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Composantes de petite codimension du lieu de Noether-Lefschetz

CLAIRE VOISIN

0. Introduction — Rappels

0.1 Soit U c H(P?, Ops(d)) I'ouvert paramétrant les surfaces lisses, et soit
F,cY le lieu de Noether—Lefschetz: ¥;= {F € U/la surface S d’équation F
satisfait PicS #7}. &, est une union dénombrable d’ensembles algébriques; le
théoréme de Noether affirme que ¥, +# U pour d = 4.

Dans [3] et [7] il est prouvé que pour d =5 toute composante de ¥, est de
codimension au moins d — 3, I’égalité étant réalisée seulement par la famille des
surfaces contenant une droite. On prouve ici:

0.2. THEOREME. Les composantes de ¥, sont de codimension strictement
supérieure a 2d —7, a lexception de la famille des surfaces contenant une droite
(codimension d —3), et de la famille des surfaces contenant une conique
(codimension 2d — 7).

0.3. Rappelons la description locale des composantes de &, (cf. [7], [9]): Pour
chaque composante M de ¥, il existe localement une classe A primitive enticre de
type (1, 1) telle que M soit définie schématiquement par la condition “A reste de
type (1,1)”. On notera M =¥,,. Si 0 € ¥, ,, soit V un voisinage de 0 dans U,
soit A la section plate du faisceau naturel H% sur V, prolongeant la classe
Ao € H*(Sy, Z). Soit F*%#*c ¥* le sous-fibré holomorphe de #*= H%® O, de
fibre H°(23%) < H*(S,, C) en te V. Alors A, est de type (1,1) équivaut a: A, est
orthogonale a F>%7,. On en déduit que ¥, , est définie localement par r = h*°
équations. Les travaux récents rendent plausible la conjecture suivante, proposée
par J. Harris.

0.4. CONJECTURE. Pour chaque d il existe un nombre fini de composantes
de %, qui ne sont pas de la codimension (naturelle) r.

Notons que le théoréme 0.2 prouve la conjecture 0.4 en degré d =35.
0.5. La différentiation des équations 0.3 fournit immédiatement la description

suivante de I'espace tangent de Zariski T, en 0: Soit H, = H'(LQs)""™,
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516 CLAIRE VOISIN

hyperplan orthogonal a Ae H'(Qg)"™, ou prim dénote la cohomologie
primitive de S,. On a (tenant compte du fait que pour d =5 toute déformation de
So est projective):

TSsr0 = {R € H'(Op:(d))/p(R) - w € H,, Voo € HY(25)},
ou p est 'application de Kodaira—Spencer:
H(Op:(d))— H*(Os(d))—> H'(Ty),

et ‘-’ dénote le cup-produit:

0.6. Soit F, le polynome définissant la surface Sy: notons J* la composante de
degré k de I'idéal jacobien de F,, $*= H°(Ops(k)) et R*=S*/J*. On a des
isomorphismes naturels: (cf. [10]):

—H(@) = §*~* = R*~*

—H'(Ts,) =R*

_HI(QSO)prim s R2d—4,
tels que le cup-produit précédent s’identifie a la multiplication dans R", et un
isomorphisme R*~®=C, tel que la forme d’intersection sur H'(€s,) s’identifie au
produit:

R2d—4® de—4—‘)R4d_8.

Notant H;, = $%*~* I'image réciproque de I’hyperplan H, c R**~%, 0.5 se réécrit de
la fagon suivante:

Tyd,}.(O) = {P € Sd/P # Sd_‘4 c ﬁl} J_e-f [ﬁl . Sd—"].

Dans la suite, ’hyperplan A, étant donné, on notera pour tout k <2d — 4
E,=[H,:8%** s~
0.7. La proposition principale de [3] et [7] s’énonce comme suit:

0.8. PROPOSITION. Soient donnés des hyperplans H, =« R*~*, H, < §*~*
comme plus haut; si codim E; = d — 3, il existe une unique droite A c P telle que
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E _4=1,(d — 4) z:la composante de degré d —4 de l'idéal de A. De plus A

satisfait la condition suivante:

0.9. rang (J* ' (F)|a) = 2.

0.10. Inversement, une droite A satisfaisant la condition 0.9 détermine
uniquement un hyperplan H; de R**~*, (donc une classe 1, € H'(£25)""™™, définie
a un coefficient prés), par la relation: H, = I,(2d — 4) + J*~*. Les espaces E, de
0.6 satisfont alors:

Ed_4=IA(d""4) et Ed =IA(d)+Jd.

0.11. Le texte est organisé de la fagon suivante:

En paragraphe 1, on fixe une composante &, , de codimension <2d —7, un
point générique 0e€ &, ,; on a: codim TY, ;) =<codim ¥, ,=2d —7, d’ou un
hyperplan H, comme plus haut, satisfaisant d’aprés 0.5 la condition: codim E, <
2d — 7. On montre alors la proposition suivante:

PROPOSITION 1.1. On a les deux possibilités suivantes:

(a) codim E; =2d -7, et E, contient Ip(d), la composante de degré d de
l’idéal d’un plan P de P?. Le plan P est alors uniquement déterminé par la donnée
de H,, ou de E,.

(b) codim E; =d — 3, et 'on est dans la situation décrite en 0.8, 9, 10.

D’apres le théoréme principal de [3], [7] le cas b) correspond d’une part a la
composante de ¥, constituée des polyndmes s’annulant sur une droite (cas
codim &, , =d — 3), d’autre part & d’éventuelles composantes non réduites de &,
(cas codim &, ,>d — 3, codim T¥,, =d — 3 en tout point de ¥,,). La section 2
montre la non existence de ces composantes.

La section 3 étudie le cas a), qui correspond a des composantes réduites de
¥,, puisque l'on a génériquement 2d —7=codim T¥, , =codim &, <2d —7.
On montre essentiellement la proposition suivante:

PROPOSITION 3.0. Soit ¥, ; une composante de codimension égale a 2d —7
satisfaisant a). Soit F un point générique de &, ,. Soit P le plan fourni par I’énoncé
a). Soit C la caurbe plane d’équation Fp. Alors tout polynéme G € U s’annulant
sur C est dans &, ;.

On conclut alors par un argument semblable a celui de [2], que C est
réductible, puis par un compte de dimensions, que C a une composante de
degré 2.
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1. Preuve de la proposition 1.1

1.2. L’énoncé est évident pour d =5, du fait de I'accouplement parfait:
SYE,® S*/Es— S¢/H,; on a alors'd —3=2, et 2d —7=3. On ne peut pas avoir
codim E, =1, par la proposition 0.8; on a donc les seules possibilités:

a) codim E, =3 =2d — 7 =codim Es, et E, = I,(1) pour un plan P de P>

b) codim E, =2=d — 3, et I'on est dans la situation de la proposition 0.8.

On supposera donc dans la suite d = 6.

1.3. LEMME. E,_, posséde une base locus de dimension positive.

La démonstration occupera les paragraphes 1.3.1-1.3.10. On aura recours aux
théorémes suivants (cf. [1], [3], [5]):
1.3.1. Fixons un entier d; pour tout entier ¢ écrivons uniquement:

kd) ( ka1 ) (ka) . )
= + LI . == . > . k
c ( d + d—1 + s) avec k;=i et k,>k,_,, lentier 6

étant uniquement déterminé par c. Notons alors:

_ kd - 1) (kd—l - 1) <k5 - 1)
c“”"(d a1 )T s )

et
ks+1 ko1 +1 ks +1
o= (r i) (o (5T
¢ (d+1 "\ 4 \o+1
Soit W < HY(P", Op{(d)) un systéme linéaire de codimension c. Notons c la

codimension de W)y, pour H hyperplan générique de P’ et ¢; la codimension de
H°(Op(i)).W dans H(Op{(d + i)). On a:

1.3.2. THEOREME (Green). cy =<c(a).

1.3.3. THEOREME (Macaulay-Gotzmann). ¢, <c'¥’, et si égalité est
réalisée, on a pour tout i, ¢; = (- - -((c{¥){d+1). . )ld+i-1)

1.3.4. Considérons lespace E,_,c H'(P?, Op(d —4)). Par la dualité:
SKIE, = (8*"%%/Epy_4_1)*, on a: c=codimE,; ,=codimE;<2d—-7. Le
théoréme 1.3.2 entraine immédiatement: cy =< 2.
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Appliquons alors le Théoréme 1.3.3 a la restriction E,_,; pour H un plan
générique dans P°: on obtient:

1.3.5. =2, avec égalité si et seulement si c?=2,VieN, ot c=
codim H*(Ox(i)) - E4—4jnr

1.3.6. Supposons par I'absurde que E,_, a seulement des points base isolés.
Alors E;_4 4 n’a pas de point base pour H générique: on en déduit que pour k
assez grand: H°(Oy(k)) - E sy =H%Ou(k +d —4)), ce qui entraine que
I’égalité est impossible dans 1.3.5.

On a donc: 1=codim E,_34 et, par le méme raisonnement, codim E;_; ;=0

pour H générique.
1.3.7. Pour chaque Q € S', notons ug:S*/E,— S**'/E,., la multiplication
par Q. Remarquons que ug, est duale de uZ'~>*. La conclusion de 1.3.6 s’écrit

encore: pour Q générique dans S’, et k =d — 3, uf, est surjective. Par dualité, on
en déduit:

ud™? est un isomorphisme. (*)

On a d’autre part, d’aprés 1.3.6, codim E;_3 =1, pour H générique, soit:
corang u5 * =1, pour Q € S' générique, et donc: dim §**/E,_3;=<2d — 6.
1.3.8. Fixons Q, € S, satisfaisant (*), et pour Q € §', notons:

vo = (MdQ;3)—1°M‘é—3 -S43 E,_—> Sd—3/Ed_3.

On vérifie aisément que les v, forment un ensemble linéaire commutatif
d’endomorphismes contenant Id. L’hypersurface 9 de S', de degré =2d —6,
définie par I'annulation du déterminant est donc une union de plans P, comptés
avec multiplicité «;.

1.3.9. Fixons i et soit Q € P;, définissant I'hyperplan H, de P>. Notons c§ la
codimension de Ey|y,; alorscg ™ = corang ug > = dim Ker pug > , = . corang u& 2 =
cg ', et ces nombres sont >0 par définition de P,. Supposons c&2=d — 3: alors
¢G4 =&t = (NI D) 4D =... Le théoréme 1.3.3 s’applique alors et
entraine:

Ed—llHQ = HO(OHQ(].)) . Ed—ZIHQ) et codim (HO(OHQ(k)) . Ed-—ZIHQ) > O, Vk e N.

Cela entraine que E,_y, doit avoir des points base, ce qui est absurde car
J*"YR) cEq4s.

1.3.10. L’hypothese faite en 1.3.9 est donc absurde, et 'on doit avoir
¢y >>d —3. Cela entraine que la multiplicité a; est strictement supérieure a
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d — 3. Comme le degré de & est au plus 2d — 6, on en déduit que & est en fait un
plan multiple P;. .

D’autre part, pour Q € P;, on a:dim Ker ,u‘é‘3>d —3; on en déduit que le
polynéme minimal de vy, pour Q € P;, est de la forme X*, avec k=d —3. Or
ceci nous meéne encore a une contradiction: en effet, soit x,€ P? le point
correspondant au plan P, S'; on vérifie facilement que v =0, pour Q € P,
entraine: I¥ - S 3cE; 5, et comme k=d -3, I$3.5"'cH,. Mais H,
contient également S973.J971 et J~! est sans point base. Comme dans [7], on
voit facilement que I¢73 . §971 4 §473. J4~1 = §2474 ce qui est absurde.

L’hypothése 1.3.6 méne donc a une contradiction, et le lemme 1.3 est donc
démontré.

1.4. LEMME. On a seulement les deux possibilités suivantes:
i) E;_scIc(d—4), o C est une conique de P3;
ii) 1l existe une droite A c P>, unique, telle que E,_, = I,(d — 4).

DEMONSTRATION. Comme d=6, il est facile de voir que E,_,, étant de
codimension <2d — 7, ne peut pas s’annuler sur une surface de P?. Donc son base
locus contient une courbe; comme codim E;_, <2d — 7 le lemme de [8], p. 115
montre que cette courbe doit étre plane, et il est facile de voir que cette courbe
ne peut étre qu’une droite ou une conique (ici courbe signifie courbe réduite).

1.5. Notons que dans le cas i) on a nécessairement ’égalité par codim E,;_, <
2d -7, et que E,_, contient Ip(d —4) pour une plan P uniquement déterminé.
La proposition 1.1 est donc prouvée dans ce cas. Il reste donc a étudier le cas ii).

1.6. On procéde exactement comme dans [7]; esquissons seulement les étapes
de la démonstration: on a E, ,cI(d—4), avec codimE, ,=2d -7, et
codim I,(d —4)=d —3; notant B, la codimension de E, dans I,(k), pour
k=d -4, (I'inclusion E,_,c I,(d — 4) entraine E, c I,(k), pour k =d —4), on
a: Bi_s=<d—4.5iS?- E;_,=1,(2d — 4), alors on a I,(2d — 4) c H;, d’ot en fait
E,_s=I,(d — 4), puisque E,_,=[H,:S5"); sinon, on montre que I’on doit avoir:
Bi-1<PBr, k=d—4. 1l vient donc: B, =1, et si $,=0, on a E; =1,(1), d’od
comme précédemment E,_, = I,(d — 4). De plus, si f; =1, on doit en fait avoir
d—4=B,_4 soitcodim E;_4=2d —7. Le cas E,_,= I,(d — 4) correspond au cas
b) de la proposition 1.1, le cas 8, =1 correspond au cas a) de la proposition 1.1,
puisque I'on a alors: dimE;=1 et il existe un unique plan Pc P’ tel que
Ip(d)c E,, et de plus: codim E,_,=2d —7 =codim E,. La proposition 1.1 est
donc prouvée. '

1.7. REMARQUE. Jignore si ’on peut prouver que dans le cas a), E,_, est
en fait I'idéal d’une conique. Comme c’est évidemment faux pour d =5, et que
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I’argument donné en paragraphes 3, 4 parait plus intéressant du point de vue de
la conjecture 0.4, je n’ai pas poursuivi mes investigations dans ce sens.

2. Non-existence de composantes non réduites de codimension <2d —7

2.1. On montre dans cette section que le cas b) de la proposition 1.1 ne se
produit que pour la composante de &, constituée des surfaces contenant une
droite. On raisonnera par ’absurde; pour alléger les notations, on appellera M
une composante ¥, ; de ¥;, de codimension =2d — 7, satisfaisant la proposition
1.1 b), différente de la famille des surfaces contenant une droite. On notera
M,.4 = M la variété réduite sous-jacente a M. Soit 0 un point générique de M, 4.
D’apres 0.8-0.10, on a: Il existe une droite Ao P?, uniquement déterminée,
telle que:

i) rang (J“‘I(E))LAO) =2, ou F, est le polyn6me correspondant au point 0.

ii) L’hyperplan H, défini en 0.5-0.6 est égal a I, (2d — 4) + J*"4(R).

iii) TMg) = I5(d) +J%(R), et évidlemment TM,q4q<TMg, avec
codim TM,eq o) =2d — 7.

2.2. Fixons une droite AcP? et notons M, .4 la sous-variété de M.,
(clairement de codimension 4 = dim Grass (2, 4) dans M,.4), qui satisfait i), ii) et
iii) avec Ay = A.

Notons par ailleurs G, < U la cl6ture de la famille des polyndmes F tels que:
rang (J*"(F)|a) =2, F4#0.

Notons G4 < G,, la cloture de la famille des polynomes F e U tels que:
rang (J7(F)|a) =2, et: 3A #0 € H’(05(1)), avec Fj, = A“.

Notons enfin G% < G, l'intersection de G, avec la famille des polynémes
FeU, tels que Fj,=0. On a G4 = Gj.

L’hypothése 2.1 donne une inclusion M4, rea © Ga, Ma, rea & G4. On a alors:

(ct. [7]).
2.3. LEMME. En tout point de G,\G%, G, est lisse de codimension 2(d — 2).

2.4. LEMME. En tout point F de G,\G}, la codimension de TGN
(Ia(d) + J4(F)) dans TG s, est au moins deux.

La démonstration de ces lemmes est facile (on a des équations explicites pour
G,), et ne sera pas donnée ici.
2.5. Supposons M, red § GL. Soit 0 un point générique de M, .q; comme
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codim M,y =2d —7, on a codim M, 4=2d —3, et d’aprés le lemme 2 M, 4
doit s’identifier au voisinage de F, a une hypersurface de G,\G ou a un ouvert
de G,\G., selon que codim M, ,.q=2d —3 ou 2d —4 (les autres possibilités
étant exclues par l'inclusion M, .4 = G,). Or cela contredit le lemme 2.4 puisque
cela entrainerait: la codimension de TM, 40y dans TG, (g, €st au plus 1, avec,
par 2.1 iii): TM, rea o) < Ia(d) + T4 (Ky).

2.6. L’hypothése 2.5 est donc contradictoire, et l'on a: M, .qc GL.
Etudions G.

2.7. LEMME. G4\G4 est irréductible de codimension 2d — 3.

La preuve ne présente aucune difficulté et sera omise ici.
2.8. Du lemme 2.7, et de codim M, ;.q=<2d — 3, M, ..q = G}, on déduit:

M, ..q est ouvert dans G

Par ailleurs, d’apres 0.10, en tout point F de G,, on a une classe A,e H1(Q;)"™"
définie a un coefficient pres. Il est facile de voir que le sous—ensemble E suivant
de GL:E = {F € G4/A, est proportionnelle dans H'(Q5)?"™ a une classe entiére
de type (1,1), (vue dans H'(£5)""™)} est une union dénombrable de fermés
analytiques. Comme E contient un ouvert de G, par ce qui précéde, on en
déduit:

2.9. Pour toute droite A = [P?, et pour tout polynéme F € U, tels que:

i) rang (J7'(F))a) =2

if) A # 0 € H(0,(1)), avec F, = A, on a: la classe A, € H'(£25)"™™, définie
en 0.10, est proportionnelle & une classe enti¢re primitive de type (1, 1).

2.10. 11 est aisé de voir que 2.9 est faux; (je remercie le rapporteur pour
m’avoir signalé que ma démonstration initiale etait trop compliquée):

2.11. En effet, pour toute surface lisse S, il existe dans P(H'(£25)""™) au plus
un ensemble dénombrable de classes proportionnelles 4 une classe entiére; or,
considérons la surface de Fermat, d’équation F = Xg§ + X{ + X% + X§; soit £ e C
tel que &Y= —1, et pour tout @€ C, soit A, la droite d’équations: X, = aX,,
X;=[X,. On a: Ay =(1+ a?)X§ et rang J* '(F)|o, =2. Les droites A,
déterminent dans P(H'(L;)""") des classes A, distinctes, et comme « parcourt
C, il existe un « tel que A, n’est pas proportionnel a une classe entiére. Le
couple (A,, F) ne satisfait donc pas a 2.9. Cette contradiction montre la
non-existence de la composante M de 2.1.
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2.12. REMARQUE. La rapporteur suggere par ailleurs I'argument suivant:
on peut construire un pinceau de Lefschetz dans G, la cloture de G; on peut
donc appliquer le principe d’irréductibilité de I’action de monodromie pour un tel
pinceau et en déduire que PicY =Z pour en élément générique ¥ de Gij,
puisque ~#>%(X) >0 pour ¥ € G}; ceci contredit évidemment 2.8.

3. Preuve de la proposition 3.0

3.1. 1l reste a étudier les composantes M de ¥, de codimension 2d — 7 et
satisfaisant le cas a) de la proposition 1.1. Une telle composante est réduite et on
appellera M° c M l'ouvert de lissité de M.

On a par hypothése une application @:M°— P(S'), évidemment holo-
morphe, qui a un point ¢ € M° associe I'unique plan P < P?, tel que P-S9 '
TM‘(’,,, ou P est une équation de P. Par ailleurs, soit 0 € M, et soit V un voisinage
de 0 dans U tel qu’il existe sur V une section A de H%, avec A, de type (1, 1), et
que M°NV =¥, ,, comme en 0.3. Alors, avec les notations du paragraphe 0, on
asur M°NV:

3.1.1. P(t)=ASA-535cH, ou AeS' releve A.

3.2. Soit y, un deux cycle dans S,, égal, via la dualité de Poincaré, a A,. Soit
un voisinage tubulaire de S, dans P?, contenant S, pour teV, qui existe a
condition de supposer V assez petit. L’interprétation topologique de
lisomorphisme R?3™*= H'(Q;)?"™ permet d’écrire 3.1.1 sous la forme:

3.2.1. Pour te M°NV, ®(t) = AS 1y, (AP)/F?- Q=0,VP e $%5, ot Q
est la section canonique de Kp3(4), et Tub y, est le tube sur y, (homologue dans
P3\S, au tube sur y,).

3.3. On notera M4 = &7 '(A), pour A € P(S'). Remarquons que & commute
avec I’action de PGI(3), de sorte que MY est lisse, de codimension 2d — 4 dans U;
3.2.1 se différencie aisément et donne la description suivante de I’espace tangent
TMY ) 3 M} en O:

3.3.1. TMY% ) ={S € TM{y/f 1wy, (ASP)/F3- 2=0, VP € §?7%}.

On consacrera les paragraphes 3.4.1-3.4.8 a la démonstration du lemme suivant:

3.4. LEMME. A - S5%"'c TMY )

DEMONSTRATION. Par construction, A - $~' < TM{,. Au vu de 3.3.1 il
suffit donc de prouver:
3.4.1. VQ € S, VP € $%7, [ 1y, (A*PQ)/F3- 2=0.
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3.4.2. Mais A fournit un morphisme m,:597*® Op0— ($9)* @ Opp, défini
ponctuellement par: myy(B) = (¢ [1us 4, BC/F? - 2), pour Be S** et Ce S%
Par hypothése, m, est de rang 2d — 7 au voisinage de 0.

3.4.3. En général, si 'on a un morphisme f entre deux faisceaux localement
libres E et F sur une varié€té lisse S, on en déduit une application linéaire df,:
Ker fo— (Coker f;) ® £25), en chaque point 0 de S, qui s’annule au point O si et
seulement si f est de rang constant au premier ordre en 0. Dans une trivialisation
locale de E et F, df, est simplement donnée par la différentielle de la matrice de
f, composée avec la restriction a Ker f; et la projection sur Coker f;.

3.4.4. Dans notre situation les faisceaux E =5"*® Oy et F = (5)* ® Oppo
sont triviaux; de plus, avec les notations du paragraphe 0, on a: Kerm, o=E,_,
et Coker m, o= Ej. Enfin, £, est isomorphe a E}. Il est alors facile de voir, a
I’aide de la régle décrite en 3.4.3, que:

(3.4.5) dm, o(B)(P ® Q)

=-2 (B.P.Q)/F3- 2, pour BeE, , P, Q€E,

Tub yy

D’apres 3.4.2-3.4.5 on a donc:

(3.46) VBeE, ,,VP,Q€E,, J’ (BPQ)/F3- 2=0.

Tub yp

Comparant avec 3.4.1 on voit que le lemme 3.4 est démontré si I'on a:

3.47. A*-S%ScE, ,-E, E,
Maisona: A-SScE,_,, et A- 5% c E,; il suffit donc de prouver

3.4.8. $*CcE, - §*¢
Or E, est sans point base, de codimension 2d —7. 3.4.8 résulte alors de ([6],
théoréme 2.16), (M. Green a maintenant supprimé la condition sur la codimen-
sion du systéme linéaire considéré cf. [4], §4). Le Lemme 3.4 est donc prouvé.

3.5. La preuve de la proposition 3.0 est maintenant facile. En effet,
considérons I'application W,:M%—> H%(04(d)) définie par W,(1)=F,.. Le
Lemme 3.4 donne immédiatement:

3.5.1. Corang (¥,) = codim (TMY%) en tout point de MY.
On en déduit que I'image de ¥, dans H°(0,(d)) est de codimension égale a celle
de MY dans S¢, ce qui entraine évidemment:

3.5.2. La fibre de ¥, en F, contient un ouvert de Zariski de ’ensemble
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{G € U/G|4 = Fy|4. Ce qui est le contenu de la proposition 3.0 compte tenu du
fait que si F e M, oF € M pour o € C*.

4. Preuve du théoreme 0.2

4.1. Soit M une composante de ¥, comme en paragraphe 3; soit 0 un point
générique de M; soit A = @(0), et soit C la courbe plane d’équation Fp . D’aprés
la proposition 3.0, toute surface lisse S de degré d contenant C satisfait Pic S # Z.

Une adaptation de ’argument donné par Griffiths et Harris dans [2] va alors
nous donner la proposition suivante:

4.2. PROPOSITION. Une courbe plane C réduite satisfaisant cette hypothése
est réductible.

DEMONSTRATION. On rappelle que A est ’équation du plan A et que C
est définie par I’équation Fy 4. Soit G un polynéme de degré d — 1 définissant une
surface lisse Q, telle que O N A soit lisse et coupe C transversalement en d(d — 1)
point p, Soit A un disque, et soit X <P?Xx A I’hypersurface d’équation
AG +1tE,=0.

Les hypothéses impliquent, si A est suffisamment petit, que X a pour seules
singularités des noeuds aux points (p;, 0). On désingularise X en éclatant ces
points, puis en contractant chaque quadrique exceptionnelle suivant le réglage
défini par la droite exceptionnelle de Q, le transformé strict de Q. La fibre
centrale est alors constituée de la réunion P2U,Q ou P? est I’éclatement du plan
A aux points p; et D c P? est le transformé strict de la courbe Q N A c A. Toutes
les fibres X,, t#0, contiennent la courbe C et satisfont donc: il existe A#
0 € Pic (X,)?"™ = H*(X,, Z)*"™ N H"'(X,). Supposons pour simplifier que la mon-
odromie autour de 0 agisse trivialement sur la classe A. Il existe alors un faisceau
inversible £ sur X qui satisfait: c1(&)z) = A, pour t#0. Suivant [2], on montre
alors que si Pic Xo=Zu ® Zv, ou u est le diviseur qui vaut 0(1) sur chaque
composante, et v est le diviseur qui vaut 0 sur Q et O(d) — X, E; sur P?, alors on
doit avoir %z, = Ox(k), pour un k € Z. L’hypothése implique donc: Pic Xo#
Zu @ Zv. Or si Pic Q = Z, comme on peut le supposer puisque deg (Q) =4, on a:
Pic X, = Zu ® Ker (Pic P>*— Pic D). On doit donc avoir:

Ker (Pic P>— Pic D) # Zv,
ou encore:

d(d—1)
Ker ( Zp, ® Zh— Pic D)

i=1
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n’est pas engendré par dh — L84SV p;, ot h est la classe du diviseur 0,(1). La
courbe D décrit un ouvert de Zariski dans la famille des courbes planes de degré
d — 1; Pexistence d’une relation non triviale entre les p; autre que la relation
évidente L4V p,=dh interdit que la monodromie agisse comme le groupe
symétrique sur I'’ensemble {p,}. Cela entraine que C est réductible ([8], p. 111).

Dans le cas ou la monodromie agit de facon non triviale sur la classe A, il est
montré dans [2] qu’aprés un changement de base et une désingularisation, on
obtient une variété X' dont le groupe de Picard differe de celui de X
essentiellement de la méme fagon que celui de la fibre centrale X, différe de celui
de X,; de sorte que ’argument reste le méme.

4.3. Comme C est réductible, M est contenue dans 'un des ensembles
suivants T, = {F € U/S posséde une section plane réductible C, U C,_;, avec
deg (Cy) =k =d —k}. Comptant les dimensions, on voit immédiatement que
codimT, <2d —7>k =1 ou 2, et donc M est la famille des surfaces contenant
une droite ou la famille des surfaces contenant une conique, ce qui achéve la
preuve du théoréme 0.2.
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