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Link genus and the Conway moves

MARTIN SCHARLEMANN! and ABIGAIL THOMPSON!*?

Let L,, L_ and L, be three links in S related by the standard Conway
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Figure 1

The Conway potential functions V,(z), V_(z) and Vy(z) of the three links are
related as follows [Co]:

V.(2) = V_(2) = 2Vo(2)

Hence in particular, at least two of V., V_, and zV, have the same degree,
which is no smaller than the degree of the third.

A Seifert surface for an oriented link L in a 3-manifold is a compact oriented
surface none of whose components are closed and whose boundary is the link.
Define (L) to be the maximal Euler characteristic of all Seifert surfaces for L. If
L is a non-split alternating link in S° then deg (V) =1— x(L) [Cr]. Hence if L.,
L_ and L, are all non-split alternating links, then two of x(L,), x(L.) and
x(Lo) — 1 are equal and are no larger than the third. We will show that this
relation remains true for arbitrary links. Two consequences are:

a) the height of the Conway skein diagram for a link L is bounded below by
—x(L). In particular, this gives an unexpected lower bound for the complexity of
calculating the new oriented knot polynomials.

b) doubled knots are precisely those knots whose genus and unknotting
number are both 1.

! Supported in part by a grant from the National Science Foundation.
2 Support of the Lady Davis Fellowship Trust is gratefully acknowledged.
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528 MARTIN SCHARLEMANN AND ABIGAIL THOMPSON

1. The main theorem

1.1. DEFINITIONS. Following Thurston [Th], define the complexity x~(S)
of an oriented surface S to be —x(C), where C is the union of all non-simply
connected components of S and x(C) is its Euler characteristic. For M a compact
oriented 3-manifold and N a (possibly empty) surface in dM, assign to any
homology class « in Hy(M, N; Z) the minimum complexity x(a) of all oriented
imbedded surfaces whose fundamental class represents a. The function
x: Hy(M, N; Z)— Z, is called the Thurston norm. An oriented surface (S, 3S) c
(M, M) is taut if it is incompressible and x~(S) =x([S, 3S]) in H,(M, n(3S)),
where 7(3S) is a bicollar neighborhood of 3§ in oM.

1.2 LEMMA. A Seifert surface S for a link L is taut if and only if x(S) = x(L).

Proof. Let L, be the maximal sublink of L which bounds an imbedded
collection of disks D, with interiors disjoint from L. By an innermost disk
argument we can take these disks to have interiors disjoint from any given
incompressible Seifert surface S for L. Any component of L, must then bound a
disk in S, since S is incompressible, and any disk component of § must have
boundary in L, by maximality of L,. Hence x (S)=d —x(S). Then an
incompressible Seifert surface minimizing ¥~ must maximize y and vice versa. ||

1.3 DEFINITION. An arbitrary link L is isotopic to the distant union of its
non-splittable sublinks. The number of such non-splittable sublinks is called the
splitting number of L.

1.4 THEOREM. Suppose L,, L_, and L, are three links related by the
Conway moves at a crossing. Then two of x(L.), x(L-) and x(L,) — 1 are equal
and are no larger than the third. The splitting numbers of the same pair of links are
equal and are no larger than that of the third.

Proof. The proof is a modest variation of ideas in [Ga;] and [ST]. Let D be a
crossing disk for the crossing, i.e. a disk which intersects L, in precisely two
points, of opposite orientation (see [ST, 1.1] or figure 2). Note that the knot in S>
obtained by doing —1 surgery on K = 3D is precisely L_.

Figure 2
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An innermost circle argument shows that any essential sphere in S°—
(L+UK) can be isotoped off of D in $°—L,. Any sphere in $>— (L, UD)
which separates a sublink of L, from K persists in L_ and L,. Hence, with no
loss of generality, we restrict further to the case in which $°~ (L, UD) is
irreducible.

Let M=S>—n(KUL,) and let M,, M_ and M, be the manifolds obtained
from M by filling in a torus along dn(K) with framings «, —1, and 0 respectively.
Then M, =S>—n(L,) and M_=S8*—n(L_). It is not quite true that M,=
S? — n(L,), but there is a close connection (see claim 2 below). Let S be a Seifert
surface for L, in M which has maximal y among all Seifert surfaces for L. in M.

CLAIM 1. At least two of M,, M_ and M, are irreducible; in those two
manifolds, § still maximizes .

Proof of claim 1.

CASE 1. L, lies in a knotted solid torus t in S*>—n(K) whose linking
number with K is non-trivial and 9t is incompressible in 7— L, (i.e. T is a
companion of L.).

Since L, pierces D twice, with opposite orientation, in fact t pierces D
precisely once (in a subdisk of D). Then D — 7 is an annulus whose boundary
circle on n(K) has slope 0. Since 7 is knotted no other slope on d7(K) can be
that of a boundary circle of an essential spanning annulus in M — 7. Hence T = 3t
is incompressible in M, and M_.

Subclaim (a) M. is irreducible.

Proof. M, — 7 is irreducible since M, — 7 is a knot complement. t— L, c M
is irreducible since M is irreducible and 7 is incompressible. Since M, is obtained
from gluing M, — 7 to T — L, along the incompressible 7, M, is irreducible.

Subclaim (b) S maximizes y in M,.

Proof. The argument is essentially that found in [Sh]: Suppose X is a Seifert
surface for L, in M,. Without decreasing x(2) do 2-surgeries to X so that each
component of XN T is essential in 7. Let 2y =3N7 and Xy =23 — 1. Since K
and L, have trivial linking number, 2' N T is homologically trivial in 7, hence it is
possible to cap off the components of 32y lying in T with annuli near T to get a
Seifert surface X' which is disjoint from K. On the other hand, no component of
Xy is a disk, since T is incompressible in M,, so each component of Xy has
non-positive Euler characteristic. Hence x(Z) = x(2’) < x(S), by definition of S.

This verifies claim 1 in this case.

CASE 2. No such torus exists.
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Then according to [Ga,, Cor. 2.4] there is at most one way of filling in 9n(K)
to get a manifold which is either reducible or in which S is not taut. This and 1.2
verify claim 1.

Next consider the connection between M, and S> — n(L,):

Isotope S so that it intersects D in an arc « joining the boundary components
of n(L,)ND. Define S, to be the surface obtained from S by deleting a
neighborhood of « in S. Then L,=3S,, i.e. S, is a Seifert surface for L,.
Equivalently, S>— n(S;) is obtained from S°— n(S) by attaching a 2-handle to
an(S) along the circle g = dn(S) N D = dn(a) N D (cf. Figure 3).

CLAIM 2. If M, is irreducible and S is taut in M, then $>-n(L,) is
irreducible and §; is a taut Seifert surface for L,.

Proof of claim 2. D — n(«) is an annulus with boundary components 8 and
K, and the end of the annulus at K has framing 0. Hence 8 bounds in M, a disk
D', the union of this annulus and a meridional disk of the solid torus filled in to
produce M, from M. Attaching to S° — n(S) a 2-handle along B is equivalent to
deleting from M, — n(S) a neighborhood of the disk D’. Now if M, is irreducible
and § is taut in M, then the induced sutured manifold structure on M, — n(S) is
taut (cf. [Ga,], [Sc]). D' is a disk in M, — n(S) whose boundary crosses precisely
two sutures so it is a product disk. Deleting product disks preserves tautness
[Ga,, 3.12], [Sc,4.2]. Hence (M, — n(S)) —n(D')=S>—n(S,) is a taut sutured
manifold. But this implies that S> — n(L,) is taut (i.e. irreducible) and that S, is
taut [Ga,, 3.6], [Sc, 3.3].

The theorem follows from Claims 1 and 2, together with the observation that
a Seifert surface for L_ in M_ corresponds precisely to a Seifert surface for L_ in
S

2. Application to skein trees

Any link L can be reduced to unlinks by a series of ‘“‘skein moves”, that is,
replacing L, (resp. L_) with the pair of links L_ (resp. L,) and L,. To any such
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process (called a skein decomposition) we can associate a binary tree [Gi, §8],
called a skein tree, with a node for each link and edges between a link and the
pair of links obtained by a skein move.

2.1 DEFINITIONS. Let T be a skein tree for a link L. Then there is one end
(the root) A of T representing L; the other ends (called leaves) {&;} represent
unlinks. Define the width w(¢;) of a leaf to be the number of components in the
unlink it represents, and its height h(e;) to be the number of edges in a path in T
from A to ¢g. Define h(T) to be max {h(¢;)} and the height hA(L) to be
min {h(T) | T a skein tree for L}.

Similarly the weight (height — width) u(e;) of g is h(g)— w(e), u(T)=
max {u(g; | & in T} and u(L) = min {u(T) | T a skein tree for L}.

2.2 Remarks. Note that always u(eg;) <h(e;), so u(L) <h(L). Since any edge
in a path in T from A to ¢; represents an increase by at most one in the number of
components of the link, u(L)= —|L|, where |L| denotes the number of
components of L.

2.3 PROPOSITION. u(L)= —x(L).

Proof. The proof is by induction on the pair (|L|+ u(7T), h(T)), in
lexicographic order, taken over all skein trees T for L. Note that both entries are
non-negative, and if both are zero then L is an unlink. For an unlink
u(L)=—|L|= —x(L).

For the inductive step, let T be a tree for which u(7)= u(L), and which,
among all such trees, has minimum height. With no loss of generality assume
L=L,. The subtrees T_ and T, of T which are skein trees for L_ and L,, each
have height strictly less than T; also u(7_)+|L_|<u(T)+|L| and u(Tp) +
|Lol = u(T)+|L|. By induction 2.3 applies to L_ and L, so u(L,)=
max {u(L,), u(L_)} + 1 =max {1 — x(Lo), 1 — x(L-)}. Now consider the pos-
sibilities given by 1.4: Either

a) —x(L.+)=—x(L-)=1- x(Lo) in which case u(L.)=1-x(L_)>—x(L.)

b) —x(L+)=1—x(Lo)>—x(L-) in which case u(L.,) =1~ x(Lo) = —x(L+)

¢) —x(L.)=1—x(L¢)> —x(Ly) in which case p(L,)=1-x(Lo)>
—x(L+)- |l

2.4 Remark. For d(L) the degree of the Conway polynomial, it is classical
[To] that d(L) = —x(L) + 1. An argument analogous to that of 2.3 applied to the
recursion formula for the Conway polynomial shows d(L) = h(L). Hence 2.2 and
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2.3 complete the picture:

d(L) =< —x(L)+1=pu(L) + 1= h(L).

3. Characterizing doubled knots

Consider the alternate picture of the Conway moves obtained by giving a
half-twist to all the diagrams of Figure 1:

N\ "/
Ko~

L. Lo
Figure 4

There is the following addendum to 1.4:

3.1 PROPOSITION. When x(L.)= x(Lo) —1<yx(L_) there are taut Seifert
surfaces S' for L, and S for L, which appear as in Figure 5 near the crossing, i.e.
S’ is obtained from S by plumbing on a Hopf band: (An analogous conclusion

holds when y(L_) = x(Lo) —1<x(L,).)
\/ |

L, Lo

Y

Figure 5

Proof. Consider the crossing circle K’ for L, shown in Figure 6 below (note
this is not a crossing circle for the crossing above). For the crossing change
determined by K' note that L_ is obtained from L, by smoothing, so the roles of
Lo and L_ in the ensuing argument are the reverse of those in 1.4.
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Figure 6

Let S be a Seifert surface for L, which is taut in $> — K'. Then it appears as
shown in Figure 6.

CLAIM. S is a taut Seifert surface for L, in S°.

Proof of claim. Claim 1 of 1.4 shows that S remains taut either in S or in the
manifold obtained by doing 0-surgery to K'. In the latter case, it follows from 1.4
Claim 2 that the surface S, for L_ obtained by altering S locally as in Figure 6 is a
taut Seifert surface for L_ in S°. Note x(So) = x(S) + 1.

Thus if S is not a taut Seifert surface for L, then x (L) > x(S) = x(S) — 1 =
x(L_)— 1. But our hypothesis includes y(L,) < x(L.)+ 1. Thus x(Lo) = x(L_).
But this is impossible, because y(L) has the parity of |L|, and |L,| and |L_| have
different parity. This verifies the claim.

Since S is a taut Seifert surface for Ly, x(L.)=x(Lo)—1=x(S)— 1. Then
the Seifert surface S’ for L, obtained from that of S by plumbing on a Hopf band
as shown in Figure 5 has x(S') = x(S) — 1= x(L.) and so is taut. ||

3.2 COROLLARY. A knot is a doubled knot if and only if its genus and
unknotting number are both 1.

Proof. 1t is obvious that a doubled knot has genus and unknotting number
both 1.

So suppose K has genus and unknotting number both 1. Then with no loss of
generality there is a crossing change for which K=K, and K_ is the unknot.
Since —1=x(K,)<x(K.) it follows from 1.4 that x(K,) = x(K.) + 1=0. That
is, an annulus is a Seifert surface for K, of maximal Euler characteristic. Then by
3.1 there is an annulus Seifert surface for K, whose core, when doubled, gives
K=K,. |

(Remark: This has since been proven independently by Kobayashi [Ko], using
similar methods.)
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3.3 DEFINITION. A knot k is totally knotted, if, for any minimal genus
Seifert surface of K with regular neighborhood n(S) in $3, d7n(S) is incompres-
sible in $> — n(S).

For an example, see [ST, Fig. 1.1].

3.4 COROLLARY. No crossing change can lower the genus of a totally
knotted knot.

Proof. Suppose changing a crossing on the knot K reduced it’s genus. With no
loss take K = K, so x(K,) < x(K_). Then for the taut Seifert surface S’ for K in
Figure 5, an(S’') is clearly compressible in $*— n(S’), so K is not totally
knotted. ||

P.P.A: We have shown that links arising from the Conway moves have
related Euler characteristics. This relation is easily demonstrated for non-split
alternating links by the simple iteration formula of the Alexander polynomial.
Here we have demonstrated it for all links using the deep machinery of Gabai.

For any non-split prime alternating link L the Jones polynomial can be used to
show that the minimal crossing number c(L) is realized by an alternating
projection without nugatory crossings [Mu]. It follows that if L,, L_ and L, are
all non-split prime alternating links and an alternating projection of L., is chosen
for which L, is irreducible, then c(L,)=c(Ly) +1=c(L.).

Is there a geometric invariant of arbitrary links, specializing to crossing
number for alternating links, which satisfies a similar inequality?
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