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Stable splittings associated with Chevalley groups, I

MARK FEsHBACH and STEWART PriDDY!

In recent years stable splittings have been studied for the classifying spaces of
various finite groups, for example: elementary abelian p-groups [MP1], abelian
groups [HK], dihedral and quaternion groups [MP2], etc. In this paper we
continue this study; here we consider groups E which are extensions of an
elementary abelian 2-group V by a cyclic group of order 2. These groups are
among those of symplectic type [T, 2.4]; examples are the extra-special 2-groups
[G, H]. A quadratic form Q is naturally associated with such an extension and the
outer automorphisms of E which fix the center are precisely those automorphisms
of V which preserve this form. Thus one of the classical orthogonal groups
O(V, Q) acts on BE (up to homotopy) and we can use idempotents from the
group ring to stably split BE. In particular since the commutator subgroups of
these groups are Chevalley groups, they have a BN pair and an associated
Steinberg idempotent e. We determine the stable summand eBE. The degenerate
case where E itself is an elementary abelian 2-group was studied in [MP1]. These
cases cover the four systems of Chevalley groups A,,, B,,, D,, defined over F, and
the twisted group D, (F,).

It is well known that the orthogonal groups O(V, Q) over F, are determined
by the dimension of V and the Arf invariant of Q. There exists three types of
forms: one if dim V is odd and two if dimV is even. The latter cases are
distinguished by Arf (Q) =0 or 1. In this paper we set up machinery for handling
the general cases but give specific analysis only for the Arf (Q) = 0 case. Here our
main result (Theorem 4.1) is that BE contains 2™ ~" wedge summands, each
equivalent to

eBE=M(m) v L(m) v eT(A,,,)

where 2m=dimV, M(m) and L(m) are wedge summands of B(Z/2)" and
T(A,,,) is the Thom spectrum associated to an irreducible representation A,,, of
E. In Part II, we study the remaining cases.

! The authors are partially supported by NSF Grants.
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The paper is organized as follows: Section 1 consists of some preliminaries on
E, quadratic forms and Quillen’s computation of H* BE. The homotopy action of
O(V, Q) on BE is explained in Section 2. In Section 3 we describe the structure
of O(V, Q) as a Chevalley group and determine the Steinberg idempotent e. The
cohomology of H*(eBE) is determined in Section 4. This leads to a proof of the
main splitting in Theorem 4.1. In Section 5, we give a splitting of BE for |E| =32
and Arf Q =0. In what follows all spaces are localized at 2 and all cohomology
groups are taken with simple coefficients in F,.

It is a pleasure to thank Dave Benson for several helpful conversations on this
material.

§1. Preliminaries

In this section we recall some preliminaries on quadratic forms, the groups E
and their cohomology.

We begin with some standard facts about quadratic forms over F, [Q]. Let V
be a vector space over F,. A quadratic form Q:V —F, is a function such that
Q(x+y)=0x)+Q(y)+B(x,y) for x,yeV and some bilinear form B.
Necessarily B is symplectic, i.e. B(x, x) =0. Let V, be the set of x € V such that
B(x,y) =0 for all y e V. Then Q is said to be non-degenerate if Q(x) # 0 for all
x #0 in V,. Throughout this paper we will assume all quadratic forms to be
non-degenerate.

Let n = dim V. According to Dickson [Dk] there are, up to isomorphism three
types of non-degenerate quadratic forms:

Ifn=2m Q0= Z XX_; (real case)
i=1

m—1 . , (1.0)
Q= 2 XX_i+Xm+X,X_,, +x°,, (quaternion case)
i=1

for some choice of basis {x;, ..., X X_1, ..., X_p}c=V*

Ifn=2m+1 Q=x3+D xx_, (complex case)
i=1

for some choice of basis {xg, X1, .-, Xm X—1, ..., X_n} = V* In the first two
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cases we have Arf Q =0, 1 respectively, where we recall

0 if |Q7'(0)|>2 V]

ArtQ={, if |0™1(0)| <3 V.

For convenience, however, we will use Quillen’s terminology [Q] of real and
quaternion; similarly we will call the third case complex.
Now suppose a group E is given as a central extension

72 H5ESYV (1.1)

If n = dim V we shall often write E = E(n). The associated quadratic and bilinear
forms are given by

Qx)=#* where (%) = x

B(x,y)=#y%"'y~'  where n(¥) =x, n(§) =y

For n=2 in the real case E = Dy, the dihedral group of order 8 while in the
quaternion case E = Qg, the quaternion group of order 8. In general if n is even,
E(n) can be built up from the central product (G°G’'=G X G’ with centers
identified). It is known that Dge Dg = Dgo Q4. It is also straightforward to check

PROPOSITION 1.2. If n=2m

E(n)~Dgo- "o Dyg (real case)

——m—-]——

~Dg o---°o DgoQg (quaternion case)
In the real and quaternion cases, E is an extra-special 2-group.

(1.3) It will be convenient to specify generators of E: let b,,...,b,,
b_y,...,b_, (and by in the complex case) be elements of E such that
{vy; =m(by;)} is dual to the basis {x,;} of V*. Then E is generated by {b,,, c}
where c is the non-trivial element of ker n. (By convention b.,=b, in the
complex case.) Using (1.0) a set of relations is seen to be given by commutators
and squares.

(1.4) We now turn to H*BE. A subspace W of V is called isotropic if
Q(W)=0. Now assume W is a maximal isotropic subspace or equivalently
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W =a"'(W) is a maximal elementary abelian subgroup. Let y:W—Z/2 be a
representation which is non-trivial on ker x =Z/2 and consider A = Ind% (x),
that is, A is the real representation induced from W to E. [Q; §5] shows that A is
the unique irreducible real representation which is non-trivial on ker 7.

THeorReM 1.5. [Q; Th. 4.6]. Given an extension (1.1) and the associated
bilinear form Q, then

H*(BE) =S(V*)/] @ F[wx]
where ] is the ideal generated by the regular sequence Q, Sq'Q, Sq*Sq'Q, ...,
Sq*" - - -5q*Sq*Q; h is the codimension of a maximal isotropic subspace of V and

war = wos(A) is the 2"-th Stiefel-Whitney class of A.

Remark 1.6. For reference we record the values of & [Q); §2].

Case dim V h
real 2m m
complex 2m +1 m+1
quaternion 2m m+1

(1.7) Since the dimension of A is 2" and kerx =Z/2 acts as —1 on A, A
restricted to ker « is 2” - n, where 7 is the non-trivial real character on Z/2. It
follows that i*(w,s) # 0 and that any element with this property can be taken as a
generator in place of wn.

§2. Classical groups acting on H*BE
Since conjugation is homotopic to the identity on the classifying space BG of

any group G, the outer automorphism group Out (G) = Aut (G)/Inn (G) acts up
to homotopy on BG, i.e. there is a homomorphism

Out (G)— Auty, (BG)

where Auty, (BG) is the group of base point preserving equivalences in the
homotopy category.
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The referee points out that Out (E) can be made to act on BE (not just up to
homotopy). There is a group extension (which is not necessarily split)

1- E— Gy— Out (E)—1

with Go/{(c) = Aut (E). Thus if X is a contractible CW-complex on which G, acts
freely, then X/E is a model for BE on which Out (E) acts as required.

Let Out, (G) be the subgroup of Out (G) consisting of automorphisms which
are the identity on the center of G. For G = E as in (1.1) we have

PRrOPOSITION 2.1. Out, (E) = O(V, Q)

Proof. 1t is clear from the definitions that m induces a homomorphism
Out, (E)— O(V, Q). This map is surjective by (1.3) and so any orthogonal
automorphism of V can be lifted to an automorphism of E. That the center is
fixed follows from examining the types of Q in (1.0). Conversely, suppose
B € Out, (E) induces the identity on V. Then for b € E, B(b) =b or bc where
(c) =ker z. Let {v;, vj} be a basis for V such that B(v;, v;) #0 for at most one j
for each i (e.g. in the real case v; is dual to x; and v, to x_;). Let {b,, b;} satisfy
7(b;) = v, n(b;) = v; and let ¢ be the product in any order of those b,’s for which
B(b;) = b;c and B(v;, v/) #0 for some i. Then B(b;) = eb,e™". Similarly let &' be
the product in any order of those b,’s for which B(b;) = b/c and B(v;, v;) #0 for
some j. Then B(bj) = &'bje'~". Consequently B is conjugation by e¢’.

Remark. In the real and quaternion cases, Out, (V, Q) = O(V, Q) since the
center is Z/2. In the complex case the center is Z/4 generated by an element b,
such that m(b,) is dual to x,. Here Out (E)=Z/2 X Out, (E) where the extra
automorphism is given by by~ b3.

We now turn to the action of O(V, Q) on H*BE and the resulting invariants.
The uniqueness of A (1.4) implies that its Stiefel-Whitney classes are invariants.
In this connection Quillen has shown

THEOREM 2.2 [Q, Th. 5.1). The non-zero positive dimensional Stiefel-Whitney
classes of A, are wah, Wyh_or, Woh_zr+1, . .., Wyn_w—1 Where r =0, 1, 2 in the real,
complex, and quaternion cases resp. Further, these classes form a regular sequence
of maximal length in H* BE and hence form a polynomial ring over which H* BE
is a free finitely generated module.

Quillen further remarks, without proof, that in the real case these classes
generate all of the invariants. We will prove a slightly sharper result. For
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convenience we use the following notation

05,.(F,)  if n=2m, real case
oV, Q) =1 03,(F,) n =2m, quaternion case (2.3)
Oy +1(F;) n=2m+1, complex case

where n = dim V. Let Q5,(F,) denote the commutator subgroup of Oz.,(F,).
THEOREM 2.4. In the real case
}I*BE{);:"l =F2[w2m, Woym_1y « « « wzm-l].

The proof depends on three lemmas, the first of which holds for a general V
and Q.

LEMMA 2.5. O(V, Q) acts transitively on {A < E:A is a maximal elementary
abelian group}.

Proof. O(V, Q) acts transitively on {W<V:W is a maximal isotropic
subspace}. This is a result of Arf[A] in the real and quaternion cases. In the
complex case O,,,.1(F,) = Sp,..(F,) and a proof can be found in [Dd]. The lemma
follows since & induces an isomorphism between maximal elementary abelian
subgroups of E and maximal isotropic subspaces of V.

Let H:GL,,(F,)— 0;,,(F,) be the hyperbolic map given by

M 0]

H(M)=[0 ‘M1

(see [F-P; p. 152-154]). The appropriate quadratic form for the range is of the
real type.

LEMMA 2.6. H:GL,,(F,)— §2;,(F,)

Proof. Since 23,,=kerd where d:05,(F,)— Z/2 is the Dickson invariant,
we need only check d o H = 0. This follows from the formula for d [Dd; p. 64].

LEMMA 2.7. Let A E be the inclusion of a maximal elementary abelian
subgroup. Then j*(H*(BE)®) =1Im (j*A*).

Proof. The inclusion o follows from the inclusion H*(BE )%= > Im A* noted
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above. For the other inclusion it suffices by Theorem 1.5 to consider x e
H*(BE)®*~ in the image of n*: H*BV — H*BE. By Lemma 2.5, (1.4) and the
normality of €3, it suffices to prove the result for one maximal elementary
abelian subgroup A. Let A=(b,...,b,,c)SE; we can write A=A'®C
where C=(c) =kermw. Let M € GL,,(F,). Then for j*(x)=y® 1€ H*BA' ®
H*BC, we have

(Yy®1HM)=yMR1

Hence y € H*(BA')°t4), By [Wk; 4.1], H*(BA')®““) =Im (reg (A')*) for the
regular representation of A’. Since Aj =reg(A')® y on A’ ® C[Q; 5.1], we have
J*(x) =y ®1eIm(j*A*) using the formula for the Stiefel-Whitney classes of
reg (A’) ® x [Q; 5.6].

Proof of Theorem 2.4. By [Q; Th. 5.10], H*BE is detected by elementary
abelian subgroups. Hence the result follows directly from Lemma 2.7.

COROLLARY 2.8. H*(BE)®> = H*(BE)®.

§3. O,.(F,) as Chevalley groups

Our goal in this section is to describe what we need about the Steinberg
idempotent for the orthogonal group. A good general reference is R. Carter’s
book [C]. For each simple Lie algebra L over C and each field K, Chevalley has
constructed a group L(K). Later Steinberg, Tits and Hertzig discovered addi-
tional twisted versions of these groups. For the simple Lie algebras of type A,,,
B,., C,, and D,, and for KX finite, Ree has identified these Chevalley groups with
classical groups. We state the result for K =F,.

THEOREM 3.1 (Ree [C; Th. 11.3.2))
1) An(F2)=GL,,11(F>)
ii) B, (F2) = Ozm+1(F2)
“l) Cm(F2) = Bm(F2)
iv) Dp(D2) = £23,.(F>)
The group €25,,(F,) occurs as a twisted Chevalley group and will be treated at
the end of this section.
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3.2 The real case: The Dynkin diagram for D,,, m>1, is

En—1"Em
o————20
where ¢,, . .., &, is the standard basis for R™.

Let e; be the 2m square matrix with 1 in the (i, j) position and 0’s elsewhere.
Let u;=1+e;+e_;_;€ GL,,(F,). Then the unipotent subgroup U,,, < Q3,.(F,)
is generated by

{wijy w2 1<i<jsmj}

(We recall that the underlying vector space V has basis {v,,..
Vo1, ..., U_p} over F,.) The Weyl group W3, < 23, (F,) is generated by

ey Uy,

{oi=uu_;_u;j, 0;_j=u;_ju_;u; ;:1<i<j<m}.
Abstractly W3, =~ (Z/2)"~' X ¥, (permutations together with an even number of
sign changes).

Finally €;,(F,) is generated by U,, and V,, where V,, is generated by
{u_;_jyu_:1<i<jsm}.

(3.3) The Steinberg idempotent e € F,82;, (F,) is defined by

e=>uc uel,,, ceWsi,
For computational purposes, it will be convenient to use another expression for e.
For each of the simple roots {& — ¢;,,} in the Dynkin diagram let e; be the
idempotent

e=(1+u )1+ 0;41) I=i=m-1

For the last root ¢,,_; + ¢, let

em = (l + um—l,-—m)(1 + am-—l,—m)

Kuhn [K] has shown that e can be expressed as a product of the e;,
i=1,2,..., m. Moreover
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THEOREM 3.4. [K, Th. 1.3] Let M be a right F¥,823,,(F,) module. Then
Me = ﬁl Me,;.

(3.5) The complex case: The Dynkin diagram for B, is

£€,1— & ‘ Em—1— Ep &,
Let
u;=I+e;+e_;_; i#j
u;=I+ey_;t+e;_; i#0
(V has basis vg, vy,...,VUp, U_y,..., VU_,). The unipotent subgroup U,,,,,<

0,,,+1(F,) is generated by
{uy, wi—jp uz: 1=i<j=mj}

The Weyl group W,,,, ., < O,,,.,(F,) is generated by

(
O = Ui —jU; jU—; —j
) l=i<j<m
O —j = U_j Ui —U_;;
\ O = Uy Ul I=i=m

Then O,,,+1(F>) is generated by U,,,,, and V,,,, where V,,,,, is generated by
{u_i—pu_ipu_y_s1=i<j=m}.

The Steinberg idempotent e € F,0,,, . ,(F,) is defined by
e=2ua uelU,,.1,0e Wy, .1

In this case Kuhn [K] has shown that e can be expressed as a product of the
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following idempotents

€=+ u1)(1+0;41) I=i=m-1
em=(1+ tmm)(1+ Opnm)

and the analog of Theorem 3.4 holds.

3.6 The quaternion case: The group £25,.(F,) is isomorphic to the twisted
Chevalley group 2D,,(F,) [C; Th. 14.5.2] with Dynkin diagram of type B,,_,

O—————0 ¢+ O Q o) {

Em—1— Em }
€& €~ &; Em—2" Em—1

=Em—1 + Em

It is a projection of the diagram for D,, in (3.2). For details of this group see
Chapters 13, 14 of [C].
Let

Tn=1+e€n_1mtem1,_(m-1)tCmt,—mt€m_m-1)+€_m_(m-1)

Ym = I - em—l,m + em—l,-(m-—l) + e~—m.—(m—1)
Tn=1— €_m-1)m-1Ft€_(n-1),mt €_mm-1

Yr’n =1+ €m,m-1 + e—(m—l),m—l + e-(m—l).m + e——(m—l).——m + €m.m-1

The unipotent subgroup U,,<$2;,(F,) is generated by {7,, ¥.}U
{uij u; j:1<i<j=m-—1}. V3, is generated by {7,, vm}U{u_;_ju_;;:1=<
i<j=m-—1}. £5,(F,) is generated by U3, and V. Let B, be the normalizer
of U3, in €5,.(F,).

The Weyl group W3, of £;,.(F,) is generated by {0;, 0, _;:1=i<j=m} U
{TTrTy = W,,}. The Steinberg idempotent e € F,£2;,,(F,) is defined by e =¥, bo
b € B,,, 0 € W5,.

In this case Kuhn [K] has shown that e can be expressed as a product of the
idempotents corresponding to the nodes in the Dynkin diagram for B,,_,. These
are

e =(1+uir1)(1+ 0;41) l=si=m-2
and the idempotent e,, corresponding to the last node

em=(1+T,)(1 + ¥m)(1 + H, + Ho)(1 + W,.)
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where H,=I+e,,,te,_.te_,,, and W,=I+e, 1, 1+e€n_1,_(m-1y+
€m,—mt €_(n-1),m-1F €—(m-1),—(n-1)-

§4. The Steinberg wedge summand: the real case

For n=2m let E = E(n) denote the extra-special 2-group of real type. Let
M(n) be the stable summand

M(n) =eBE
corresponding to the Steinberg idempotent of (3.3). Our main result is

THEOREM 4.1. Stably, for m =2, BE contains 2™V copies of M(n) =
M(m) v L(m) v eT(4,).

Here M(m) is the Steinberg summand of B(Z/2)" [MP1], L(m)=
Y™ Sp?"$°/Sp?"~'S°, and T(A,) is the Thom spectrum of the bundle BA, over
BE. As a spectrum M(m)= L(m) v L(m —1).

(4.2) The uniqueness of A, (1.4) implies that the homotopy action of O (F,)
on BE preserves the isomorphism type of A, and hence induces a homotopy
action of O, (F,) on T(A,). The summand eT(4,) is defined with respect to this
action.

On the way to proving Theorem 4.1 we first determine H*M(n). Let

=@, =, x; x; b xi),
i; = %j with an even number of minus signs occurring
ﬂ zﬁm = 2x;}'1xizl. . ‘x,';l,
i;= xj with an odd number of minus signs occurring.
These elements belong to Sy, that is, S = H*BV with the inverses of all non-zero
linear elements adjoined. The action of O; (F,) on H*BYV extends to S,.
LEMMA 4.3. ae = a, fe=p.

Proof. By 3.4 it suffices to show « and B are fixed by e;, i =1, ..., m. Write
a=x7 X XTI TG E+ (xTixh + x;'-lx:%i-o-l))Bi

where & (resp. B;) is the sum of those terms xj'---xj! not containing x},
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xz+1) and having an even (resp. odd) number of minus signs. By 3.3,

e,=(1+u;v1)(1+0;:41) I=i<m
€m = (1 + um—-l,—m)(1 + Om—l.—m)

where the action of u;; is x,—>x; +x;, x_j—>x_; + x_;, x,— x; otherwise and the
action of 0;; is x4;,—> x4, X4+;—> x4, Hence for 1 =i <m,

ae; = a + [(x; + X)X F XTI+ X)) T
+ [0+ Xi1) M+ X_any) T 22 5N)B
+ [ X F xTix TG @
+ [T + xSl )B + [ + X)X
+x——-%i+1)(x-—i + x-—(i+1))_1]a"i

+ [(xi + xi+1)—1(x—i + )C—(i+1))—1 + xi_lx:%i-kl)]Bi = .

For i = m we have

@l =&+ [(Xme1 +X_m) X+ X (n=1) " F X 1y Zr) Com—s
A (Bt + X ) X A Xl 1y + X m—1)) " 1Bt
+ [X 20X "1y + X X 1] @1
+ (X Tmm s X X Tl 1)) Bmt + [+ X 1) T Xty + X))
+ X7 X 1)@

A [Fom + X)) Xt + X Xty F X)) 1B = @
A similar calculation shows Be = B.
LEMMA 4.4. Sq'a=Sq'B.
The proof is straightforward calculation using Sg'x~' = 1. Now let

A =F,(Sq’a, Sq'B:I admissible, I(I)=m)
B=F,(S¢’Sq'a + Sq’Sq'B:(J, 1) admissible, I(J)=m — 1)

THEOREM 4.5. i) H*M(n) = (A/B) @ F;[w,~]
i) H*(eBV)=(A/B)®F,[Q, 54’0, ..., S¢*" - - -Sq°Sq" Q]
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Proof. 1n discussing i) and ii) we will implicitly use the commutative diagram
H*BV —— H*BV
H*BE —— H*BE

The elements Sq’a, Sq'p € H*(eBV) by Lemma 4.3 and the relations B hold by
Lemma 4.4. A basis for A/B <« H*(eBV) is given by

{Sq’a, Sq’B:1,J admissible, I(I)=m, I(J)=m, j,,>1} (4.6)

Restricting to the subgroups (by, b,, ..., b,), (b_y,b,, ..., b,,) shows
these elements remain linearly independent in H*BE. Thus

(A/B) @ Fj[w,n] « H*M(n) (4.71)

since @, is invariant under £, (F,). By Theorem 1.5, Q, Sq'Q,...,
qu"'"z- --5q°Sq'Q c H*BV is a regular sequence of invariants; therefore a
theorem of P. Baum [B, 3.5] implies

(A/B)®F,[0Q, 5¢'0, ..., 5¢* " - -5¢°Sq'Q] = H*(eBV). (4.7ii)

It remains to check equality of the Poincaré series of these modules. The proof is
by induction on n =2m.

For this we first treat the case n=4. It is readily seen that QJ(F,)~
GL,(F,) X GL,(F,) with generators {u,,, 0,5} for the first factor and
{u, -5, 01,5} for the second. Then f;=(1+ u,)(1+ 0,;) corresponds to the
Steinberg idempotent for GL,(F,) [MP1] and

1=fo+fit+h (4.8)

is an orthogonal decomposition into primitive idempotents, where f,=1+
U12012 + (412012)* and f, = (1 + 0,)(1 + uy,). Similarly in the second factor, let

1=fo+f1+f2 (4.9)

be the corresponding decomposition. Then f, f; is the Steinberg idempotent for
F,Q (F>).

Consider V =V,, the vector space with dual basis x;, x5, x_;, x_,. Then
(H*BV)fofo= H*BV#**%? since u,,0y, and u, _,0,_, have order three. A
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simple application of Molien’s series [M] computes the Poincaré series

(1 + £2)?

P.S. (H*BVﬁ)f(,)) = (1 _ t2)2(1 — t3)2

Similarly (H*BV)f, = H* BV?%"? and Molien’s series yields

1+262+682+2t* + 46

P.S.(H*BVS) =~ ppi oy

Since f; and f, are conjugate as well as f; and f3, (4.8) then implies

2t +32 4208 +3c4 + 2
(1= -¢)

P.S.(H*BVf) =

Now fo=fofo+fof1+ fof2; hence

2+28 4+
(1-)*(1-r)?

P.S.(H*BVf,f}) =

Therefore

t+2+0+¢7

P.S. (H*BVflfD = (1 _ t2)2(1 _ t3)2

which, by 4.6 (m =2), equals the Poincaré series for (A/B) ® F,[Q, Sq'Q].
Hence, we have equality in 4.7ii (m = 2). Since w, is an invariant, equality in 4.7i
(m = 2) follows from Theorem 2.2.

We now turn to the general case part i), n =2m, assuming by induction both
parts of case 2m — 2. To compute H* M(n) as a module over F,[w,=] we consider
the commutative diagram

H*BE —%> H*BE

H*BV —> H*BV

where é e F,Q2;,(F,) is the image of the Steinberg idempotent for 3, _,(F,)
acting on the last 2m —2 co-ordinates. Since ImecImeé by Theorem 3.4,
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induction and the relations

Q=xx_,+ D xx_;, 54'0Q, ..., 8¢> - - -5¢°Sq'Q
i=2

of H*BE imply Im e is generated by elements of the form
w(Sq'ar,—1),  ©0(Sq'Bm-1) (4.10)

where a,,_;, Br—1 ar€ ®,,_y, B, On the last 2m — 2 co-ordinates, I(I)=m — 1
and w = w(x,, x_;) is a homogeneous polynomial in x,, x_,. The remainder of
the proof of this inductive step consists of two steps 4.11, 12.

(4.11) Suppose zelme is a linear combination of terms from (4.10).
Restriction to the subgroups (b, ..., b,,) (resp. {by, ..., b,,_1, b_,,)) detects
the summands wSq’'a,,_, (resp. wSq’B,,_,) of z with some w a polynomial in x,.
Invariance of Ime under the Weyl group W3, then shows z is a linear
combination of terms Sq*w,,, Sq*B,., I(K)=m. A similar argument shows the
same conclusion holds if w is a polynomial in x_; alone. Thus Im e consists of
(A/B) @ Fy[w,=] plus possibly terms from (4.10) with @ divisible by x,x_;. It
remains to eliminate the possibly of such terms.

(4.12) We shall need to recall some facts about Molien’s series [M]. Let G be
a finite group and N a graded F,G module. As usual the Poincaré series of N is
given by P.S.(N)=F(N;t) =¥ (dimg, N;)¢. For an irreducible F,G module E,
we also consider the series

F(N,G,E;t)=), at

where q; is the multiplicity of E as a composition factor in N;. Finally, let

X(N; 1) =2 xnt
be the modular character series where xy, is the modular (or Brauer) character of
N; defined on the p-regular elements G,., of G ([S]).

In the present situation let G = 5, (F,), R = H*BE and

R’ =F2[w2m, Wom _oi, l=0, 1, A (e 1].

We note R’ = R®~ by Theorem 3.4. Let M = R ®y. F,. Then in each dimension
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R and R’ & M have the same composition series by Theorem 2.2 and the proof of
[M, 1.3]. Hence

F(R, G, St;t)=F(M, G, St;t)F(R’', t) (4.13)

where St is the Steinberg module St = eF,G. By [M; 1.2b] and 4.13 we have

F(Re;t)=F(R, G, St;t) (4.14)
Now the orthogonality relations for modular characters [S, M] imply

F(Re; 1) "";El| 3 158 R DE) (4.15)

where |G| = (2™ — DII73! (2% — 1)2% by [Dk; p. 206]. To evaluate this series we
use

LEMMA 4.16.

Q-HA-)---(1-£2""*Y
[IE™ (1 - Ag)n] - ")

X(R; t)(g)=

where {A;(g)} are the eigenvalues of g acting on V.

Proof. Let S =S(V*) be the symmetric algebra of V*. Then R = N @ F,[w,n]
where N=S ®,F, and P=F,[Q, 5¢'Q, . .., S¢*" - - -5¢'Q]. The generators of
P form a regular sequence on S by Theorem 1.5. Hence by [B;3.5], S=P ® N.
Thus

x(S;8)=x(P; t)x(N, 1)
or

[Ta-ho= '"II (1= P (N; 1)

and the lemma follows since x(F[w]) = (1 —")"%
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From 4.6

) 2m+i_2—m 2r-2-(m—1)
T A- 1= I A-2 )(1-7)
I G i | s o X ()
(A - -

F(A/B ®@F,[w,m]; ) =

=fOF(R';1)
where Qu (1) =IIi5 (L+ 7" Y) and f(r)= (""" + 7" "M Qulo).
Combining 4.14, 15 and Lemma 4.16 we have
F(Re;t)=g()F(R'; 1)
where

1 -1
gt) = Gl > xsdg™)

[T (L= 2 DIT' (L= 2-2)
—1(1—-24(g) 1) .

By 4.7i
fOFR';1) =F(A/B @Fjwym];t) <F(Re; t) =g(t)F(R'; ?).

Thus f(¢t) <g(¢) since the R’ indecomposable classes of A/B remain indecom-
posable in Ime. This is seen by restricting to (b,, ..., b,,), (b_y,bs,...,b,,)
where the elements of 4.10 with w divisible by x,x_, restrict to zero and using the
known indecomposable classes of M(m) [M; 3.11 (p =2)]. The Stiefel-Whitney
classes w,m_, Of A, restrict to w,=_» of reg on these subgroups by [Q, 5.1]. Now
f(t), g(t) are polynomials with positive integer coefficients. For ¢ =1 all terms in
g(t) vanish unless g =1. Since x,(1)=dim St = |U,,| =2"""1, f(1)=2@D*1=
g(1). Thus f(¢) =g(¢) implies f(¢) = g(¢) and so 4.7i) is an equality.

To prove part ii) of the Theorem we observe that Q, Sq¢'Q,...,
Sq*" - -5qSq'Q is a regular sequence in H*BV; hence the same Molien’s
series argument implies equality in 4.7ii). This completes the proof of Theorem
4.5.

Remark. A similar proof for computing H*M(n) was outlined in [M];
however, the argument is incomplete because of divisibility questions.

Remark. It is immediate from Theorem 4.5 that the Poincaré series of
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H*M(Q2m) is

2t2"'+‘—-2—-m t2"‘-—2—(m-—1)

PS5 HMCm) = i Gl - &) T T - A=)

Proof of Theorem 4.1. Since the Steinberg module is irreducible and
projective, it lies in a matrix ring block; since its dimension equals 2™~ it
follows that 2™~ summands appear (see [MP1]).

It remains to produce the desired splitting M(2m). Let U= (u,, ..., u,,) be
a vector space of dimension m over F,. For I ={i,, ..., i,}, i;= £j define

. V—->U
by

71'1(”:',—) = U,
J!'I(Uk) = O k ¢ I.

Define stable maps
7, =, mn:BE— BU

ng =, mm:BE— BU

where sums are taken over those sequences I with an even (resp. odd) number of
negative integers. By (4.2) it follows that Q. (F,) also acts on T(4,) up to
homotopy.

Finally let

fi:M(n)-> BE =5 BU % M(m)

fZ:M(n)ABE—’—rﬁ-» BU = L(m)
f5:M(n)-5>BE-5T(A,) % eT(A,)

where ¢ is the transfer [MP1; 3.7] and & is projection onto a stable summand. We
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will show that
f=fivhVfi:M@n)—M(@m)v L(m)veT(A,)

is a 2-local equivalence.
As modules,

H*M(m) =F(Sq"(xi'- - -x,."))
H*L(m) =F,(Sq¢’(x- - -x;,)))

([MP1]) with the same restrictions on I, J as in (4.6). Using the Cartan formula it
follows that Sq’(x7'---x;!) is polynomial in x,,...,x, (i.e. there are no
negative powers). Hence

f1(8q' (i - - x5)) = Sq'(@)
and analogously
f3(5q' (1" - - x")) =S4’ (B)

Since Q, (F,) preserves the Euler class w,~ of 4,, it commutes with the Thom
isomorphism

H*BE - H*T(A,) =[H*BE]wym
Hence we have
H*eT(A,) = [(H*BE)e)w,» = [H*M(n)]w,m
Under these identifications t*: H*T(A,))— H*BE is the obvious inclusion. Hence

f4 is an inclusion with image [H*M (n)]w,~. The result follows from Theorem 4.5
and (4.6).

§5. Splitting BE(4)

Let E = E(4), the extra-special 2-group of real type and of order 32. The
Chevalley group Q7(F,) acts on BE up to homotopy; thus an orthogonal
idempotent decomposition of 1 in F,7 (F,) will provide a splitting of BE. One
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summand of this splitting is BSL,(F;)°SL,(F;) where E =~ Qg° Qg is a 2-Sylow
subgroup of SL,(F3)°SL,(F3).

Corresponding to the two factors of Q7 (F,)= GL,(F,) X GL,(F,) there are
two orthogonal idempotent decompositions (4.8-9)

1=fo+fi+h
l=fo+fi1+f2

Thus in F,82; (F,) we have the orthogonal idempotent decomposition
1=fofo+ (ifi1+fif2+Lf1+hf2) + (fofi+fofs+fifo+£fo) (5.1)

where f,f is the Steinberg idempotent.

THEOREM 5.2. Corresponding to (5.1) there is a stable 2-local
decomposition

BE = BSL,(F3)°SL,(F;) v 4M(2) v L(2) v eT(AJ)) v 4X
where X = f,f|BE is a spectrum with Poincaré series (* + £2)/(1 — t)(1 - £)(1 — t*).

Proof. The idempotents f;, f, are conjugate [MP2] as are f; and f;. Hence the
summands corresponding to f,f1, fif2, fof1 and £, f; are equivalent. By Theorem
4.1, each is equivalent to M(2)v L(2)v eT(A,). Similarly f, and f; are
conjugate. Thus there are four summands equivalent to X. By comparing
Poincaré series, the result now follows from part i) of

PROPOSITION 5.3. i) fofoBE = BSL,(F3)°SLy(F3)

ii) For Z/3 X Z/3 c Qf(F,), H*SLy(Fs)°SL,(F;) =~ H*(E)?>*%?
More explicitly,

H*BSL,(F5)° SLy(F;) = F,[v,, v3, X3, X3, w4)/R

where

B (v3+ vi+x3+ v3x3)
U3+ Vi + X3+ sk,
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and

i*(v) =xF+xx_; +x%,
i*(vs) =xx2, +x3x_,
i*(x3)=x3x_; +x3+x3,

i*(%3)=x3x_,+ x5+ x>,
under the inclusion i: E = Qg° Qg—> SL,(F3)° SL,(F5).

Proof. Part i) follows immediately from ii) since f,fo is the trace over
Z/3XZ/3,i.e. fofo=X g g €Z/3xXZ/3. Part ii) is a straightforward generaliza-
tion of that for H* BPSL,(F;) [MP2]. One considers the map of fibrations

BZ/2 —> BQg X Qg —> BQg° Qg

l lg,-xi e

BZ/2 — BSLz(F3) X SL2(F3) E— BSLz(F:;) °SL2(F3)

and the corresponding map of spectral sequences.

Remark. The Poincaré series for H*BSL,(F;)°SL,(F5) is easily seen to be
1+2%/0Q-HA-2)A-1Y.
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