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On the linearization of actions of linearly reductive groups

Jerzy Jurkiewicz

Let G be a linearly reductive algebraic group over an algeabraically closed
field k. Assume G acts on kn by a morphism A:G xkn-*kn. Then A may be

viewed as a polynomial in n variables with coefficients in Û(G)n. We assume
1° kn has a fixed point, say the origin 0, under the action A,
2° the action is of degree &lt;2 with respect to kn, i.e. the polynomial

considered above is of degree ^2.
Our aim, roughly speaking, is to prove that under the above assumptions the

action is linear in some coordinate System (see the Theorem below). The case of
G k* and char k¥^2f 3, has been studied in [J] by the Author, who thanks H.
Kraft for important suggestions concerning the présent paper. A well-known
conjecture states that every action of a linearly reductive group on an affine space
is linearizable. For other results and références see e.g. [B-B], [K, P], [Ka, R],
[Ko, R], [P] and [P, R]). Notice for example that by Lemma 3.2 of [ibid] the
assumption 1° is satisfied for ail commutative groups of order &lt;22 • 32 • 52 — 1

899.

Let End (kn) dénote the set of morphisms kn —? kn. A map / : G -* End (kn) is

called algebraic if the corresponding map f :G x kn-*kn is a morphism. Then

/ € R[XU Xn]f where R 6(G)n. The Reynolds operator, i.e. the canonical

G-equivariant projection &lt;P(G)—&gt;k induces a G-equivariant projection (sending
X, to X,)

R[XU • • .,Xn]-+kT[Xu .,*„] End(*&quot;),

so that jG f&gt; the mean value of / is an endomorphism of kn. Using the Reynolds
operator corresponding to the group G x G we can consider JS€G ft€Gf(s, 0&gt; f°r
an algebraic map G x G -* End (kn) as well. We will use the following property
of the mean value operator.

For FeEnd(&amp;rt) and an algebraic map /:G-»End(fcn) we hâve

SseG(f(s)°F) tff(s))oF, and if F is linear, also J (F &lt;&gt;/(*)) F°
(J/to). (1)
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Assume A:G x kn-*kn is any group action with the point 0 fixed. Let
t*-*A(t) dénote the corresponding homomorphism G—» Aut (fcn) ç End ifcn. We
hâve A(t) L(t) + C{t) + • • •, where t *-+ L(f)(resp C(*)) is the morphism from G
to the space of linear maps (resp. quadratic maps) kn-+kn. From

A(st) A(s)A(t) (2)

it follows easily that L(st) L{s)L(t), i.e. L is a linear représentation, and

L(s)C(t) + C(s)L(t) C(st). (3)

For F:kn^&gt;kn let )°F and F°( dénote the respective right and left
composition operator.

PROPOSITION. Assume the condition 1° satisfied. Then there exists a unique
quadratic map Q:kn-*kn (independent of t) such that

a) C(t) L(t)oQ-QoL(t)f
b)

Proof. Apply L(s~1)°( to (3) and rewrite it in the form

C{t) L(i) oLdsty1) o C(5f) - Lis-1) o C(s) o L{t). (4)

Hère (s, t)eGxG. Set

(s-&gt;C(s). (5)

Applying the operator J5€G to (4) one gets the identity a). Apply L(r~15~1)°

to (3). The resuit may be written in the form

L((st)~l) o C(st) - Lir1) o C(t) Lir1) o (Lis-1) o C(s)) o L(f)

Now apply jseGSteG to both sides to get b). Finally the identity (5) follows
from a) and b), hence the uniqueness. ¦

REMARK. Suppose 1° and 2° satisfied. Let / stand for the identity on kn. By
(5), / + Q J L(Cl)QA(t). The expression under the intégral may be viewed as

the déviation of the action A{t) from its linear part L(f). So / H- Q is the mean
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value of that déviation. This last morphism turns out to be a conjugating
automorphism in case of action of degree two:

THEOREM. Let G be linearly reductive and assume 1° and 2°. Let Q be the

quadratic map defined in the proposition above. Suppose either of the following
holds

a) char (k) *2
b) Gis commutative (hence diagonalizable).

Then A(t) (I - Q)°L(t)°(I + Q) and l-Qy /+&lt;2 are mutually invers auto-
morphisms of kn. In particular the action A is linearizable.

Recall, that G is diagonalizable if and only if it is a finite product of
multiplicative groups k* and a finite commutative group of order prime to
char(À:)([B], ch. III, §8).

Proof of the Theorem. Set S := L(s), T := L(t). Then A(t) T + TQ-QT
and the identity (2) reduces to (SQ - QS) ° T (SQ - QS) ° (T + TQ - QT), for
ail (s, t)eGxG. Apply («r1;

(SQ - QS) (SQ - QS) • (/ - Q + TQT-1) (6)

Then applying S&quot;1 • we get Q - S-&apos;QS (Q- S~lQS) o (/ - Q +
Further, jseG gives Q Q ° (/ - Q + TQT~l)f by Prop., b). Then SQ SQ ° (/ -
Q + TQT&quot;1) and subtracting (6) we hâve also QS QS°(I- Q + TQT&quot;1).

Apply )°S~1 toget

Q Q o (I - SQS-1 + (ST) o Q o (5T)-1). (7)

Now assume a). Let Q1:kn xkn^kn9 be the bilinear symmetric map such
that Q(x) Q&apos;(x, x). We hâve

(8)

Now apply JI€G. We hâve t Q*(ST)*Q*(ST)-1 J QTQT~X and by (1) and

Prop., b), fteG of the last summand of (8) vanishes. So

Q Ô ° (/ - 5G5&quot;1) + f QSQS~l (9)
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Extract now the parts of degree 4 with respect to kn to get

1. (10)

Applying \ J,eG we get

(11)
h

By (9) we hâve Q Q°(I- SQS&apos;1). Since the part of degree 3 vanishes,
Q Q°(I + SQS~l), too. Apply )°S to get QS QSo(I + Q). Now we are
ready to conjugate the linear action (s, x)&gt;-+S(x):

(I- Q)oSo(I + Q) S + SQ - QS&lt;&gt;(I + Q) S + SQ - QS A(s), as re-
quired. For f l one gets (/ — Q)°(I + Q) /. Replacing the action A(t) by
A&apos;(t):=(-I)°A(t)°(-I) one gets by an analogous argument that (/ + g)°(J-
Q) L This complètes the proof in case a).

So we assume char (k) 2, and G diagonalizable. Then the proof alters as

follows. Choose a bilinear map Q~:knxkn-+kn such that Q(x) Q\x,x) for
ail x. Then (8) holds with 2g&apos; replaced by the map (x, y)*-*Q\x, &gt;&gt;) +
Q(yf x). To obtain (11) we must replace the Reynolds operator by a more
précise tool, available for diagonalizable groups:

Dénote by X X(G) the group of characters G-+k*, with the additive
notation. Let tl stand for the value of i e X at t e G. It follows easily from [B], Ch.

III, §8, that

any algebraic map / : G—» End (kn) can be written in a unique way as

/(0 E tf» for some / e End (kn).
ieX (12)

Notice that jteG f coïncides with f0 in this case. For i e X(G) let the

morphisms bt\kn-*kn be defined by the expansion SQS~l Eslbt introduced in
(12), and set q^&apos;-Qipiy bj). Since bo 0 we hâve &lt;7o,; tfi.o 0. Now extract
the part of degree 4 in (7) to get

0 Q « (SQS-1 + (ST)Q(ST)-1) 2 sl+J{tll+J{tl -

Appiy L€g;

o « 2 C + îXr&quot;1 +1)*,.-, 2 C + r1)?,..,. (13)
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Let P be a subset of ^\{0} such that for ail i e X\{G) one and only
one of the characters i, —i belongs to P. Hence X is the disjoint union of
P, -P:={i|-i€P} and {0} (indeed, i + i^O for *=É0 by the condition
(char k, G : Gconn) 1). Since qOfO 0 we hâve by (13) that

teP
+ O(«..-.+ «-...) 0.

By (12) this implies that

teP

For t 1 we obtain

On the other hand

f
seG

So we get again (11), and the rest of the proof follows as in the part a), obviously
simplified. ¦

REMARK. If char(fc)#2, 3 then exactly as in [J] one proves that the

conjugating automorphism / + Q of kn is triangular in some basis of this vector

space.
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