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Convergence of Birkhoff normal forms for integrable systems

Hipekazu Ito

1. Introduction

A basic tool for many differential equations is to transform them into a
simpler form that is called normal form. In Hamiltonian systems, it is related to
integrability of the system near an equilibrium point or a periodic motion. The
purpose of this paper is to clarify this connection. Throughout this paper, we
consider analytic or real analytic Hamiltonian systems and canonical transforma-
tions. We first consider analytic case and later treat real analytic system as its
special case.

Let us consider a Hamiltonian system with n degrees of freedom

dxk oH dyk oH
= = - k = 1, ey .
dt ayk ’ dt axk ( n) (1 1)

in a neighbourhood of an equilibrium point which we take at the origin
z=0eC?, where z=(x,y) with x=(x1,...,x,), y=01, ..., y,). We assume
that the Hamiltonian H = H(x, y) is analytic in a neighbourhood of the origin
with satisfying H(0) = 0 and therefore its Taylor expansion begins with quadratic
terms. The eigenvalues of the linearized system of (1.1) about the origin, which
are determined by the quadratic terms of the H, occur in pairs +4,,..., £4A,.
The equilibrium point (the origin) is called non-resonant if the A, (k=1, ..., n)
are rationally independent, that is, linearly independent over the field of rational
numbers. This condition is equivalent to the condition

Y, meA,#0 for any (m,, ..., m,) € Z"\{0},

k=1

which will be referred as the non-resonance condition.

In this paper, we consider the normalization of Hamiltonian systems near a
non-resonant equilibrium point. Then the eigenvalues *A,,..., A, are all
distinct and therefore we can find a linear canonical transformation which takes
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the Hamiltonian into the form

n

Z KXYt oo, (1.2)

where the terms not written out explicitly denote a power series containing terms
of order =3 only. For this fact, we refer to [11, §15]. Here a transformation
(mapping) z = ¢({) is called canonical (or symplectic) if the identity Y5_; dx; A
dy, = Lk=1dEc Adn, holds, where C=(§ 1) with §=(§,...,8,), n=
(M1, - - - » M)- By a canonical transformation z = ¢({), the Hamiltonian system
(1.1) is transformed into a Hamiltonian system with Hamiltonian H(¢({)).

In order to normalize higher order terms of the Hamiltonian, let us consider a
canonical transformation ¢ of the form

¢(8) = { + terms of order =2. (1.3)
G. D. Birkhoff [2] proved the following result.

THEOREM 1.1. Let H(z) (z = (x,y)) be a power series of the form (1.2).

Assume that A, ..., A, are rationally independent. Then there exists a canonical
formal power series transformation z = ¢(&) (= (&, n)) of the form (1.3) such
that He ¢ is a formal power series in n products Em, (=1, . .., n).

In the above, the transformation z = ¢({) is not determined uniquely.
However the function Heo ¢ is uniquely determined independently of ¢. The
function He ¢ is called Birkhoff normal form and the ¢ is called Birkhoff
transformation.

If there exists a convergent Birkhoff transformation, the corresponding
Hamiltonian system is solved explicitly for (&, n) coordinates. Indeed the system
can be written as

d&_OH,  dn__oH

e k=1,....n),
dt aw,cg" a - o™ n)

where w,=&mn(k=1,...,n). Therefore we have dw,/dt=0, namely w,
(k=1,...,n) are integrals. Hence one can integrate the system in the form

Ei(t) = e=£,(0), k() = e~ (0) (k=1,...,n),

where the arguments of H,, are the initial values w,(0), . . ., w,(0).
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However the Birkhoff transformation ¢ is divergent in general (Siegel [9, 10]).
Then, when does a convergent Birkhoff transformation ¢ exist? This problem was
studied by H. Riissmann [8] for two degrees of freedom case, and J. Vey [12]
generalized it to general degrees of freedom case as follows:

THEOREM 1.2 (J. Vey [12]). Let G (z)(k=1,...,n;z=(x,y)) be n
Poisson commuting functions of the form

Gi(z) = Z‘l Buxiy + - - (k=1,...,n); det (Bx) #0, (1.4)

where By, € C and the remainder part not written out explicitly denotes a convergent
power series containing terms of order =3 only. Then there exists an analytic
canonical transformation z = ¢(8) (§ = (&, n)) near the origin such that $(0)=0
and Gio¢ (k=1, ..., n) are analytic functions of n variables Em, (1=1, ..., n).

In the above, G,, . . ., G, are called Poisson commuting if the Poisson bracket
2 (90G, 9G;, 3G, G,
{Gk, Gi} := 2 ( 3 = I)
x; dy; dy; Ox;

j=1

vanishes identically for any k,/=1,..., n. The Poisson bracket is invariant
under canonical transformations. Although the non-resonance condition is not
assumed, it is “hidden” in this theorem. We will see this after the formulation of
Theorem 1.3.

The system (1.1) is called integrable in a domain Q < C** (or R*") if there exist
n Poisson commuting integrals G,=H, G,, ..., G, which are functionally
independent in 2. Here the functional independence of Gi, . . ., G, implies that
n differentials dG,, . . . , dG, are linearly independent on an open dense subset of
Q. Clearly the system (1.1) is integrable near the origin in this sense if there exists
a convergent Birkhoff transformation. On the other hand, Theorem 1.2 asserts
that if the system with H = G, is integrable near the origin with integrals of the
form (1.4), then there exists a convergent Birkhoff transformation. This theorem
can be proved also for C” function case (Eliasson [3]).

However it may happen that some integrals G; begin with terms of order
greater than two and their result cannot apply to that case. The aim of this paper
is to show that, without any restriction such as (1.4), if the system is integrable
near a non-resonant equilibrium point, then there exists an analytic (convergent)
Birkhoff transformation. The result is stated as follows:
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THEOREM 1.3. Let the origin be a non-resonant equilibrium point of the
system (1.1) and assume that the Hamiltonian H(z) (z = (x, y)) is analytic in a
neighbourhood of the origin. Assume that in addition to G, = H the system (1.1)
possesses n— 1 analytic integrals Gy(2), ..., G,(z) near the origin such that
Gy, G, ..., G, are functionally independent. Then .there exists an analytic
canonical transformation z = ¢(8) ({ = (§, n)) near the origin such that $(0)=0
and Gyop (k=1, ..., n) are analytic functions of n variables Em, (=1, ..., n).

In the above, the transformation ¢ is obtained as the composition of a linear
canonical transformation taking the Hamiltonian into the form (1.2) and a
nonlinear canonical transformation of the form (1.3) (Birkhoff transformation).
We do not need to assume that G, . . ., G, are Poisson commuting. However, as
we shall see in the next section (Remark 2.6), the integrals near a non-resonant
equilibrium point are necessarily Poisson commuting. This theorem implies that
integrability near a non-resonant equilibrium point is equivalent to the existence
of an analytic Birkhoff transformation.

One can prove Theorem 1.2 from Theorem 1.3. To see this, let A=
(a;) € GL(n, C) and consider

E‘=2a'ij,- (k=1,...,n)
j=1

for the functions G,, ..., G, in Theorem 1.2. These F; have the same form as
(1.4) with AB in place of B = (f,;). Let (4, . . ., A,) be the first row of AB. Then
F, = Y%-1 Avxi i and one can find a matrix A so that 4,, ..., A, are rationally
independent. Therefore for the system with Hamiltonian F;, the origin is a
non-resonant equilibrium point and it follows from det AB #0 that F, ..., F,
are functionally independent. Moreover since G,, . .., G, are Poisson commut-
ing, F, . .., F, are also Poisson commuting and they are integrals of the system.
Consequently Theorem 1.3 is applicable and gives the assertion of Theorem 1.2.
In this sense, Theorem 1.3 is a generalization of Theorem 1.2.

If the Hamiltonian is real analytic, we have the similar result. We state the
result for the case when the eigenvalues of the linearized system are all purely
imaginary. In this case the equilibrium point is called elliptic.

THEOREM 1.4. Let the origin be a non-resonant elliptic equilibrium point of
the system (1.1) and assume that the Hamiltonian H(z) (z = (x, y)) is real analytic
in a neighbourhood of the origin. Assume that in addition to G, = H the system
(1.1) possesses n — 1 analytic integrals Gx(z), . . . , G,(z) near the origin such that
G,, G,, ..., G, are functionally independent. Then there exists a real analytic
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canonical transformation z = ¢(§) (§ = (&, n)) near the origin such that ¢(0)=0
and Go¢p (k=1,...,n) are analytic functions of n variables (&7 + n?)/2
(=1,...,n).

In the above, we do not need to assume that the additional integrals
G,, . .., G, are real analytic. However the new Hamiltonian H - ¢ is real analytic
and the n functions &%+ 73 are integrals and solutions are given explicitly in
(&, n) variables as periodic or quasiperiodic orbits on invariant tori £z + n2=
const. 20(k=1,...,n). As is well known, for integrable systems with real
analytic (or C*) Poisson commuting integrals G,, ..., G,, Arnold-Liouville’s
theorem [1] asserts that if dG,, . .., dG, are linearly independent on a compact
and connected level set E={G,=const. (k=1,...,n)}, then there exists a
canonical coordinate system (7, @) (which is called action-angle variables) in a
neighbourhood of E such that the G, are functions of 7= (7,,..., 7,) alone.
This implies that the flow of the system becomes linear in @ variables and the
system is solved explicitly in (7, ) variables. Theorem 1.4 also implies the
existence of action-angle variables through a canonical transformation &, =
V21, cos B¢, N = V27, sin 6. Our case is quite different from Arnold-Liouville’s
theorem in the sense that rank (dGy, . . ., dG,) =0 at the origin since G, ° ¢ does
not contain linear terms.

This paper is organized as follows: In the next section we discuss the role of
functional independence and reduce Theorem 1.3 to Theorem 2.4 formulated
there. The Sections 3 to 6 are devoted to the proof of this theorem. Our proof is
based on a rapidly convergent iteration process. In Section 3, we prove the
existence of a formal canonical transformation ¢ which takes G; (k=1,...,n)
into the normal form. The transformation ¢ will be given as a composition of
infinite number of canonical transformations defined by the so called Lie series.
In this step, by using the non-resonance condition the formal expansion of ¢ is
determined by the requirement that He° ¢ is in normal form. However it turns out
that automatically also Gyo¢ (k=2,...,n) will be formally in normal form.
Using the system of n equations Gi°¢ =normal form (k=1,...,n), we can
obtain estimates good enough for the convergence proof. This is the main point
to avoid the small divisor difficulty and it is described more precisely in Section 3.
Moreover we also reformulate the result as Theorem 3.6 a little more generally
than Theorem 2.4, which will be useful in Section 8. The convergence proof of
the formal transformation ¢ is given in Sections 4 to 6. In Sections 4 and 5, we
consider one step of the iteration and prove several estimates. The final estimates
are Propositions 5.3 and 5.4. We prove convergence of the iteration in Section 6.
In Section 7, we consider the case when the Hamiltonian is real analytic. We
obtain Theorem 1.4 from Theorem 1.3 by imposing a “reality condition’ on the
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Hamiltonian of the form (1.2). In Section 8, we prove analogous results for
canonical mappings near a non-resonant fixed point. The Section 9 is an appendix
where we present a proof of Lemma 2.1 on functional independence.

Acknowledgement. This work was done when I was staying at Forschungs-
institut fiir Mathematik, ETH Ziirich in the academic year of 1986—87. I would
like to thank the institute for its hospitality. I would like to thank Professor J.
Moser for his kind hospitality and for many helpful discussions and advices during
preparing this work. I also wish to thank H. Duistermaat and L. Chierchia for
helpful discussions and to E. Zehnder and J. Poschel for their useful suggestions.

2. Preliminaries

The aim of this section is to reduce Theorem 1.3 to Theorem 2.4 stated below
as well as presenting preliminary facts for its proof.

Throughout this paper from this section, analytic functions defined near the
origin are always assumed to be given as a convergent power series in appropriate
polydisks.

We begin with a general discussion on functionally independent functions. Let
) =fi (zs,...,2,) (k=1,..., n) be analytic functions near the origin z =0
which begin with terms of order s,. We denote it by

fo=fl+fiteee,  fU2)#O

where f} is a homogeneous polynomial of degree s, +j. We call f$ the lowest
order part of f,. The functional independence of f;, . . ., f, does not necessarily
imply the functional independence of their lowest order parts f9,..., fo.
However the following holds:

LEMMA 2.1. Let f,,..., [, be functionally independent analytic (or real
analytic) functions near the origin. Assume that f,...,f°_,(2<r=n) are
functionally independent and that f3, ..., f? are functionally dependent. Then
there exists a polynomial P of fi, . . . , f, with complex (resp. real) coefficients such
that f9,...,f% ., f° are functionally independent, where f.=P(f,,...,f).
Moreover fi, ..., foet, for fosrs - - - » f. are functionally independent.

This lemma is proved in Ziglin [13]. However for the sake of completeness we
will give its proof in the appendix (Section 9). By using this lemma repeatedly we
can construct functions f, =f;, /s, . . . , f, which are polynomials of f,, .. ., f, and
whose lowest order parts f Y e, fﬂ are functionally independent.
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Remark 2.2. In Theorem 1.3, we are given n functionally independent
integrals Gy, . . . , G,, which can be assumed to vanish at the origin. Therefore, if
we apply the above argument to (fy,...,f,)=(G,, ..., G,), we obtain n
integrals Gl =Gy, G,,...,G, whose lowest order parts are functionally
independent.

Next we present some facts concerning operations by the Poisson bracket. Let
f=f(z) (z=(x, y)) be an analytic function near the origin z =0¢e C*". Here we
consider C** as a symplectic manifold with the standard symplectic structure
Yi=1dx; A dy, and (x, y) as its canonical coordinates. We say that the function f
is in normal form if it is a function of n variables x, y,, .. ., x,y,. We introduce
the following operator on the space of analytic functions near the origin:

1 1
Puf(x,y) =I .. f f(e*™%x, e **%) d0, - - - dé,, 2.1
0 0
where
eZJ‘n'Ox - (eZ:riG‘xl, el eZﬂiﬂnxn)’ e—ZﬂiOy - (e—Znielyl’ e, e—2ni9,,yn).

We note that

B if =B;
PN(x"y")={;ay If Z;eg

where we used multi-index notation

x¥=x{teooxnn, yP=yieeeylh

a’=(a1’--~)an)’ ﬂ=(ﬂli'°':ﬂn)'

Therefore Pyf is a power series consisting of all terms of the form x*y* in the
power series expansion of f. The following facts will be used later.

LEMMA 2.3. Let f(z) and g(z) (z =(x, y)) be analytic functions near the
origin z =0 and assume that A,, . . . , A, are rationally independent numbers. Then
() If {f, Xi=1 AXeYr} =0, then f is in normal form.
(ii) If f and g are in normal form, then {f, g} =0.
(iii) If g is in normal form, then Py{f, g} =0.

Proof. We set

f = E caﬂx ay P (caﬂ € C)

lal+1BI1=0
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Suppose that g is in normal form. Then we have

(.8} = élgwxfx,,xk—fy,(yk)= S Yap(@)capxy?, 2.2)

la+1B1=1

where

Yap(@) = 21 B (@ — Bi); Wy = X Yk (k=1,...,n).

If g =X%_1 AXeYi, then we have y,g(®) = Xi_; A(ar — Bi), which vanishes if
and only if o =p by the non-resonance condition. Hence the identity (2.2)
implies the assertion (i). We can also prove (ii) and (iii) easily by using (2.2). O

Now let us consider the analytic functions G,(z) (k =1, ..., n) described in
Remark 2.2 and rewrite them by Gi(z). Then G, (k=1,..., n) are analytic
integrals of the Hamiltonian system (1.1) with H = G,. We denote the G, by

G.=Gl+Gp+---, GUz)#0, (2.3)
where GJ, is a homogeneous polynomial of degree s, +j in z = (x, y). By the

discussions of Section 1, under the non-resonance condition we can assume that
the Hamiltonian has the form (1.2), i.e.,

Go= kZ ArXs Vi (2.4)
=1

Since G, is an integral of (1.1), we have the identity {G;, G;} =0, and the
comparison of its lowest order terms gives

{G}, G} =0.
Then by Lemma 2.3(i) this identity implies that G are polynomials of n variables

Xi¥1,.--,%. Y. The functional independence of the lowest order parts
GY, ..., G%is equivalent to the condition

0 0
det (3(01, .-+ Gn)

0 = k=1,...,n). .
B(a)l,...,w,,))$ (@5 = xc ") (2:3)

We will prove the following theorem instead of Theorem 1.3.
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THEOREM 2.4. Let G, =Gi(z)(k=1,...,n;z=(x,y)) be analytic func-
tions near the origin which satisfy the following conditions:
(1) {Gk, G} =0(k=2,...,n); (2.6)
(ii) The lowest order part G} has the form (2.4) with rationally independent
numbers Ay, ..., A,;
(ili) The lowest order parts GY, . . ., G, are polynomials of x,yi, . . . , X, y, alone
and satisfy the condition (2.5).
Then there exists an analytic canonical transformation z = ¢(&) (§ = (&, 1)) of the
form (1.3) near the origin such that G,°¢ (k =1, . . ., n) are analytic functions of
n variables §m, (=1, ..., n).

In the above, the transformation ¢ is not unique. However we shall see in the
next section (Remark 3.4) that the normal form Gio¢ (k=1,...,n) are
uniquely determined independently of ¢.

We say that the function G, given in (2.3) is in normal form up to terms of
order s, +d if the polynomial G{+ G;+---+ G¢ is in normal form. The
following fact will play a basic role in the proof of Theorem 2.4.

PROPOSITION 2.5. Let G, be analytic functions near the origin satisfying the
conditions (i) and (ii) of Theorem 2.4. If G, is in normal form up to terms of order
s1+d, then G, (k=2, ..., n) are in normal form up to terms of order s, + d.

Proof. The proof is easily done by induction. We already proved the case
d =0. Assume that G, is in normal form up to terms of order s, +j (0=<j=d)
and that G, (k=2,...,n) are in normal form up to terms of order s, +j — 1.
The comparison of the homogeneous part of degree s, +j in (2.6) gives

{Gl, G} + i {GI, G} =0. 2.7)

=1

Since G;'and G} (I=1, ..., j) are in normal form by the assumption, we have
(G, Gi} =0 by Lemma 2.3(ii). Therefore the identity (2.7) leads to

{G;o G(l)} = O'

By Lemma 2.3(i) this identity implies that G}, is normal form. This completes the
proof. 0O

Under the assumptions of Theorem 1.3 with the Hamiltonian of the form
(1.2), the G, (k=1, ..., n) in Remark 2.2 satisfy the assumptions of Theorem
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2.4. Therefore one can conclude that there exists an analytic canonical transfor-
mation z = ¢({) such that G, ¢ is in normal form. Then by Proposition 2.5, the
other integrals Gy° ¢ (k =2, ..., n) are automatically in normal form. Therefore
Theorem 2.4 implies Theorem 1.3.

Proposition 2.5 implies also the following fact which was mentioned in
Section 1.

Remark 2.6. The functions G, (k =1, ..., n) which satisfy the conditions (i)
and (ii) of Theorem 2.4 are Poisson commuting.

Indeed, under the non-resonance condition there exists an analytic canonical
transformation which takes the Hamiltonian G; = H into normal form up to terms
of sufficiently high order. Then Proposition 2.5 implies that the other integrals
Gy (k=2,...,n) are also in normal form up to terms of sufficiently high order.
Therefore we have

{Gy, G} =0 for k,l=1,...,n.
up to terms of any order by Lemma 2.3(ii), and hence these are identities. [

In our proof of Theorem 2.4, the transformation ¢ is obtained by an iteration
process and we consider transformations which are closer to the identity as
iteration step proceeds. We complete this section by presenting a fact concerning
such transformations.

Let ©, be a set of all canonical formal power series transformations z = ¢(§)
of the form

z=§+0(&*™). (2.8)
Here and in what follows, the notation O(£{“*!) denotes a (vector of) formal

power series in § = (&, n) consisting of terms of order =d + 1 only. This set &,
forms a group under compositions of transformations. We note the following fact.

LEMMA 2.7. If ¢ € ©,, then it is written in the form

=trsw@ oy 1=(2, o) @9)

with a polynomial W({) of the form

W) =WH24+ Wi +. .. 4 WHH, (2.10)
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where 1 is the n X n identity matrix and W/ is a homogeneous polynomial of degree
jin &

Proof. We note that the canonical character of ¢ means

Z dxi A dy, = 2;1 d& A dny,

k=1

which leads to the fact that the 1-form

Z (ke — E) dny + 2 (e = ye) dxe

is closed. Therefore there exists a formal power series W(§, ) such that this
1-form is equal to dW. Since the first n components of equation (2.8) can be
solved for £ as a formal power series of (x, 7), we can express the W in (x, n)
variables, and x; — §; and 7, — y; are power series of x and 7 consisting of terms
of order =d + 1. Consequently we have the expression

Xk = gk + Wm‘(x’ 77), yk = nk - ka(x: '1): (k = 1’ AR n) (211)

with a formal power series W = W(x, n) which begins with terms of order =d + 2
in x, n. (This is exactly the so-called generating function.) Since W(§, n) =
O(&4*?), it follows from (2.11) that this transformation has the form (2.9) with
(2.10). O

3. Construction of the iteration of transformations

Our proof of Theorem 2.4 is based on a rapidly convergent iteration process
[5]). The transformation ¢ is obtained as a composition of infinite number of
transformations ¢, (v=0, 1,...), where ¢, provides a better approximation to
the normal form. In this section, we construct the iteration of transformations
formally.

To describe one iteration step, assume that G, (k=1, ..., n) are in normal
form up to terms of order s, +d —1. We note that this assumption is already
satisfied for d =1. Our purpose is to find a canonical transformation which
normalizes G, up to terms of order s, +2d —1. To this end, we consider a
canonical transformation ¢ defined by the time 1 map (flow) of the Hamiltonian
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system

dz
x =JVW(2) 3.1

with a polynomial Hamiltonian
W=W*24+ Wi 4... 4 W+ (3.2)

where W/ is a homogeneous polynomial of degree jin z = (x, y) (=(z,, . . . , z,))
and VW is the gradient of W, i.e., 2n-dimensional vector with components
W,(k=1,...,2n). Let z=¢@'({) be the solution of (3.1) satisfying an initial
condition z={ at t=0. In this and the next section, we consider the solution
@‘() formally. Then the transformation ¢ is written as

@ Lol (E)=C+ f TYW (@' (0)) dt. 3.3)

Throughout this paper, we say that a canonical transformation @ is generated by
the Hamiltonian flow with Hamiltonian W if it is defined by the time 1 map (3.3)
for the Hamiltonian system (3.1). Since the origin { =0 is an equilibrium solution
of (3.1), we have the identity ¢‘(0) =0. Therefore the series expansion of @‘({)
in the powers of { begins with linear terms and consequently by substituting it
into (3.3), we can see that the solution @‘({) has the form (2.8), where the
remainder part O(£%*") depends on ¢. Then it follows from (3.3) that ¢ € &, and
has the form (2.9). Conversely, by Lemma 2.7 we have

Remark 3.1. Let pe S, and W be the polynomial of the form (3.2)
determined by the expression (2.9) of the . Then up to terms of order 2d, @ is
equal to the canonical transformation generated by the Hamiltonian flow with
Hamiltonian W.

Under the above assumption on G (k =1, ..., n), we can write the G; in the
form

Gi(z2)=g:(2) + Gu(2); 8k = Pngrs

G.=0(z**% (k=1,...,n), 3.4

where g.(z) is a polynomial of degree less than s, +d in z=(x, y) which is
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actually a polynomial of n products x, yy, . . . , X, y,. We denote g, and G, by
ge=g0+---+git,  G=Gi+G+---,

where g} and G/, are homogeneous polynomials of degree s; +j in z = (x, ¥).
We first prove the following

LEMMA 3.2. Let G, (k=1, ..., n) be power series of the form (3.4), i.e., in
normal form up to terms of order s, +d —1. Let z = @(§) e &, (5 =(§, 1)) be a
canonical transformation generated by the Hamiltonian flow with Hamiltonian W
of the form (3.2). Then G,(9(8)) (k=1, ..., n) are in normal form up to terms
of order sy +2d —1 if and only if the polynomial W satisfies a system of n
equations

{(8(5), W(O)} + Gu(§) = P 'Gu(D) + O(L+%), (k=1,...,n), (3.5
where P16, = Py(G% + - - - + G¥7Y). The function G, (@(L)) is written as

G(p(8)) =gi(§) + Gi(8);  gi=gc+P¥ G,
G.=0(t+*%), (k=1,...,n). (3.6)

Proof. Since the transformation @ € ©, has the form (2.9), one obtains

G(p(£)) = 8 (8) + {8x(8), W(O)} + Gu(E) + O(E+*?*),  (k=1,...,n)
(3.7)

by substituting the form (2.9) into (3.4). Since Py{g., W} =0 by Lemma 2.3(iii),
equation (3.7) implies that G,(@(£))(k=1,..., n) are in normal form up to
terms of order s; +2d — 1 if and only if W satisfies the system (3.5), and the
expression (3.6) follows easily. This proves the assertion. O

The comparison of the homogeneous parts of degree s, +j in the equations
(3.5) gives

n a 0 . , R b v j+2—v
S o DW=Fe);  Fi§)=-(-P)GL- 3 {8k W)
i=190; v

(=d,...,2d-1;k=1,...,n) (3.8
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where 1 is the identity operator and D; is an operator defined by

D,' = {w,’, ‘}, w; = Eﬂ]i (i = 1, > 6y n).

We now prove that under the conditions of (i) and (ii) of Theorem 2.4 the
system (3.5) can be solved through the homogeneous equations (3.8).

PROPOSITION 3.3. Let G, (k=1,...,n) be power series satisfying condi-
tions (i) and (ii) of Theorem 2.4. Assume that G, are in the form (3.4), i.e.,
normal form up to terms of order s, + d — 1. Then there exists a unique canonical
transformation z = @({) € ©, such that (i) G.(@())(k=1,...,n) are in the
form (3.6), i.e., normal form up to terms of order s, +2d —1, and (ii) @ is
generated by the Hamiltonian flow with Hamiltonian W of the form (3.2) satisfying
a condition

PyW =0. (3.9)

Proof. By Lemma 3.2, our purpose is to prove that there exists a unique
polynomial W of the form (3.2) which satisfies the system of n equations (3.5)
together with the condition (3.9). The system (3.5) for a function W is clearly
overdetermined. However it suffices to solve the first equation (k = 1), and then
the other equations are automatically solved as we shall see. The relations
{Gk, G;} =0 can be viewed as the compatibility condition.

To see this, we set W/*2 =Y, ., 5=j+2 CapE“N®. Then equation (3.8) for k =1
can be written as

S yesE Nt =F); v=3 M(Be— @) (3.10)

lai+iB|=j+2 k=1

The right-hand side of this equation is determined by G, and W¢*2, ..., W/*! and
therefore this equation gives a recursion formula to determine the function W of
the form (3.2). Since y does not vanish for a # § by the non-resonance condition,
the coefficients c,g for a # B are determined by this equation. On the other hand
the condition (3.9) implies that c,s =0 for @ = . Here we note that F}(¢) does
not contain any term in normal form. In this way we can determine W’/*2
(j=d, ..., 2d—1) successively and hence a solution W of equation (3.5) for
k = 1. The canonical transformation (3.3) determined by this W normalizes G, up
to terms of order s, + 2d — 1. Therefore Proposition 2.5 implies that G, (@({)) is
in normal form up to terms of order s, +2d — 1 for any k=1, ..., n. Hence the
W satisfies n — 1 other equations in (3.5) automatically, which together with (3.7),
implies (3.6). This proves the assertion. [J
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Since the assumption of Proposition 3.3 is satisfied for d =1, we can take
d=2"(v=0,1,...) successively. Let @, be the canonical transformation de-
scribed in Proposition 3.3 with d =2". Then we obtain a formal canonical

transformation ¢ which takes G, (k =1, ..., n) into the normal form as follows:
¢=lll’ll ¢v; ¢'v=(Po°(P1°' oy, ‘pve@d (d=2v) (311)

Remark 3.4. In the above proof of Proposition 3.3, we did not use the
existence of the integrals G,, ..., G, to show that W is uniquely determined.
Therefore the above argument proves Theorem 1.1 also. Moreover, by the
same argument as in the proof we can prove that the normal form G- ¢
(k=1,...,n) are uniquely determined independently of ¢ as follows:

Suppose that G, (k=1,...,n) are taken into normal form by formal
canonical transformations ¢ and y. Then we have

Gropo(9p ™ oy)=Gyoy,

namely the formal canonical transformation ¢ ~'°y € ©, takes the normal form
G, ° ¢ into the other normal form G;° . From Remark 3.1, this transformation
¢ ey can be expressed as a composition of infinite number of transformations
@, €S, (d=2"v=0,1,...) which are generated by the Hamiltonian flow with
Hamiltonian W of the form (3.2). The transformation @, takes G, which are in
normal form up to terms of order s; + d — 1 into the normal form up to terms of
order s; +2d — 1. If G, are already in normal form, then G,(£) = PyG.(£) in the
system (3.5) which the polynomial W satisfies. One can see from (3.10) with the
definition of F% in (3.8) that W/*?=P,W’/*? and F,=0 inductively for j=
d,...,2d—1. Therefore the polynomial W is in normal form. Then the
Hamiltonian system (3.1) is solved explicitly and its time 1 map is expressed in
the form

X, = & exp (W,,), Vi = Nk €xp (—W,,,) (k=1,...,n).

Since the n products &;n, are invariant under this transformation, the normal
form G,° ¢ cannot be changed by ¢,. This implies that G;c¢ = G,oy. O

In the proof of Proposition 3.3, the small divisor y appears in (3.10). However
we can avoid the small divisor difficulty in the following way:

LEMMA 3.5. Let G, (k=1, ..., n) be power series in the form (3.4) and W
be a polynomial of the form (3.2) which satisfy the system (3.5). Assume the



Convergence of Birkhoff normal forms for integrable systems 427

condition (iii) of Theorem 2.4 (G} = g?). Then D,W'*? is expressed as follows:

j
DkW"*2=%"((§)2 (k=1,...,n5j=d,...,2d-1), (3.12)
where
(k)

g(l)wl P FJI “é s 8(1),,, o

i . . . . R gk
qi(8) =det| : R . b p(&) =det (5—&)—> (3.13)

gf’, .. Fl"l .o g?, [

Here the numerator q}() is divisible by p({).

Proof. We consider equation (3.8) as a system of n linear equations for
DW/*2(i=1,..., n). Then at points { = (£, n) on which det (3g2/3w,) #0, one
can solve (3.8) uniquely as (3.12) with (3.13). Under the condition (2.5), the
inequality p({) # 0 is satisfied on an open dense subset £’ of a neighbourhood
of the origin. Since D,W’*? for the solution W of (3.5) satisfies (3.8), it satisfies
(3.12) on Q'. Then the D, W/*? satisfies (3.12) on the whole neighbourhood Q by
the continuity. This completes the proof. [

The expression (3.12) will be used to estimate D, W/*? in the following section
without any restriction of the small divisors.

The conditions (i) and (ii) of Theorem 2.4 was used to show that there exists a
formal canonical transformation ¢ defined by the limit (3.11) which takes
G.(k=1,...,n) into the normal form. The aim of the following sections is to
prove the convergence of this limit and we will not use the conditions (i) and (ii)
for this purpose. For the later application, it is useful to formulate our result
without assuming these conditions as follows:

THEOREM 3.6. Let Gi(z)(k=1,...,n) be analytic functions near the
origin satisfying the condition (iii) of Theorem 2.4. Assume that there exists a
formal canonical transformation z = ¢(&) which is defined by (3.11) and satisfies
the following conditions:

(i) For any v=0,1,...,G{*"V =G, (k=1,...,n) are in normal form
up to terms of order s, +2"*' — 1, where G{¥ = G, and s, is the degree of the
lowest order part of G;;

(ii) The canonical transformation @, is generated by the Hamiltonian flow with
Hamiltonian W of the form (3.2) satisfying a condition PyW = 0.
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Then the limit (3.11) is convergent uniformly in a neighbourhood of the origin
=0, and hence it defines an analytic canonical transformation ¢ such that
Gep (k=1,...,n) are in normal form.

By Lemma 3.2, the above condition (i) implies that the polynomial W in the
condition (ii) satisfies the system (3.5) with d =2". Therefore from Lemma 3.5 we
obtain the expression (3.12) with (3.13). We will prove this theorem in Sections 4
to 6. It will also give the proof of Theorem 2.4 since the assumptions of Theorem
3.6 are satisfied under those of Theorem 2.4.

4. Estimates of the norm of W and its derivatives

In this and the next sections, we consider one iteration step defined by
@, (v=0,1,...) in Theorem 3.6 and denote ¢ and G in place of @, and G§”
respectively. In this section, we consider the polynomial W which defines ¢ by
(3.3) and give the estimates of W and its derivatives with respect to some norm.
To specify the polydisks where the functions are to be considered, we first prove
the following.

LEMMA 4.1. Let s be the degree of the polynomial p({) given in (3.13). Then
there exist positive constants 6, (k =1, ..., n) such that 0< 6, <1 and

Ip(g)lzclrs on Ar={(§’ n)eczn | |§k|=|nkl= 6kr (k=1) s e ey n)}’
4.1)
where ¢, >0 is a constant which is independent of r.

Proof. We set
Ek = tpkuk, N = tpkvk, (k = 1, . n)

and denote this by (&, n) = (¢t*u, t’v). Here t>0 and p,>0(k=1,...,n) are
real constants and we assume that p,, ..., p, are rationally independent. The
homogeneous polynomial p({) in &7y, ..., &,m, can be written as p(§)=
Yia1=s2€eE N " Then we have

n
p(tPu, tPv) = D c H*Puy®, (@, p) =D aps.
|a)=s/2 k=1
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Let

d=min2(a, p), C={a||al=§,ca¢0}.
aeC

Here we note that d is attained by only one « because of the non-resonantness of
P1, - - - » Pu- Let a, be the a which attains the minimum d. Then we can write

p(£) as

p(8) = co tu® v + t'p(uv, t), |p(uv, H)]—=0  (t—0).
Here p(uv,t) is a homogeneous polynomial of degree s/2 in u,v,,..., u,v,
whose coefficients tend to 0 as t— 0. Therefore there exists a sufficiently small
positive number ¢, which is independent of r such that

lﬁ(uv, tO)I S% Ica,l r’ on lukl = Ivk’ =r (k = 1’ sy n)‘
Hence we have

Ip(©)| =4 lca 1 6r° on {(§ n)=(t6u, t8v) | luel =|vel =r (k=1, ..., n)}.

If we define 8, =18 (k=1,...,n) and ¢, =1 |c, | 15, we obtain (4.1). O

We introduce the following norms. Let £, be a neighbourhood of the origin
(polydisk) defined by

Qr:'- {C=(§: n)ech l |§k|<6kr) Ink|<6kr(k=1’ LRI ’n)}’
where é,, ..., 8, are the positive constants given in Lemma 4.1. Let A(£2,) be a

space of functions which are analytic in &,,. with some € >0. Then f € A(L2))
can be written in the power series

f=h+hth+ - (4.2)

which is absolutely convergent in £2,. Here f; is a homogeneous polynomial of
degree j in {. For f € A(£2,), we define the following norms:

floi=max F@L (fll =3 Ifl
{eQ, j=0

Here we note that |f|, = ||f|l, and that |f, = || f;||, for homogeneous polynomials
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fi- Moreover we introduce a space
Am(gr)= {f EA(Q,) |ﬁ(C)EO for j.—:(), 1,...,m- 1}

and define for f € A,,,(£2,) a norm

£l

m

”f "r,m a7 r
Now assume that G, € A(2,)(k=1,...,n) are written in the form (3.4)
(i.e., normal form up to terms of order s, +d —1 with d =2%) and consider
the polynomial W in the condition (ii) of Theorem 3.6. Then D,W/*? (j=
d,...,2d—1) are given by (3.12) with (3.13). We note that for D, W/*? e A(Q,)
the maximum ||D,W’*?||, is attained on A,. (We can see this property by using,
for example, the maximum principle for one complex variable repeatedly.)
Therefore using the relation (3.12) one can estimate ||D,W’*?||, in the form

”Dkwj+2” < "q;c(g)"r . (4.3)
’ min | p({)|

By this formula, we can prove

LEMMA 4.2. The solution of equation (3.8) satisfies

IDW*?|, <c2 2 |Flllrs—z (=4d,...,2d—1), (4.4)

i=1

where c, is a positive constant which is independent of r.

Proof. Expanding the g¢4({) in (3.13) according to the k-th column, one
obtains

gi(§) = X (1Y Fi(£) det Qu(?), (4.5)
i=1

where Q;(&) denotes the matrix obtained from that of g({) by deleting the i-th

row and k-th column. The det Q,(&) and Fj({) are homogeneous polynomials in

¢ of degree s —s; + 2 (or det Q;(£) =0) and degree s; + j respectively. Therefore
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q%(&) is a homogeneous polynomial of degree s + j + 2. It follows from (4.5) that

gk (Ol = Zl IFil, lidet Qull, = r* 21 IFill,.si— lldet Qucll,,s—s;+2-

Since det O is a homogeneous polynomial of degree s —s; + 2, we have

lIdet Quellr,s—s;+2 = Cik>

where c;, is a positive constant determined by the coefficients of the polynomial
det Q. Setting

C3 = max Cik’
ik
we have

Hgk(OIl, = csr 21 | Flll7,s—2- (4.6)

Then, setting c, = c3/c, we obtain the estimate (4.4) by the formula (4.3) with
(4.1) and (4.6). O

To give the estimate of ||D,W||,, we introduce the following notation

llgell,:= El I8illrsi—2s  &i=8i—8/ (=gi+gi+---+gi™). (4.7)

i,j=

Here we note that gi..., begins with terms of order =s; and therefore ||§, ||, will be
small if we take r sufficiently small. Moreover let us introduce the notation

G, := 2 11Gllnse-2= 2 ™2 Gl 4.8)

Then we have

PROPOSITION 4.3. Let G, € A(L2,) be of the form (3.4) and assume that

C2 m gw "lr < % (49)
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Then the polynomial W({) in the condition (ii) of Theorem 3.6 satisfies
IDWIl, =4 lIGll,  (k=1,...,n). (4.10)

Proof. This is a consequence of the following estimate:

dr-1 n
Dl <ef 5 gy} Z S 1PeGllas  Pe=1=Py (410

i=1 j=d

From (2.1) it follows that |PyG/, < |G|, and therefore

2d-1 ) 2d-1 )
> PGl s-2=2 2, WGllrsm2 =2 |Gills s,~2-

j=d j=d

Hence if the assumption (4.9) is satisfied, the estimate (4.11) implies (4.10).
The proof of (4.11) is based on an inductive argument. First we note that

n di2-1
lgall-= 2 3 182 lrsm2
ij=1 =1

and that llggill,,s‘_2= O(r*) and ||PrGI|,.s,—2= O(r'*?) as r—0. Motivated by
this fact, we denote

||8ﬁ,"r,s,-—2 = u%il! ”PRG{"ns;-Q = v{+2
and call 2/ and j + 2 the degree of u2 and v!*? respectively. Let us denote

danr-1

n 2d-1
U=c, go €2 Ngall)s V=2 > I1PGill 2

i=1 j=d

We treat U and V as polynomials of u?,-’ and v/*? respectively. Then each
monomial in U has the form

m
(const.) [T u?;, with i,,j,€{1,...,n}, 1=l, sg-—- 1,

v=]

where m is a positive integer =d/2—1. Let us define the degree of this
monomial by u = Y7.,2l, and let U* denote the sum of monomials in U of
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degree u. We call U* the homogeneous part of degree u in U and can write
U=U+U%+---+ U927,

We define the degree of monomials in V and UV similarly and can write
V= Vd+2+ Vd+3+ . s n VZd+l.

To prove (4.11), it suffices to show

IDW*,= D U** (j=d,d+1,...,2d-1). (4.12)

u+A=j+2

We will prove this by induction. For j =d, d + 1 it follows from (3.8) and (4.4)
that

IDW/ 2|, < ¢z D, IPRGIllys—2= U°V*?*  (j=d,d+1).

i=1

This implies that (4.12) is valid for j =d, d + 1. Assume that (4.12) is valid for
j=d,d+1,...,d+2xk~2,d+2xk—-1(x=(d —2)/2). Then from (3.8) and
(4.4), for j =d + 2k, d + 2k + 1 we have

P:Gi+ D, {g¥, Wity

=1

n
IDW*Y,<c, 2,

i=1

r,si—2

(18l a3 S g2 D2, )

n
5022
i=1 I=1 v=1
< 2”: j+2 i i 2 D Wj+2—2l
=C2 L + ”giw, ”r.si-—Z “ v "r
i=1 =1

=1

=c,Vi*2+¢c, DO D, u,?:( > U“V"). (4.13)
iLv=1 [=1 u+i=j+2-2

Here the second term can be estimated from above by the homogeneous part of
degree j + 2 in c; ||| £. ||, UV. Moreover

dr
lgll, 0V = {2 @ lgall YV,

and (c; ||| o |I.)*?V contains monomials of degree =d +d +2=2d +2 alone,
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which do not contribute to ||[D.W/*?||, since j+2<2d+2. Therefore the
right-hand side of (4.13) is estimated from above by the homogeneous part of
degree j +2 in

diz—1

Ve 3 (ligll)yY=Uv.

This implies that (4.12) is valid for j=d+2k,d+2x+1. Hence we have
completed the proof of Proposition 4.3. [

Now we derive the estimate of norm of W and its derivatives. We set

é = min &, ¢4 = 87c,n. (4.14)
k

LEMMA 4.4. Let 0< p <r. Under the assumptions of Proposition 4.3, we
have

(i) "W"r =¢4 m G mn

) IWelp =50

k=1,...,2n),
2) (k=1 2n)

4c,
(iii) IWegll, = = —p)y WGl k. 1=1,...,2n),

where £ = (&, n) = (Cl, coes Eon)
Proof. We introduce a transformation y : (7, 8) — (&, n) defined by
&, = 1,620, =T ™% (k=1,...,n).

Then one can easily prove that

2} i _
—a-o—k-- —2miD, (k=1,...,n). (4.15)

Let Q.= Q\{(&, n) | 13-, & =0}. For any point (£, n) € 2;, one can find a
point (7, @) such that (§, n)=y(z, 8). Then for any o=(0y,..., 0,) with
0= o0, =<1, the point (§', n') = ¥(7, 6 + o) belongs to £2,. By using the relation
(4.15), the mean value theorem gives

|Wi*2(y(7, 8)) — W*(y(r, 0 + 0))|=2xn i | D Wi?),. (4.16)

k=1
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Since PyW’*? =0 by the condition (3.9), the integration of (4.16) from 0 to 1 with
respect to oy, . . ., O, gives

|WI*(E, p)l <2x D, |DW?,.
k=1

Here (&, n) is arbitrary in £, and |W’/*?| does not attain its maximum |W’*?|, at a
point where II%_; &:mx =0. Therefore this implies

IWIl,=2x gl DLWl

Hence the estimate (i) follows from Proposition 4.3. The estimates (ii) and (iii)
can be obtained by using Cauchy integral formula. Indeed, applying it to each
homogeneous polynomial W/*2, we have

IWell, < 87'(r = p) " IIWIl, <cd7'(r — ) I G-
For the estimate of ||W¢,.|l,, we set p’ = (r + p)/2. Then similarly we have
IWellor=87'r=p ) W, 1Weello=67(0" = p) I We,llor

which lead to the estimate (iii). O

5. Estimates of remainder terms G,

The aim of this section is to give the estimate of new remainder terms G, at
each step of iteration process defined by ¢@,. As in the previous section, we
denote ¢ and G in place of @, and GY” respectively, and assume that
Gi (k=1,..., n) are written in the form (3.4). First we set

cs=2nc,0 2 (5.1)
and prove the following

LEMMA 5.1. Let 0< o <p <r with p— o=r — p. Assume that c, ||§. ||, <3
and that

esr—p) 2 Gl <1. (5.2)
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Then for any § € Q, the solution z = @'(§) of the system (3.1) exists and is
contained in K, for |t| <2, and hence @ = @' is an analytic transformation from
£, into £,.

Proof. By Lemma 4.4(ii) and (5.1), it follows that
1
IWellp <5-6¢~p)  (k=1,...,2n)

under the assumption (5.2). Therefore for any point { € Q, we have
W)l <5- 8( = p)
max [W. (2)] <3, 8¢~

on Q0):={z=(a,. .., 2) |maxla -t <860~ o)}
Therefore by the fundamental theorem for differential equations, the solution
z = @'(&) of (3.1) exists and is contained in the domain £({) for |t| <2n, where

2n = 2. Since (&) = &, this proves the assertion. [

In what follows, we use the notation

£l = max |f, (= max max |£(2)]) (53)
for a 2n-dimensional vector function f =(f;, . . ., f5,) with f, € A(R,). Moreover
we use the notation (z,z') =Y z.z; for 2n-dimensional vectors z, z’' € C*
whose components are z;, z; (k =1, ..., 2n) respectively.

In addition to o, p, let us introduce r’, T such that
r<i<o<p<r; r—-p=p-o=oc—-t=t—r'=4§r-r). (5.4)

Our aim is to estimate |||G'||, := £, |G#ll,.s,—» under the condition (5.2). First
we define a 2n-dimensional vector function W by

W(e)= L YW (¢'(£)) dt 5.5)

so that the transformation ¢ is written in the form

@(8) =L +IW (D). (5.6)
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To estimate G(@({)), we write it in the form

Gu(#(£)) = 8 (9(8)) + Gu(@(2)).

Then from (5.6) one obtains

8u(@(£)) = 8(Z) + (Vgr(2), IW(E)) + Ri(E)
=8x(8) +{8x(£), W(E)} + Ri(Z) + Ri(D),

Gi(@(8)) = Gi(8) + Ri(0),
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(5.7)

(5.8)

(5.9)

where the remainder terms R;, R} and R} are estimated with respect to the norm

|| as follows:

2n azg N azg
RO, <3 —=5- | |W[2 =2n® max = VWL,
IR&(Z)] 2i'j2=1 3g, o, p| | ij |9&; 3§ Pl e

IRUE). = [{ Vr, (W (E) = YW(E))) e

<2n | Ve, ] (VW(9'(2)) - VW(L)) dr

=< (2n)* | Vgxl« max [Wegl, | VW1,
IRUE)I. =2n | VG|, |VW|, <21 |VG|, |VW|,.
From (5.7), (5.8) and (5.9), we can write G,(@(£)) as
Gi(@(£)) = 8x(8) + {8(£), W()} + Gi(§) + Ri+ R + R}
with

{8(5), W(2)} + Gi(2) = PX'Gi(L) + RUD).

(5.10)

Here R3(&) contains terms of order =s, +2d only since W satisfies equation
y q

(3.5). Hence the remainder part Gy is given by

Gi.=RL+R:+R;+R:

Now we first consider the estimate of R} + RZ + R3. By Lemma 4.4 and using
the Cauchy integral formula, we can rewrite the estimates of |R}|,, |R%|. and |R}|,
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as follows:
R} <2n2--——4—— G4 G : 2 -4 ANz
i klr—' 62(r—p)2 lgk'r 6(r-p) |" mr =265(r—p) |gk|r mGI"n
1 4c
2 2 4
IRl = @2n)" 50— e Gz — oy NG - 5= NG,

=4c¥(r- p)_4 lgl- I G |"2

IR%l. =2n I k”

a( ) IIIG‘III =cs(r—p) 2 |Gell, G,

and hence we have

C A
IRk + Ri + Ril. = (r _Sp)4 NG, Feslgel- WG, + (- = ) IGill,}.  (5.11)

To obtain the estimate with respect to the norm ||-||,-, we use the following fact.

LEMMA 5.2. For f € A(R,), we have

e

.
T

Wl = (5.12)

Proof. We may assume that the function f is expanded in homogeneous
polynomials as in (4.2). Then for any { = (€, n) € 2, the function

7 :=fet) = 2 F5(8)

is analytic in ¢ € {|¢t| = t/r'}. Therefore the Cauchy’s estimate gives

5@n=(Z)” max or=(Z) i1
This implies
i1 (Z) 1£1e

By the definition of ||f]|,, the relation (5.12) follows easily. O
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Here it follows from (5.4) that

PN A DALY A

r r T T

and therefore

1 1
<

LT P
T r

By using the above lemma together with this relation, one obtains from (5.11)
that

z CsC A
2 IRk +Ri+ Rl 2 =——= IGII?
K<} 4 P)
(1=-E
r
x ($es 2 lgulhsa+ = pY), (513)
=1
where cg is a constant satisfying
r Sk—2
(7) =c¢ for k=1,...,n (5.14)

To estimate Yj_, ||gll,s,—z in terms of [|Z.]l,, we note that for each
homogeneous polynomial g

gx(8)= ] 8/2!..,, dw; forsome ;=&
0

Using this relation we have

n
g%, =r*67 Ik, |- <r* 21 l8%. -
]=

and therefore

n
8ell-2 =7 2, I8 lsn-2
lz
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which leads to

1
3 lgclhn-2=r( 3 ek o2+ NEall,) < 7{cr+ 5) (5.15)
k=1 2

by the assumption ¢, [|| £, ||, <3. Here c, is a constant satisfying

Z ||8k.,,,||r n-2=0C7.

k,j=1

Since g‘,’%i is a homogeneous polynomial of degree s, —2, the constant c; can be
taken independently of r.
Hence it follows from (5.13) and (5.15) that

S IRL+R2 4 RY,.,, < —8C

#(1-2)

where

s NG (5.16)

Cg= c5{1§ cs(c-, + 20-1—2) + 1} (5.17)

Finally we will estimate ||R}||,.. Since R} contains terms of order =s, +2d

only, by applying Schwarz’ lemma to each homogeneous polynomial in R} one
obtains

rl Sx+2d
IR <R, (5)

From (5.10) we have
"{gk: W} + Gk"r = "Pu le"r + "R "r

by the definition of the norm ||-||,. This gives

”R "r = "{gk) } + Gk"r

and therefore we have

rl Sp+2d
"R "r‘ Sr—2 = Ce “ {gk’ W} + ék"r s,,-—2( f) ’
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where c¢ is a constant satisfying (5.14). Moreover we have the estimate

2 "{gkx W} + Gk”r,sk-—2$ 2 ”gkw,-DiW”'.Sk—2 + mémr

k=1 k=1
1 A A
= (er+5- 42 NG, + UG,
2

=(4c20;,+3) |Gl

by (4.10) and the estimate used to obtain (5.15). Hence, noting that s, =2, one
obtains

n . r' 2d+2
2 IRl e Sealdeser+ 3 61 () (5.18)
Then setting
co =4’ max (cs, 4¢;¢7 +3), (5.19)

the estimates (5.16) and (5.18) give

n
NG\, = ;1 IR + R2+ R+ Rl s, -2

G r 2d+2
=cees 161, | ey (Z)7).

g
r

This is the desired estimate of ||| G'||,. For the iteration process, we require
IIG |l to satisfy a stronger condition than (5.2). We summarize as follows:

PROPOSITION 5.3. Letr' <rand G, e A(2,)(k=1, ..., n) be of the form
(3.4) (i.e., in normal form up to terms of order s, +d —1). Assume that

¢z lgalll- <3 (5.20)
and
C
. Jo— "I G m, < 1, C10 = CgCo. (5.21)

rz(l - i)s
p
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Let z = @(C) be the canonical transformation which satisfies the condition (ii) of
Theorem 3.6 and takes the G, into (3.6). Then the @ is an analytic transformation
from K, into 2, and G,(@(L)) belongs to A(L,) with the remainder part G|
satisfying

G 1\ 2d+2
6 =en | —Ll_y (277, 6.2)
A(1-7)

where o and p are defined by o=r —i(r—r"), p=r—-3(r—r").
Since c¢ =1 by (5.14), it follows from (5.17) and (5.19) that
C102C924508245C5. (5.23)

Therefore the condition (5.2) is satisfied under the condition (5.21), which implies
the validity of the estimate (5.22).

The estimate of the form (5.22) contains the term cy, || G |||, (r'/r)***2 which
depends linearly on [|G]||,. In this sense, it is a little different from the usual
estimate in the rapidly convergent iteration method. This type of estimate is
found in [7], to which we owe the idea of estimating ||R%]|,- in the above as well
as the convergent proof in the next section.

For the new normal form part g; = g, + P%¥'~'G,, we estimate

lgall, 2 I8k Nl sem2s  Bk=8k—8h=4x+ P¥ G, (5.24)

PROPOSITION 5.4. Under the assumptions of Proposition 5.3, we have

” 5 csn G,
l"gwmr' = I"gw m’ + ;2 rp(r _ rv) . (525)

Proof. We note that 3/3w; = n;* 3/3; and the maximum |3(PyG})/ 3w, is
attained on A,.. Then using the Cauchy integral formula, we have

1 ]PNG lr
é;r' 6,(r—r')

1
S_—__.—.—__—__—_-
&r'(r—r')

|3(PvGL) S0, =

|Gil, for j=d,...,2d—1,
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which leads to

—1A c A
18(P3 Gl 80l -2 = 75 "5 Gl

From (5.24) this gives (5.25). O

6. Convergence proof

The v-th approximation step described in the assumption of Theorem 3.6 is
defined by the transformation @ = ¢, which takes G; = GY” in the form (3.4) into
(3.6). More precisely we set in (3.4) and (3.6)

g=g, G,=G{ and gi=gt"",  Gi=G6{N.
Then Proposition 5.3 with r =r, and r' =r, ., implies that

‘pv:Qa,—) va; o, =rv-%(rv_rv+l)’ pv=rv_%(rv —rv+1)

and (5.22) gives the estimate of [|G“*V||,..,= Zr_, IGL V)|
to choose a sequence {r,} so that

—2. Our goal is

Tv+1,Sk

NG, —»0 as v—o (6.1)
and that
&y = Qoo @1°° "°¢V:Qav'-> on (6.2)

converges in £, , to an analytic canonical transformation ¢. For this purpose, we
assume that G, = G € A(2,) (o> 0) and take a sequence {r,} defined by

r,,=f9(1+ 1) v=0,1,2,....

2 v+1
Then since
1
- Tye1 (6.3)

r, (v+2)?’
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we have

Iy

=4 for v=0,1,2,..., (6.4)

Tyv+1

and therefore the constant ¢, in (5.14) can be taken independently of r,.

To justify the iteration procedure with this sequence {r,}, we have to prove
that the conditions (5.20) and (5.21) hold at each step. We rewrite the condition
(5.21) as

[[Keaed P8

s
Ty+1
,-3(1 __‘.’i_)
ry

<1, (6.5)

C10

where ¢;0 = c¢Co is a positive constant which is independent of 7,. The following
lemma implies that if the condition (6.5) holds for any v=0, 1, ..., then the
condition (5.20) is necessarily satisfied at each step of iteration procedure.

LEMMA 6.1. If the condition (6.5) holds for v=0,1, ..., m, then

& gL, <3 for v=0,1,...,m+1.

Proof. For the simplicity of notation, we set

d,:=c; || gl

By Proposition 5.4 we have

cesn IGI,
62 rv+1(rv - rv+1)

dv+1 = dv +

Therefore the condition (6.5) implies that

4
cn Tyi

dyo<d, +22 5 (1-— "*).
6c9rv+1 r,

Here we have

cn r,

<1
8%o Ty
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by (6.4) and the definitions of the constants (4.14), (5.1) and (5.23). Hence one
has

1
(v +2)°

rv+1 4
dv+1<dv+(1—— ) —d, +

Iy

(6.6)

by (6.3). Now we have d,=0 by the definition of |[|g%]||,.. Therefore (6.6)
implies d, <3. If (6.5) holds for v =0, 1, ..., m, then by using (6.6) inductively
we have

= 1 1

< —
dni < 2 565

This completes the proof. [

To prove (6.5) for all v =0, we set

[Keaad S
r2(1 - fy_+_1)5
v rv

and rewrite (5.22) in the form

2,1 _ 1.5 2v+142
r, 1 v+1ly Tv+1
€v+1=Cyo 1 -1 - €,)€, + .
Tv+a —Fy+2l v+t ry

Noting (6.5) and

1=rynry” _ (v + 3)2< (g)z

-1 -
1-r,2rvn 2

€, = (6.7)

v+2
by (6.3), one obtains

€y+1=CE, (€, +4,) (6.8)
where

c= (3)2(%)1%10
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A= (rv+1)2'“+2 - (1 - (—V-J—i-i-)—z)zmn—-» 0 (voo). (6.9)

We note that ¢ > 1 since ¢,o> 1 because of (5.19) and c¢> 1.
Our aim is to prove

ce, <1 forall v=0,1,..., (6.10)

which yields (6.5) for all v=0, 1, . .. since ¢ > cy,. We note from (6.9) that there
exists a positive integer N such that

A, <(4c)™' for v=N.
Since G begins with terms of order =s; + 1, 752 || G®|||,, can be so small that
ce, <(4c)'(2c)™"

by taking sufficiently small r,> 0. By using (6.8) with €,, 4, <1 inductivity, one
can prove that

ce, <(4c)'(2c)™**<1 for v=0,1,...,N. (6.11)
For v> N one finds, using (6.8) with €,, A, < (4c)~! inductively,
ce, =cen2 VV< 1. (6.12)

Hence the inequalities (6.11) and (6.12) imply (6.10), and the iteration procedure
is justified. The assertion (6.1) follows from (6.7) and (6.12).

Finally we will prove the uniform convergence of ¢, = @oo@,°---o@, in
£2,,. First we note that

|¢v+1(§) - ¢‘V(C)"¢y+| = |d¢v|t,|(pv+l(C) - C't,.n; Ty =1, — %(rv - rv+1)

since @y+1= ¢y° @y41. Here |do, |, :=sup.cq |d¢,(E)|, where |d¢,(L)| is the
operator norm of the Jacobian d¢, at the point {, and the other norms are

supremum norm defined by (5.3) for 2n-dimensional vector functions. Since
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d¢,=d¢,_,°dp,, we have

v

A, |, <1d¢,_1l.,_, lde, ., <] ldg;l..

j=0
Here it follows from (5.6) that
do, =1+IVW(%). (6.13)

Moreover from (5.5) and Lemma 4.4(ii)) with (5.1), using Cauchy’s integral
formula one has

Iy

Y “Alkla l”;l C4 A
W, = Y < kB < )
W=, é(o,— 1) o(r,—p,) &*(r,—p,) G

_%es_IG@l,,

= . r3(1_£1_1+_1)2
rV

k,1=1,...,2n).

Then it follows from (5.23) and the relation ¢ > ¢,, that

w1 << MGl
CI Ty 2n r2(1 B rv+1)5
v r,

By (6.13) this leads to

lde, |, <1+ce,

and hence

d,le < IT (1 +ce) =TT (1 +ce).
k=0

k=0

From (6.12) this infinite product converges. Setting

cn= I—[ (1 + Cex),
x=0
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one has

|py+1(8) — & (O)l+,,, =11 |1@y+1(8) — Clo,,, =i YW 1,..,

A(v+1)

a ||lG

=Cn " < 011C€4 4
Fyir1— Pv+1

=cy (4c)” 127V 1N

for v> N. This implies the uniform convergence of ¢, in €, ,,. We have thus
completed the proof of Theorem 3.6. 0O

7. The real analytic case

The aim of this section is to show that if the Hamiltonian is real analytic, the
canonical transformation ¢ given in Theorem 1.3 can be taken as real analytic
with replacing the normal form by “real” normal form. In order to see this, we
impose a ‘“‘reality condition” on the Hamiltonian of the form (1.2).

Let us assume that the original Hamiltonian is a real analytic function of
w = (4, v) and that the Hamiltonian H = H(z) of the form (1.2) is obtained by a
linear canonical transformation w = Cz. Then the original Hamiltonian is given
by H = H(C~'w) and its reality gives the identity

H(z)=H(Tz), T=C"'C (7.1)

Here and in what follows, for any power series (or vector of power series) f we
denote by f the power series obtained from f by replacing the coefficients by their
complex conjugates. The linear transformation T is canonical.

For any analytic function (power series) f = f(z), we say that F satisfies the
reality condition if the identity f(z) = f(Tz) holds, where T = C~'C with a given
symplectic matrix C. This means that f(C~'w) is a real analytic function of w. Let
R denote the set of all analytic functions satisfying the reality condition. Then
we have

LEMMA 7.1. Iff, W € Ry, then {f, W} € Ry.

Proof. The assertion follows from the identity

{f(T2), W(T2)} = {f, W}(T2), (7.2)

which can be easily seen by the canonical property of T, i.e., ‘TJT =J. 0O
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Let R be the set of all canonical transformations g satisfying a condition

®(TC) = To(Z). (7.3)

Then one can easily see that R forms a group under compositions. We prove the
following

LEMMA 7.2. Let @ be a canonical transformation generated by the Hamil-
tonian flow with Hamiltonian W. If W € R, then o €e R and fop € Ry for any
function f € Rp.

Proof. We denote by z = ¢’({) the Hamiltonian flow of equation (3.1)
satisfying the initial condition z = { at ¢ =0. Let f(z) be an analytic function. We
note from Lemma 5.1 that ¢'({) is defined for || <2. Then we can express
fo ‘(%) in the form

e m

fo@'(£) = exp (tadwf) = 3, —ad5f () (7.4)

m=017¢.
where
ad‘avf =f, adyf = {ad”&“‘f, W}

Indeed we can easily prove that

(2) 70 © = @BN@ @),  (m=1.2....)

by using the above notation, and therefore the relation (7.4) represents the
Taylor expansion of fo @‘({). Setting t =1 in (7.4), we have

oo

fop(@)= 3 —adif(©).

m=0 77¢:

Assume that f, W € R.. Then one can see from Lemma 7.1 that ady f(&) € Ry for
anym=0,1, ..., inductively. Hence it follows that fo @({) € Re.
Next we notice the identity

fo@(Q)=fo@eCT'(W)=foC'o(CopeCT)(w), w=C¢ (7.5)
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Here f, fop € Ry, and therefore foC~'(w) and fopoC~'(w) are real analytic
functions of w. Since fo C™'(w) can be taken as an arbitrary real analytic function
of w, the identity (7.5) implies that Co @° C~! is real mapping, namely

Co (i)o C'"l =Co Qo C—l’
which is equivalent to (7.3). This completes the proof. [1

Let us now specify the form of the linear transformation 7. Notice that the
linear transformation z — Cz diagonalize the linearized vector field of the system
(1.1) in such a way that C'AC=diag(4,,..., A, =4y, ..., —A,), where
A =J Hess H(0). In the real case, the eigenvalues of A occur also in pairs A, A.
We can choose (see [11, §15]) the symplectic matrix C so that (i) A€
{A1, ..., A,} unless A, is purely imaginary, and (ii) the transformation z* =7 is
given by
{xZ = —iy,, Yi=—ix; if A, is purely imaginary; 76)
X=Xy, Yi=), otherwise, )

where /, is the number (1 </, <n) such that 4, = 4,.
We consider one iteration step described in Proposition 3.3.

PROPOSITION 7.3. In addition to the assumption of Proposition 3.3, assume
that G, € R, where the matrix T in the reality condition is given by (7.6). Let W be
the polynomial whose Hamiltonian flow generates the canonical transformation ¢
in Proposition 3.3. Then W € Ry and ¢ € R.

Proof. Since the W satisfies the system (3.5), it satisfies the equation
especially for k = 1. In that equation, replacing the coefficients by their complex
conjugates and changing the variable { into T, we obtain

{81, WHTE) + G,(TE) = P¥G,(TE) + O(& ™).

Here we note that the linear transformation {+— T given by (7.6) takes &7 into
— & if A, is purely imaginary and into §,7, otherwise. Therefore if G, € R,
then not only g,, G, € Ry but also P%~'G, € R,. Hence by using (7.2) the above
identity leads to

{81, W(TE)} + Gy = P¥'G, + O(L*%).
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This implies that W(T¢) satisfies the first equation of (3.5) (k = 1). Recall that in
the proof of Proposition 3.3, the solution W was determined uniquely so that it
satisfies the first equation of (3.5) and the condition PyW =0. Then since
PyW(TE) =0, it follows that W(TE)=W(E), i.e., W e Re. It follows from
Lemma 7.2 that ¢ € R. This completes the proof. O

From Lemma 7.2 and Proposition 7.3, G,° @(§) € Ry if G; € Ry under the
assumption of Proposition 3.3. Hence we can see inductively that if G,(z)=
G(z) € Rf, then G{"*V=G{Vo @, € R for any v=0, 1, .... Moreover since
R forms a group, ¢, = @e°- - -° @, € R and consequently the limit ¢ defined by
(3.11) belongs to R.

Finally we note that the condition w = (4, v) = Cz € R*" is equivalent to the
condition Z = Tz, which is rewritten as

¢(£) = To(L) = $(T),

where we have the last equality since ¢ € R. Hence the condition w € R* is
equivalent to the condition = T¢ which is expressed by using the form (7.6) of T
as follows:

{nk = i&, if A, is purely imaginary;

2 . 7.7
& = &k, M, = M otherwise. (7.7)

If the transformation z = ¢({) is convergent, one can find a real analytic
canonical transformation which takes the original (real analytic) Hamiltonian into
the real Birkhoff normal form. It is defined by choosing real variable in place of
¢ = (&, n) satisfying the condition (7.7). As an example, let us consider the case
when all the eigenvalues A, ..., A, are purely imaginary. Then if we carry
out a linear canonical transformation { = M(q, p) defined by

&= V%(Qk +ipe), Nee = VIS (P +iqx) (k=1,...,n), (7.8)

it follows from (7.7) that w = (u, v) € R*" if and only if (¢, p) € R*". Therefore the
canonical transformation (u, v) = Co¢°M(q, p) is real analytic. Since we have
Exne = (i/2)(q% + p7), this transformation takes the G,(k=1,...,n) into
analytic functions of n variables (¢7 + p?)/2(I=1, ..., n). This proves Theorem
1.4. The quadratic part of the normal form of the Hamiltonian G, is given by

) kZ (@2 +pl), =ik
=1
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8. Canonical mapping case

In this section, as an application of Theorem 3.6 we prove analogous results to
Theorems 1.3 and 1.4 for canonical mappings near a fixed point. As before, we
first consider analytic case and later treat real analytic case by imposing the reality
condition on the original mapping.

Let us consider an analytic canonical mapping (symplectic diffeomorphism)
defined in a neighbourhood of the origin in C*. We denote it by z* = f(z) with
z=(z,y) and z* = (x*, y*) and assume that f(0) =0. Then it is written in the
form

Azt (8.1)

where A is a 2n X 2n nondegenerate matrix and the part not written out explicitly
is a vector of convergent power series containing terms of order =2 only. Since A
is the Jacobian matrix df at the origin, A is symplectic and consequently its
eigenvalues occur in pairs A, A;' (k=1,..., n) (see [1]). The fixed point (the
origin z = 0) is called non-resonant if these A, (k =1, . .., n) satisfy a condition

[] A«#1 forany (my,...,m,)eZ"\{0). (8.2)
k=1

An analytic function G(z) is called an integral of f if G(z) is invariant under f,
i.e., the identity G(f(z)) = G(z) holds. Our result is stated as follows:

THEOREM 8.1. Let z* = f(z) be an analytic canonical mapping defined in a
neighbourhood of the origin z =0 € C*". Assume that the origin is a non-resonant
fixed point of f and that the f possesses n analytic functionally independent integrals
G(z)(k=1,...,n). Then there exists an analytic canonical transformation
z=¢(&) (& = (&, n)) near the origin such that ¢(0) =0 and the resulting mapping
£* = ¢ 'ofo (L) has the form

Ei=&exp(H,), nc=mexp(-H,) (k=1,...,n), (8.3)

where H is an analytic function of n variables w,=§mn,(I=1,...,n). The
integrals Gy° ¢(&) also become analytic functions of w,(I=1, ..., n).

A canonical mapping of the form (8.3) is called Birkhoff normal form. We
note that it is generated by the integrable Hamiltonian flow with Hamiltonian H
which is in normal form in the sense of functions.
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Since the eigenvalues A, A’ (k=1,...,n) are all distinct under the non-
resonance condition (8.2), we can find a linear canonical transformation z — Cz
such that the resulting mapping z* = C~'ofo C(z) has the form

Xp=MXe+: -,  Ye=Ailye+--- (k=1,...,n). (8.4)

In the following, we assume that f is in the form (8.4) and prove the existence of a
normalizing transformation z = ¢(&) of the form (1.3) such that ¢ ~'ofo ¢ is in
normal form (8.3). This transformation ¢ is called Birkhoff transformation.

We introduce the following definition.

DEFINITION 8.2. (i) A canonical mapping §* =f({) is called (Birkhoff)
normal form of order d (=1) if it has the form (8.3) with a polynomial H
of degree d +1 in §, n which is actually a polynomial of n variables w, = &1,
(k=1,...,n).

(ii) A canonical mapping {* = f({) is said to be in normal up to terms of order
d if it is expressed as

f =fd°1p’ (8.5)

where f; is the Birkhoff normal form of order d and y € &,.
We note that the mapping (8.4) is in normal form up to terms of order 1 and is
expressed in the form (8.5) with

fiixkhxe, e Aiye (k=1,...,n). (8.6)

Here this mapping f; is expressed in the form (8.3) with

n
H = Z Qi X Vics e =A,.
k=1

Therefore using the following proposition inductively, one can prove the
existence of the desired Birkhoff transformation formally. Here ¢ is obtained in
the form (3.11), where @, = @ in the following proposition with d = 2",

PROPOSITION 8.3. Let z* = f(z) be a canonical mapping which is in normal
form up to terms of order d. Assume that the origin is a non-resonant fixed point of
f. Then there exists a unique canonical transformation z = (&) € ©, such that (i)
the transformation @' fo @ is in normal form up to terms of order 2d, and (ii) @ -
is generated by the Hamiltonian flow with Hamiltonian W of the form (3.2)
satisfying a condition PyW = 0.
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Proof. To prove the existence of the desired polynomial W, we first prove the
existence of a homogeneous polynomial W = W?*2? such that the canonical
transformation generated by the Hamiltonian flow with this Hamiltonian W takes
f into normal form up to terms of order d + 1. For the proof, we use the similar
arguments to [6].

According to the Definition 8.2, we express f in the form (8.5), i.e.,
f=foy, Y €S,. Let z= ¢({) be the canonical transformation generated by the
Hamiltonian flow with Hamiltonian W = W**2, Since p € S,, f' = @ 'ofop can
be also expressed as f' = f;o ¢’ with y' € ©,. Therefore the relation @eof’' =fo @
gives

Qofaoyp' =fsopo@. (8.7)

Let U=U? and K=K"%"? denote the lowest order parts (homogeneous
polynomials of degree d + 2) of the polynomial W in the expression (2.9) for y
and y' respectively. Then comparison of terms of order d + 1 in (8.7) gives

JVW(AL) + AJTVK(E) = AJVU(E) + AJVW (D), (8.8)

where ¢— AL denotes the linear transformation (8.6), namely the A is a 2n X 2n
diagonal matrix with components 4, ..., 4,, A7}, ..., AL If we set V(§)=
W(AL), we have VV({)=AVW(AL). Since JA™'=AJ, equation (8.8) is
equivalent to VV + VK = VU + VW. By the homogeneity of V, K, U and W, this
implies that

W(AZ) + K(£) = U(E) + W(E). (8.9)

Setting W = T4+ /=a+2 CapE “N*, One obtains

S yeENP=UQ) -K(©);  y=Ilapt-1

||+ 1Bl=d+2 k=1

Here, due to the non-resonance condition (8.2), y = 0 only if & = 8. Therefore by
imposing the condition PyW =0, we can determine the coefficients c,g uniquely
so that K=PyU, ie., K=K?"? is a polynomial of n products w,= En;
(k=1,...,n). Consequently we can write the transformation vy’ as a composi-
tion Y' = YP,,.1°Y", where

YVas1: &> &k cxp (Kw.,), Nk 7> Nk €EXp (—Km,) (k=1,...,n),

and y" € ©,,,. Noting that &7, are invariant under vy,,,, the mapping f;° Ya.,
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is the Birkhoff normal form of order d + 1. Hence f' = @ 'ofe @ is in normal
form up to terms of order d + 1. If we express f; in the form (8.4) with H =H_,,,
a polynomial of degree d +1 in normal form, then f;° vy, is expressed in the
same form with H=H,;,,+ K=H,,, + PyU.

Let @?*! denote the canonical transformation ¢ which has been determined
just above. Here we note that the above discussion is valid for any d and
therefore we can define canonical transformations @?*?, ..., ¢ successively.
Let us consider the composition @ = @?*'e@?*2c...0@*’ Then the mapping
@ 'ofe@ is in normal form up to terms of order 2d. Notice that each ¢’*!
(j=d,...,2d —1) has the form (2.9) with W = W/*2, Therefore the composi-
tion @ is written in the form (2.9) with (2.10). On the other hand, if we consider a
canonical transformation generated by the Hamiltonian flow with Hamiltonian
W =W92+...+W>*1 the power series of this transformation is equal to ¢ up
to terms of order 2d. Therefore it also transforms f into the normal form up to
terms of order 2d. From the above discussions the polynomial W is uniquely
determined by the condition PyW =0. Hence it is the desired unique canonical

transformation. This completes the proof. [

Proof of Theorem 8.1. The proof of Theorem 8.1 is done by reducing it to
Theorem 3.6. Let G, (k =1, ..., n) be n integrals of f and we denote these G in
the form (2.3) again. By the same arguments as in Section 2, we can assume that
their lowest order parts G}, which are polynomials of degree s, are functionally
independent. Since G; are integrals of z* = f(z), the identity

Gi(f(2)) = Gi(2) (8.10)

holds. Here we can assume that f is in the form (8.4), and therefore comparison
of the lowest order terms of this identity gives

Gi(Az) = Gi(2).

Due to the non-resonance condition (8.2), the G are reduced to polynomials of
n variables x.y, (k=1, ..., n). Therefore they satisfy the condition (2.5). We
note the following fact.

LEMMA 8.4. Let G, = G(z) be integrals of a canonical transformation f. If f
is in normal form up to terms of order d, then Gy is in normal form up to terms of
order s, +d — 1.

Proof. By the transformation f which is in normal form up to terms of order
d, x, yi is transformed into the form x, yx + O(z*?). Assume that the integral G,
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is in normal form up to terms of order s, +j (0 =<j =d — 2). Then the comparison
of terms of order s; +j + 1 in (8.10) gives

Gy {(Az) = G ().

It follows from the non-resonance condition that G4*' is in normal form. Hence
we complete the proof by induction. O

Suppose that Gi(z)(k=1,...,n) are integrals of the canonical mapping
z* =f(z) which is in normal form up to terms of order d. Let z = ¢({) be the
canonical transformation described in Proposition 8.3. Then, since G,°@ are
integrals of @ ~'ofo @, one can see from Proposition 8.3 and Lemma 8.4 that the
transformation @ takes G; which is in normal form up to terms of order s, +d — 1
into the normal form up to terms of order s, + 2d — 1. If we set ¢ = ¢, for d =2".
it satisfies the assumptions of Theorem 3.6. Consequently Theorem 8.1 follows
from Theorem 3.6. O

Next we consider the case when the original mapping (8.1) is real analytic. We
consider the original mapping (8.1) in w = (u, v) variables and suppose that the
mapping (8.4), which we denote by f, is obtained by subjecting a linear canonical
transformation w = Cz to (8.1). Then the original mapping is given by w* =
CofoC~Y(w) and therefore its reality means CofeC~'=CofoC™!, which is
equivalent to the condition f € R (see Section 7).

The symplectic matrix C diagonalizes the linearized mapping of (8.1) in such a
way that C'AC =diag (A, ..., An, AT, ..., A7"). We can choose the matrix C
so that (i) A, € {Ay, . . ., A,,} unless |A,] =1, and (ii) the transformation z* = T% is
given by

»_ 3 e s
{x: = iV, y,; = ix, if |A] ‘ 1; (8.11)
Xk =X, Y=Y, otherwise.
where [, is the number (1 =<1/, <n) such that 4, = 4,.
We consider one iteration step described in Proposition 8.3. Let z* = f(z) be
a canonical mapping satisfying the assumption of Proposition 8.3 and let
z = @(&) € ©, be the canonical transformation described there. Then, since f and
@ 'ofe @ are in normal form up to terms of order d and 2d respectively, we can
write them in the form

f=ficw, @ lofep=fucy’, (8.12)
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where f; (j = d, 2d) is the Birkhoff normal form of order j and y € ©,, y' € S,,.
Suppose that f; is expressed in the form (8.3) with H=H, ,, where H,,,
(j =d, 2d) is a polynomial of degree =<j + 1, which is in normal form in the sense
of functions. Then we have

PROPOSITION 8.5. Assume that feR and H,;,,€ Rr under the above
assumptions and notations. Then @~ 'ofo@p € R and H,,,, € R.

Proof. In the following, we use the same notations as in the proof of
Proposition 8.3. Notice that f; € R under the assumption. Therefore it follows
that ¢ € R with the notation (8.12). The y € &, is written in the form

V() =L+IVUQ)+ O U=U24- -4 U4,

where U’ is a homogeneous polynomial of degree j in {. One can easily see that
the condition 9 € R implies U € Ry by comparison of both sides of the relation
Y(TE) = Ty(E). Recall that in the proof of Proposition 8.3, we have solved
equation (8.9) for W = W**? so that K = PyU with U= U**?, i.e.,

W(AL) - W(E) = PRU(E).

Since U= U?"?€ R, and the linear transformation T is given by (8.11), we
conclude W({) e Ry in the same way as in the proof of Proposition 7.3. From
Lemma 7.2, this implies that @*'eR and hence (@9*!) !ofoq@?*'e®R.
Moreover we have Hy,,:= H;,, + PyU € Rp.

By repeating the above discussions, we can prove that W =W*2+ ...+
W2l e R, and H,,,, € Rr. Since the transformation ¢ in Proposition 8.3 is
generated by Hamiltonian flow with Hamiltonian W, it follows from Lemma 7.2
that @ € R. This completes the proof. O

Notice that the mapping f given by (8.4) belongs to R and H, = Y5, awxi y« €
Rr. Therefore by using the above proposition, we can see that if f e R, the ¢ in
Theorem 8.1 belongs to R and the function H in (8.3) belongs to Ry. By the
same way as in Section 7, we can prove that the condition w € R*" is equivalent to
& = T¢ which is written in the form

Nie = iék if A =1;
1
{glk =&, M, = M Otherwise. (8.13)

By choosing the real variable in place of § = (&, n) satisfying (8.13), we can
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find a real analytic canonical transformation which takes the original real analytic
mapping into the real normal form. In particular, the fixed point (the origin) is
called elliptic if |A;| =1 for all k=1, ..., n. In this case, if we carry out a linear
canonical transformation (7.8), then we have ;=& =(i/2)(q%+ p2).
Therefore H,, = —iH, with 1, =(q%+ p%)/2. Hence we obtain the following
result, where we use (&, ) in place of (g, p).

THEOREM 8.6. Let z* = f(z) be a real analytic canonical mapping defined in
a neighbourhood of the origin z =0 R*. Assume that the origin is a non-
resonant elliptic fixed point of f and that the f possesses n analytic functionally
independent integrals G,(z)(k=1,...,n). Then there exists a real analytic
canonical transformation z = ¢(§) (§ = (&, n)) near the origin such that ¢$(0)=0
and the resulting mapping £* = ¢ 'ofo ¢(&) has the form

Et = E, cos (H,,) + ni sin (H,,),
ne =—E&sin(H,) + necos(H,) (k=1,...,n),

where H is a real analytic function of n variables ©,= (§;1+n})/2(I=1,...,n).
The integrals G;.° ¢(&) also become analytic functions of t,(I=1, ..., n).

9. Appendix

In this appendix, we give a proof of Lemma 2.1 following Ziglin [13].

First we present a fact obtained by using the knowledge of the field theory.
Let k[Z] =k[z), . . . , z,,] be a polynomial ring over k = C or R. For the proof of
Lemma 2.1, the following fact plays a key role.

LEMMA 9.1. If f;,..., [, €k[Z] are algebraic independent, then they are
functionally independent.

The converse is obvious, and therefore this lemma implies the equivalence of
algebraic independence and functional independence for polynomials.

Proof. In the following, for any a;, ..., a; which are elements of some
extension field of k, k(a,, ..., a;) denotes a minimal field containing a;, ..., o;
and k. In particular, K =k(z,, ..., z,) is the field of rational functions of the
variables z,, . . ., z,, over k. Since k = C or R, we note that any extension of & is
of characteristic 0. Under the assumption, F=k(f;,...,f) is a separably
generated and finitely generated extension of k of transcendence degree r. Here
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the separability follows from the fact that F is of characteristic 0. Then by a result
on derivations over a field [4, Chap. X Theorem 10], there exist r derivations
D, (k=1,...,r)on F such that

Dy f; = b4 (9.1)

Since K is also a separably generated and finitely generated extension of F (of
transcendence degree m —r), there exist r derivations Dy (k=1,...,r) on K
such that D; =D, on F. We note that the set of all derivations on K is a
m-dimensional vector space over K which is spanned by 3/3z,..., 3/3z,.
Therefore we can write D as

i o
Di = 2 pkl(z)'é— » pu(z) €K
=1 Z

and hence

sz,=1=§:1pk,(z)—a{';. 0.2)

It follows from (9.1) and (9.2) that the rank of » X m Jacobian matrix (3f;/3z)) is
r. This proves the functional independence of f;, ..., f,. O

Proof of Lemma 2.1. Since fi, ..., f, are functionally independent, we can
find a non-vanishing (i.e., #0) minor M =det (3(f;, ..., f)/d(z;,, ..., z)) in
the Jacobian matrix o(f;, ..., f)/3(z, . . ., z,). We set

uf ... ,fr)=d(M)+r-§ld(ﬁ<),

where and in what follows d(f) denotes the degree of the lowest order part f° of
a power series f. Notice that M, :=det (3(f3, . .., f)/3(z;, - - - , z)) is either a
homogeneous polynomial (#0) of degree ¥i-, d(fi) — r or equal to 0 identically.
Therefore u(fy, ..., f,)=0 and My#0 (which implies the functional independ-
ence of f3, ..., f?) if and only if u(f, ..., f)=0.

Now assume that f9, ..., f°_, are functionally independent and fJ, ..., f°
are functionally dependent. Then by Lemma 9.1 f3, ..., f7 are also algebraic
dependent, i.e., there exists a polynomial P € k[z,, . . ., z,] (k € C or R) such that

P(fS, ..., f9=0. (9.3)
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We choose the P such that its degree is minimal among the polynomials satisfying
this identity. We set

F=P(,.... [ )

and define M =det (3(f,, . . . , f—1, F)/3(z;,, - . . , z;)). Then we have

s oo fo B) M- D) py 9P

M = det (
a(.fl’ LRI :fr-l: f;‘) 8(2,-1, e ey Zi,.) azr

(fis -5 fo)-

Here if 0P/3z,(z, ..., 2)=0, then the identity (9.3) implies the functional
dependence of 13, ..., f°,, which contradicts the assumption. Hence 8P/3z, #0
and it follows from the minimality of the degree of P that (3P/3z,)(fY, ..., fO)#0.
Therefore M #0, that is, f,,...,f,—,, F are functionally independent. Let

P(z)=Y,c,2% 2%=2z{" -+ -z, and define a positive number v as follows:

vi= min{z ad(fi) | ca #0, a,aﬁO}.

k=1

Then it follows that

a(ny=dM)+d(2_(ho .., 1)) =) +v=d(5),

and that v<d(F). Moreover the quantity u(f;,...,f,—,, F) is calculated as
follows:

u(fi, .. s frr, F)=d(M) +r— Z d(f.) — d(F)

r—1

=d(M)+v—d(f)+r— 2 d(f) - d(F)

=u(fi,...,f,)+v—d(F)
<u(f, .- )

Repeating this process, one can find a function f, such that f;, ..., f,_, f, are
functionally independent and u(f,, . . ., f,—1, £,) =0. This implies the functional
independence of f3, ..., f°_,, f2. The last assertion of Lemma 2.1 can be easily

seen. This completes the proof. [
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