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On the linearization of actions of linearly reductive groups

JERZY JURKIEWICZ

Let G be a linearly reductive algebraic group over an algeabraically closed
field k. Assume G acts on k" by a morphism A:G X k"— k". Then A may be
viewed as a polynomial in » variables with coefficients in 0(G)". We assume

1° k" has a fixed point, say the origin O, under the action A,

2° the action is of degree =2 with respect to k", i.e. the polynomial
considered above is of degree <2.

Our aim, roughly speaking, is to prove that under the above assumptions the
action is linear in some coordinate system (see the Theorem below). The case of
G =k* and char k #2, 3, has been studied in [J] by the Author, who thanks H.
Kraft for important suggestions concerning the present paper. A well-known
conjecture states that every action of a linearly reductive group on an affine space
is linearizable. For other results and references see e.g. [B-B], [K, P], [Ka, R],
[Ko, R], [P] and [P, R]). Notice for example that by Lemma 3.2 of [ibid] the
assumption 1° is satisfied for all commutative groups of order <2*-3%-52—1=
899.

Let End (k") denote the set of morphisms k" — k”. A map f :G— End (k") is
called algebraic if the corresponding map f:G X k" — k" is a morphism. Then
f€eR[X;, ..., X,], where R = 0(G)". The Reynolds operator, i.e. the canonical
G-equivariant projection O(G)— k induces a G-equivariant projection (sending
X; to X))

I::f : R[XI: cee, Xn]—)k"[Xl, 5 &3 Xn]-_—EIld (kn),
G

so that [ f, the mean value of f is an endomorphism of k”. Using the Reynolds
operator corresponding to the group G X G we can consider [, [,cc f(s, t), for
an algebraic map G X G— End (k") as well. We will use the following property
of the mean value operator.

For F eEnd (k") and an algebraic map f:G— End (k") we have
Jsec (f(s)eF)=(J f(s))°F, and if F is linear, also [ (Fef(s))=Fe
(J £()). (1)
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Assume A:G X k"— k" is any group action with the point 0 fixed. Let
t— A(t) denote the corresponding homomorphism G — Aut (k") < End k". We
have A(t) = L(¢t) + C(¢) + - - -, where t+> L(t)(resp C(¢)) is the morphism from G
to the space of linear maps (resp. quadratic maps) k" — k". From

A(st) = A(s)A() (2)
it follows easily that L(st) = L(s)L(¢), i.e. L is a linear representation, and
L(s)C(t) + C(s)L(t) = C(st). 3)

For F:k"—k" let ( )oF and Fo( ) denote the respective right and left
composition operator.

PROPOSITION. Assume the condition 1° satisfied. Then there exists a unique
quadratic map Q :k"— k" (independent of t) such that

a) C(t)=L()°Q — Q°L(),
b) [L()Q°L(r)=0.

Proof. Apply L(s™")°( ) to (3) and rewrite it in the form
C(t) = L(t) o L((st)"") e C(st) — L(s~") o C(s)° L(2). 4)

Here (s, t) e G X G. Set

0:= [ LGs72C). ©

Applying the operator [,.; to (4) one gets the identity a). Apply L(z™'s™")°
() to (3). The result may be written in the form

L((st)™") o C(st) = L(r™") > C(t) = L(¢™) > (L(s™") > C(s))° L(®)

Now apply [,cc f:cc to both sides to get b). Finally the identity (5) follows
from a) and b), hence the uniqueness. |

REMARK. Suppose 1° and 2° satisfied. Let I stand for the identity on k". By
(5), I+ Q= [ L(t"")>A(t). The expression under the integral may be viewed as
the deviation of the action A(¢) from its linear part L(t). So I+ Q is the mean
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value of that deviation. This last morphism turns out to be a conjugating
automorphism in case of action of degree two:

THEOREM. Let G be linearly reductive and assume 1° and 2°. Let Q be the
quadratic map defined in the proposition above. Suppose either of the following
holds

a) char (k) +#2

b) G is commutative (hence diagonalizable).

Then A(t)=({I —Q)°L(t)c(I+ Q) and I - Q, I+ Q are mutually invers auto-
morphisms of k". In particular the action A is linearizable.

Recall, that G is diagonalizable if and only if it is a finite product of
multiplicative groups k* and a finite commutative group of order prime to

char (k) ([B], ch. III, §8).

Proof of the Theorem. Set S :=L(s), T :=L(t). Then A(¢)=T +TQ — QT
and the identity (2) reduces to (SQ — OS)° T =(SQ — QS)°(T + TQ — QT), for
all (s, 1) e G X G. Apply ( )e T}

(SQ - 08)=(SQ —Q0S)°(I-Q+TQT™") (6)
Then applying S 'o( ) we get Q —S~'QS=(Q —S7'QS)(I—-Q + TQT™).
Further, [;.c gives Q =Qe°(I— Q + TQT™"), by Prop., b). Then SQ =SQ (I —

Q + TQT™") and subtracting (6) we have also QS=QS°(I—-Q + TQT™).
Apply ( )oS™! to get

Q=0°(I—SQS" +(ST)°Q(ST)™). (M

Now assume a). Let Q':k" X k"— k", be the bilinear symmetric map such
that Q(x) = Q'(x, x). We have

Q=Q0(I-SQ8™)+Q°(ST)°Q°(ST) " +2Q'(I-SQS~", (ST)° Q=(ST)™").
(®)

Now apply [,.c. We have [ Qo(ST)Q°(ST) '= [ QTQT " and by (1) and
Prop., b), [,cc of the last summand of (8) vanishes. So

0=0°U-50s™)+[ osos ©)
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Extract now the parts of degree 4 with respect to k" to get

0=08S0S '+ j QSQS . (10)
Applying 3 f;cc we get

[ 0505 =0 (1)

By (9) we have Q=Q¢°(I—-SQS™"). Since the part of degree 3 vanishes,
Q=0Q°(+SQS™"), too. Apply ( )°S to get QS =0S~(I + Q). Now we are
ready to conjugate the linear action (s, x) — S(x):

(I—-Q)oSe(I+Q)=S+SQ—-0S°(I+Q)=S+SQ-0S=A(s), as re-
quired. For t=1 one gets (I — Q)°(I + Q) =1 Replacing the action A(¢) by
A'(t):=(—I)°A(t)°(—I) one gets by an analogous argument that (I + Q) (I —
Q) = L. This completes the proof in case a).

So we assume char (k) =2, and G diagonalizable. Then the proof alters as
follows. Choose a bilinear map Q :k" X k" — k™ such that Q(x) = Q (x, x) for
all x. Then (8) holds with 2Q’ replaced by the map (x,y)—>Q (x,y)+
Q(y, x). To obtain (11) we must replace the Reynolds operator by a more
precise tool, available for diagonalizable groups:

Denote by X = X(G) the group of characters G— k*, with the additive
notation. Let ¢ stand for the value of i € X at ¢ € G. It follows easily from [B], Ch.
III, §8, that

any algebraic map f : G— End (k") can be written in a unique way as

fH)= ZX t'f,, for some f; e End (k™). 12)

Notice that [,.cf coincides with f; in this case. For ie X(G) let the
morphisms b,: k" — k" be defined by the expansion SQS~' = ¥ s’b; introduced in
(12), and set q,-_,-:=QA(b,-, b;). Since by=0 we have g, ;=¢q;0=0. Now extract
the part of degree 4 in (7) to get

0=0°(SQS™' +(ST)Q(ST) ™) = 2 s™(F = 1)(¢ — 1)gs;

i,jeX
Apply [ec;

0= (F+1)( " +1)g; =2 (' +1t7)g; s (13)

ieX
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Let P be a subset of X\{0} such that for all ie X\{0} one and only
one of the characters i, —i belongs to P. Hence X is the disjoint union of
P, —P:={i|—ieP} and {0} (indeed, i+i#0 for i#0 by the condition
(char k, G : G_opn) = 1). Since go o =0 we have by (13) that

Z (ti + t~i)(‘1i, —i+q_;;))=0.

ieP

By (12) this implies that

Z £(qi—i +q-i;)=0.

ieP

For t = 1 we obtain

0="2 (qi—i +q-ii) = 2, Gi—i-

ieP ieX

On the other hand

[ pos057=] 0o(Set) = [(Z0) - S e

ieX

So we get again (11), and the rest of the proof follows as in the part a), obviously
simplified. |

REMARK. If char(k)+#2, 3 then exactly as in [J] one proves that the
conjugating automorphism 7 + Q of k" is triangular in some basis of this vector
space.
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