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Propriétés génériques des fonctions propres et multiplicité
A Marcel Berger, a I’occasion de son soixantiéme anniversaire

GERARD BESSON

0. Introduction

Pour une variété compacte X, P'étude des propriétés que possedent la
“majorité” des applications lisses de X dans ’espace euclidien R" a été clarifiée,
par lintroduction d’outils puissants tel que les théorémes de transversalité.

Rappelons les résultats qui serviront de base au travail qui suit,

siN=1 génériquement une telle application est de Morse ([ME])
si N=2dim(X)  génériquement elle est une immersion ((WY])
si N =2 dim (X) + 1 génériquement elle est un plongement ([WY]).

(*)

Il est intéressant de restreindre la classe de fonctions considérées en tenant
compte de la structure géométrique que I’on a auparavant imposé a X. Dans
[G-W], il est étudié la possibilité d’obtenir des plongements d’une variété non
compacte dans R" en prenant comme coordonnées des solutions de certaines
équations aux dérivées partielles elliptiques.

Dans le méme ordre d’idée, on peut s’intéresser aux structures riemanniennes
sur X (compacte) et se limiter a I’étude des fonctions propres du Laplacien
associé. Le premier pas de la démarche conduisant aux résultats (*) a été fait par
K. Uhlenbeck [UK]: génériquement dans I’espace des métriques riemanniennes
toutes les valeurs propres sont simples et toutes les fonctions propres sont de
Morse.

Donc, bien que l'’ensemble des fonctions qui sont vecteur propre d’un
Laplacien pour une métrique riemannienne ne soit pas un ouvert de ’espace des
fonctions (il suffit de penser a ce que I’équation qu’elles satisfont impose sur leur
développement de Taylor au voisinage d’un point ol elles s’annulent), on peut
leur imposer des propriétés génériques raisonnables.

Dans le texte qui suit nous proposons de parcourir les deux étapes suivantes
de (*). Plus précisément, nous désirons obtenir des plongements et des
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immersions dans R" dont les coordonnées sont des fonctions propres pour une
métrique donnée et relative a la méme valeur propre A. Ceci impose donc que la
multiplicité de cette derniére soit au moins N, en fait dans nos exemples ce sera N
exactement. On ne peut donc espérer des résultats de généricité dans C™(X)
compte tenu de [UK]. Il est alors raisonnable de se limiter au sous-ensemble W
des métriques pour lesquelles A est valeur propre avec la méme multiplicité N
(fixer la valeur propre n’impose pas vraiment de contrainte car on peut utiliser les
homothéties). Afin d’appliquer des théorémes de transversalité, il faut pouvoir
faire de la géométrie différentielle sur cet ensemble, il est alors souhaitable de
demander a ce dernier d’étre une sous-variété de Banach, ou un germe de
sous-variété au voisinage d’une métrique fixée.

Pour obtenir les résultats recherchés, il nous faut donc satisfaire 3 deux
conditions:

i) La multiplicité N doit étre suffisamment grande.

ii) W doit étre une sous-variété de ’espace des métriques.

Le probléeme de la multiplicité de la k-itme valeur propre pour X de
dimension deux a été initi€ dans [CG] puis [BN] ot il est montré qu’elle ne peut
étre arbitrairement grande, la borne supérieure trouvée étant en fait linéaire en le
genre de la surface; dans [B—C] on exhibe des métriques telles que la premiére
valeur propre ait une multiplicité en racine carrée du genre.

La principale avancée récente vers une compréhension du probléme est dans
la suite de résultats obtenus par Y. Colin de Verdieére ([CV1-4]). Utilisant une
idée générale d’Arnold [AD] il montre en utilisant la théorie des perturbations
que la multiplicité peut apparaitre de maniére non isolée si on dispose de
suffisamment de parameétres. Plus précisément, on construit dans [CV2] des
métriques en dimension =3 telle que la multiplicité de la premiere valeur propre
soit arbitrairement grande. Le probléme de la dimension 2 reste non completement
résolu. Dans [CV2], il est conjecturé que la multiplicité maximale pour la
premiére valeur propre d’une surface riemannienne X est C(X) —1 ou C(X) est
le nombre chromatique de X (voir [RL]). Cette borne supérieure est atteinte par
la multiplicité de la seconde valeur propre d’opérateurs de Schrodinger sur X.
Dans [CV4] le probléeme est transporté sur les graphes, ces derniers étant les
élements de base a partir desquels on construit les métriques qui nous intéressent.
Pour des résultats de type [B—C] n’utilisant pas la théorie des groupes on peut se
reporter a [C-C] et [CS].

Dans [CV1] il est développé une notion de stabilité (Strong Arnold
Hypothesis ou SAH) qui assure la condition ii) ci-dessus.

Dans la suite tous nos opérateurs sont auto-adjoints. Nous considérons donc
différents types de variations paramétrées par un espace B, a partir et au
voisinage d’une métrique g, (W sera un germe de métrique en go):
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i) Perturbation du Laplacien A, (ici la métrique est fixée) par des potentiels
petits

H=A, +V ou VeC*X)=B (k grand).

i) Variation ponctuellement conforme de métriques
g=¢eg, ou feCYX)=B.

iii) Variation de métriques sans restrictions

B = {métriques C* proche de g,}.

Nous utilisons des métriques C* afin de pouvoir appliquer les théorémes de
transversalité a des variétés de Banach et non de Fréchet (pour appliquer le
théoréme de transversalité 2.1 il suffit dans notre contexte de prendre k=
dim X + 3; le lecteur peut se référer a [UK] pour les détails). La métrique g,
sera, toutefois, toujours de classe C~ avec des améliorations du résultat dans le
cas ou elle est analytique réelle (on peut dans ce cas se limiter a des perturbations
a support dans un ouvert arbitraire).

Si A est une valeur propre de multiplicit¢ N du Laplacien de g,, par petite
perturbation ’espace propre E, “éclate” en une somme d’espaces propres E,
pour beB. On peut choisir une base de FE,, (up)i<i<nv dépendant
différentiablement de b € B.

Le théoréeme type est alors

A. THEOREME. Si A est une valeur propre stable de multiplicité N, alors
pour un ouvert W, dense dans W l’application,

fo: X—>RY

x> (up(X))1<i<n

est
i) une immersion si N =2 dim (X),
ii) un plongement si N =2 dim (X) + 1.

Notons que puisque 1'on ne s’intéresse qu’a une valeur propre a la fois, la
propriété recherchée est vérifiée sur un ouvert dense car X est compacte.

La seconde partie du travail consiste donc a exhiber des valeurs propres
stables de grande multiplicité. Nous nous contenterons ici de vérifier que les
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~

exemples de Colin de Verdi¢re satisfont a cette condition. La conséquence
principale est le

B. THEOREME. Sur toute variété riemannienne compacte X de dimension n
il existe une métrique riemannienne telle que X se plonge dans R***'! par son
premier espace propre.

Nous utilisons ici ’expression “plongement et immersion par espace propre”
pour signifier que les coordonnées sont des fonctions linéairement indépendantes
de E,.

Aprés mise en place des notions de base (1) et la position du probleme (2),
nous étudions le cas des perturbations d’'un Laplacien par des potentiels (3).
Dans (4), nous traitons les variations conformes de métriques, et abordons
ensuite (5) les premiers exemples en dimension 2 tirés de [C—C]. La dimension
supérieure ou €gale a 3 s’en déduit aisément (6). Les variations de métriques
quelconques (7) conduisent aux cas non traités précédemment. Dans (8) quelques
remarques générales permettent de comprendre les propriétés des plongements
obtenus en particulier si la valeur propre est la premiere non nulle, tout
hyperplan de R”™ passant par l'origine sépare Iimage en exactement deux
composantes connexes. Nous rapprochons cela de la notion de plongements
tendus et donnons des arguments permettant d’apprécier la pertinence de la
conjecture de Colin de Verdi¢re sur la multiplicité maximale de la premiere
valeur propre d’une surface riemannienne.

Je tiens ici a remercier Y. Colin de Verdiére pour m’avoir suggéré le
probléme et pour les nombreuses conversations que nous avons eues a ce sujet.

1. L’hypothése de transversalité

Rappelons les notions de stabilité faible et forte introduites par Y. Colin de
Verdiére dans [CV1]; elles reposent sur des éléments de théorie des perturbations
que le lecteur pourra trouver dans la référence [KO].

Soit (H,),r une famille d’opérateurs autoadjoints réels sur H=H;® C le
complexifié d’un espace de Hilbert réel, de méme domaine D < H, dépendant
continument du paramétre a variant dans I’espace topologique T (on suppose que
0eT).

Soit alors A une valeur propre isolée de multiplicit€ finie no de Hy. Si D est un
disque de rayon € >0 et de centre A, ne rencontrant le spectre de Hy qu’en Ay, il
existe un voisinage U de 0 dans T tel que, si a € U, H, admet dans D un nombre
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fini de valeurs propres dont la somme des multiplicités est n,. Soit E, la somme
des espaces propres correspondant, lorsque a—0, E,— E,;, ce qui permet de
définir la forme quadratique g, sur E, (dont le spectre est (spectre (H,)) N D) par

qa(f) = (Halaf I Iaf)

ou I, est I'isométrie naturelle de E, sur E,.

Pour les détails concernant la définition de I, voir [CV1].

Si T est une variété de classe C* (k =1) et que g, est définie sur un voisinage
de 0 qui est une boule K on définit

&:K— Q(E,) = {formes quadratiques réelles sur E,}

a—q,.
Alors on a les,

1.1. DEFINITION ([CV1]). Soit K un espace topologique, E un espace de
Banach, y, € E, @:K— E continue, on dira que @ est essentielle sur (E, y,) s’il

existe € >0 tel que VW :K— E, continue avec ||W — @||;~xy<€ On a, )€
¥Y(K).

1.2. DEFINITION ([CV1]). La valeur propre vérifie ’hypothése d’Arnold
forte (SAH) (resp. I’hypothese d’Arnold faible (WAH)) relativement a la famille
(H,)aer si @ est une submersion en a=0 (resp. P est essentielle sur

(Q(E0); Ao(. |-)))-

1.3. REMARQUES

i) 11 est clair que SAH implique WAH.

ii) On peut introduire, de maniére analogue, les notions de stabilité d’une
famille

M<A<:--<Ay

de valeurs propres isolées de multiplicités n; <o de H, (voir [CV1])
iii) Une condition nécessaire pour SAH et WAH est que

N s .
dimension (T) = D, l’_t_(ﬁrii_l_l
i=1

Pour la vérification de ’hypothése SAH on a le critére suivant (dont la preuve
est inmédiate)
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1.4. CRITERE. Pour que A, vérifie SAH, il faut et il suffit que la
différentielle de

®,:a—>(H; . |.) € Q(E,),

soit surjective en a = 0.

Par la suite nous ne travaillerons qu’avec @, et la dénoterons donc par @. Par
ailleurs nous allons étudier deux types de perturbations (bien que les techniques
utilisées soient valables dans des situations plus générales):

i) les opérateurs H, sont des Laplaciens pour des métriques riemanniennes
variant dans un voisinage d’'une métrique de référence.

ii) ils sont du type A+b, ou A est le Laplacien pour une métrique
riemannienne fixée et b une fonction C*.

Dans le premier cas, le domaine D des opérateurs considérés dépend de a
lorsque les variations de métriques ne sont pas a volume constant, on peut
toutefois les modifier par des transformations unitaires explicites pour se
ramener a la théorie précédente.

2. Réduction du probleme

Soit (X, go) une variété riemannienne compacte, on suppose que A, est une
valeur propre du Laplacien de (X, go) de multiplicité N (Attention! I'indice 0 ne
refére pas a la position de la valeur propre dans le spectre mais a la métrique g,),
vérifiant SAH, pour 'un des deux types de familles suivant:

i) H,= A+ b ou b e C¥(X) (proche de b,), C*(X) I’espace des fonctions de
classe C* a valeurs réelles sur X. Les opérateurs H, sont donc des opérateurs de
Schrédinger avec potentiel b.

i) H, = A, ou A, est le Laplacien pour une métrique g (proche de go) sur X
de classe C*. L’espace de ces métriques sera noté M*(X).

La conséquence principale de I’hypothése SAH, et le point de départ des
calculs, est I’existence d’un voisinage B de b, dans C*(X) (resp. de g, dans
M*(X)) tel que I'ensemble des éléments de B pour lesquels 'opérateur
correspondant a A, comme valeur propre avec la multiplicit¢ N est une
sous-vari€té de B, notée W.

Nous nous proposons de donner des propriétés génériques, elles vont donc
tout naturellement résulter de théoremes de transversalité. En effet nous
utiliserons le,

2.1. THEOREME ([AM], [QN]). Soit ¢ :F X B— E une application C*, F,
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B et E étant des variétés de Banach avec F et E séparables. Si 0 (0 € E) est valeur
réguliére de ¢ et ¢, = ¢(., b) est une application de Fredholm d’indice < k, alors
I’ensemble {b € B; 0 est valeur réguliére de ¢,} est résiduel dans B.

2.2. REMARQUES

i) Dire que 0 est valeur réguliere signifie que tout point de ¢;'(0) est point
régulier ou que 0 n’est pas dans I'image de ¢,.

ii) Dans notre cadre F et E seront des variétés de dimension finie et si ¢ est
différentiable, ¢, est Fredholm d’indice inférieur ou égal a dim (F) — dim (E).
Dans notre cas nous aurons toujours dim (E) supérieur a dim (F), on pourra
donc choisir dans le théoréme 2.2, k=1 (le lecteur peut se reporter aussi a
[G-G], page 34, note 1).

iii) La technique de démonstration est une variation sur les thémes
développés dans [UK].

Soit (u,, . . ., uy) une base orthonormée de ’espace propre relatif a la valeur
propre A, de 'opérateur H, (0 représente le potentiel by ou la métrique g,) pour a
proche de 0 dans W, la famille

(ul,a) LIRS | uN,a)

ou u;,=I,(u;) est une base orthonormée de I’espace propre relatif a la valeur
propre A, de 'opérateur H,.
On se propose de montrer que sous ’hypothése de transversalité, ’application

X—->RN

x> (U (X)) 1<i<n = fa(x)

est un plongement si N=2n+1 et une immersion si N=2n pour a dans un
ouvert W; de W dense au voisinage de 0.

Le fait que W, soit un ouvert est clair car X est compacte, il suffit donc de
montrer la densité.

a) Immersion. On considére I’application

Y:T,LXXW—->RY
(x, & @)= (ditt; o(8))1<i=n = d:f2(8)
ol T} X est le fibré unitaire tangent de X par rapport & la métrique de référence

8o. Si nous montrons que ¥ a 0 pour valeur réguli¢re alors par le théoréme 2.1
avec k=1 (voir remarque 2.2, ii), on a que ¥, = ¥(.,.,a) a 0 pour valeur
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réguli¢re pour un ensemble générique de a et donc si N>2n—1, qui est la
dimension de T, X, ce n’est possible que si 'image de ¥, évite 0 (voir remarque
2.2, i) ce qui est équivalent a dire que f, est une immersion.

Réduisons le probléme

i) La différenticlle de ¥ en (x, &, a) est constituée de trois parties,
différentielles par rapport a chacune des variables. On ne peut pas, a priori,
espérer contrdler les différentielles par rapport a x et & car il faudrait avoir sur les
fonctions propres des renseignements qu’il est treés difficile d’obtenir dans une
situation générale. Nous ne travaillerons donc qu’avec

D;¥(c) = dérivée de ¥ au point (xo, &, ao) dans la direction de c € T, W.

ii) En fait, quitte a restreindre W a un ouvert plus petit, il suffit de montrer
que D; W est surjective en (x,, &, 0) avec

W(xO) 501 0) = dxoui,O(EO) =0 pour tout i.

L’ensemble de tels (xq, &), noté C est un compact (car fermé) de T, X.

Par continuité D; ¥ sera donc surjective dans U X V, ou U est un voisinage de
C et V un voisinage de 0 dans W.

Par ailleurs 7; X\U est compact et vérifie, pour tout (x, §) € TLX\U, 4, f,(§) #
0.

Il existe donc un voisinage V' de 0 dans W tel que ceci soit encore vrai pour
aeV', ce qui signifie que les points (x, §) € T X, tels que

d.f,(§)=0pouraeV’

sont dans U et donc si ae VoV’ D;¥ est surjective en (x, &, a) tel que
d.f,(&) =0 (voir aussi 'appendice C pour la densité des métriques ou potentiels
C” dans W).

ili) On supposera k toujours grand, dans ce cas le construction de I, montre
que celle ci dépend différentiablement de a (métrique ou potentiel C*) alors,

D;¥(c) = (dru4i(80))1<i<n = dx«f(go)

ou D;¥(c) est la différentielle en (xo, &o, 0), avec

= 2 (Lo)lemo = 1)

da
aeW—| =c
dt t=0
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Si D; W n’est pas surjective il existe dans R" un vecteur («;, . . ., ay) non nul
et orthogonal a I'image, c’est a dire, pour tout c,

Z aidxodi(§0) =0
en posant v = }, a;u;, v € E,. La non surjectivé est équivalente a
(il existe v € Eg\{0} tel que pour tout c, d, v(&,) = 0).

Dans chaque cas particulier il faudra donc montrer que ceci est impossible.
b) Plongement. L’application a considérer dans ce cas est

W (X X X\A(X)) X W— RY
(x’ Y a) g (ui,a(y) - ui,a(x))lsisN =fa(y) —ﬁ,(X)

ol A(X) désigne la diagonale de X X X et en se plagant en un point a (potentiel
ou métrique C”) proche de 0 ou la propriété d’immersion est réalisée.

Le théoréme 2.1 a pour conséquence que ¥, est génériquement un plonge-
ment si N =2n + 1 et si 0 est valeur régulicre de ¥.

Par une suite de réductions analogues au cas précédent on se rameéne a
montrer 'impossibilité d’avoir

il existe v € Eg\{0} tel que ©(y) — v(x) =0 pour tout ¢ et pour x #y
tels que fu(x) = fa(y)

(avec les notations précédentes).

3. Le cas des potentiels

Comme dans [UK] nous nous intéressons dans ce paragraphe a des perturba-
tions d’un opérateur du type L =A+ by, ou A est le Laplacien associ€ a une
métrique C” et b, une fonction également C* sur X, par des fonctions a de classe
C*. Apres avoir explicité la condition de stabilité nous démontrerons le théoréme
A.

A. CONDITION DE STABILITE
a). On se place donc dans le cas ol A, est une valeur propre de multiplicité N
de L. Par le critére 1.4, celle ci est stable si I’'application &, défine par:

D(a)=(H,.|.) € Q(Eo)
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avec H, = L +a et a € C*(X), est une submersion en a = 0. Or pour ¢ € C*(X)

d
Et. dj(tc)'t=0= (C. | ) =4

ou ¢, est la forme bilin€aire symétrique sur E, définie par

q.(u, v) = f cuv
X

La stabilité de A, est équivalente au fait que les q. engendrent un espace de
dimension N(N + 1)/2 lorsque ¢ parcourt C*(X) ou a:

> a;u;(x)u;(x) = 0 pour tout x € X & a; = 0 pour tout i, j.
ou (u;) est une base orthonormée de E,. Définissons,
E?% = espace vectoriel engendré par les u,u;

la stabilité de A, est donc équivalente a

N(N +1)

dim (E3) =——

b). On suppose donc que A, est stable, alors I’espace tangent 8 W en a = 0 est
défini par

LW = {c e CK(X)\{c, f) = ch =0Vfe E?,}.

B. IMMERSIONS ET PLONGEMENTS

a) Immersion. Comme il a été montré dans la section précedente, on est
ramené a prouver qu’il n’existe pas de fonctions propre veE, et de point
(x0, o) € TL X tels que,

d.,v(5)=0 pour tout c.
Calculons v, si ¢ € C*(X), v est défini par:

(L—AQ)v+ Lv=(L— )V +cv=0. (3.1)
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Par construction de I’isométrie canonique I, (voir [CV1]), ¥ est orthogonale a
E,. L'équation (3.1) est donc équivalente a

D(x0) = - L G(xo, )e(y)v(y) dy

ol G est une fonction de Green modifiée pour I'opérateur L — A, (voir [UK] et
appendice A pour la définition).

Choisissons en x, un syst¢éme de coordonnées en sorte que xo, =0 et &, soit la
dérivation dans la direction de la premiére coordonnée notée 3, alors

de9(80) = 0 = = | 3,G(x0, eI .

Si cette expression est nulle pour tout ¢ € ToW alors il existe d € E tel que,

3:G(xo, y)u(y) =d(y) (3.2)

pour tout y € X (voir appendice A). L’opérateur a été choisi a coefficients C~
(bien que les perturbations se fassent par des potentiels C*), de telle sorte que d
et v sont C”. Par ailleurs 3,G est singulier en x, (voir appendice A), il vient donc
que v(xo) =0.

Explicitons le développement des fonctions considérées en coordonnées
locales (xo = 0) normales,

v(»)=p(y) +O(yI**")  @eN

et p, est un polyndme homogeéne harmonique de degré a sur R” (voir [BS] ou
appendice A) non identiquement nul.

n

IyI”

8:G(xo, y)=y1—+o(lyI'™)

(appendice A ou [BS]), o C, est une constante et y, la premiére coordonnée,

d(y)=q(y) + O(|y|*s@*)

ol g est polyndme homogene. Ceci étant une conséquence du fait que d est C~.
L’unicité des développements asymptotiques et limités conduit a I’égalité

Conpa(y)=1yI"q(y) (3.3)
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en particulier n ne peut étre que pair, en effet si te R, I’égalité ci-dessus
appliquée a ty pour y fixé conduit a

taf+1 = Itln tdeg(q).

L’égalité (3.3) est donc une égalité entres polyndmes. Or y; qui est
irréductible divise |y|” g(y) mais ne divise pas |y|", il divise donc g(y). Par
simplification (3.3) devient

P«(¥)=1yI"q1(y) (q: est un polynéme). (3.4)

Enfin dans la décomposition des polyndmes homogenes de degré « donné, les
polyndmes harmoniques appartiennent a un supplémentaire de I’espace des
polyndmes homogenes divisibles par une puissance (paire) de |y| (voir [B-G-M]
p- 160). L’égalité (3.4) est donc impossible. L’application ¥ de la section Il.a a 0
pour valeur réguliére.

3.1. REMARQUES

i) Le fait que L ait des coefficients C™ a été utilisé pour conclure que d est C*
et donc pour écrire I’égalité (3.3). En effet les développements de v et G sont
valables méme si les coefficients de L sont Holder continus ([BS]). Si les
coefficients de L ne sont que de classe C*, et si @+ 1—n est plus grand que
k +1, il se peut que I’on ne puisse pas écrire (3.3).

ii) Si la variété est munie d’un atlas analytique réel et les coefficients de L
sont analytiques réels alors d, v et 3,G (pour y # x,) le sont, en conséquence il
suffit, par I'unicité du prolongement analytique, d’avoir (3.2) sur un ouvert U c X
quelconque. On peut se limiter dans ce cas a des perturbations par des potentiels
de classe C* et a support compact dans U.

b) Plongement. Un raisonnement analogue au cas précédent, montre que
I’application ¥ du paragraphe précédent a 0 pour valeur critique s’il existe deux
points distincts x, et x, de X tels que

(G(x1,y) = G(x2, y))u(y) =d(y)

pour tout y (avec les notations précédentes).

La conclusion s’ensuit par des raisonnements similaires (et plus simples) que
pour le cas de I'immersion.

Les remarques 3.1, i) et 3.1, ii) s’appliquent également dans ce cas.

En conclusion on a prouvé le
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3.2. THEOREME. Si A, est une valeur propre stable (SAH) de multiplicité N
de I’opérateur L = A + b, a coefficients C* sur X, alors il existe un ouvert dense
dans W de potentiels, noté W, tel que I’application f, est pour a € W,,

1) une immersion si N =2n

2) un plongement si N =2n + 1.

Rappelons que W est I’ensemble des potentiels a de classe C* sur X proche de
b, tels que A +a ait A, pour valeur propre avec la multiplicité N, et que f, est
I’application

X—-RV

x> fo(x) = (U;,0(x))1<i<n

ou (u;,) est une base de ker (A + a — Ay).

4. Les variations conformes de métriques

Dans ce paragraphe, nous allons étudier des perturbations ponctuellement
conformes de métriques riemanniennes, c’est-a-dire des métriques du type

g =¢€gg

ol f est une fonction de classe C* sur X et g, une métrique de référence que nous
supposerons C~.

Ces variations s’averent étre les plus importantes pour le genre de résultat que
nous visons.

Apres ’énoncé de la condition de stabilité d’'une valeur propre multiple, nous
prouverons que ’application ¥ a 0 pour valeur réguliere dans les deux cas étudiés
(immersion et plongement).

Dans ce qui suit, A, est une valeur propre de

Ag =A=A0

0

de multiplicité N.

A. CONDITION DE STABILITE
Soit £ un réel (positif), posons

g =g, feCHX)
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et
A, = Laplacien associ€ a g..

Les opérateurs A, n’opérent pas sur le méme espace L?, en effet la forme
volume 6, de g, est,

0&' = enefeo.

On peut toutefois se ramener facilement a la situation décrite dans le
paragraphe 1, par I'isométrie

L¥(X; 6.)— LX(X; 6o)
ur> "2y

et on définit 'opérateur sur L*(X; 6,)
A(E) — e(n/2)£f AEe —(n/2)£f

auquel on va pourvoir appliquer la théorie des perturbations (voir [B-W] et
[BD]). Comme précédemment

D, (u, v)= (A(e)u, v) u,vekE,
et

dA(¢)
dE £=0

q(u, v) =£2£ (u, v) = (Au, v) avec A =
de |.-0

€

on a

q(u, v)=g (f Au, v) —-g— (A(fu), v) + (Au, v)
=Aog(fu, v) —Aog-(fu, v) + (Au, v)
= (Au, v).

Comme dans [B-W] un calcul en coordonnées locales (voir Appendice B)
donne,

Au = =2f(Au) — (n —2)(df | du)
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ou (df | du) est le produit scalaire ponctuel des formes df et du par rapport a la
métrique g,. Il vient donc

q(u’ U) = _2<f(Au): ‘U) - (n - 2)<(df I du), ‘U)
= —2A(fu, v) — (n ~ 2){(df | du), v)

par ailleurs g est par construction symétrique, donc

24(u, v) = —4Ao(fu, v) — (n — D[(df | du), v) + ((df | dv), u)]
= —4A(fu, v) — (n —2)(df, d(uv))
= —4Ao(fu, v) — (n = 2){f, A(uv))

posons

n—2
2

alors

q.(u’ ‘U) = ""<M(uv)’ f)

La valeur propre est non stable pour les variations de métriques conformes s’il

existe (a;) € RY™*+D?2 tel que pour tout f

> a;q(w;, u;) =0, o) = Q. (4.1)

avec (¥;) une base de E,. Posant d = ¥, auu;, (4.1)& (f, M(d)) =0 pour tout f
c’est-a-dire

M(d)=0.
L’opérateur M étant inversible, ceci est équivalent a
d=0.

La condition de stabilité est ainsi la méme que dans le paragraphe précédent,
c’est-a-dire

N(N +1)

dim () = ——
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B. IMMERSIONS ET PLONGEMENTS PAR ESPACE PROPRE
Si la condition précédente est satisfaite, alors I’espace tangent 8 Wen a =0 est

ToW = {f e CK(X)\(f, M(d)) =0, Vd € E}}

avec des notations maintenant classiques, on a

)=~ | G (VI dy

(n—2)
2

o) = [ G )| AG0) + 52 0(A0) + hof () dy

(voir I’Appendice B pour le calcul de A).
a) Immersion. Il n’y a pas immersion si pour une fonction propre v de E, et
un point (xo, &) de T X,

0=d, (&)= - LalG(xo, y)

(n-2)
2

x[ag) + 52 uan + dofo [ @, “2)

pour tout f orthogonale & M(E}), c’est-a-dire si il existe d € Ej tel que,

v(A+ 1) 8,G + =2

A(v 3,G) = M(d)

au sens des distributions. Notons que la dérivation 3, porte sur la premiére
variable alors que A s’applique a la deuxi¢éme variable et qu’en conséquence ils
commutent. Or,

et
(A - A'()) alG = 31 6(xo) + h(xo, y)

ol d,, est la masse de Dirac en xo, 810, sa dérivée dans la direction &, et h
une fonction C” (voir Appendice A), on a donc,

c(A = Ag)(8;G) = (8,v)(x0)dxy) + V(X0) 310z + V(y)h(x0, ¥)



558 GERARD BESSON
et I’égalité
M(d)=M(v 3,G) + (3,1v)(x0) O, + v(X0) 310, + VR
et, ‘
d— M7'(vh) =v 3,G + M~ ((3,v)(x0) S (x, + V(X0) 318(xy)- (4.3)

(notons que le membre de gauche est C*).
Si on dénote le noyau résolvant du Laplacien, c’est-a-dire le noyau résolvant
de (A + p)~! pour —u ¢ Spec (A) par R(u; x, y), (4.3) est équivalente a

d(y) — M~'(vh)(y) =v(y) 3:G(x0, y)

Z
* ) CrEIRY: %0, )+ v(x0) SR (s %0, )]
avec Yy =4Ay/(n —2), sin>2.
Etudions les singularités dans le cas n > 2. La plus grosse contribution vient de

3,G et 3,R qui se comportent de mani€re analogue en x,. On utilise 2 nouveau le
syst¢tme de coordonnées centré en x,. Le terme prédominant est donc,

3 (n - Z)C:U(O)yl qui vient de v 3,G C.y1v(0)
Iyl donnant — —-Y1°1=

0 lyI”
— gC'I'—:l(-;,ﬂl qui vient de v 9;R

[(n—2)+2]

qui doit étre nul, donc v(0) =0, (rappelons que nous traitons ici le cas n > 2).
Ensuite on peut écrire v(y)=p,(y)+ O(lyl*) (notations du paragraphe
précédent).

Le terme prédominant est alors obtenu par

—(n- Z)C"lyLll'; pi(y) qui vient de v 3,G

+ 2 Cn apl
(n=2)|yI"* an

(0) qui vient de (3;v)R

posons

pi(y)=ny:1 +4q(y)
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ol g ne contient pas y, et 7 = dp,/3y,(0). Le terme principal est donc

C, 2
{2t g+ g gy
enprenant y,=y;=---=y,=0, on a
C.nyt ( 2 )
=22l (n-2)+
ml TR

ce qui implique n =0 si n > 2. L’égalité (4.3) devient donc
d—M'(vh)=v93,G

qui est impossible (voir paragraphe précédent).

Le cas n =2 est plus simple, en effet 'opérateur M n’est que la multiplication
par 244, on est donc ramené a la situation obtenue dans le cas des perturbations
par des potentiels. Les vérifications sont laissées au lecteur.

b) Plongement. Ce cas, plus simple, est laissé au lecteur.

Nous avons ici montré les propriétés génériques pour les fonctions propres de
A = e Ae~""2F On peut faire de méme avec les fonctions propres de A, pour
cela le lecteur doit se reporter a ’appendice D.

On a donc démontré le

4.1. THEOREME. Si A, est une valeur propre stable de A, pour les
perturbations conformes, de multiplicité N, alors il existe un ouvert dense dans W
de métriques, noté W, tel que I’application f, est pour a € W,

1) une immersion si N =2n;

2) un plongement si N =2n + 1

4.2. REMARQUES

i) Notons que dans les sections 3 et 4 nous ne nous servons de la condition de
stabilit¢ qu’au moment d’appliquer le théoréme de transversalit€é 2.1, qui
nécessite que W soit une variété de Banach. Mais la preuve montre que I’égalité
(4.2) entraine (4.3) méme si E] n’est pas de dimension maximale, et donc conduit
a une impossibilité également.

ii) On peut s’intéresser a des variations conformes a volume constant,
C’est-a-dire telle que [xf=0. Dans ce cas la condition de stabilité est que
espace engendré par E} et les constantes soit de dimension maximale. Des
modifications élémentaires de la preuve de 4.1 montre que celui-ci est vrai si on
remplace conforme par conforme & volume fixé.
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iii) En fait 4.1 est vrai pour des variations conformes avec n’importe quel
nombre fini de conditions sur f, du type (f, v) =0 avec v une fonction C* sur X.

5. Ou Pon décrit des exemples en dimension 2

Un des buts de ce texte étant de montrer que I’on peut immerger et plonger
toute variété compacte par des espaces propres, et surtout le premier, il nous faut
maintenant trouvé des valeurs propres stables de multiplicité suffisamment
grande. Ces exemples reposent sur les métriques construites par Y. Colin de
Verdiere, B. Colbois et Y. Colin de Verdiere, a grande multiplicité.

A. LA SPHERE ET L’ESPACE PROJECTIF

Dans [CV1] il est montré que toutes les valeurs propres de la sphére munie de
sa métrique canonique sont fortement stable (SAH), pour les variations de
métriques qui sont toutes conformes.

Le premier espace propre sert déja a plonger S* dans R?, le résultat 4.1 est
donc sans intérét dans ce cas.

Le second espace propre de la sphére canonique (voir [B—-G-M] p. 160) est
donné, dans les coordonnées de R>, par I’espace engendré par les fonctions sur
s2,

(XY, ZX, YZ, X* - Y? X*- 2%

'application f, dans ce cas est un revétement a deux feuillets de la surface de
Véronése V qui est un plongement (tendu) de P*(R) dans R>. De plus la sphere
canonique est analytique et 5=2 X2+ 1, on a donc le

5.1. COROLLAIRE. Il existe sur S* des métriques arbitrairement proches de
la métrique canonique (au sens C* pour k grand) obtenues par perturbation de
celle-ci sur des ouverts arbitrairement petits, en sorte que I’application f,, pour le
second espace propre, soit un plongement (proche de la surface de Véronése).

5.2. REMARQUES

i) En d’autres termes on peut ‘“désingulariser’” V (ce que l'on sait par les
théorémes de Whitney, voir [G—G]) mais par des plongements par le second
espace propre d’une métrique aussi proche qu’on le désire de la métrique
canonique.

ii) On a, bien entendu, un résultat analogue avec les perturbations par des
potentiels.
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B. LE TORE T?

Il est prouvé dans [CV1] que toutes les valeurs propres d’un tore plat de
multiplicité inférieure ou égale a 6 sont stables pour les variations quelconques de
métriques. En ce qui concerne les variations conformes il existe sur le tore plat a
maille carrée une premiere valeur propre de multiplicité 4 et des fonctions
propres correspondantes vérifiant,

w+ui=1=u3+usl

La valeur propre n’est pas stable, toutefois le premier espace propre donne
dans ce cas un plongement isométrique et minimale de T dans $* (Tore de
Clifford). Le théoréme 4.1 est alors sans intérét.

C. LES SURFACES ORIENTABLES DE GENRE =2

a). Cest le cas le plus intéressant. Il repose sur le travail [C-C] ou des
métriques a courbure constante —1 sont construites avec une premiére valeur
propre de grande multiplicité.

Rappelons la construction. On découpe la surface, munie d’'une métrique a
courbure constante —1,

X=UZXuz,

en suivant le schéma donné par un graphe (complet dans [C-C]) ot les X; sont
des domaines correspondant aux sommets du graphe et les Z, des cylindres
hyperboliques symétriques par rapport a une géodésique périodique vy, de
longueur [,, correspondant aux arétes du méme graphe. Les Z, sont des
voisinages tubulaires des géodésiques 7v,.

On perturbe la métrique sur X pour obtenir la surface X° en modifiant
légérement la métrique des X, et en changeant celle de Z, en sorte que la
géodésique v, devienne de longueur &€/, et que I'on obtienne un métrique C* sur
X°®. Définissons X; comme la composant connexe de X\(L y,) qui contient X;,

=
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alors
Vol (X;) = Vol (X7).

L’étude du spectre se fait en injectant ’espace L* du graphe (qui est un espace
de dimension finie) dans I’espace H'(X®) de la maniére suivante: on définit
I’espace test

F,=F(X°)={f e H(X®)\f|z,=x; et f est harmonique sur Z,}.

En choisissant les paramétres /,, si € est petit, on peut construire pour tout &
une métrique a courbure constante —1 telle que la multiplicité de la premiére
valeur propre non nulle soit celle du graphe muni du Laplacien combinatoire et
de la mesure de dénombrement (pour les détails voir [C—C]). De plus I’espace
propre est proche en un sens que ’on va préciser, de I’espace F..

Nous allons prouver le

5.3. THEOREME. Ces valeurs propres vérifient SAH pour les perturbations
conformes a volume fixé et les perturbations par des potentiels. d’intégrale nulle.

Preuve. Soit E, I'espace engendré par les fonctions propres de X, relatives a
la premiére valeur propre non nulle, et les constantes.
Soit u; € F, défini par

1 -
sur X; avec V; = Vol (X;) = Vol (X}
L (X,) = Vol (X)

0 surX,sik#i
(Rappelons que les éléments de F, sont continues et harmoniques sur les Z,).

Sur F, la norme L? correspondant a la métrique perturbée est asymptotique
lorsque ¢ tend vers 0 a

N
Zv, 2o flg,=x; pour f € F,

en particulier le syst¢éme (&;);cn €st asymptotiquement orthonormé et pour ¢ assez
petit

Wil 2y < 2.
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L’espace E. est proche de F, comme dans [C-C], c’est-a-dire il existe une
application linéaire B:F,— F telle que E, soit le graphe de B, et qui vérifie:

IB]l = O(¢).
Soit f; = B(«;) + u;. Supposons qu’il existe une relation du type
Z o;fii=0 avec a;=a;
pour (a;) non tous nuls et ¥ (a;)*= 1. On pose
fi=ut+ @
avec || @l L2cxs = || B(w:)ll = O(€). On a alors
0= z o;f.f = 2 oiuu; + Z ;@ +2 2 ol Q;

et si on pose h = ¥ aju;u;

lLl

Al < ”2 P P; . + "2 ;iU Q;

(normes L'(X®)), or:

HZ ;i P:P;

< Z |l | @il < 2 |l @il 2 1 ;] 2
Ll

<0(e)(Z leyl) < Oe?)
(rappelons que ¥ (a;)*=1), de méme

IS ey <2( 1) oo < 0te).

on a donc

Al = O(e).



564 GERARD BESSON

Nous allons montrer qu’un tel comportement asymptotique en € est incom-
patible avec la définition des fonctions ;. Il vient,

.L{z

mais sur X, un seul ; n’est pas nul et c’est u;, donc

Z a;iuu;| < ||h|| .2 pour tout k

Vol (X%)

< ||hl| ;1
7 LIy

| k|

de la construction de X, il résulte que Vol (X%) est borné inférieurement d’od,
|axk| = O(€) pour tout k.

Si Z,; correspond a une aréte entre X; et X, alors

L

2 At tyy| < || A ]| L1

sur Z; seuls u; et u; sont non nuls et

VVi/ 1

d’ou

ZJ' |a’,-]-u,-u,-| ""J- Ia’,-,-u,-z + 0(”u,2| = j Ia,-,-u,-z + a'”u,z + 2a,-,-u,-u,-| = ”h”LI
Z‘j Z" Zii

02 eyl [ sl < Wil +led [ 1+ 1yl [ 1o
Z,‘j Zij Zij
donc

lagl | lwu;| = O(e)

Zii
on a alors,

5.4. LEMME. Avec les notations ci-dessus [z, |u;u;| = O(¢ |log €l).
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Preuve du Lemme => Théoréme. Par le lemme 5.4 on conclut que
|l = O(llog €] ™).

En particulier, si € est assez petit, tous les |ay,| doivent étre petit ce qui est
contraire au choix ¥ (a;)*=1.

Preuve du lemme. Pour simplifier la preuve nous allons supposer que les
nombres V; (constants en €£) sont égaux a 1 et que /, = &. Alors un modele pour
Z,; est, comme dans [C-C]

Yé=[—a,a]xXR/Z
muni de la métrique
= dx? + l3ch*(x) d6* avec l, = me et lych(a) =1>0

ol / est un nombre fixé.
Sous ces hypotheses simplificatrices

u=1l-u=u

_ Arcsin(th(x)) 1 A() 1
u(X) =3 Arcsin(th @)) T2~ 24(a) ' 2

et

Ltu(l —u)=¢ f_: (21:(2) + %)(; ;1(26))) ach(x) dx

il suffit donc d’étudier

I(e) = fo " (1 - Z%;(%‘%S)ch(x) dx

(il ne sera plus fait mention de € dans la suite de la preuve) or,

A(a) ~,m/2

A(a) + A(x)

a—> +co
X—> 4
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d’ou

Azl(s) J;“(A(a) — A(x))(A(a) + A(x))ch(x) dx ef»o]ir

I(e) =
x f " (A(@) - A(x))ch(x) dx

et en intégrant par parties on voit que

fa(A(a) — A(x))ch(x) dx = rth(x) dx _~ _.a ~llog €|

et donc

f u(l—u) = O(e |log ).

5.5. REMARQUES

i) On peut exprimer ce résultat de maniére plus synthétique, et cela est utile
pour la suite du texte, de la mani€re suivante: soit I’application linéaire L définie
par

L . RN(N+1)/2-> E(Z)

@ = (a;)— 2 oy fif;

on munit E3 de la restriction de la forme L'(X*®), alors la preuve qui précéde
montre qu’il existe deux constantes réelles positives telles que

Cz¢ |log g] |a] <|L(a@)| < C, ||

en particulier L est injective, ce qui est la stabilité de la valeur propre A, par
rapport aux perturbations étudiées.

ii) Si les graphes considérés ont des valeurs propres stables, et c’est le cas
pour le graphe complet utilisé dans [C-C] alors la valeur propre A, est WAH
(voir [CV1]) par continuité; le théoréme 5.3, et surtout sa preuve, affirme que
dans ce cas on a la propriété plus forte SAH.

b) Applications. Dans [C-C] il est prouvé que si X est de genre =3 on peut
la munir d’'une métrique a courbure constante —1, telle que la multiplicité de la
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premiére valeur propre non nulle de son Laplacien soit,

+
E(—————l ';Y hl 1) >3

5 Y = genre de X.

Il existe de plus une telle métrique pour chaque € assez petit et on peut
également utiliser les parametres de Twist dans la décomposition en pantalons de
X. On obtient donc les théorémes d’immersion si y=6 et de plongement si
y =10 a I'aide de ces métriques.

5.6. REMARQUES

i) La technique montre la stabilité pour les surfaces non compactes
considérées dans [C—C] des valeurs propres (isolées) ainsi construites.

ii) On a prouvé qu’il n’existait aucune relation du type

2 ®;fi;i=0

pour (f;) une base de I’espace E, pour ¢ assez petit. La conséquence immédiate
(et élémentaire) est

5.7. COROLLAIRE. Les métriques X°*, pour € assez petit, ne se plongent pas
isométriguement et minimalement dans S* par leur premier espace propre.

Il résulterait d’une conjecture de Yau (voir [YU]) qu’elles ne se plongent pas
du tout isométriquement et minimalement dans S°.

6. Exemples en dimension supérieur ou égale a 3

Dans ce paragraphe, nous allons utiliser la construction précédente, afin
d’exhiber des valeurs propres stables de multiplicité arbitaire sur une variété
compacte de dimension supérieure ou égale a 3.

Rappelons le résultat fondamental de [CV2].

6.1. THEOREME. (Colin de Verdiére). Si X est une variété compacte de
dimension =3 et N un entier arbitraire, il existe sur X des métriques riemanniennes
dont la premiére valeur propre non nulle du Laplacien est de multiplicité N.
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Par la suite nous ne nous intéresserons qu’a la premiére valeur propre, il est
clair que les résultats se généralisent au cas d’'une valeur propre quelconque
(propriété Ay de [CV3]).

Comme il est suggéré dans [CV3] la technique utilisée dans [CV2] pour
prouver le théoréme 6.1 peut étre simplifiée par I'utilisation du paragraphe 5.
Décrivons la construction.

A. CONSTRUCTION DE METRIQUES A GRANDE MULTIPLICITE

Pour N donné choisissons une surface de Riemann Y dans la classe construite
dans le paragraphe 5, en sorte que la multiplicité de sa premiere valeur propre
soit N.

On fixe € >0 petit et on appelle cette métrique g,. La premiére valeur propre
ainsi construite est SAH pour les variations conformes, c’est-a-dire pour ye W
(une fonction C* sur Y, ou k est grand) la métrique

8, =e'go, y € W (voir paragraphe 2)

a la méme premiére valeur propre, avec la méme multiplicité et quitte a
restreindre W vérifie aussi SAH.

Comme dans la remarque 5.5, i) on construit pour g,, ¥ € B, une application
L, a P’aide d’une base (f; ,,.) dépendant continiment de y (on utilise pour ce faire
I'isométrie canonique du paragraphe 1). Si B est assez petit on a, £ étant fixé

0< G |o|<|L,(@)| <C,|al|, Cy, C,des constantes.

Soit X la variété de dimension n=3. On plonge Y dans un ouvert de X
difféomorphe a2 R” (Y se plonge dans R*> et donc dans R” pour n = 3) et on choisit
dans X une métrique h, dépendant différentiablement de y pour y € B (voir
paragraphe 2) qui est cylindrique au voisinage de Y.

Par cylindrique nous entendons qu’il existe un réel r >0 tel que le voisinage
tubulaire de rayon r de Y dans (X, h,), soit N,=N,(Y, y) soit muni d’une
métrique produit de g, par la métrique euclidienne sur une boule de rayon r, C,.
(N, est fixé, ne dépend pas de 7).

Le spectre de (N,, h,) pour le probléme de Neumann est constitué de sommes
de valeurs propres de (Y, g,) et de valeurs propres du probléeme de Neumann sur
C,. En particulier si 7 est assez petit la premiere valeur propre non nulle de C, est
grande et la premiere valeur propre non nulle de N, est celle de (Y, g,) avec la
méme multiplicité. On fixe donc un tel r.

On applique ensuite le théoréme I11.1 de [CV2] p. 264, pour montrer que 1’on
peut construire des métriques sur X induisant h, sur N, en sorte que le N-écart
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spectral avec h, soit arbitrairement petit (voir [CV2]) uniformément en y € B.
Ces métriques sont obtenues en multipliant s, par 7, un nombre réel petit, sur
X\N, et en régularisant prés du bord. Le spectre de tels métriques convergent
vers le spectre de Neumann de (N,, k,) lorsque 7 tend vers 0.

Par écart spectral nous entendons en particulier des propriétés pour les
fonctions propres analogues a celles utilisées dans la preuve de 5.3 (et plus, voir
[CV2)).

Enfin, un lemme topologique permet de conclure a I'existence pour 7n petit
d’un vy tel que la métrique décrite ci-dessus k., , ait une premiere valeur propre
avec multiplicité N.

B. LA PROPRIETE SAH

Pour £ >0 petit on choisit y en sorte que I’écart spectral entre g, et go soit
inférieur a £/2 et n en sorte que le N-écart spectral entre h, , et g, soit inférieur a
¢/2. Alors I’écart spectral entre k., ,, (N-écart) et g, est inférieur a &.

Pour rendre précis ces convergences, il faut introduire une distance bien
adaptée a la situation entre sous-espaces, de dimension donnée, de L2 Cest ce
qui est fait dans [CVS5], la proximité est donc a comprendre au sens de ces
distances.

A Tlaide de lisométrie naturelle entre les espaces propres concernés on
construit une base (w;) de l'espace propre de h,, a partir de la base (f;) du
théoréme 5.3 telle que

w;=fi+v;

et

”Ui”Lz(h,,,,,) 0 0

f; étant prolongée a X de la mani€re suivante:
 constante sur les fibres de la fibration N,— Y
e harmoniquement sur X\N,
pour (a;) € RY™V*17? avec ¥ (a;)> =1, une relation du type

2 a;ww; =0 (o = a;)
aurait comme précédemment pour conséquence

fN, IZ a;f:f;

—_— 0
e—0

= vol (C,) L IZ a;f.f;
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et pour ¢ assez petit une contradiction avec la propriété de L (pour les détails de
construction voir [CV2]).

7. Variations quelconques de métriques

Dans ce paragraphe, nous allons nous intéresser a des variations quelconques
de métrique; i.e. sans nous limiter aux seules variations conformes.

Nous procéderons comme dans la section 4, en deux étapes.

Si g, est famille a un parameétre réel de métriques, on pose

d
d_tgz|:=o=h: F{ it 4

alors h est un tenseur symétrique qui se décompose ponctuellement en
- 1 .
h=h+ - (trace, h)g  (n =dim M)

ou trace, h est la trace de h par rapport a la métrique g (i.e. le produit scalaire
de h et g pour la structure euclidienne canonique sur les 2-tenseurs symétriques et
h un tenseur 2 trace nulle.

Cette décomposition revient a séparer ponctuellement les variations con-
formes (de trace pure) des variations a forme volume fixée (a trace nulle). Elle
est de plus ponctuellement orthogonale.

Nous adopterons les notations maintenant standard.

A. CONDITION DE STABILITE
L’espace des paramétres est maintenant ’espace #* de toutes les métriques
C* voisines de g, et

T, M* = {h, 2-tenseur symétrique}.
La valeur propre A, de multiplicité N est stable si I’application linéaire
dbo=d,P:h—q(.,.)e Q(Eo)

est surjective.
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La non stabilité est donc équivalente a I’existence d’un vecteur a = (o) €
RM®™*1D2 non nul (on posera a; = a;;) tel que

>, @;q(u;, u)) =0 pour tout h € T, M*
ou (u;) est base de E,,.

Ceci doit étre vrai en particulier pour des tenseurs A multiple de g c’est-a-dire
des variations infinit€simalement conforme, d’ou

>, auu; =0 (voir paragraphe 4). (7.1)

Si maintenant & est a trace nulle, un calcul classique (voir [UK] et [BR])
donne

q(u;, u;) = —(h, du;°du;)
ou du;°du; est le produit symétrique des 1-formes du; et du; (le produit scalaire

étant au sens de la métrique g). En se restreignant donc a de telles variations, on
obtient

2 a’,-,- du,-° du] =cg. (7.1.biS)
ol ¢ est une fonction sur X. En appliquant le Laplacien a I’égalité (7.1) on trouve
0 = 2 CV,-,-(du,-, du])
par ailleurs (7.1.bis) donne
Y, a;{du;, du;) =, a trace, (du;°du;) = nc

d’ou la non stabilité implique

>, auu;=0

et (7.2)
E o du,"’ duj =0

Il est clair réciproquement que (7.2) avec a non nul implique la non stabilité.
Enfin, ces conditions sont indépendantes de la base choisie.
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B. IMMERSIONS ET PLONGEMENTS
Si la valeur propre A, est stable pour les perturbations quelconques de
métriques, alors avec les notations précédentes:

T, W = {h, 2-tenseur symétrique\

1 ~
- (trace, h, M(u;u;)) + {h, du;°du;) = 0 pour tout i, j}

En particulier T,W contient tous les tenseurs du type fg ol f est une fonction
de classe C* sur X vérifiant

(f, M(uu;)) = 0 pour tout i, j

(il suffit, en effet de considérer les variations conformes e’g).

Soit F le sous-espace de C*(X) (constitué de fonctions C*) engendré par les
M(u;u;). Notons que F n’est pas nécessairement de dimension maximale,
c’est-a-dire N(N + 1)/2.

a) Immersion. S’il n’y a pas immersion on a, avec les notations introduites au
paragraphe 2.a)

O = dxoij(§0)

pour toute variation. En ne I’appliquant qu’aux variations de type conforme, on
obtient

(n-2)
2

[ 8160 )| a0y + 52 v(a) + d0fo|(9) ay =0 (1.3

pour tout f orthogonale a F, ce qui conduit a

(n-2)
2

V(A + o) 3:G + A(v 3,G) = M(d)

donc a une impossibilité comme au paragraphe 4.B.a). En effet, comme il I’a été
remarqué en 4.2, i) il n’est pas nécessaire que F ait une dimension maximale pour
aboutir a une contradiction a partir de (8.3).

b) Plongement. Ce cas se traite de maniére analogue.

L’énoncé d’un théoréme similaire a celui de 4.1 est laissé au lecteur.
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C. APPLICATIONS AUX SURFACES

Dans la section 5 nous avons laissé en suspens le cas des surfaces non
orientables ou de petit genre, faute d’avoir pu construire par la méthode utilisée
des valeurs propres stables de multiplicité au moins 4 ou 5.

Utilisant un travail récent de Y. Colin de Verdiére [CV3] nous allons montrer
I’existence sur les surfaces de genre =1 orientables ou non de premiéres valeurs
propres stables de multiplicité 6, ce qui suffira a obtenir le théor¢me de
plongement ou d’immersion par le premier espace propre.

Apres description de la construction de [CV3], il sera aisé comme dans le
paragraphe 6 de prouver la stabilité.

Dans [CV1] il est montré que les tores plats de dimension 2 ont des valeurs
propres stables pour les perturbations de métriques si et seulement si celle-ci ont
des multiplicités inférieures ou égales a 6. En particulier, sur le tore plat
équilatéral la premiere valeur propre est de multiplicité 6 (voir [B—G-M] p. 148).

La procédure de rajout d’anses ou d’éclatement est la suivante:

a). On considére le tore (plat, la métrique sera notée g,) auquel on excise un
certain nombre de boules de rayon & disjoints T>\\U%, B(x;, €)=Y, avec
q=2p+r.

b). On considére la surface obtenue par identification des bords de B(x;, €) et
de B(xi:, €) pour 1<i<p (ajout d’'une anse reliant x; a x;,,) et par
identification des points antipodaux de 3B(x,, €) pour 2p + 1<k <gq (ajout par
somme connexe d’un projectif réel de dimension 2 ou plus simplement
éclatement du point x;).

V s

6____—-———9

¢). Du point de vue spectral, on considére I'extension de Friedrich de la
forme quadratique [y, |df|? pour une métrique g sur T° et f dans un domaine D,
obtenue 2 partir des conditions aux bords correspondantes.

i) f a la méme valeur sur les points du bord de B(x;, £) et B(x.p, €)
(1 =i =p) identifié;

ii) fa la méme valeur sur les points antipodaux de 9B(xx, £) 2p + 1<k =<q).
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Ce domaine correspond a des conditions aux limites “comprises’ entre celles
de Dirichlet et celle de Neumann. Pour plus de détails voir [CV3].

La proximité spectrale (voir [CV3]) est obtenue en utilisant des résultats dis a
J. Rauch et M. Taylor [R-T] et I. Chavel et E. Feldman [C-F].

On montre donc lexistence d’'une métrique g telle que le Laplacien
correspondant sur Y, (pour tout & assez petit) ait A, pour valeur propre avec la
multiplicité 6. Comme dans le paragraphe 6 on peut prendre g, arbitrairement
proche de g, quitte a diminuer e.

Par les procédés d’adjonction d’anses et d’éclatements de points, on peut
obtenir toutes les surfaces de genre =1 orientables ou non.

Il reste a vérifier la stabilité des valeurs propres ainsi construites. La méthode
développée dans le paragraphe 6 sera utilisée ici.

Nous désignerons par E et Q, (resp. E, et Q.) 'espace propre pour la
métrique plate sur T2 et la forme quadratique de Dirichlet sur H'(T?) (resp. pour
la variété Y, munie de la métrique g et la forme quadratique servant a définir le
spectre décrit ci-dessus).

Tous les espaces de fonctions considérés sont plongés canoniquement (voir
[CV3]) dans H'(T?).

La proximité spectrale est obtenue en montrant que les hypothéses du
théoreme 1.8 de [CV2] sont satisfaites. Rappelons-en la principale conséquence:

E(¢) tend vers E dans H'(T?) lorsque ¢ tend vers 0. Plus précisément, il existe
une constante positive C(¢) tendant vers 0 avec &, telle que si (f;) est une base de
E. et (u;) la base obtenue par projection orthogonale (pour la métrique g,) sur E
alors

lu; = fill 2= C(¢)
Q(w; — f) = lldu; — df]| .- =< C(¢)
C(e)—0.

&e—0

Alors, par la stabilité¢ de la valeur propre A, pour les perturbations de
métriques a partir de g, on sait qu’il n’y a pas de relations du type

=0

'Z ;iUiU;

+ lz o du,-°du,-

avec a = (@;) € RM™*P72 non nul (on pose a; = a;).
En particulier, si on normalise o par

|| =2 af=1
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on a l’existence d’une constante D >0, telle que

0<D<L(a)= L 2 ,2 i (7.4)

-+ IZ @ du,-oduj

(D est indépendant de «).

La non stabilité pour les perturbations 2 partir de g, aurait pour conséquence
Pexistence d’'un « tel que

2 =0, X a;dfedf=0 et |a|=1

or

2 i,

J

< Lz > ai(wu; — f,f)+ 2, o f:f;

=IT2 D a;(uu; = f,f;)

d’ou [|X ayuull1<C'(e) avec C'(e)—50 et de méme pour ¥ aj du;° du;,
contredisant ainsi I'inégalité (7.4).

La stabilité est acquise ainsi donc que les théorémes de plongements et
immersions par le premier espace propre.

7.1. REMARQUE

i) Ce qui est décrit ci-dessus est valable pour toute multiplicité correspondant
a une valeur propre stable pour les variations de métriques quelconques, ot les
variations conformes (ainsi que les variations de métrique a forme volume fixée
comme on le voit dans le paragraphe 8). On peut donc faire des opérations
chirurgicales préservant la multiplicité et la propriété SAH. En particulier, a
partir des tores plats, on peut réaliser toutes les multiplicités paires inférieures ou
€égales a 6. La multiplicité 3 pouvant étre atteinte en opérant la sphere et la
multiplicité 5 en opérant soit le projectif réel soit la bouteille de Klein (voir
[CV3)).

ii) Il serait intéressant de ‘“forcer” la multiplicité en méme temps que le
genre, c’est-a-dire de rajouter une anse tout en rajoutant une unité a la
multiplicité (au moins dans certains cas). On pourrait ainsi éventuellement
réaliser sur des surfaces de genre g des multiplicités supérieures a

EG+Vg+1).
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8. Quelques remarques générales

Dans ce paragraphe, nous allons donner, en guise de conclusion, une suite de
remarques assez générales sur les techniques et résultats précédents.

A. D’AUTRES RESULTATS DE TRANSVERSALITE

a). Dans les paragraphes précédents nous avons dii montrer que certaines
applications évitaient P'origine de R"™, ce qui s’est ramené a prouver la
transversalité de @ a {0} cR". On pourrait envisager de prouver que sous
certaines hypotheéses sur N on a généricité de propriétés du type suivant:

£, évite une sous-variété V < R".

Des démonstrations du méme type doivent pouvoir conduire a de tels
résultats (au moins pour certains V). L’auteur n’ayant en vue aucune applica-
tion précise, il ne lui a pas semblé nécessaire de systématiser cette démarche.

b). Le lecteur pourra également tenter de prouver des théorémes du type
Whitney pour f, dont les coordonnées sont supposées appartenant 2 une somme
d’espaces propres relatifs a des valeurs propres distinctes. La démonstration
précédente devra étre reprise et adaptée a cette situation.

¢). Enfin 'auteur tient a signaler qu’il n’a pas réussi a obtenir des théorémes
du méme type pour des Laplaciens combinatoires sur des graphes (voir [CV4]).
La question suivante reste sans réponse:

sur un graphe connexe I fini et pour une valeur propre stable (parmi les
opérateurs de Schriodinger sur I') est-il possible d’avoir comme propriété
générique: pour tout sommet, il existe un fonction propre ne s’y annulant pas?

La technique précédente repose entierement sur I’étude de la singularité des
fonctions de Green modifiées, or sur un graphe toutes les fonctions sont ‘“de
classe C*.

B. QUE PEUT-ON DIRE DE L’'IMAGE, EN CAS DE PLONGEMENT?

a). Le plongement n’est pas en général isométrique, il est donc tres difficile
de relier la géométrie de 'image (comme sous-variété de R") a celle de la variété
source.

Dans [GV] il est prouvé un résultat qui permet de mieux comprendre la
situation.
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Introduisons quelques notations: pour une application f d’une variété rieman-
nienne X dans R" on définit

[dwv(f ), f(»))

Dif f = sup A, )

x#y

] = dilatation de f

ou dx (resp. dgw) est la distance riemannienne sur X (resp. euclidienne sur R%) et
si f est un homéomorphisme sur son image,

Distor (f) = distorsion de f = (dil f)(dil f 1)
de sorte que la distorsion vaut 1 pour une application homothétique (au sens des

distances).
Définissons également,

tnt (@) = [[ [date, 9P dx

XxX
On a alors le corollaire suivant a la proposition 8.1.A, p. 115 de [GV],
PROPOSITION. Pour f un plongement par k-iéme espace propre on a,

Ac(Int d2)
2n(Vol (X))*

[distor (f)=

8.2. REMARQUE

La distorsion est donc d’autant plus grande que la valeur propre est grande.
En particulier pour la sphére canonique S" chaque espace propre impair permet
de plonger celleci isométriquement et minimalement dans S¥~! o N est la
multiplicité de la valeur propre correspondante, il est facile de vérifier que
Papplication “enroule” d’autant plus $" dans SV*' que la valeur propre est
grande.

Da méme avec les projectifs réels canoniques.

Pour des généralisations des plongements par espace propre, le lecteur peut se
référer 2 [B-B—G] ou un plongement dans un espace de Hilbert par le noyau de
la chaleur est décrit, pour toute variété riemannienne compacte.

b). Le théoréeme de Courant ([C-H]) se traduit sur 'image par une propriété
intéressante pour un plongement f d’une surface X dans R" on dira que f possede
la propriété (TPO) (resp. (TPP)) si tout hyperplan de R" passant par I'origine
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(resp. tout hyperplan de R”™) sépare I'image en deux composantes connexes
(resp. en au plus deux composantes connexes).

Dans le cas d’'un plongement par le premier espace propre le théoréme de
Courant sur ’ensemble nodal d’une fonction propre est équivalent a la propriété
(TPO):

la propriété (TPP) (Two pieces property) est pour une surface compacte sans
bord, équivalent au fait que le plongement est tendu (voir [KR1] pour une revue
sur ce probleme). On a alors,

8.3. PROPOSITION. Si lapplication f de X dans R" est un plongement tendu
(au sens ou il a la propriété TPP) et substantiel (i.e. f(X) n’est pas contenu dans

un hyperplan), on a les restrictions suivantes,
i) ([KR2)) si f est C*

N=<35;

ii) ([BF]) si f est polyhédrale

5+ V49 — 24x(X)
2

NsE( )=C(X)—-1

ou x(X) est la caractéristique d’ Euler—Poincaré de X.

8.4. REMARQUES

i) Nous avons montré qu’il existe des surfaces qui se plongent dans R", de
maniére C* par leur premier espace propre donc avec la propriété (TPO) en
codimension trés grande (=3). On peut vérifier que la preuve de 8.3, i) ne
s’adapte pas si on remplace (TPP) par (TPO).

ii) Il est remarquable que la borne figurant dans 8.3, ii) soit C(X)—1 ou
C(X) est le nombre chromatique de X (voir [RL]) et que si N est la multiplicité
de la premiere valeur propre du Laplacien sur X, I'inégalité 8.3, ii) est une
conjecture de Y. Colin de Verdiére ([CV2]).

Appendix A

1) Pour les opérateurs considérés, du type Laplacien pour des métriques C”
avec potentiel C*, noté L, on définit la notion de fonction de Green modifiée
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(voir [UK]). Ses propriétés les plus utiles dans notre cadre sont:

a) G(y, x)=G(x, ).

b) [x G(y, x)Lf(x)dx =f(y) si [x u(x)f(x) dx =0 pour tout u € ker L.

¢) fx G(y, x)u(x) dx =0 pour u € ker L.

Pour un Laplacien sur une variété compacte, par exemple, si (@;) (resp. 4;)
désignent les fonctions propres (resp. les valeurs propres) de L et soit A un
nombre réel différent de 4;, on appelle R(A; x, y) le noyau résolvant de L — A4, on
a alors

*)@:i(y)

R(kixy) =X H 25

qui a un podle en A= A,;. La fonction de Green modifiée pour L — u ot u est une
valeur propre de L est:

@:(x)pi(y) q),(x)qo.(y)
hm{R(A X, y)— 12” ) } ;2“ =

En particulier, la singularité sur la diagonale de la fonction de Green modifiée
est la méme que celle de la résolvante. Enfin on a

(L—u)G =04 — ;2: @i(x)p(y) =6 +h(x, y).

2) 11 résulte du résultat général [BS] que pour les opérateurs considérés, si
(x4, ..., x,) est un systtme de coordonnées au voisinage de y, centré en y,

o o

G(0, x)=
OX - JX % (0, x) E) i),

J(x) (A1)

ot a=(ay,...,a,) est un multi-indice et J la solutlon fondamentale du
Laplacien dans R” (n = dim X).

Notons que si les coefficients de 'opérateur ne sont que Holder continus, on
peut toutefois écrire (A1) avec || =X &; <2, qui est 'ordre de 'opérateur (voir
[BS)).

3) Si v est orthogonale a ker (L) alors

Lv=w&u(x)= LG(x, yw(y)dy
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par définition de G. De plus on peut dériver sous le signe intégral,

1) = | 56, yW(y) dy.

Appendix B

On se propose dans cet appendice de calculer la dérivée de I'opérateur A,
apparaissant dans le paragraphe 4.
Rappelons que

Ae —_ e(n/2)ef Aee—(n/Z)ef

ou A, est le Laplacien pour une métrique

g.=e’%g

alors
. d n n )
=— o=—fFA——=Aof +
A dgAsle_o 2fA 2Af A

En coordonnée locale on a
1 5
A =— =y (3:(g20, 3;)) avec O, = Vdet (g;)
d’ou
Au=—e"907[3(e" PO 5,u)]

et donc

Au = —nf(Au) + (n — 2)f Au — (n —2)(df | du)
Au = =2f (Au) — (n — 2)(df | du)

enfin,

A(w)=5(Aw) = Afu) = 2 (Au) ~ (n = 2)(df | du)
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en utilisant la formule

A(fu) = (Af)u + f(Au) - 2(df | du)

il vient

Alw) =27 (au) =5 AGw) - 27 (aw) + (*52)
X [A(fu) - u(4f) - f Au]
et

Atw) = - () - fau) - (22 Jucan.

Ce calcul figure déja dans la référence [B—W].

Appendice C

Dans cet appendice, on se propose de montrer que les métriques de classe C*
sont denses dans la sous-variété W définie dans le paragraphe 2.

Plus précisement, rappelons que #*(X) est le cone des métriques rieman-
niennes de classe C* sur la variété différentiable (de classe C) compacte et
connexe X. Soit g une métrique de M*(X) telle que I'opérateur de Laplace—
Beltrami correspondant posséde la valeur propre A,>0 avec la multiplicité
exactement N. On suppose de plus que A, est stable pour les perturbations de
métriques quelconques (voir le paragraphe 7) alors au voisinage de g

W = {h € M*(X), proche de g/A, est valeur propre
de A, avec multiplicité N}

est une sous-variété de Banach. On a alors

C.1. THEOREME. L’ensemble W N M™(X) est dense dans W pour la topol-
ogie de M*(X). Si de plus X est munie d’un atlas analytique réel alors W N (X)
est dense dans W, ou SA(X) désigne I’ensemble des métriques riemanniennes

analytiques réelles sur X.
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C.2. REMARQUE. Un théoréme désormais classique permet d’affirmer que
si X est munie d’un atlas analytique réel alors X peut-€tre munie de métriques
riemanniennes analytiques réelles.

Preuve. 1) Supposons I’existence d’une famille d’opérateurs de régularisation
K,, c’est-a-dire satisfaisant a:

K, est opérateur de I'espace T*(X ) des tenseurs symétriques d’ordre 2 de
classe C* dans I(X) (ou I*"*(X)) et pour tout h € 7*(X), K(h)—=5>h (dans
T*(X)).

Alors soit ge W N #*(X), lapplication ¥ du paragraphe 1 qui a une
métrique h € M* proche de g associe la forme quadratique sur I’espace vectoriel
de dimension finie E, (espace propre de A, correspondant a la valeur propre A.)
est une submersion (car A, est stable).

formes quadratiques
sur

MEX) T 4

Y

)

De plus W est, au voisinage de g, la fibre ¥~'(A((., .)).

Choisissons une transversale 7 a W en g, c’est-a-dire un ouvert borné,
contenant g, d’une sous-variéte de dimension N(N +1)/2 transverse & W en g
(par exemple un ouvert d’un sous-espace vectoriel de dimension finie, transverse
a Wen g). Alors ¥ est un difféormorphisme de classe au moins C' (on rappelle
que k est trés grand) de T sur un voisinage 0 de A(.,.) dans Q(E,) (formes
quadratiques sur Ej).

Définissons alors la famille d’opérateurs

Y,:T— Q(Ey)
par
W, (h) = W(K.(h)).

Il résulte des propriétés de K, et ¥ que

uniformémentsur T
v, t—0 — W
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Le lemme topologique de [CV2] permet alors d’affirmer que, pour tout ¢
suffisamment petit, il existe A, € T tel que,

Y.(h,) = Y(K.(h))= AO(- ’ )
c’est-a-dire
K,(h,) e W N M>(X).

De plus K,(h,) est proche de A, si ¢ est petit, qui est lui-méme proche de g si T est
une ‘“‘petite transversale”.

2) 11 ne reste qu’a exhiber un exemple de famille K,. La variété X peut étre
munie d’'une métrique g, de classe C*, celle-ci définit une connexion de Levi-Civita
dont les coefficients sont de classe C” (dans une carte convenable). Alors, on
peut

i) étendre la métrique g, au fibré lisse dont les sections sont les tenseurs
symétriques d’ordre 2, c’est-a-dire S*(T*X);

ii) étendre la connexion de Levi-Civita en une connexion D, & coefficients
C=, sur les sections de S*(T*X).

Ceci pemet de définir un Laplacien de Bochner

A=D*D

tA

opérant sur les sections de S*(T*X), et lopérateur e ** est infiniment

régularisant et converge fortement vers Id. On prend donc,
K,=e"a

Le cas analytique réel se traite de maniére analogue.
On fait de méme avec les perturbations conformes (resp. par des potentiels) si
la métrique de référence est C* ou analytique réelle.

Appendix D

Nous nous proposons dans cet appendice de montrer que les propriétés
d’immersion et de plongement dans le cas conforme sont vraies si on remplace les
fonctions propres des opérateurs e™? A,e™"? (g est la métrique e”g,) par
celles de A,.

Le fait que les espaces L*(X, v,,) et L*(X, v,) ne soient pas isométriques
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n’intervient que dans la détermination de la condition de stabilité. Remarquons
avant de commencer que pour g =e¥g,

A, a Ao pour valeur propre avec la multiplicité N

A, =e"" A e~ 3 ), pour valeur propre avec la multiplicité N.

Soit E’ I’espace propre correspondant pour A, et E celui de A,. Si f est petite
alors E est proche de E' qui est proche de E,, c’est-a-dire que E est un graphe
sur E,. Notons que cette notion n’utilise pas la structure hilbertienne de
L*(X, v,). On peut alors choisir une isométrie canonique (pour L*(X, v, )) entre
E, et E comme dans la section 1.

a) Immersion. L’application ¥ n’a pas 0 pour valeur réguliere si il existe un
point (x¢, &) € T, X et une fonction propre v € E,, tels que

d,,ui(5o) = 0 pour tout i
(u;) étant une base de E, et,
d,,0(&o) = 0 pour tout f € ToW.
Comme précédemment v est donné par I’équation

{(A — Ao)V = — Av pour tout f € LW
v orthogonale a E,

ce qui conduit a

0= L 8,G (xo, )2 (Av) + (n — 2)(df | dv))(y) dy

utilisant le calcul de A effectué dans I’appendice B. D’ou pour tout f € TyW

0= [ 3:660, )| 220t - ET2 A1) ~ dof — 0 20| 0)

c’est-a-dire

0= [ 31660 [ sM() - (F52)(a - b )




Propriétés génériques des fonctions propres et multiplicité 585

pour tout f orthogonale 3 M(E?). 11 existe donc d € E3 tel que

n-—2
2

M(v3,6) - (> )o(4 - 4)(3,6) = M(d) (D1)

au sens des distributions. Comme précédemment on a
(A - }.()) 316 = alé(xo) + alh(xo, y) = alﬁ(xo)
avec les notations de la section 4. L’égalité (D1) conduit a

n-—2
2

M(v 3,G) — ( )(U(xo) 8180ep + 310(xX0)B(ep) = M(d)

en simplifiant par (n —2)/2 et en utilisant le fait que 9,v(x,) =0, car v € E,, on
obtient

(A + 7)(v 8:G) — v(xo) 818,y = k € C7(X)

avec y =4Ay/(n —2), sin>2.
D’ou en développant,

QAo+ y)U 3,G —2(dv | d 3,G) =k (D2)

I’expression (dv | d 3,G) est une distribution qui est C* en dehors de x, et du
type valeur principale en x, car 3;v(x,) = 0 (il suffit de calculer le terme principal
en coordonnées locales). En dehors de x, le membre de gauche de (D2) doit donc
étre borné.

Etudions ses singularités en x, dans le cas n>2 en prenant un syst¢tme de
coordonnées normales centrées en x,, on a comme précédemment

_ (n - 2)Cn
Iy
v(y) =v(0) + pi(y) + p2(y) +0(Iy %)

alG(O’ y) =~

341

ol p;(y) est un polynéme homogene de degré i. On a par ailleurs ([BS]),

(n —Z)dy1+n(n -2)

o Iy yirdr poury #0

daIG(O) y)~ -
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ou r=|y| et en supposant que C,=1 pour simplifier le calcul. Enfin par
hypothese 3, p,(0) =0.
Le terme prédominant est donc (si v(0) #0)

2n(n—2 2n(n —2
—‘“I—;l",,‘a—)hpx()') = ——TE;F.TE_)}'I(’ dr | p1)

car n > 2 et degré (p,;) = 1. Ce terme n’est borné que si
p1=0.
Le terme principal est alors

240+ 7)(n —2)v(0 2(n—2 2n(n -2
__( 0 ?ﬁ,ln )v(0) 1+_(_|;I_;_).alp2——l;T:2—2)’1(2P2)

soit

n
(| |n+z)[(2?to+ Y |y 12 v(0) — 2 |y 8, p, + 4ny, p,]

comme précédemment ce terme ne peut étre que nul, donc
»[(2ho +v) |yl v(0) +4np;] =2|y|* 8, p,
y; divise le membre de gauche et ne divise par |y/|?, il divise donc 3, p,, posons
01p2 = 2ay, (D3)
on a donc en simplifiant par y,
v(0)(240 + 7) |y|* — 4a |y|* = —4np,.
Le polynéme p, est un multiple de |y|?, de ’égalité (D3), on déduit que
pAy)=alyl’
par ailleurs I’équation

Av = Agv
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donne
AEp2 = A,QU(O) = —2na

ol Ay est le Laplacien euclidien dans RY. D’ou

A+ y)v(0) = (n2-112) Aov(0) = —-4npl—2;|—yi-)- +4a

(n—1)
n

=—4a(n—-1)= 249v(0)

ce qui est équivalent a

n n-—-1
n-2) n

si v(0)#0 (n>2).

Cette égalité est impossible, on a donc v(0) =0. L’égalité de départ se ramene
donc a

v(y) 8,G(0,y) e C”

dont on a montré I'impossibilité dans la section 3.

Le cas n=2 est plus simple, en effet dans ce cas 'opérateur M est la
multiplication par 2A,.

b) Plongement. Ce cas est laissé au lecteur.
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