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Stability of meromorphic vector fields in projective spaces’

XAviER GOMEZ-MONT and GEORGE KEMPF

A meromorphic vector field of degree r on the complex projective space P” is
a bundle map a:L_,— TP" from the line bundle of Chern class —r to the
tangent bundle on P", defined up to multiplication by a non-zero scalar.
The group PGL(n) of automorphisms of P* acts on the space oA Vec, =
Proj H(P", 6y~ ® L,) of meromorphic vector fields of degree r. We will say that
a meromorphic vector field is non-degenerate if all its zeroes have multiplicity
one.

In this paper we analyse the stability properties of the action of PGL(n) on
o Yec, in the sense of Mumford ([17]). We prove:

THEOREM. Let o be a non-degenerate meromorphic vector field of degree
r>0, then:

(1) a is completely determined by its zero set.

(2) ais PGL(n)-stable.

(3) The zero set of a is PGL(n)-stable

A finite collection of points in P” have to be in special position to be the zero
set of a meromorphic vector field, but this position is of general type in
Mumford’s sense. The main ingredients in the proof are Bott’s computations of
the cohomology of homogeneous bundles ([1]), Mumford’s numerical criterium of
stability ([7]) and the Koszul resolution associated to the zero set Z of a:

0— A"Qpr(—nr)— -+ - = Qpr(—1) S Opn— 0, — 0.

1. Meromorphic vector fields in P"

Let P" be the projective space over the complex numbers C, and let Op», Op-,
Qp» and Z be the structure, tangent, cotangent and hyperplane sheaves on P”",

1 Supported by CONACYT at UNAM.
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Stability of meromorphic vector fields in projective spaces 463

respectively. If & is an Op--sheaf, we will use the notation &(r) for € ® £*" if
r=0and €® (£*)®" if r <0. The space o#Yec, of meromorphic vector fields of
degree r=—1 is the projective space of lines through 0 in H(P", Op:(r)) =
H°(P", Hom (£-,, Opr)). A meromorphic vector field on P” is a non identically
zero Op--morphism a: £_,— Op~, defined up to multiplication by non-zero scalar
(see [2], [4]). The twisted Euler sequence ([S] p. 176)

0— Op~(r) = Opr(r + 1)®C D Gpa(r)— 0 (1.1)

gives us a way to represent meromorphic vector fields on P" as homogeneous
polynomial vector fields of degree r+1 in C**'. The group PGL(n) of
automorphisms of P” acts on o#Yec,

PGL(n) X ol Vec,—>MYec, (g, «)—>(Dg - a)og™? (1.2)

The universal family of meromorphic vector fields of degree r is the tautological
morphism on c#%Yec, X P"

AT ¢ @ T2 Z.,— IT; Opr (1.3)

where IT, and IT, are the projections to the factors and # is the sheaf of
hyperplanes in o#Yec,. Let Z be the subvariety of o#Yec, X P" defined by A =0.

LEMMA 1.1. Z is a smooth subvariety of ol YVec, X P" of codimension n. The
restriction of IT, to Z is a projective space bundle over P* and IT,: Z — ol Yec, is
generically finite.

Proof. Let # be the ideal defining the diagonal in P" X P, where p, and p,
are the two projections. The subsheaf

p1:[p3 Opr(r) ® $] p1:p3 Ops(r) = H(P", Op(r)) B cOp- (1.4)

has as fiber over p € P" the sections of h°(P", Op~(r)) that vanish on p and it is

locally free, since PGL(n) acts transitively on P". The projective bundle over P"

associated to (1.4) shows that Z <o Yec, X P" is a projective sub-bundle of IT,.
Using the representation (1.1), it is easy to see that the line field given by

3l (1.5)

i=0 azi
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has isolated zeroes, hence IT,: Z —o#%Yec, is generically finite. One checks that
(1.5) has

cr(@e) =3 (")t == L.6)

zeroes of multiplicity one, where c, is the n-th Chern class.
We will now exhibit some PGL(r) invariant divisors in o/ %Yec,.

LEMMA 1.2. Let Q be a non-zero GL(n) homogeneous invariant polynomial
defined on the space M, ., of n by n matrices. Then for r > Q, the space

Zy = {a el Vec,/3p € P" with a(p) =0, Q(Da(p)) =0}

is a PGL(n)-invariant divisor in o#%Yec,; where Da(p): T,P"— T,P" is the linear
part of «a at p.

Proof. Let Z, = {(«, p) € Z/Q(Da(p)) = 0}. The projection map IT,:Z,—
P” has a structure of a fibre bundle, since PGL(n) acts transitively on P”, and has
as fiber {a ecVec,/a(po) =0, Q(Da(py)) =0} which has codimension 1 in
{0 eclPec,/ a(p,) =0}, since the derivative at p,

Dpo: {a’ € HO(P"’ @P"(r))/a(PO) = O}_')Mnxn

is surjective. This shows that Z, has codimension 1 in Z.

To finish the proof of the lemma, we will show that IT,:Z,—>o#%ec, is
generically finite. To see this, it suffices to show that the codimension of
Z, = {(&, p) € Z/dim, {& =0} > 0} has codimension bigger than 1 in Z. We have

Z,cZycZ (1.7)

where Z,., is obtained by setting Q = determinant above. Z, is irreducible of
codimension 1 in Z. It is easy to see that the first inclusion in (1.7) is proper (i.e.
let A" c P" be an affine chart, we may find a homogeneous field L7, F(3/9z) in
A" with 0 as only singular point in A", with high multiplicity, and only singular
points of multiplicity 1 on P" — A”), and hence the codimension of Z, in Z is
bigger than 1.

We will say that a zero p of a meromorphic vector field a: ¥L_,— Op~ is
non-degenerate if det (Da(p))+#0. A meromorphic vector field a with only
non-degenerate zeroes will be said to be non-degenerate.
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Our main technical tool will be the Koszul resolution K, — 0,— 0 associated
to the zero set Z of a meromorphic vector field a: £_,— Op~ vanishing on a finite
number of points:

0— A" Qpr(—nr)— - - - = A2Qpr(—2r)—> Qpa(—1) % Opn— O, — 0 (1.8)

We will also use the computations of some cohomology groups of homogeneous
bundles in P” which may be deduced from Bott’s Theorem ([1]). We will sketch a
proof of the following proposition in an appendix:

PROPOSITION 1.3. (1) Ifj<n and r >0, then
H(P", A'Qp(—-1))=0

(2) Let £(r) = (A'Q2pr) @ Op:((1—i)r), where r >0, 0=<i=<n and n =2; then
HI(P", %(r)) =0 if j <i, except for H'(P", %,(r)), which is one dimensional.

2. Stable meromorphic vector fields

In this section we will show that if &« €e o#Yec,, r >0 has only non-degenerate
zeroes, then a is PGL(n)-stable in the sense of Mumford (see [7]).

PROPOSITION 2.1. Let a eoflVec, be a non-degenerate meromorphic
vector field with r > 0; then the zeroes of « span P".

Proof. If Z denotes the zero set of a, we have to show that Z is not contained
in any hyperplane of P”®, or equivalently, that the restriction map
p:I'(P", Opr(1))—> I'(Z, Op~(1)|2) is injective. Tensoring (1.8) with Op~(1), an
easy diagram chase shows that it suffices to prove that H'(P", A'Qp+(—ir + 1)) =0
for j <i =< n, which follows from part 1 of Proposition 1.3.

Remark. If a has isolated singularities, the proof of the Proposition still holds,
where the span is the span of the zeroes of a with multiplicities.

PROPOSITION 2.2. Let a € I'(P", Op~(r)) be a non-degenerate meromorphic
vector field and r>0. If « is an eigenvector for the action of a one-parameter
subgroup A:G,,—> GL(n + 1), then A factors through the center of GL(n + 1).
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We will first prove:

LEMMA 2.3. Let a' be a section of O~ which is an eigenvector for the action
of a one-parameter subgroup ' : G,,— GL(n). Then its eigenvalue is 1 if ' has an
isolated zero at py with non-nilpotent linear part Do’ (p,).

Proof. p, is a fixed point of A’ and let A'(¢).a’ = f"a'. Then the linear part of
A'(t)a’ is on the one hand t"Da’(p,), and on the other

D,A'(t)eDa'(po)° D,A' ()"

For the first expression, the eigenvalues are multiplied by ¢, and for the second
one they remain the same, hence m =0.

diag (™, ..., t™). Then a' =x; " is a section of Op,, which is an eigenvector
for the action of G,, on the affine space D(x;) = {x; #0}. By Proposition 2.1, a’
has a zero in D(x;), and by Lemma 2.3 we obtain (eigenvalue a)= (eigenvalue
x;)", and hence m; = m;.

PROPOSITION 2.4. Let o €ol%e, be a non-degenerate meromorphic
vector field and r > 0; then the stabilizer S of « in PGL(n) is finite.

Proof. We will first show that § does not contain a connected unipotent
subgroup. Since such groups are extensions of G, = C, it will suffice to show that
if u:G,— PGL(n) stabilizes «, then it is the identity. The fixed points of u in P”
form a linear subspace, and since all the zeroes of « are fixed by u, their span is
contained in this linear subspace. Hence by Proposition 2.1 we conclude that u is
the identity. Hence S is a reductive group. By Proposition 2.2 a maximal torus of
S is trivial, so S is a finite group.

THEOREM 2.5. The set of PGL(n)-stable meromorphic vector fields in
oM Yec,, r >0, in P" contains the open set formed by non-degenerate meromorphic

vector fields.

Proof. Zge, is a PGL(n)-invariant divisor in o#/%ec,, and its complement is
the set of non-degenerate meromorphic vector fields. By Proposition 2.4 the
stabilizers are finite, hence they are all PGL(n)-stable (see [7]).

Remark. Note that by Lemma 1.2, those meromorphic vector fields such that
all its singular points have non-nilpotent linear parts are semistable.
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We will now show that a non-degenerate meromorphic vector field a e
olYec,, r>0, is determined by its singular points:

THEOREM 2.6. Let a'e@//(%,,, r>0, be a non-degenerate meromorphic
vector field with zero set Z, and let o' e ol Yec, be another meromorphic vector
field vanishing on Z, then «' = ka with k € C.

Proof. Tensor the sequence (1.8) with Op-(r). To prove the theorem it
suffices to show that the map of global sections

H(P", ©pr(r))—> H(Z, Opr(r)|2)

has one dimensional kernel. A diagram chase on the above sequence K, ®
Op-(r) shows that it is sufficient to prove that for 1<i=n and j<i we have
H (P", A'Qp» @ Ops((1 —i)r)=0 and H°(P", 2p» ® Opr) =C - Id. This follows
from part 2 of Proposition 1.3.

Remark. The above argument generalizes to: Let M be a projective manifold
such that the only global endomorphisms of the tangent sheaf are multiples of the
identity; i.e. H'(M, 2,,® 0,,)=C-1Id. If £ is an ample sheaf on M denote
Proj H'(M, ©,, ® £7) by cllYec, (M, £). Then for r sufficiently large, the zero
set of a non-degenerate meromorphic vector field & € o#Vec, (M, £) determines
a uniquely. If furthermore H°(M, 2, ® ©),, @ M) =0 for any line bundle
M # 0, with Chern class zero, then for r sufficiently large the zero set of a
non-degenerate meromorphic vector field « eo/l%,,(M, ¥) determines «o
uniquely in g 0lYec,(M, £'), where &' are line bundles on M with the same
Chern class as £. For the proof, replace in the above argument Bott’s
computations by the Kodaira—Nakano vanishing theorem.

3. Stability of the zeroes of a meromorphic vector field

In this section we will show that the zero set of a non-degenerate meromor-
phic vector field in P* is PGL(n)-stable. We will rely on Mumford’s numerical
criterium ([7], p. 76):

LEMMA 3.1. The set of points (py,...,Pm) €P" X+ XP"=(P")" such
that for every proper linear subspace L c P"

dimL+1)
———

(number of p; in L) < ( 1

(3.1)

is PGL(n)-stable.
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We begin with the following generic result:

THEOREM 3.2. Let € be a locally free sheaf of rank n on P", then there
exists a ko such that for k>k, there is a Zarizki dense open subset in
Proj H°(P", €(k)) formed of sections o such that the zero set {o=0} is
PGL(n)-stable.

Proof. Let k, be such that for k > k, we have:

(1) ¥&(k) has global sections with only zeroes of multiplicity 1.

(2) If Grass, is the Grassmanian of s-dimensional subspaces of P?, 0<s <n,
and V is the tautological subvariety of Grass, X P", then for ¢ #s and
j=1,..., n we have

R, (IT}(NE(—jk)) ® 0,) =0 (3.2)

This is possible by Bertini’s theorem and a parameter version of the Kodaira—
Nakano vanishing theorem (see [4] Theorem 6.7 and [5] p. 252).

Let k> ko, o€ H(P", é(k)) with only zeroes of multiplicity 1 and K,—
0,— 0 be the Koszul resolution of the zero set Z of o, where K,—0 is the
complex of sheaves

0> A*E(—nk)— - -—> &E(—k)— Op»—0 3.3)

with grading K; = A"7%(—(n —j)k). Let L «P" be an s-dimensional subspace,
and denote by H the hypercohomolgy groups of the complex of sheaves
K,® 0,—0 (see [3]). The cohomology sheaves #? of (3.3) have support on
ZNL and ¥ = 0, ® O0,. Hence the dimension of H" is the cardinality of Z N L.

For the other spectral sequence of K,® 0,—0 we have E”7=
H(L, A*é(—(n — p)k)|.), and by hypothesis on k then ; E”*? =0 except if g =s
or E™?=C. Directly from the spectral sequence, we obtain

dim H” =dim ,E"~** + 1 =dim [E"™** + 1
= dim H*(L, A"~ 8(—sk)|.) + 1

By the vanishing hypothesis (3.2), we have that

#(ZNL)y=dimH" < |y(L, A" E(-sk)| )|+ 1=, CiK/

j=0
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where x is the holomorphic Euler—Poincaré characteristic. By setting L = P" we
obtain

#(2)= iD,-k" (3.1)

Hence, for probably larger k, Mumford’s numerical criterium holds since for
large k we will have

S <t S pu
¥15,

j=0 n

Hence by Lemma 3.1 Z is PGL(n)-stable.

Remark. Hypercohomolgy of the complex of sheaves K,— 0 in (1.8) gives a
way to compute the number (1.6) of zeroes of a non-degenerate meromorphic
vector field o e ol Vec,. By one of the spectral sequences, we see that all
hypercohmology vanishes except H” = H(Z, 0;). The ,E terms of the other
spectral sequence vanish except {E™°=C and E*" = H"(P", A" Qp((j — n)r).
The , E-terms form an exact sequence

0—,E'"— H"(P", A"Qp-(—nr))—- - -— H'(P", Qp:(-r))—0

and H" = C @ ,E"". Hence « vanishes on

S (~1Yx(P", A2 = m)r) + 1

j=0

which is computable by the Riemann-Roch theorem.

Theorem 3.2 shows that for large r, the zero set of non-degenerate
meromorphic vector field in o#%ec, are PGL(n)-stable. We will give another
argument for every r >0, using Mumford’s numerical criterium (3.1). We will
begin with:

LEMMA 3.3. Let o ecll%ec,, r>0, be a non-degenerate meromorphic
vector field in P", then for every s-dimensional linear subspace L — P" there are at
most r~Y[(r — 1)°*? — 1] points of Z ={a =0} in L.

Proof. L < P" induces an exact sequence of sheaves on L

0— 6,—> Bps|.—> N(L, P")—0 (3.4)
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where N(L, P") is the normal sheaf to L in P". If L’ is a linear sub-space of P" of
dimension n —s — 1 and disjoint from L', then the linear projection of P” — L’
from L’ to L induces a splitting of (3.4). Using this splitting, we may obtain from
@: Op(—r)— Op. by restricting to L and then projection to @, a morphism
a':0(—r)— ©,. We will show that we may choose L' in such a way that a’ has
isolated zeroes. By (1.6) this number is bounded by r~![(r + 1)**! — 1]. Since all
the zeroes of a are zeroes of a', this is enough to prove the lemma.

To see how one chooses L', note that if p € L — Z then «'(p) =0 if and only
if the line /, passing through p with tangent direction a(p) = T,P" intersects L'.
Hence, we have to show that we may choose L' in such a way that only a finite
number of lines /, with p € L — Z intersect L'. Let A = L X P" be the closure of

{((p,)e(L-2Z)xP"|qel,}

A is an irreducible variety of dimension n + 1. Let B be the projection of A to the
second factor: B = IT,(A). It is an irreducible variety which contains L; hence B
has dimension n or n + 1.

If B has dimension n, then B=L and we have that /l,c L for peL —Z.
Hence the map « restricted to L takes values in O,; i.e. |, :0,(—r)— ©O,. In
this case it is not necessary to choose L' since we may choose a' = «|,. If B has
dimension n + 1, then there is a proper subvariety B' of B such that IT,: A —
IT;'(B')— B — B’ is a finite morphism. Then choose L' disjoint from B’ and L.
This proves the Lemma.

THEOREM 3.4. The zero set of a non-degenerate meromorphic vector field in
oMYec,, r>0, is PGL(n)-stable.

Proof. Let a be a non-degenerate meromorphic vector field in o#%ec,, r >0,
Z has r'[(r+1)**'—1] points. Let LcP” be a proper linear subspace of
dimension s. By Lemma 3.3, L contains at most r~'[(r + 1)°*"! — 1] singular points
of Z. Now

s+1 1
+ n+1__ — + S+1__
PEELURR VAR | e (RS VAR
s s+1(n+1) (s+1)]. s+1 & <n+1).
=§, - r+ E, r>0
,-ao[n+1 j+1 j+1 n+1,-5,\j+1

Hence, Mumford’s numerical criterium applies.
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4. Appendix

In this appendix we will prove Proposition 1.3 using elements from Repres-
entation Theory.

Let T = {(to,-..,t,) €C"'} be the diagonal subgroup of GL(n +1). The
characters of T have the form " =¢"*-- -, where m=(mg,...,m,) is a
(n + 1)-vector of integers. The character #™ is studied by looking at the vector
m' = (m;) where m; =m;+ n —i. If all the entries of m' are distinct, we say that
the character is non-singular and the index of ™ is the length of the vector
permutation o of [0, n] such that mgq,, ..., mg,) is strictly decreasing.
Otherwise ¢t™ is called singular.

We may regard the projective space P* as the homogeneous space GL(n +
1)/ P, where P is the subgroup of matrices of the form

ooola

which is the stabilizer of the first coordinate line / in A**'. A homogeneous
bundle W on P is determined by a representation p of P on the fiber W (/) of W
over l. The bundle W is irreducible if p is an irreducible representation. There is a
one to one correspondence between irreducible homogeneous bundles and some
subset of characters of T. Let £™™ be the character corresponding to such a
bundle W. Then ™™ is the T-eigenvalue of the unique B-invariant line in W(J),
where B is the group of upper diagonal matrices in GL(n + 1). The characteristic
property of such characters ¢™ is that the sequence m,, . . ., m, is non-increasing.

THEOREM 4.1 (Bott [1]). Let W be an irreducible homogeneous bundle on
P", and let m = m(W) and O(W) be the sheaf of holomorphic sections of W, then:

(1) If ¢ is singular, then H'(P", O(W)) =0 for all i, and

(2) If t™ is non-singular, then H'(P", O(W))=0 if i+#index(m) and
H™™exm(pr O(W)) is an irreducible representation with highest weight t', where
ri=mgi—n+i.

EXAMPLE. 4.2. The tangent bundle Tp» of P is irreducible with m(7Tp.) =
tot;!. In this case the index is zero, as Tp~ has global sections.
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EXAMPLE. 4.3. The bundle of i-forms A‘Tg. of P" is irreducible and
m(A'Tg) =15ty - - - t,. Here the index is i as H'(P", A‘Qp~) #0.

EXAMPLE. 4.4. m(0(r)) corresponds to (r, 0, - - -, 0).

LEMMA 4.5. Let m =m(A'Tgs) with 0<i=<n. Denoting m—(r,0,...,0)
by m(r), we have;

(1) ¢ is singular if l<r=n-—i.

(2) The index of "™ isnifr>n—i.

Proof. asm(r)y =(n—i—r,n,...,n—i+1,n—-i—-1,...,0), the lemma is
clear.
We are ready to prove part 1 of Proposition 1.3.

COROLLARY 4.6. If r>0, then H/(P", A'Qp:(—r)) =0 for j <n.

Proof. Recalling that L_, denotes the line bundle on P" with Chern class —r,
we have that m(A'T§-® I_,) = m(r). So the corollary follows from Lemma 4.5.

LEMMA 4.7. For 0<i=n and r =0, let W; be the irreducible homogeneous
bundle on P" with associated character

x=x(W,)= WD = (5= - - - 417", then

(1) For 0<i<n, we have:

(a) y is singular forr=0,2<r=n—-i,orr=n—i+2.

(b) The index of y is i for r=1; n—1 for r=n—i+1 and n for

r>n-—i+2.

(2) Fori=0, we have:

(a) x is singular for2<r=norr=n+2.

(b) The index of x is O forr =0, 1;n—1forr=n+1and n forr>n+2.
(3) For i =n, we have:

(a) x is singular for r = 1.

(b) The index of y is n —1 for r =0 and n for r > 1.

Proof. m(WY)'=(1—=i-r+n,nn—-1,...,n—-i+l,n—-i-1,...,1, -
1), so the Lemma is clear.

COROLLARY 4.8. For 0=i=n—1and r=0) or (i =n and r > 0) we have
H(P", O(W}))=0 forall j <i.
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Proof. For i =0 the statement is vacuous and for 0<i=n, the corollary
follows from Lemma 4.7 and Theorem 4.1.
We now prove the second part of Proposition 1.3:

PROPOSITION 4.9. Let %(r) =(A'Qp) ® O((1 —i)r), with r>0 and 0 <
i<n, then H(P", $(r)) =0 if j <i and n =2; except for H(P", 4,(r)), which is
one dimensional.

Proof. The statement is vacuous for i = 0. For i =n we have &,(r) = O(r(1 —
n)—n—1)= O(W,-1y+n+1). Hence the proposition follows from Lemma 4.7
since n=2 and r > 0.

For 0<i<n —1, we have by Littlewood-Richardson [6] that

Zi(r) = O(W—1),) ® A Q((1 - i)r)

where (i —1)r=0. The vanishing of the j™-cohomology groups of the first
summand, j<i, follows from Corollary 4.8 and the vanishing of the second
summand follows from Corollary 4.6, except for i =1 and j =0, which is one
dimensional.
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