que

par ailleurs l&apos;équation



Propriétés génériques des fonctions propres et multiplicité 587

donne

I -2na

où AE est le Laplacien euclidien dans UN D&apos;où

(2Ao+y)u(0) -^
(n-1)

ce qui est équivalent à

n n — \
(n-2)

si w(0)#0 (n&gt;2)

Cette égalité est impossible, on a donc v(0) 0 L&apos;égalité de départ se ramène
donc à

dont on a montré l&apos;impossibilité dans la section 3

Le cas n 2 est plus simple, en effet dans ce cas l&apos;opérateur M est la
multiplication par 2Â0

b) Plongement. Ce cas est laissé au lecteur
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