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Composantes de petite codimension du lieu de Noether-Lefschetz

Claire Voisin

0. Introduction - Rappels

0.1 Soit UczH°(P3, 6Pi(d)) l&apos;ouvert paramétrant les surfaces lisses, et soit
yd c Y le lieu de Noether-Lefschetz: Sfd {F e [//la surface S d&apos;équation F
satisfait PicS=ÉZ}. ïfd est une union dénombrable d&apos;ensembles algébriques; le

théorème de Noether affirme que &amp;d ^ U pour d &gt; 4.

Dans [3] et [7] il est prouvé que pour d &gt; 5 toute composante de % est de

codimension au moins d — 3, l&apos;égalité étant réalisée seulement par la famille des

surfaces contenant une droite. On prouve ici:

0.2. THEOREME. Les composantes de yd sont de codimension strictement

supérieure à 2d — 7, à l&apos;exception de la famille des surfaces contenant une droite
(codimension d — 3), et de la famille des surfaces contenant une conique
(codimension 2d — 7).

0.3. Rappelons la description locale des composantes de îfd (cf. [7], [9]): Pour

chaque composante M de Sfd il existe localement une classe A primitive entière de

type (1,1) telle que M soit définie schématiquement par la condition &quot;A reste de

type (1,1)&quot;. On notera M Sfdtk. Si QeSfdtk9 soit V un voisinage de 0 dans U;
soit Â la section plate du faisceau naturel H\ sur V, prolongeant la classe

AoeH2(S0, Z). Soit F2W2c W2 le sous-fibré holomorphe de W2 H\® Ov, de

fibre H°(Ûs) c H2(St, C) en t e V. Alors A, est de type (1,1) équivaut à: A, est

orthogonale à F29€2t). On en déduit que Sfdik est définie localement par r h20

équations. Les travaux récents rendent plausible la conjecture suivante, proposée

par J. Harris.

0.4. CONJECTURE. Pour chaque d il existe un nombre fini de composantes
de Sfd qui ne sont pas de la codimension (naturelle) r.

Notons que le théorème 0.2 prouve la conjecture 0.4 en degré d 5.

0.5. La différentiation des équations 0.3 fournit immédiatement la description
suivante de l&apos;espace tangent de Zariski TSfdtm en 0: Soit HkczH\Qs^pnm9
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516 CLAIRE VOISIN

l&apos;hyperplan orthogonal à A e H1(Osyrim, où prim dénote la cohomologie
primitive de Sq. On a (tenant compte du fait que pour d &gt; 5 toute déformation de
Sq est projective):

où p est l&apos;application de Kodaïra-Spencer:

et &quot;•&quot; dénote le cup-produit:
0.6. Soit Fo le polynôme définissant la surface Soi notons /* la composante de

degré k de l&apos;idéal jacobien de Fo, Sk H°{€^{k)) et Rk 5*//*. On a des

isomorphismes naturels: (cf. [10]):

tels que le cup-produit précédent s&apos;identifie à la multiplication dans R&apos;, et un
isomorphisme R4**&apos;8 » C, tel que la forme d&apos;intersection sur H\Qs^ s&apos;identifie au

produit:

Notant Hk c S24&quot;4 l&apos;image réciproque de l&apos;hyperplan Hx c R24&apos;4, 0.5 se réécrit de

la façon suivante:

{P € SdlP ¦ S&quot;-* cz Hx) &amp;[ÛX : S&quot;&quot;4].

Dans la suite, l&apos;hyperplan Hk étant donné, on notera pour tout k ^ 2d — 4

0.7. La proposition principale de [3] et [7] s&apos;énonce comme suit:

0.8. PROPOSITION. Soient donnés des hyperplans H^cR24-4, H^c
comme plus haut; si codim Ed 2s d ~ 3, il existe une unique droite A c P3 telle que
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Ed-4 Is{d-4)jff/a composante de degré d-4 de l&apos;idéal de A. De plus A

satisfait la condition suivante:
0.9. rang(/d-1(F0)h) 2.

0.10. Inversement, une droite A satisfaisant la condition 0.9 détermine
uniquement un hyperplan Hx de R2*&apos;4, (donc une classe kA e H1(QS()prim, définie
à un coefficient près), par la relation: Hx IA(2d - 4) + J2d~A. Les espaces Ek de

0.6 satisfont alors:

Ed_A lA{d-4) et Ed IA(d) + Jd.

0.11. Le texte est organisé de la façon suivante:
En paragraphe 1, on fixe une composante SfdX de codimension ^2d — 7, un

point générique 0e&amp;dX; on a: codim 75^(0)^ codim S^A&lt;2d-7, d&apos;où un
hyperplan Hx comme plus haut, satisfaisant d&apos;après 0.5 la condition: codim Ed &lt;

2d — 7. On montre alors la proposition suivante:

PROPOSITION 1.1. On a les deux possibilités suivantes:

(a) codim Ed 2d — 7, et Ed contient IP(d), la composante de degré d de

Vidéal d&apos;un plan P de P3. Le plan P est alors uniquement déterminé par la donnée
de HXf ou de Ed.

(b) codim Ed d-3, et l&apos;on est dans la situation décrite en 0.8, 9, 10.

D&apos;après le théorème principal de [3], [7] le cas b) correspond d&apos;une part à la

composante de &amp;d constituée des polynômes s&apos;annulant sur une droite (cas

codimSfdX d — 3), d&apos;autre part à d&apos;éventuelles composantes non réduites de Sfd

(cas codim SfdX&gt;d — 3, codim T&amp;dtX d — 3 en tout point de 5^fA). La section 2

montre la non existence de ces composantes.
La section 3 étudie le cas a), qui correspond à des composantes réduites de

Sfd, puisque l&apos;on a génériquement 2d -1 codim T5^A&lt;codim 5^,A^2rf-7.
On montre essentiellement la proposition suivante:

PROPOSITION 3.0. Soit Sfd&gt;k une composante de codimension égale à2d-7
satisfaisant a). Soit F un point générique de £fdfX&gt; Soit P le plan fourni par Vénoncé

a). Soit C la caurbe plane d&apos;équation F|P. Alors tout polynôme G eU s&apos;annulant

sur C est dans !?dfX.

On conclut alors par un argument semblable à celui de [2], que C est

réductible, puis par un compte de dimensions, que C a une composante de

degré 2.
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1. Preuve de la proposition 1.1

1.2. L&apos;énoncé est évident pour d 5, du fait de l&apos;accouplement parfait:
S1/E1 ® S5/E5-*S6/HX; on a alors d - 3 2, et 2d - 7 3. On ne peut pas avoir
codim Ei 1, par la proposition 0.8; on a donc les seules possibilités:

a) codimE1 3 2d-7 codimE5&gt; et Ex /p(l) pour un plan P de P3.

b) codim Ex 2 d - 3, et l&apos;on est dans la situation de la proposition 0.8.
On supposera donc dans la suite d ^ 6.

1.3. LEMME. Ed-4 possède une base locus de dimension positive.

La démonstration occupera les paragraphes 1.3.1-1.3.10. On aura recours aux
théorèmes suivants (cf. [1], [3], [5]):

1.3.1. Fixons un entier d; pour tout entier c écrivons uniquement:

avec k&apos;-1 et *•&gt;*-*• rentier ô

étant uniquement déterminé par c. Notons alors:

kd-l
\d-l ô )&gt;

et

Soit W c H°(Pr, Cpr(d)) un système linéaire de codimension c. Notons cH la
codimension de W\H, pour H hyperplan générique de P^ et ct la codimension de

/f°(&lt;?p&lt;i)). W dans H°lûP^d + î)). On a:

1.3.2. THEOREME (Green). cH&lt;c&lt;rf).

1.3.3. THEOREME (Maeaulay-Gotzmann). c1&lt;c(rf&gt;, ef « l&apos;égalité est

réalisée, on a pour tout î, c, •

1.3.4. Considérons l&apos;espace £d_4 c H°(P3, &lt;7pr(d - 4)). Par la dualité:
Sk/Ek**(S7*~4~~k/E2d-.4-k)*&gt; on a: c codim Ed_4 codim £d &lt; 2rf ~ 7. Le
théorème 1.3.2 entraîne immédiatement:
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Appliquons alors le Théorème 1.3.3 à la restriction Ed_4\H pour H un plan
générique dans P3: on obtient:

1.3.5. cf&lt;2, avec égalité si et seulement si cf 2, VieN, où cf
codim H°(OH(i)) • Ed.4{H.

1.3.6. Supposons par l&apos;absurde que Ed_4 a seulement des points base isolés.
Alors Ed-A\H n&apos;a pas de point base pour H générique: on en déduit que pour k
assez grand: H°(6H(k)) - Ed_4\H H°(6H(k +d-4)), ce qui entraîne que
l&apos;égalité est impossible dans 1.3.5.

On a donc: 1 ^ codim Ed^3\H et, par le même raisonnement, codim Ed-2\H 0

pour H générique.
1.3.7. Pour chaque QeS1, notons i*Q:Sk/Ek-*Sk+1/Ek+l la multiplication

par Q. Remarquons que \ikQ est duale de \j?Q~s~k. La conclusion de 1.3.6 s&apos;écrit

encore: pour Q générique dans S1, et k ^ d — 3, \ikQ est surjective. Par dualité, on
en déduit:

]Ug~3 est un isomorphisme. (*)

On a d&apos;autre part, d&apos;après 1.3.6, codim Ed-3\H^1, pour H générique, soit:

corang fxff4 &lt; 1, pour QeS1 générique, et donc: dim Sd~3/Ed-3 &lt; 2d - 6.

1.3.8. Fixons ôo^S1, satisfaisant (*), et pour Q eSl, notons:

V(i 04;3)&quot;1 • /4&quot;3 : Sd-3/Ed_3-» Sd~3/Ed_3.

On vérifie aisément que les vQ forment un ensemble linéaire commutatif
d&apos;endomorphismes contenant Id. L&apos;hypersurface 2 de S1, de degré ^2d — 6,
définie par l&apos;annulation du déterminant est donc une union de plans Pt comptés
avec multiplicité ar

1.3.9. Fixons i et soit Q e Pt, définissant l&apos;hyperplan HQ de P3. Notons ckQ la
codimension de Ek\Hq\ alors Cq~2 corang jUq~3 dim Ker \idQ3 du=té corang \idQ2

cdQX&gt; et ces nombres sont &gt;0 par définition de Pt. Supposons cff2^d — 3: alors
crf-2&lt;rf-2&gt;=c^-2 (c^-2&lt;rf-2&gt;)&lt;^-i&gt; u théorème 133 s&apos;applique alors et
entraîne:

Ed-lWQ H°(0Hq(1)) • Ed.2lHQf et codim (H°(€HQ(k)) - ^-2,^) &gt; 0, V* e M.

Cela entraîne que £j-i|hg doit avoir des points base, ce qui est absurde car

1.3.10. L&apos;hypothèse faite en 1.3.9 est donc absurde, et l&apos;on doit avoir
— 3. Cela entraîne que la multiplicité oct est strictement supérieure à



520 CLAIRE VOISIN

d — 3. Comme le degré de 3) est au plus 2d — 6, on en déduit que 3) est en fait un
plan multiple Pt.

D&apos;autre part, pour QePx&gt; on atdimKer[iQ~3&gt;d — 3; on en déduit que le

polynôme minimal de vQt pour Q e Pu est de la forme Xk, avec k &lt;d — 3. Or
ceci nous mène encore à une contradiction: en effet, soit xoeP3 le point
correspondant au plan /^cS1; on vérifie facilement que Vq 0, pour QePx
entraîne: /*0 • Sd&apos;3cEd_3+k, et comme A:&lt;d-3, /^~3 • Sd&apos;laHk. Mais #A

contient également Sd~3 • Jd~x, et Z^&quot;1 est sans point base. Comme dans [7], on
voit facilement que li~3 • Sd~l + 5rf&quot;3 • J*&quot;&quot;1 S2&apos;&apos;&quot;4, ce qui est absurde.

L&apos;hypothèse 1.3.6 mène donc à une contradiction, et le lemme 1.3 est donc
démontré.

1.4. LEMME. On a seulement les deux possibilités suivantes:
i) £&lt;/_4 c Ic(d — 4), où C est une conique de P3;

ii) // existe une droite A e P3, unique, telle que Ed__4 &lt;= IA(d - 4).

DEMONSTRATION. Comme d&gt;6, il est facile de voir que £d_4, étant de
codimension ^2d — 7, ne peut pas s&apos;annuler sur une surface de P3. Donc son base
locus contient une courbe; comme codim Ed_4 &lt; 2d - 7 le lemme de [8], p. 115

montre que cette courbe doit être plane, et il est facile de voir que cette courbe
ne peut être qu&apos;une droite ou une conique (ici courbe signifie courbe réduite).

1.5. Notons que dans le cas i) on a nécessairement l&apos;égalité par codim £^-4^
2d-7, et que Ed-4 contient IP(d - 4) pour une plan P uniquement déterminé.
La proposition 1.1 est donc prouvée dans ce cas. Il reste donc à étudier le cas ii).

1.6. On procède exactement comme dans [7]; esquissons seulement les étapes
de la démonstration: on a Ed-4czIA(d--4), avec codim Ed-4 ^ 2d — 7, et
codim/a(d — 4) d —3; notant pk la codimension de Ek dans IA(k), pour
k &lt; d - 4, (l&apos;inclusion Ed-4 cz IA(d - 4) entraîne Ek c IA(k), pour k &lt; d - 4), on
a: &amp;_4 ^ d - 4. Si Sd • Ed^4 4(2d - 4), alors on a IA(2d -4)cft, d&apos;où en fait
Ed~4 IA(d - 4), puisque £rf_4 [iïA:5d]; sinon, on montre que l&apos;on doit avoir:
Pk-i&lt;Pk&gt; k&lt;d-4. Il vient donc: jSi^l, et si &amp; on a Et^IA(l)f d&apos;où

comme précédemment Ed-4 IA(d — 4). De plus, si /?! 1, on doit en fait avoir
d - 4 ^}d_4&gt; soit codim Ed-4 2d - 7. Le cas Ed^4 4(d - 4) correspond au cas

b) de la proposition 1.1, le cas fix 1 correspond au cas a) de la proposition 1.1,

puisque l&apos;on a alors: dim Et 1 et il existe un unique plan P c P3 tel que
IP(d)ciEd, et de plus: codim Ed^4 2rf - 7 codim 2srf. La proposition 1.1 est
donc prouvée.

1.7. REMARQUE. J&apos;ignore si l&apos;on peut prouver que dans le cas a), Ed^4 est

en fait l&apos;idéal d&apos;une conique. Comme c&apos;est évidemment faux pour d 5, et que
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l&apos;argument donné en paragraphes 3, 4 paraît plus intéressant du point de vue de
la conjecture 0.4, je n&apos;ai pas poursuivi mes investigations dans ce sens.

2. Non-existence de composantes non réduites de codimension ^2d — 1

2.1. On montre dans cette section que le cas b) de la proposition 1.1 ne se

produit que pour la composante de Sfd constituée des surfaces contenant une
droite. On raisonnera par l&apos;absurde; pour alléger les notations, on appellera M
une composante Sfdtx de ifdy de codimension ^2d — 7, satisfaisant la proposition
1.1 b), différente de la famille des surfaces contenant une droite. On notera
MTCd c M la variété réduite sous-jacente à M. Soit 0 un point générique de Mred.
D&apos;après 0.8-0.10, on a: II existe une droite AoczP3, uniquement déterminée,
telle que:

i) rang (/d~1(/b)Ld0) 2, où Fo est le polynôme correspondant au point 0.

ii) L&apos;hyperplan Hx défini en 0.5-0.6 est égal à I^ÇLd - 4) + J™-\F0).
iii) TM(o) IAo(d)+Jd(Fo)y et évidemment TMTed (0) c TMm, avec

codim TMTed (0) ^ 2d - 7.

2.2. Fixons une droite AczP3, et notons MAttcé la sous-variété de Mred

(clairement de codimension 4 dim Grass (2,4) dans Àfred), qui satisfait i), ii) et
iii) avec Ao A.

Notons par ailleurs GA cz U la clôture de la famille des polynômes F tels que:
rang(Jd~\F)]A) 2, F,**0.

Notons G\czGA, la clôture de la famille des polynômes FeU tels que:
rang(/d-x(F)|4) 2, et: 3A *0 6 H°(GA(l)), avec F|a &gt;K

Notons enfin G2Ac:GA l&apos;intersection de GA avec la famille des polynômes
F g U, tels que F\A 0. On a G\ c GlA.

L&apos;hypothèse 2.1 donne une inclusion MAfTedcGA, MA&gt;Ted^G2A. On a alors:

(cf. [7]).

2.3. LEMME. En tout point de GA\G2Af GA est lisse de codimension 2(d - 2).

2.4. LEMME. En tout point F de GA\GA, la codimension de TGA{F)D
(IA(d) + Jd(F)) dans TGA{F) est au moins deux.

La démonstration de ces lemmes est facile (on a des équations explicites pour
GA), et ne sera pas donnée ici.

2.5. Supposons MAfTed^GA. Soit 0 un point générique de MAtTed; comme
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codim MTeé ^2d — 7, on a codim MAt red ^ 2d — 3, et d&apos;après le lemme 2 MAt red

doit s&apos;identifier au voisinage de Fo à une hypersurface de GA\GA ou à un ouvert
de GA\GlA, selon que codim MAt red 2d - 3 ou 2rf-4 (les autres possibilités
étant exclues par l&apos;inclusion MAt red c GA). Or cela contredit le lemme 2.4 puisque
cela entraînerait: la codimension de TMAfT&lt;td(!a) dans TGA^Fo) est au plus 1, avec,
par2.1iii): TMA&gt;Tedi0)czIA(d)+Jd(F0).

2.6. L&apos;hypothèse 2.5 est donc contradictoire, et l&apos;on a: MAredc:G^.
Etudions G*.

2.7. LEMME. G^\Gi es* irréductible de codimension 2d - 3.

La preuve ne présente aucune difficulté et sera omise ici.
2.8. Du lemme 2.7, et de codim MAt red &lt; 2d - 3, M*, red c GA, on déduit:

Afa, red est ouvert dans G\

Par ailleurs, d&apos;après 0.10, en tout point F de GAy on a une classe kAeHl(Qs)pnm
définie à un coefficient près. Il est facile de voir que le sous-ensemble E suivant
de G\\E {F e G\/kA est proportionnelle dans H\Qs)pnm à une classe entière
de type (1,1), (vue dans H1(fî5)prim)} est une union dénombrable de fermés

analytiques. Comme E contient un ouvert de GAy par ce qui précède, on en
déduit:

2.9. Pour toute droite A c P3, et pour tout polynôme F e U, tels que:
|

ii) 3A # 0 6 H°(OA(1))&gt; avec F[A A\ on a: la classe kA e H\Qs)pnmy définie

en 0.10, est proportionnelle à une classe entière primitive de type (1,1).
2.10. Il est aisé de voir que 2.9 est faux; (je remercie le rapporteur pour

m&apos;avoir signalé que ma démonstration initiale était trop compliquée):
2.11. En effet, pour toute surface lisse S, il existe dans ¥{H\Qsynm) au plus

un ensemble dénombrable de classes proportionnelles à une classe entière; or,
considérons la surface de Fermât, d&apos;équation F Xo + Xf + Xi + Xi; soit ÇeC
tel que £* —1, et pour tout oreC, soit Aa la droite d&apos;équations: Xx aX0,
X3=ÇX2. On a: F\Aa {\ +ocd)Xi et rang Jd-\F)\Aa 2. Les droites Aa
déterminent dans P(Hl(QsYnm) des classes XAa distinctes, et comme a parcourt
C, il existe un a tel que kAa n&apos;est pas proportionnel à une classe entière. Le
couple (Aat F) ne satisfait donc pas à 2.9. Cette contradiction montre la
non-existence de la composante M de 2.1.
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2.12. REMARQUE. La rapporteur suggère pa^ ailleurs l&apos;argument suivant:

on peut construire un pinceau de Lefschetz dans GlA, la clôture de GA; on peut
donc appliquer le principe d&apos;irréductibilité de l&apos;action de monodromie pour un tel
pinceau et en déduire que Pic E Z pour en élément générique E de G\,
puisque A2&gt;0(E)&gt;0 pour E e GA; ceci contredit évidemment 2.8.

3. Preuve de la proposition 3.0

3.1. Il reste à étudier les composantes M de Sfd de codimension 2d — 7 et
satisfaisant le cas a) de la proposition 1.1. Une telle composante est réduite et on
appellera M0 c M l&apos;ouvert de lissité de M.

On a par hypothèse une application &lt;P:M°-+P(Sl), évidemment holo-
morphe, qui à un point te M0 associe l&apos;unique plan F a P3, tel que F • S^&quot;1 e
TM(r), où P est une équation de P. Par ailleurs, soit 0 e M, et soit V un voisinage
de 0 dans U tel qu&apos;il existe sur V une section À de H\, avec Ào de type (1,1), et

que M0 fl V 5^, comme en 0.3. Alors, avec les notations du paragraphe 0, on
a sur M0 H V:

3.1.1. &lt;P(t) A&lt;£&gt;Â-S2d-5c:Hx&gt; où ÂeS1 relève A.
3.2. Soit y0 un deux cycle dans So, égal, via la dualité de Poincaré, à Ao. Soit

un voisinage tubulaire de Sq dans P3, contenant St pour t e Vy qui existe à

condition de supposer V assez petit. L&apos;interprétation topologique de

l&apos;isomorphisme Rfff4 « H\Qsynm permet d&apos;écrire 3.1.1 sous la forme:
3.2.1. Pour teM°nV, &lt;P(t) AoJTubyo(ÂP)/F? ¦ 0 0, VFeS2^&quot;5, où Q

est la section canonique de ATP3(4), et Tub y0 est le tube sur y0 (homologue dans

P3\S, au tube sur y,).
3.3. On notera M°A 4&gt;~1(^4), pour A € P(S1). Remarquons que 0 commute

avec l&apos;action de PG/(3), de sorte que M°A est lisse, de codimension 2d — 4 dans U;
3.2A se différencie aisément et donne la description suivante de l&apos;espace tangent
TM°A(0) à M°A en 0:

3.3.1. TM°A(0) {5 € TM°(0)/jTuh Yo (ÂSP)/F30 • Q 0, VF € S2&quot;&quot;5}.

On consacrera les paragraphes 3.4.1-3.4.8 à la démonstration du lemme suivant:

3.4. LEMME. A - S*&apos;1 c TMA(oy

DEMONSTRATION. Par construction, Â • S*&apos;1 cz TM%y Au vu de 3.3.1 il
suffit donc de prouver:

3.4.1. V0 6 Sd~\ VF e S2*&quot;5, JTubyo {Â2PQ)IFl -0 0.



524 CLAIRE VOISIN

3.4.2. Mais A fournit un morphisme mk:Sd&quot;A® €Mo-*(Sd)* &lt;8&gt;€Mo, défini
ponctuellement par: mm(B) (c »-&gt; JTuby0 BC/F2 • Q), pour B e Sd~4 et C e 5rf.

Par hypothèse, mA est de rang 2d — 7 au voisinage de 0.

3.4.3. En général, si Ton a un morphisme / entre deux faisceaux localement
libres E et F sur une variété lisse 5, on en déduit une application linéaire d/(0):
Kerfo-^&gt; (CokerTo) ® QS(o)&gt; en chaque point 0 de S, qui s&apos;annule au point 0 si et
seulement si / est de rang constant au premier ordre en 0. Dans une trivialisation
locale de E et F, df(0) est simplement donnée par la différentielle de la matrice de

/, composée avec la restriction à Ke^ et la projection sur Coker^
3.4.4. Dans notre situation les faisceaux E Sd~4 &lt;8&gt; &lt;V et F (Sd)* ® €Mo

sont triviaux; de plus, avec les notations du paragraphe 0, on a: Ker mA&gt;0 Ed_4
et CokermA0:=:Ed- Enfin, fîM(o) est isomorphe à E*d. Il est alors facile de voir, à
l&apos;aide de la règle décrite en 3.4.3, que:

(3.4.5) dmXtQ{B){P®Q)

{B.P.Q)lFl-Q, pour B e Ed_4f P, Q e Ed.-2f
•Oub y0

D&apos;après 3.4.2-3.4.5 on a donc:

(3.4.6) VB 6 Ed.4&gt; VF, Q e Edf \ (BPQ)/F30 - Q 0.
•nrub y0

Comparant avec 3.4.1 on voit que le lemme 3.4 est démontré si l&apos;on a:
3.4.7. Â2 • S3d~6 c Ed.4 • Ed • Ed.

Mais on a: Â • Sd~5 &lt;z Ed^4, et Â • S**&quot;1 &lt;z Ed\ il suffit donc de prouver
3.4.8. 53rf&quot;6cz£d.5M-6.

Or Ed est sans point base, de codimension 2rf-7. 3.4.8 résulte alors de ([6],
théorème 2.16), (M. Green a maintenant supprimé la condition sur la codimension

du système linéaire considéré cf. [4], §4). Le Lemme 3.4 est donc prouvé.
3.5. La preuve de la proposition 3.0 est maintenant facile. En effet,

considérons l&apos;application WA:M°A-»H°(0A(d)) définie par VA(t) Ft\A. Le
Lemme 3.4 donne immédiatement:

3.5.1. Corang (WA) codim (TMA) en tout point de M°A.

On en déduit que l&apos;image de WA dans H°(6A(d)) est de codimension égale à celle
de MA dans Sd, ce qui entraîne évidemment:

3.5.2. La fibre de WA en Fo contient un ouvert de Zariski de l&apos;ensemble
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{G e U/G\A F0\A. Ce qui est le contenu de la proposition 3.0 compte tenu du
fait que si F 6 M, ocF e Af pour oc e C*.

4. Preuve du théorème 0.2

4.1. Soit M une composante de Sfd comme en paragraphe 3; soit 0 un point
générique de M; soit A 4&gt;(0), et soit C la courbe plane d&apos;équation FOïA. D&apos;après

la proposition 3.0, toute surface lisse 5 de degré d contenant C satisfait Pic S =£ Z.

Une adaptation de l&apos;argument donné par Griffiths et Harris dans [2] va alors

nous donner la proposition suivante:

4.2. PROPOSITION. Une courbe plane C réduite satisfaisant cette hypothèse
est réductible.

DEMONSTRATION. On rappelle que Â est l&apos;équation du plan A et que C
est définie par l&apos;équation F0]A. Soit G un polynôme de degré d-1 définissant une
surface lisse Q, telle que Q H A soit lisse et coupe C transversalement en d(d - 1)

point pt. Soit A un disque, et soit XcP3xA l&apos;hypersurface d&apos;équation

ÂG + tF0 0.

Les hypothèses impliquent, si A est suffisamment petit, que X a pour seules

singularités des noeuds aux points (pt, 0). On désingularise X en éclatant ces

points, puis en contractant chaque quadrique exceptionnelle suivant le réglage
défini par la droite exceptionnelle de Q, le transformé strict de Q. La fibre
centrale est alors constituée de la réunion P^UpQ où P2 est l&apos;éclatement du plan
A aux points p, et D c P2 est le transformé strict de la courbe Q C\ A &lt;zA. Toutes
les fibres Xtrt¥^0t contiennent la courbe C et satisfont donc: il existe À^
0 € Pic (Xt)pnm H\Xt11)pnm H Hl\Xt). Supposons pour simplifier que la mon-
odromie autour de 0 agisse trivialement sur la classe L II existe alors un faisceau
inversible «S? sur X qui satisfait: cx(3!\x)=zX, pour f =É0. Suivant [2], on montre
alors que si Pic Jto Zu(B Zv, ou u est le diviseur qui vaut 0(1) sur chaque

composante, et v est le diviseur qui vaut 0 sur Q et €(d) - E, Et sur P2, alors on
doit avoir «2^, €Xt(k)y pour un k e Z. L&apos;hypothèse implique donc: Pic XQ #
Zw © Zv. Or si Pic Q Z, comme on peut le supposer puisque deg (Q) ^ 4, on a:
Pic Xo Zw © Ker (Pic P2-» Pic D). On doit donc avoir:

Ker (Pic P2-&gt; Pic D)±Zv,
ou encore:

/d(d~i) \
Kerl © Zp^Zh-^PicD)
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n&apos;est pas engendré par dh — EfH&quot;&quot;1^,, où h est la classe du diviseur 6D(l). La
courbe D décrit un ouvert de Zariski dans la famille des courbes planes de degré
d — 1; l&apos;existence d&apos;une relation non triviale entre les pt autre que la relation
évidente Efil^p, dh interdit que la monodromie agisse comme le groupe
symétrique sur l&apos;ensemble {/*,}. Cela entraîne que C est réductible ([8], p. 111).

Dans le cas où la monodromie agit de façon non triviale sur la classe À, il est
montré dans [2] qu&apos;après un changement de base et une désingularisation, on
obtient une variété X&apos; dont le groupe de Picard diffère de celui de X
essentiellement de la même façon que celui de la fibre centrale Xq diffère de celui
de Xo; de sorte que l&apos;argument reste le même.

4.3. Comme C est réductible, M est contenue dans l&apos;un des ensembles
suivants Tk — {F e U/S possède une section plane réductible Ck U Cd-k&gt; avec
deg(Cfc) fc^rf — k). Comptant les dimensions, on voit immédiatement que
codim Tk^2d-l^k-l ou 2, et donc M est la famille des surfaces contenant
une droite ou la famille des surfaces contenant une conique, ce qui achève la

preuve du théorème 0.2.
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