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Convergence of Birkhoff normal forms for integrable Systems

HlDEKAZU ITO

1. Introduction

A basic tool for many differential équations is to transform them into a

simpler form that is called normal form. In Hamiltonian Systems, it is related to
integrability of the System near an equilibrium point or a periodic motion. The

purpose of this paper is to clarify this connection. Throughout this paper, we
consider analytic or real analytic Hamiltonian Systems and canonical transformations.

We first consider analytic case and later treat real analytic System as its
spécial case.

Let us consider a Hamiltonian System with n degrees of freedom

*£. *¦-£ *-&apos; »&gt;

in a neighbourhood of an equilibrium point which we take at the origin
z 0 € C2&quot;, where z (x, y) with x (xlf..., xn)f y (ylt..., yn). We assume
that the Hamiltonian H H(x, y) is analytic in a neighbourhood of the origin
with satisfying H(0) 0 and therefore its Taylor expansion begins with quadratic
terms. The eigenvalues of the linearized System of (1.1) about the origin, which
are determined by the quadratic terms of the H, occur in pairs ±klf..., ±Àn.
The equilibrium point (the origin) is called non-resonant if the kk (k 1,..., n)
are rationally independent, that is, linearly independent over the field of rational
numbers. This condition is équivalent to the condition

2 mkkk#0 forany(mu...,mm)eZrt\{0},

which will be referred as the non-resonance condition.
In this paper, we consider the normalization of Hamiltonian Systems near a

non-resonant equilibrium point. Then the eigenvalues ±klt..., ±Xn are ail
distinct and therefore we can find a linear canonical transformation which takes
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the Hamiltonian into the form

(1.2)

where the tenus not written out explicitly dénote a power séries containing terms
of order ^3 only. For this fact, we refer to [11, §15]. Hère a transformation
(mapping) z &lt;/&gt;(£) *s called canonical (or symplectic) if the identity £*=i dxk a
dyk Yrk=xd%ki\dt)k holds, where Ç (§, î?) with § (§!,...,§„), y)

(*h&gt; - • • &gt; Vn)- By a canonical transformation z 0(Ç), the Hamiltonian System

(1.1) is transformed into a Hamiltonian System with Hamiltonian //(&lt;£(£)).

In order to normalize higher order terms of the Hamiltonian, let us consider a

canonical transformation &lt;j&gt; of the form

£ + terms of order &gt;2. (1.3)

G. D. Birkhoff [2] proved the following resuit.

THEOREM 1.1. Let H(z) (z (x, y)) be a power séries of the form (1.2).
Assume that Âx,.. Ân are rationally independent. Then there exists a canonical

formai power séries transformation z 0(£) (Ç (§, r\)) of the form (1.3) such

that H° (p is a formai power séries in n products %it]i (/ 1, n).

In the above, the transformation z 0(Ç) is not determined uniquely.
However the function H&lt;&gt;&lt;f&gt; is uniquely determined independently of &lt;f&gt;. The
function H°&lt;t&gt; is called Birkhoff normal form and the &lt;p is called Birkhoff
transformation.

If there exists a convergent Birkhoff transformation, the corresponding
Hamiltonian system is solved explicitly for (£, r\) coordinates. Indeed the System

can be written as

at ao)k dt o(ok

where o)k %ki\k (k 1,..., aï). Therefore we hâve d(ok/dt 0, namely a)k

(k 1,..., n) are intégrais. Hence one can integrate the system in the form

Ut) - e^&amp;(0)f fi*(l) e-&lt;H»*r,k(0) (k 1,..., n),

where the arguments of HWk are the initial values cot(0),..., tyw(0).
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However the Birkhoff transformation &lt;f&gt; is divergent in gênerai (Siegel [9,10]).
Then, when does a convergent Birkhoff transformation &lt;f&gt; exist? This problem was
studied by H. Rûssmann [8] for two degrees of freedom case, and J. Vey [12]
generalized it to gênerai degrees of freedom case as follows:

THEOREM 1.2 (J. Vey [12]). Let G*(z)(fc l,..., n;z (x,y)) be n
Poisson commuting fonctions of the form

Gk(z) 2 pux,yi + • • • (k 1,... n); det (fiu) # 0, (1.4)

where pki e C and the remainder part not written out explicitly dénotes a convergent
power séries containing terms of order ^3 only. Then there exists an analytic
canonical transformation z 0(Ç) (£ (£, tj)) near the origin such that 0(0) 0

and Gk°&lt;t&gt;(k l,...,n) are analytic fonctions of n variables §/fy (/ 1,.. n).

In the above, GXi..., Gn are called Poisson commuting if the Poisson bracket

j

vanishes identically for any k, l 1,..., n. The Poisson bracket is invariant
under canonical transformations. Although the non-resonance condition is not
assumed, it is &quot;hidden&quot; in this theorem. We will see this after the formulation of
Theorem 1.3.

The System (1.1) is called integrable in a domain QcC2&quot; (or R2n) if there exist

n Poisson commuting intégrais Gt H, G2&gt;..., Gn which are functionally
independent in Q. Hère the functional independence of Glf..., Gn implies that
n differentials dGîf..., dGn are linearly independent on an open dense subset of
Q. Clearly the System (1.1) is integrable near the origin in this sensé if there exists

a convergent Birkhoff transformation. On the other hand, Theorem 1.2 asserts
that if the System with H Gt is integrable near the origin with intégrais of the
form (1.4), then there exists a convergent Birkhoff transformation. This theorem
can be proved also for C°° fonction case (Eliasson [3]).

However it may happen that some intégrais Gk begin with terms of order
greater than two and their resuit cannot apply to that case. The aim of this paper
is to show that, without any restriction such as (1.4), if the System is integrable
near a non-resonant equilibrium point, then there exists an analytic (convergent)
Birkhoff transformation. The resuit is stated as follows:
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THEOREM 1.3. Let the origin be a non-resonant equilibrium point of the

System (1.1) and assume that the Hamiltonian H(z) (z (jc, y)) is analytic in a

neighbourhood of the origin. Assume that in addition to Gx H the System (1.1)
possesses n-\ analytic intégrais G2(z),..., Gn(z) near the origin such that
Glf G2&gt;... Gn are functionally independent. Then there exists an analytic
canonical transformation z 0(Ç) (£ (§, rç)) near the origin such that 0(0) 0

and Gk° &lt;t&gt; (k 1,. n) are analytic functions of n variables §/rç, (/ 1,... n).

In the above, the transformation $ is obtained as the composition of a linear
canonical transformation taking the Hamiltonian into the form (1.2) and a

nonlinear canonical transformation of the form (1.3) (Birkhoff transformation).
We do not need to assume that Gl9..., Gn are Poisson commuting. However, as

we shall see in the next section (Remark 2.6), the intégrais near a non-resonant
equilibrium point are necessarily Poisson commuting. This theorem implies that
integrability near a non-resonant equilibrium point is équivalent to the existence
of an analytic Birkhoff transformation.

One can prove Theorem 1.2 from Theorem 1.3. To see this, let A
(akj) e GL{n, C) and consider

for the functions Gi, Gn in Theorem 1.2. Thèse Fk hâve the same form as

(1.4) with AB in place of B (&amp;,). Let (ku An) be the first row of AB. Then
Ft E2=i kkxkyk and one can find a matrix A so that ku Aw are rationally
independent. Therefore for the System with Hamiltonian Flf the origin is a

non-resonant equilibrium point and it follows from det^lB^O that Fu Fn

are functionally independent. Moreover since Gt9..., Gn are Poisson commuting,

Ft,..., Fn are also Poisson commuting and they are intégrais of the System.

Consequently Theorem 1.3 is applicable and gives the assertion of Theorem 1.2.

In this sensé, Theorem 1.3 is a generalization of Theorem 1.2.

If the Hamiltonian is real analytic, we hâve the similar resuit. We state the
resuit for the case when the eigenvalues of the linearized System are ail purely
imaginary. In this case the equilibrium point is called elliptic.

THEOREM 1.4. Let the origin be a non-resonant elliptic equilibrium point of
the system (1.1) and assume that the Hamiltonian H(z) (z (x, y)) is real analytic
in a neighbourhood of the origin. Assume that in addition to GX~H the System

(1.1) possesses n - 1 analytic intégrais G2(z),..., Gn(z) near the origin such that

Ou G2,..., Gn are functionally independent Then there exists a real analytic
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canonical transformation z #(£) (£ (£, tj)) near the origin such that 0(0) 0
and Gk°&lt;f&gt; (A: l,..., n) are analytic fonctions of n variables (Çj+rjj)/!

In the above, we do not need to assume that the additional intégrais
G2,..., Gn are real analytic. However the new Hamiltonian H° &lt;f&gt; is real analytic
and the n fonctions £| + r\\ are intégrais and solutions are given explicitly in
(£&gt; *?) variables as periodic or quasiperiodic orbits on invariant ton §| + r\\
const. &gt;0(fc 1,..., n). As is well known, for integrable Systems with real
analytic (or C°°) Poisson commuting intégrais Gu Gn, Arnold-Liouville&apos;s

theorem [1] asserts that if dGt,..., dGn are linearly independent on a compact
and connected level set E {Gk const. (k 1,..., n)}, then there exists a
canonical coordinate System (r, 0) (which is called action-angle variables) in a

neighbourhood of E such that the Gk are functions of t (t1, rn) alone.
This implies that the flow of the System becomes linear in 6 variables and the

System is solved explicitly in (t, 6) variables. Theorem 1.4 also implies the
existence of action-angle variables through a canonical transformation %k

VSr^cos dk, r\k V5r*sin 0k. Our case is quite différent from Arnold-Liouville&apos;s

theorem in the sensé that rank (dGx,..., dGn) 0 at the origin since Gk° &lt;p does

not contain linear ternis.
This paper is organized as follows: In the next section we discuss the rôle of

functional independence and reduce Theorem 1.3 to Theorem 2.4 formulated
there. The Sections 3 to 6 are devoted to the proof of this theorem. Our proof is

based on a rapidly convergent itération process. In Section 3, we prove the
existence of a formai canonical transformation 0 which takes Gk (k 1,..., n)
into the normal form. The transformation &lt;f) will be given as a composition of
infinité number of canonical transformations defined by the so called Lie séries.

In this step, by using the non-resonance condition the formai expansion of &lt;f) is

determined by the requirement that H® &lt;f&gt; is in normal form. However it turns out
that automatically also Gk°&lt;t&gt; (k 2,..., n) will be formally in normal form.
Using the System of n équations Gk°4&gt; normal form (k 1,..., n), we can
obtain estimâtes good enough for the convergence proof. This is the main point
to avoid the small divisor difficulty and it is described more precisely in Section 3.

Moreover we also refonnulate the resuit as Theorem 3.6 a little more generally
than Theorem 2.4, which will be useful in Section 8. The convergence proof of
the formai transformation (p is given in Sections 4 to 6. In Sections 4 and S, we
consider one step of the itération and prove several estimâtes. The final estimâtes

are Propositions 5.3 and 5.4. We prove convergence of the itération in Section 6.

In Section 7, we consider the case when the Hamiltonian is real analytic. We
obtain Theorem 1.4 from Theorem 1.3 by imposing a &quot;reality condition&quot; on the
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Hamiltonian of the form (1.2). In Section 8, we prove analogous results for
canonical mappings near a non-resonant fixed point. The Section 9 is an appendix
where we présent a proof of Lemma 2.1 on functional independence.

Acknowledgement. This work was done when I was staying at Forschungs-
institut fur Mathematik, ETH Zurich in the académie year of 1986-87. I would
like to thank the institute for its hospitality. I would like to thank Professor J.

Moser for his kind hospitality and for many helpful discussions and advices during
preparing this work. I also wish to thank H. Duistermaat and L. Chierchia for
helpful discussions and to E. Zehnder and J. Pôschel for their useful suggestions.

2. Préliminaires

The aim of this section is to reduce Theorem 1.3 to Theorem 2.4 stated below
as well as presenting preliminary facts for its proof.

Throughout this paper from this section, analytic functions defined near the
origin are always assumed to be given as a convergent power séries in appropriate
polydisks.

We begin with a gênerai discussion on functionally independent functions. Let
fk(z) =/* (zi&gt; • • • * zm) (k — 1,..., n) be analytic functions near the origin 2 0

which begin with terms of order sk. We dénote it by

where fJk is a homogeneous polynomial of degree sk +/. We call /° the lowest
order part of fk. The functional independence of flf... ,/n does not necessarily
imply the functional independence of their lowest order parts /?,..., f°n.

However the following holds:

LEMMA 2.1. Let fu ...,/„ be functionally independent analytic (or real
analytic) functions near the origin. Assume that /?,... ,/?_i (2^ r^n) are
functionally independent and that /?,...,/? are functionally dépendent. Then
there exists a polynomial P offu fr with complex (resp. real) coefficients such
that /?,...,/?_!,f°r are functionally independent, where fr~P\f\&gt;--&gt;fr)-

Moreoverfi,... ,/r-i,/r,/r+i&gt; • • • ,fn are functionally independent.

This lemma is proved in Ziglin [13]. However for the sake of completeness we
will give its proof in the appendix (Section 9). By using this lemma repeatedly we
can construct functions fx -fuf2y • •

&gt;/« which are polynomials of fu ...,/„ and

whose lowest order parts/?,...,/° are functionally independent.
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Remark 2.2. In Theorem 1.3, we are given n functionally independent
intégrais Gif..., Gn, which can be assumed to vanish at the origin. Therefore, if
we apply the above argument to (fu ...,/„) (Glf..., Gn), we obtain n
intégrais ùx Gu &amp;2&gt;

• • • &gt; Gn whose lowest order parts are functionally
independent.

Next we présent some facts concerning opérations by the Poisson bracket. Let

/ =/(z) (z (x, y)) be an analytic function near the origin z 0 € C2*. Hère we
consider C2* as a symplectic manifold with the standard symplectic structure
EJŒl dxk a dyk and (x, y) as its canonical coordinates. We say that the function /
is in normal form if it is a function of n variables xtylf..., xnyn. We introduce
the following operator on the space of analytic functions near the origin:

PnÎ{x, y) |o • • • jj(e2mex, e~2mey) de,--- d6nt (2.1)

where

We note that

.f

where we used multi-index notation

Therefore PNf is a power séries consisting of ail terms of the form xaya in the

power séries expansion of/. The following facts will be used later.

LEMMA 2.3. Let f(z) and g(z) (z (x, y)) be analytic functions near the

origin z 0 and assume that Xt,..., kn are rationally independent numbers. Then

(i) If {/, E2»i À*jr*y*} 0, then f is in normal form.
(ii) Iff and g are in normal form, then {/, g} 0.

(iii) Ifg is in normal form, then PN{f, g} 0.

Proof. Weset
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Suppose that g is in normal form. Then we hâve

n
U&gt; g) 2 gJJxtXt -fyjk) 2 Y*Aa&gt;)c*fiX*yfi, (2.2)

* 1 0

where

n

Y«?(&lt;») S g*&gt;k(OCk ~ Pk)\ &lt;»k Xkyk {k 1, tl).

Ifg S2=i Kxkyk, then we hâve ^(w) E*=i ^^(0:^ - jS*.), which vanishes if
and only if a f} by the non-resonance condition. Hence the identity (2.2)
implies the assertion (i). We can also prove (ii) and (iii) easily by using (2.2).

Now let us consider the analytic fonctions Gk(z) (k 1,..., n) described in
Remark 2.2 and rewrite them by Gk(z). Then Gk {k 1,..., n) are analytic
intégrais of the Hamiltonian System (1.1) with H Gt. We dénote the Gk by

G* G2 + Gi+---, G2(z)*0, (2.3)

where GJk is a homogeneous polynomial of degree sk +7 in z (jc, y). By the
discussions of Section 1, under the non-resonance condition we can assume that
the Hamiltonian has the form (1.2), i.e.,

(2.4)

Since Gk is an intégral of (1.1), we hâve the identity {Gk, Gi}=0, and the

comparison of its lowest order terms gives

{G2,G?}=0.

Then by Lemma 2.3(i) this identity implies that G°k are polynomials of n variables

Xiylf..., xnyn. The functional independence of the lowest order parts
G?,..., G°n is équivalent to the condition

det (d(Gl&gt; -&quot;&gt; Gn)\l&gt; -&quot;&gt; Gn)\ #0 (œk xkyk; k 1,..., n). (2.5)
(ûn)/

We will prove the following theorem instead of Theorem 1.3.
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THEOREM 2.4. Let Gk Gk(z) (k 1,..., n; z (x, y)) be analytic func-
tions near the origin which satisfy thefollowing conditions:
(i) {G^,G1}=0(* 2,...,n); (2.6)

(ii) The lowest order part G? has the form (2.4) with rationally independent
numbers kif..., Àrt;

(iii) The lowest order parts G?,..., G« are polynomials of xtylf... xnyn alone
and satisfy the condition (2.5).

Then there exists an analytic canonical transformation z &lt;£(£) (Ç (£, rç)) of the

form (1.3) near the origin such that Gk° &lt;f&gt; (k 1,..., n) are analytic functions of
n variables If/fy (/ 1,..., n).

In the above, the transformation &lt;f&gt; is not unique. However we shall see in the
next section (Remark 3.4) that the normal form G*°0 (fc 1,..., n) are
uniquely déterminée independently of &lt;p.

We say that the fonction Gk given in (2.3) is in normal form up to terms of
order sk + d if the polynomial G°k + G\+ \- Gk is in normal form. The
foUowing fact will play a basic rôle in the proof of Theorem 2.4.

PROPOSITION 2.5. Let Gk be analytic functions near the origin satisfying the
conditions (i) and (ii) of Theorem 2.4. If G\is in normal form up to terms of order
Si + d, then Gk (k 2,..., n) are in normal form up to terms of order sk + d.

Proof The proof is easily done by induction. We already proved the case
d 0. Assume that Gt is in normal form up to terms of order $i+/ (0&lt;j&lt;d)
and that Gk (k 2,..., n) are in normal form up to terms of order sk+j - 1.

The comparison of the homogeneous part of degree sk +/ in (2.6) gives

{G{f G?} + g {Gïl, G[} - 0. (2.7)

Since G{~1 and Gi (/ 1,..., /) are in normal form by the assumption, we hâve
{G{~&apos;, Gi} 0 by Lemma 2.3(ii). Therefore the identity (2.7) leads to

By Lemma 2.3(i) this identity implies that G* is normal form. This complètes the
proof. D

Under the assumptions of Theorem 1.3 with the Hamiltonian of the form
(1.2), the ûk (k * 1,..., n) in Remark 2.2 satisfy the assumptions of Theorem
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2.4. Therefore one can conclude that there exists an analytic canonical transformation

z &lt;t&gt;(£) such that Gx°&lt;t&gt; is in normal form. Then by Proposition 2.5, the
other intégrais Gk° 0 (k 2,.. n) are automatically in normal form. Therefore
Theorem 2.4 implies Theorem 1.3.

Proposition 2.5 implies also the following fact which was mentioned in
Section 1.

Remark 2.6. The functions Gk (k 1, n) which satisfy the conditions (i)
and (ii) of Theorem 2.4 are Poisson commuting.

Indeed, under the non-resonance condition there exists an analytic canonical
transformation which takes the Hamiltonian GX H into normal form up to terms
of sufficiently high order. Then Proposition 2.5 implies that the other intégrais
Gk (k 2,..., n) are also in normal form up to terms of sufficiently high order.
Therefore we hâve

{Gk, G,} 0 for k, l 1, n.

up to terms of any order by Lemma 2.3(ii), and hence thèse are identities.

In our proof of Theorem 2.4, the transformation (j&gt; is obtained by an itération
process and we consider transformations which are doser to the identity as

itération step proceeds. We complète this section by presenting a fact concerning
such transformations.

Let %d be a set of ail canonical formai power séries transformations z - 0(Ç)
of the form

z Ç + O(Çd+1). (2.8)

Hère and in what follows, the notation O(Çd+1) dénotes a (vector of) formai
power séries in Ç (£, tj) consisting of terms of order ^d + 1 only. This set ©rf
forms a group under compositions of transformations. We note the following fact.

LEMMA 2.7. // &lt;f&gt; e &lt;£&gt;d, then it is written in the form

(2.9)

with a polynomial W(Ç) of the form

W(Ç) Wd+2 + W+3 + ••• + W2**1, (2.10)
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where I is the nXn identity matrix and W&apos; is a homogeneous polynomial of degree

j in f.

Proof. We note that the canonical character of &lt;p means

n n
^Z dxkAdyk^^ d%k a dr\kt

which leads to the fact that the 1-form

n n

2 (** - £*) dr\k + 2 (yik-yk) dxk

is closed. Therefore there exists a formai power séries W(§, r\) such that this
1-form is equal to dW. Since the first n components of équation (2.8) can be
solved for £ as a formai power séries of (x, ri), we can express the W in {x, r\)
variables, and jc* — %k and rjk — yk are power séries of x and rj consisting of terms
of order znd + 1. Consequently we hâve the expression

xk Sk + Wnk(xt y), yk rik- WXk(x, rj)f (k 1,..., n) (2.11)

with a formai power séries W W(x, r\) which begins with terms of order &gt;d 4- 2

in x, rf. (This is exactly the so-called generating function.) Since W(£, rj) -
O(Çd+2), it follows from (2.11) that this transformation has the form (2.9) with
(2.10). n

3* Construction of the itération of transformations

Our proof of Theorem 2.4 is based on a rapidly convergent itération process
[S]. The transformation (p ls obtained as a composition of infinité number of
transformations &lt;pv (v 0,1,...), where &lt;pv provides a better approximation to
the normal form. In this section, we construct the itération of transformations
formally.

To describe one itération step, assume that Gk (k 1,..., n) are in normal
forai up to terms of order sk + d — l. We note that this assumption is already
satisfied for d l. Our purpose is to find a canonical transformation which
normalises Gk up to terms of order sk 4- 2d — 1. To this end, we consider a

canonical transformation &lt;p defined by the time 1 map (flow) of the Hamiltonian
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system

f (3.1)

with a polynomial Hamiltonian

™\ (3.2)

where WJ is a homogeneous polynomial of degree ; in z (x, y) (zx,...,
and VW is the gradient of W, i.e., 2n-dimensional vector with components
W2k (k 1,..., 2n). Let z &lt;p&apos;(Ç) be the solution of (3.1) satisfying an initial
condition z Ç at t 0. In this and the next section, we consider the solution
&lt;p&apos;(Ç) formally. Then the transformation &lt;p is written as

(3.3)

Throughout this paper, we say that a canonical transformation q&gt; is generated by
the Hamiltonian fiow with Hamiltonian W if it is defined by the time 1 map (3.3)
for the Hamiltonian system (3.1). Since the origin Ç 0 is an equilibrium solution
of (3.1), we hâve the identity &lt;p&apos;(0) 0. Therefore the séries expansion of q&gt;\Ç)

in the powers of Ç begins with linear terms and consequently by substituting it
into (3.3), we can see that the solution &lt;p&apos;(C) has the form (2.8), where the
remainder part O(Çrf+1) dépends on t. Then it follows from (3.3) that q&gt; e &lt;&amp;&gt;d and
has the form (2.9). Conversely, by Lemma 2.7 we hâve

Remark 3.1. Let ç?€@d and W be the polynomial of the form (3.2)
determined by the expression (2.9) of the &lt;p. Then up to terms of order 2d, q&gt; is

equal to the canonical transformation generated by the Hamiltonian flow with
Hamiltonian W.

Under the above assumption on Gk (k 1,..., n), we can write the Gk in the
form

Gk(z) gk(z) + 6k(z); gk PNgk,

(*l)
where gk(z) is a polynomial of degree less than sk + d in z (x, y) which is
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actually a polynomial of n products jci^, xnyn. We dénote gk and ôk by

where g{ and ôk are homogeneous polynomials of degree sk +j in z — (x, y).
We first prove the following

LEMMA 3.2. Let Gk(k lf. n) bepower séries oftheform (3.4), Le., in
normal form up to terms of order sk + d — \. Let z ç&gt;(Ç) € ©^ (Ç (§, rj)) be a
canonical transformation generated by the Hamiltonian flow with Hamiltonian W
of the form (3.2). Then Gk{&lt;p(Ç)) (k 1,. n) are in normal form up to terms

of order sk + 2d~l if and only if the polynomial W satisfies a system of n
équations

Ôk(t) Pff&apos;lÔM) + O(P*+a-), (* 1,..., n), (3.5)

where Pjf^ôk PN{ûdk + • • • 4- G^&quot;1). Thefunction G*(

w), (*-l,...,n). (3.6)

Proo/. Since the transformation &lt;p € ©d has the form (2.9), one obtains

(3.7)

by substituting the form (2.9) into (3.4). Since PN{gk, W} 0 by Lemma 2.3(iii),
équation (3.7) implies that G*(&lt;p(Ç)) (k 1,..., n) are in normal form up to
terms of order sk + 2d~-l if and only if W satisfies the System (3.5), and the

expression (3.6) follows easily. This proves the assertion.

The comparison of the homogeneous parts of degree sk +j in the équations
(3.5) gives

l,...,n) (3.8)
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where / is the identity operator and Dt is an operator defined by

We now prove that under the conditions of (i) and (ii) of Theorem 2.4 the
System (3.5) can be solved through the homogeneous équations (3.8).

PROPOSITION 3.3. Let Gk (k 1, n) be power séries satisfying conditions

(i) and (ii) of Theorem 2.4. Assume that Gk are in the form (3.4), /.e.,
normal form up to terms of order sk + d — \. Then there exists a unique canonical
transformation z &lt;p(Ç) e ©rf such that (i) G*(&lt;p(Ç)) (k 1,. n) are in the

form (3.6), Le., normal form up to terms of order sk + 2d — l, and (ii) &lt;p is

generated by the Hamiltonian flow with Hamiltonian W of the form (3.2) satisfying
a condition

PNW 0. (3.9)

Proof By Lemma 3.2, our purpose is to prove that there exists a unique
polynomial W of the form (3.2) which satisfies the System of n équations (3.5)
together with the condition (3.9). The System (3.5) for a function W is clearly
overdetermined. However it suffices to solve the first équation (k 1), and then
the other équations are automatically solved as we shall see. The relations
{Gk, Gt} 0 can be viewed as the compatibility condition.

To see this, we set WJ+2= Hw+w-j+iC^&quot;^. Then équation (3.8) for k 1

can be written as

V ^i(Ç); r Ê hiP* - *k) (3.10)

The right-hand side of this équation is determined by Gx and Wd+2,... WJ+1 and
therefore this équation gives a recursion formula to détermine the function W of
the form (3.2). Since y does not vanish for oc # fi by the non-resonance condition,
the coefficients cap for a¥&quot; fi are determined by this équation. On the other hand
the condition (3.9) implies that cafi 0 for oc j8. Hère we note that F\(Ç) does
not contain any term in normal form. In this way we can détermine W)+2

(j d,..., 2d -1) successively and hence a solution W of équation (3.5) for
k 1. The canonical transformation (3.3) determined by this W normalizes Gt up
to terms of order st + 2d - 1. Therefore Proposition 2.5 implies that Gk(&lt;p(Ç)) is
in normal form up to terms of order sk + 2d - 1 for any k 1,..., n. Hence the
W satisfies n -1 other équations in (3.5) automatically, which together with (3.7),
implies (3.6). This proves the assertion.
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Since the assumption of Proposition 3.3 is satisfied for d 1, we can take
rf 2v(v 0, 1, successively. Let q&gt;v be the canonical transformation de-

scribed in Proposition 3.3 with d 2y. Then we obtain a formai canonical
transformation &lt;f&gt; which takes Gk (k 1,..., n) into the normal form as follows:

0 lim0v; 4&gt;v &lt;Po°&lt;Pi°&apos; -&apos;°(Pv&gt; q&gt;ve(&amp;d (d 2v). (3.11)

Remark 3.4. In the above proof of Proposition 3.3, we did not use the
existence of the intégrais G2,.. Gn to show that W is uniquely determined.
Therefore the above argument proves Theorem 1.1 also. Moreover, by the
same argument as in the proof we can prove that the normal form Gk°&lt;t&gt;

(k 1,..., n) are uniquely determined independently of &lt;j&gt; as follows:
Suppose that G* (k 1,... n) are taken into normal form by formai

canonical transformations &lt;f&gt; and i//. Then we hâve

namely the formai canonical transformation ^o^ e &lt;S&gt;X takes the normal form
Gk°&lt;l&gt; into the other normal form Gk°tl&gt;. From Remark 3.1, this transformation
0~x°^ can be expressed as a composition of infinité number of transformations
q&gt;v € &lt;Bd (d 2V; v 0, 1,...) which are generated by the Hamiltonian flow with
Hamiltonian W of the form (3.2). The transformation &lt;pv takes Gk which are in
normal form up to ternis of order sk + d - 1 into the normal form up to terms of
order s* + 2d - 1. If Gk are already in normal form, then G*(Ç) PNGk{Ç) in the

System (3.5) which the polynomial W satisfies. One can see from (3.10) with the
définition of F\ in (3.8) that WJ+2 PNWJ+2 and F\^0 inductively for ;
d,..., 2d — 1. Therefore the polynomial W is in normal form. Then the
Hamiltonian System (3.1) is solved explicitly and its time 1 map is expressed in
the form

xk « f* exp (Wmk)f yk r\k exp (-W«J (k 1,..., n).

Since the n products %kr\k are invariant under this transformation, the normal
form GkQ &lt;p cannot be changed by ç&gt;v. This implies that Gk°&lt;j&gt; Gk° xp.

In the proof of Proposition 3.3, the small divisor y appears in (3.10). However
we can avoid the small divisor difficulty in the following way:

LEMMA 3.5, Let Gk (k * 1,. n) be power séries in the form (3.4) and W
be a polynomial of the form (3.2) which satisfy the system (3.5). Assume the



Convergence of Birkhoff normal forms for integrable Systems 427

condition (iii) of Theorem 2.4 (G° g°)- Then DkW&gt;+2 is expressed asfollows:

^ {k \,...,n;j d,...,2d-\), (3.12)

where

(*)

(3.13)

//ère /Ae numerator qi(Ç) is divisible

Proof. We consider équation (3.8) as a System of w linear équations for
D,W;+2 (i 1,... n). Then at points £ (§, rç) on which det (dgl/dcoù * 0, one
can solve (3.8) uniquely as (3.12) with (3.13). Under the condition (2.5), the

inequality /?(£) =É 0 is satisfied on an open dense subset Q&apos; of a neighbourhood Q
of the origin. Since DkWJ+2 for the solution W of (3.5) satisfies (3.8), it satisfies

(3.12) on Q&apos;. Then the DkWJ+2 satisfies (3.12) on the whole neighbourhood Qby
the continuity. This complètes the proof.

The expression (3.12) will be used to estimate DkWJ+2 in the following section
without any restriction of the small divisors.

The conditions (i) and (ii) of Theorem 2.4 was used to show that there exists a

formai canonical transformation &lt;t&gt; defined by the limit (3.11) which takes
Gk (k 1, n) into the normal form. The aim of the following sections is to
prove the convergence of this limit and we will not use the conditions (i) and (ii)
for this purpose. For the later application, it is useful to formulate our resuit
without assuming thèse conditions as foliows:

THEOREM 3.6. Let Gk{z) (k 1,.. n) be analytic fonctions near the

origin satisfying the condition (iii) of Theorem 2.4. Assume that there exists a

formai canonical transformation z 0(Ç) which is defined by (3.11) and satisfies
the following conditions:
(i) For any v 0, 1,... Gky+l) Gkv)° &lt;py (k 1,..., n) are in normal form

up to terms of order sk + 2V+1 - 1, where Gk0) Gk and sk is the degree of the

lowest order part of Gk;
(ii) The canonical transformation q&gt;v is generated by the Hamiltonian flow with

Hamiltonian W ofthe form (3.2) satisfying a condition PNW » 0.
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Then the limit (3.11) is convergent uniformly in a neighbourhood of the origin
Ç 0, and hence it defines an analytic canonical transformation &lt;/&gt; such that
Gk° 4&gt; (k 1,..., h) are in normal form.

By Lemma 3.2, the above condition (i) implies that the polynomial W in the
condition (ii) satisfies the System (3.5) with d 2V. Therefore from Lemma 3.5 we
obtain the expression (3.12) with (3.13). We will prove this theorem in Sections 4

to 6. It will also give the proof of Theorem 2.4 since the assumptions of Theorem
3.6 are satisfied under those of Theorem 2.4.

4. Estimâtes of the norm of W and its derivatives

In this and the next sections, we consider one itération step defined by
&lt;pv (v 0,1,...) in Theorem 3.6 and dénote q&gt; and Gk in place of &lt;pv and G^v)

respectively. In this section, we consider the polynomial W which defines &lt;p by
(3.3) and give the estimâtes of W and its derivatives with respect to some norm.
To specify the polydisks where the functions are to be considered, we first prove
the following.

LEMMA 4.1. Let s be the degree of the polynomial p(Ç) given in (3.13). Then

there exist positive constants ôk (k 1,..., n) such that 0 &lt; ôk &lt; 1 and

on 4 {(£îj)€C2&quot;

(4.1)

where ct&gt;0 is a constant which is independent of r.

Proof Weset

%k tPkuk, rik tpkvkf (k 1,..., n)

and dénote this by (g, ij) (tpu, tpv). Hère t &gt; 0 and pk &gt; 0 (k 1,..., n) are
real constants and we assume that pu pn are rationally independent. The
homogeneous polynomial p(£) in fji^,..., |nrjn can be written as p(Ç)

a&gt;ï* Then we hâve
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Let

min2(ûf, p), C | a I \&lt;x\ -,oreC l 2

Hère we note that d is attained by only one oc because of the non-resonantness of

Pu pn- Let &lt;** be the a which attains the minimum d. Then we can write

c./u^v*- + tdp(uvf 0, |p(^, OhO (*-+0).

Hère p(uv, i) is a homogeneous polynomial of degree s/2 in ulv1,..., wnvn
whose coefficients tend to 0 as t—»0. Therefore there exists a sufficiently small
positive number t0 which is independent of r such that

\p(uvftQ)\&lt;\\ca}rs on \uk\ \vk\ r (k=&gt; 1,. n).

Hence we hâve

on {(§,r?) 0g

If we define ôk rg* (k 1,..., n) and Ci | \caj to, we obtain (4.1).

We introduce the following norms. Let Qr be a neighbourhood of the origin
(polydisk) defined by

where ôlf..., ôn are the positive constants given in Lemma 4.1. Let A(Qr) be a

space of functions which are analytic in fir+€ with some £&gt;0. Then f eA(Qr)
can be written in the power séries

/=/o+/i+/2 + &quot;- (4.2)

which is absolutely convergent in Ùr. Hère fi is a homogeneous polynomial of
degree j in £. For/ eA(Qr)f we define the following norms:

|/|r:=max|/(Ç)l, Il/Il := Ê I//U

Hère we note that |/|r^ ||/||r and that \fi\r ||JJ||r for homogeneous polynomials
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fi. Moreover we introduce a space

Am(ft) {/€il(ft)|j5(C)-0 for ; 0,

and define for / € i4m(£?r) a norm

- m •

Now assume that GkeA{Qr) (k 1,..., n) are written in the form (3.4)
(Le., normal form up to terms of order sk + d-l with d 2v) and consider
the polynomial W in the condition (ii) of Theorem 3.6. Then DkWJ+2 (/
d,..., 2d - 1) are given by (3.12) with (3.13). We note that for DkWJ+2 e A(Qr)
the maximum HD^W&quot;1&quot;2!!, is attained on Ar. (We can see this property by using,
for example, the maximum principle for one complex variable repeatedly.)
Therefore using the relation (3.12) one can estimate ||D*W/+2||r in the form

mm

By this formula, we can prove

LEMMA 4.2. The solution of équation (3.8) satisfies

\\DkW&apos;+2\\r * c2 2 ||H||«.2 (/ d,..., 2d - 1), (4.4)

where c2is a positive constant which is independent of r.

Proof Expanding the qk(Q in (3.13) according to the k-th column, one
obtains

- S (-ly^m) det e*(t), (4.5)

where C^(f) dénotes the matrix obtained from that of qk(t) by deleting the i-th
row and ik-th column. The det &amp;*(£) and Fi(Ç) are homogeneous polynomials in
Çof degrees—&amp;i + 2(oidet&amp;*(£)¦ 0) and degreest +/ respectively. Therefore
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q{(Ç) is a homogeneous polynomial of degree s + / + 2. It follows from (4.5) that

WqiiOWr * É \\Fi\\r lldet Qik\\r r* £ ||F{||r,,f_2 ||det G*IU,_,i+2.
i=l i=l

Since det Qik is a homogeneous polynomial of degree 5—5,-1-2, we hâve

lldet j2lVk||r,5_Ji

where cik is a positive constant determined by the coefficients of the polynomial
det Qik. Setting

we hâve

^c3r^\\F{\\r^2. (4.6)
1 1

Then, setting c2 c3/c! we obtain the estimate (4.4) by the formula (4.3) with
(4.1) and (4.6).

To give the estimate of ||£&gt;*W]|r, we introduce the following notation

HAJ,:- Ê HigU-2; g/ &amp;-*?(=g?+gf+---+g?-2). (4.7)

Hère we note that êim} begins with terms of order ^s, and therefore Hg^lU will be
small if we take r sufficiently small. Moreover let us introduce the notation

2 ll&amp;IU-2= S r-^2\\Ôk\\,. (4.8)
*=1 A: l

Then we hâve

PROPOSITION 4.3. Let GkeA(Qr) be oftheform (3.4) and assume that

c2|||&amp;, III, &lt;i (4.9)
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Then the polynomial W(Ç) in the condition (ii) of Theorem 3.6 satisfies

\\DkW\\r &lt;4c2 m6\\\r (k - 1,..., n). (4.10)

Proof, This is a conséquence of the following estimate:

{d/2-l
^ n 2d-l

2 (c2\Um\\\r)&apos; 2 2 11^^11^,-2, p*=i-pn. (4.ii)

From (2.1) it follows that \PN6{\r^ \Ôi\rf and therefore

*2 ll^^||r,^2^2221 ||^||r,^2&lt;2 110,11^.2.

Hence if the assumption (4.9) is satisfied, the estimate (4.11) implies (4.10).
The proof of (4.11) is based on an inductive argument. First we note that

n d/2-l
l*.|r-2 2

and that ||*j£lU-2 - 0(1*) and \\PRÔi\\r.Si.2 O(r&apos;+2) as r^O. Motivated by
this fact, we dénote

and call 2/ and / + 2 the degree of m^ and v/&quot;1&quot;2 respectively. Let us dénote

&lt;*/2~l

\\\U\r)&apos;,

We treat 1/ and V as polynomials of uff and v/+2 respectively. Then each

monomial in U has the form

m d
(const.) fi &quot;II with iv,/v€ {1,... ,n}, 1^/V&lt;--1,

v-i 2

where m is a positive integer ^d/2-1. Let us define the degree of this
monomial by /i E^»i 24 and let C/M dénote the sum of monomials in U of
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degree jU. We call If the homogeneous part of degree \i in U and can write

[/= (/° +t/2 + • • • + u(d-2)2/2.

We define the degree of monomials in V and UV similarly and can write

y yd+2 _j_ yd+3 _|_ _|_ y2d+l

To prove (4.11), it suffices to show

,...,2d-l). (4.12)

We will prove this by induction. For / d, d -h 1 it follows from (3.8) and (4.4)
that

||D*W&quot;+2||r ^ c2 t llPjtÔÎIU.,^ t^V^2 (/ « d, rf + 1).

This implies that (4.12) is valid for / d, d + 1. Assume that (4.12) is valid for
y d,d + l,...,rf + 2*:-2,rf + 2ic-l(A:&lt;(rf-2)/2). Then from (3.8) and

(4.4), for / d 4- 2jc, d + 2ic + 1 we hâve

(4.13)

Hère the second term can be estimated from above by the homogeneous part of
degree / + 2 in c2 |||^o, |||r UV. Moreover

rdtl
{an2(C2\Ua,\\\

and (c2 mUm^rf^V contains monomials of degree 2£d + d-f2 2rf + 2 alone,
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which do not œntribute to ||£&gt;*W&quot;&gt;2||r since / + 2&lt;2d + 2. Therefore the
right-hand side of (4.13) is estimated from above by the homogeneous part of
degree j 4- 2 in

d/2-l
C2V + C2 2 (C2\\\êo&gt;\\\r)&apos;V=UV.

This implies that (4.12) is valid for ; d + 2jc, d + 2* + 1. Hence we hâve
complétée! the proof of Proposition 4.3.

Now we dérive the estimate of norm of W and its derivatives. We set

ô min ôk, c4 8nc2n. (4.14)

LEMMA 4.4. Let 0&lt;p&lt;r. Under the assumptions of Proposition 4.3, we
hâve

(i)

00 y qftfî
^ï ô (*, / « 1, • • •, 2»),

Proof. We introduce a transformation ^:(r, 0) &gt;-»(£, »y) defined by

&amp; t*^, il* V-2^ (* 1,... n).

ITien one can easily prove that

^ (* !,...,*). (4.15)

Let fi; flr\{(i, »î) | IK-i ïkVk 0}. For any point (£, t&gt;) e O;, one can find a

point (t, 0) such that (§, rj)-ip(tf 0). Then for any o-(ou art) with

Osa^l, the point (§&apos;, îj&apos;) ^(t, 0 + a) belongs to Q&apos;r. By using the relation
(4.15), the mean value theorem gives

0)) - W&gt;2(^(t, 0 + a))\ ^2^2 \DkW^\. (4.16)
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Since PNW&apos;+2 0 by the condition (3.9), the intégration of (4.16) from 0 to 1 with
respect to oXf..., on gives

Hère (£, rj) is arbitrary in Q&apos;r and |W&quot;&gt;2| does not attain its maximum |W+2|r at a

point where IK=i £*rç* 0- Therefore this implies

\\W\\r*2xi,\\DkW\\,.

Hence the estimate (i) follows from Proposition 4.3. The estimâtes (ii) and (iii)
can be obtained by using Cauchy intégral formula. Indeed, applying it to each

homogeneous polynomial W/+2, we hâve

||WJ|p &lt; ô-\r - p)&quot;1 HW\\r &lt;cA6-\r - p)&apos;1 \\\Ô\\\r.

For the estimate of || Wj^Hp, we set p&apos; (r + p)/2. Then similarly we hâve

||Rrfo||p. &lt; ô~l(r - pT1 \\W\\rf \\WMl\\p &lt; ô-\p&gt; - p)-1 ||WJ|P,,

which lead to the estimate (iii).

5. Estimâtes of remainder terms G&apos;k

The aim of this section is to give the estimate of new remainder terms Gfk at
each step of itération process defined by &lt;pv. As in the previous section, we
dénote (p and Gk in place of &lt;pv and Gky) respectively, and assume that
Gk (fc 1,..., h) are written in the form (3.4). First we set

(5.1)

and prove the following

LEMMA 5.1. Let 0&lt; a &lt; p &lt;r with p - a r - p. Assume that c2 |||&amp;, |||r &lt; \
and that

&lt;l. (5.2)
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Then for any ÇeQa the solution z &lt;p&apos;(£) of the System (3.1) exists and is

contained in Qp for \t\ &lt;2, and hence q&gt; q&gt;1 is an analytic transformation from
Qa into Qp.

Proof By Lemma 4.4(ii) and (5.1), it follows that

under the assumption (5.2). Therefore for any point Ç € Qa we hâve

:= {z (zu •.., zm) max \zk - ^1 &lt; ô(p - a)}.on

Therefore by the fondamental theorem for differential équations, the solution
z q&gt;&apos;(t) of (3.1) exists and is contained in the domain Q(t) for |*| &lt; 2n, where

In 2t 2. Since Û(Ç) c flp, this proves the assertion.

In what follows, we use the notation

|/|r := max \fk\r max max |/*(Ç)|) (5.3)
k \ k ÇeQr /

for a 2iî-dimensiona! vector fonction / (fu f^) with /fc € A(£2r). Moreover
we use the notation (z, z&apos;) Y*Pzkzk for 2az-dimensional vectors z, z&apos;eC2&apos;1

whose components are zkf zk (k 1,..., 2n) respectively.
In addition to a, p, let us introduce r&apos;, % such that

r&apos;&lt;T&lt;a&lt;p&lt;r; r-p p~a a-t=r-r&apos; i(r- r&apos;). (5.4)

Our aim is to estimate |||ô&apos;|||r&apos; := E?-i ll^illr&apos;,**^ under the condition (5.2). First
we define a 2/z-dimensional vector fonction W by

(5.5)

so that the transformation &lt;p is written in the form

(5.6)
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To estimate Gk(q&gt;(Ç)), we write it in the form
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(5.7)

Then from (5.6) one obtains

(5.8)

(5.9)

where the remainder terms R\, R\ and R\ are estimated with respect to the norm
||T as follows:

2/t

\VÔ\P \VW\P.

From (5.7), (5.8) and (5.9), we can write G*(ç&gt;(£)) as

Gk(&lt;p(O) fc(Ç) + {g,(C

with

(5.10)

Hère R\(t) contains terms of order zzsk + 2d only since W satisfies équation
(3.5). Hence the remainder part ùfk is given by

Now we first consider the estimate of R\ + R\ + /î^. By Lemma 4.4 and using
the Cauchy intégral formula, we can rewrite the estimâtes of \R)^Xi \Ri\t and \R3k\t
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as follows:

-p)-* \gk\, m 6 m?,

and hence we hâve

^^ + (r-p)2||G,U. (5.11)

To obtain the estimate with respect to the norm ||||r-, we use the following fact.

LEMMA 5.2. ForfeA(QT), we hâve

(5-12)

T

Proof. We may assume that the function / is expanded in homogeneous
polynomials as in (4.2). Then for any £ (£, r\) e Ùr. the function

is analytic in t € {|f| ^ t/r&apos;}. Therefore the Cauchy&apos;s estimate gives

This implies

By the définition of ||/||r», the relation (5.12) follows easily. D
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Hère it follows from (5.4) that

1

and

1

P r-p^r-p
r r r

therefore

1 1

t r

-1- r
X

By using the above lemma together with this relation, one obtains from (5.11)
that

X (*cs î) ||g*||r.,t_2 + (r - p)2), (5.13)

where c6 is a constant satisfying

\Sk~2(r\Sk~2
\p) ~C6 for * 1, ...,n. (5.14)

To estimate E*=i ||g* 11,^-2 in terms of |||^«|||r, we note that for each
homogeneous polynomial gf

Oi,

kœid(°j forsome

Using this relation we hâve

and therefore
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which leads to

É Hg*IU-2^r2( S II^IU-2+ IH&amp;,lll,W(c7 + ^-) (5.15)

by the assumption c2 |||£«&gt; |||r &lt; i Hère c7 is a constant satisfying

2

Since g2œ is a homogeneous polynomial of degree sk — 2, the constant c7 can be
taken independently of r.

Hence it follows from (5.13) and (5.15) that

/\5 (5.16)

where

(5.17)

Finally we will estimate ||/?*||r&apos;. Since R% contains terms of order ^sk + 2d
only, by applying Schwarz&apos; lemma to each homogeneous polynomial in Rt one
obtains

sk+2d

From (5.10) we hâve

by the définition of the norm ||||r. This gives

and therefore we hâve

(rtxsk+2d7/ &apos;
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where c6 is a constant satisfying (5.14). Moreover we hâve the estimate
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by (4.10) and the estimate used to obtain (5.15). Hence, noting that sk ^2, one
obtains

(5.18)

(5.19)

Then setting

c9 45 max (c8, 4c2c7 + 3),

the estimâtes (5.16) and (5.18) give

Mollir

This is the desired estimate of |||&lt;î&apos;|||r&apos;. For the itération process, we require
^H,. to satisfy a stronger condition than (5.2). We summarize as follows:

PROPOSITION 5.3. Let r&apos; &lt;r and Gk e A(Qr) {k 1,..., n) be of the form
(3.4) (Le., in normal form up to terms oforder sk + d — 1). Assume that

and

c6c9.

(5-20)

(5.21)
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Let z ç&gt;(Ç) be the canonical transformation which satisfies the condition (ii) of
Theorem 3.6 and takes the Gk into (3.6). Then the q? is an analytic transformation
from Qa into Qp and G*(&lt;p(Ç)) belongs to A(Qr&gt;) with the remainder part Ôk

satisfying

Ax-r-
(5.22)

where o and p are defined by o — r — \{r — rf), p r — \(r — r&apos;).

Since c6&gt; 1 by (5.14), it follows from (5.17) and (5.19) that

c10 &gt; c9 2= 45c8 &gt; 45c5. (5.23)

Therefore the condition (5.2) is satisfied under the condition (5.21), which implies
the validity of the estimate (5.22).

The estimate of the form (5.22) contains the term c10 IH^HIr^Vr)2^2 which
dépends linearly on |||(5|||r. In this sensé, it is a little différent from the usual
estimate in the rapidly convergent itération method. This type of estimate is

found in [7], to which we owe the idea of estimating \\Ri\\r&gt; in the above as well
as the convergent proof in the next section.

For the new normal form part g&apos;k gk 4- Pjf~lÔk, we estimate

HlgLIII,&apos; := Ê lltfJI,^-2; ** -g&apos;t ~«2 ** + Jtf-&apos;Ô*. (5.24)
*,/

PROPOSITION 5.4. Under the assumptions of Proposition 5.3, we hâve

- (5-25)

Proof We note that d/da&gt;t ri~l d/d^ and the maximum \d(PNôJk)/do)t\r. is

attained on Ar&gt;. Then using the Cauchy intégral formula, we hâve

1
-\Ù&gt;k\r for /ô2r&apos;(r - r&apos;)
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which leads to

UdiP^ôJ/dcotU,.^^ gV(*6_ rt)
\\ùk\\rtSk-2.

From (5.24) this gives (5.25). D

6. Convergence proof

The v-th approximation step described in the assumption of Theorem 3.6 is
defined by the transformation &lt;p q&gt;v which takes Gk Gkv) in the form (3.4) into
(3.6). More precisely we set in (3.4) and (3.6)

gk=gï\ àk Ô^ and g&apos;k œ+», Ô&apos;k ôri\
Then Proposition 5.3 with r rv and r&apos; rv+1 implies that

&lt;pv : QOy-* QPv; ov ry- \(rv - rv+1), pv rv- \{rv - rv+1)

and (5.22) gives the estimate of |||6(v+1)|||rv+1 E2=1 \\Ôky+1%v+ltSk-2. Our goal is

to choose a séquence {rv} so that

IIU-O as v^oo (6.1)

and that

&lt;Pv ^0° &lt;Pl ° &quot; &apos; &apos; ° &lt;Pv
&apos; Ûav~^ Ûp0 (6.2)

converges in Q^a to an analytic canonical transformation 0. For this purpose, we
assume that Gk Gk0) e A(Q^) (r0 &gt; 0) and take a séquence {rv} defined by

rv=-

Then since

1

rv (v + 2)2
&apos;
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we hâve

—^-ss I for v 0,1, 2,..., (6.4)

and therefore the constant c6 in (5.14) can be taken independently of rv.
To justify the itération procédure with this séquence {rv}, we hâve to prove

that the conditions (5.20) and (5.21) hold at each step. We rewrite the condition
(5.21) as

where cl0~c6c9 is a positive constant which is independent of rv. The following
lemma implies that if the condition (6.5) holds for any v 0,1,..., then the
condition (5.20) is necessarily satisfied at each step of itération procédure.

LEMMA 6.1. If the condition (6.5) holds for v 0,1,..., m, then

Proo/. For the simplicity of notation, we set

By Proposition 5.4 we hâve

c2c6n
ô rv+i(ry — rv+1)

Therefore the condition (6.5) implies that

Hère we hâve
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by (6.4) and the définitions of the constants (4.14), (5.1) and (5.23). Hence one
has

(6.6)

by (6.3). Now we hâve do 0 by the définition of M^HL- Therefore (6.6)
implies dx &lt; \. If (6.5) holds for v 0,1,... m, then by using (6.6) inductively
we hâve

2&quot;

This complètes the proof.

To prove (6.5) for ail v ^ 0, we set

and rewrite (5.22) in the form

/ rv \2/ 1 - rv+1r^ \5 f /*V+i\2&quot;1+2l

ev+i^cl0[-—II7— —) -^vj^v + [•

Noting (6.5) and

l-rv+2r;^ \v + 2/ ~\2/

by (6.3), one obtains

ev+1 ^ c€v(ey H- Àv) (6.8)

where
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and

2v+1+2

We note that c &gt; 1 since c10 &gt; 1 because of (5.19) and c6 &gt; 1.

Our aim is to prove

C£v &lt; 1 for ail v 0, 1,... (6.10)

which yields (6.5) for ail v 0, 1,... since c &gt; c10. We note from (6.9) that there
exists a positive integer N such that

Av&lt;(4c)&quot;1 for v&gt;iV.

Since ô^ begins with terms of order &gt;sk + 1, rô2 |||G(0)|||r0 can be so small that

ceo&lt;{*cYl(2c)-N

by taking suflficiently small ro&gt;0. By using (6.8) with ev, Av &lt; 1 inductivity, one
can prove that

c€v&lt;(4c)-\2c)-N+v&lt;l for v 0, 1,..., M (6.11)

For v &gt; N one finds, using (6.8) with ev, Av &lt; (4c)&quot;&quot;1 inductively,

+N&lt;l. (6.12)

Hence the inequalities (6.11) and (6.12) imply (6.10), and the itération procédure
is justified. The assertion (6.1) follows from (6.7) and (6.12).

Finally we will prove the uniform convergence of &lt;j&gt;v &lt;p0°&lt;Pio# * *°(Pv in
fi^2. First we note that

j9v+i(C) - Ck+1; tv rv - \{ry - rv+1)

since 0v+i #v°?Wi. Here |d^v|Tv:=supt€ar|rf0v(O|, where M0v(Ç)| is the

operator norm of the Jacobian d&lt;pv at the point Ç, and the other norms are

supremum norm defined by (5.3) for 2n~dimensional vector functions. Since
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d&lt;f&gt;v d&lt;f&gt;y-lodq&gt;v, we hâve

\d&lt;f&gt;v\Xv^ Wv-ik., \d&lt;py\Xv^ fi \d%\X/.

Hère it follows from (5.6) that

d&lt;pv=I + JVW(Ç). (6.13)

Moreover from (5.5) and Lemma 4.4(ii) with (5.1), using Cauchy&apos;s intégral
formula one has

Then it follows from (5.23) and the relation c &gt; c10 that

rtl 1 —

By (6.13) thisleads to

and hence

From (6.12) this infinité product converges. Setting

00

cn-n&lt;
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one has

(£) *(£)k+, S Cil l&lt;Pv+1(£) - £lrv+, S Cn

— cn
rv+l &quot;&quot; Pv + 1

for v&gt;Af. This implies the uniform convergence of &lt;f&gt;v in Qro/2. We hâve thus

complétée! the proof of Theorem 3.6.

7. The real analytic case

The aim of this section is to show that if the Hamiltonian is real analytic, the
canonical transformation 0 given in Theorem 1.3 can be taken as real analytic
with replacing the normal form by &quot;real&quot; normal form. In order to see this, we
impose a &quot;reality condition&quot; on the Hamiltonian of the form (1.2).

Let us assume that the original Hamiltonian is a real analytic function of
w (u, v) and that the Hamiltonian H H(z) of the form (1.2) is obtained by a

linear canonical transformation w Cz. Then the original Hamiltonian is given
by H H(C~lw) and its reality gives the identity

H(z) H(Tz), T C-lC. (7.1)

Hère and in what follows, for any power séries (or vector of power séries) / we
dénote by / the power séries obtained from / by replacing the coefficients by their
complex conjugates. The linear transformation T is canonical.

For any analytic function (power séries) / =/(z), we say that F satisfies the
reality condition if the identity/(z) =f(Tz) holds, where T C~lC with a given
symplectic matrix C. This means that/(C~1w) is a real analytic function of w. Let
9tF dénote the set of ail analytic functions satisfying the reality condition. Then
we hâve

LEMMA 7.1. ///, W e 9ïF, then {/, W} e 9tF.

Proof, The assertion follows from the identity

{f(Tz), W(Tz)} {/, W}(Tz), (7.2)

which can be easily seen by the canonical property of T, i.e., &apos;TJT J. D
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Let 91 be the set of ail canonical transformations q&gt; satisfying a condition

(7.3)

Then one can easily see that 9t forms a group under compositions. We prove the

following

LEMMA 7.2. Let y be a canonical transformation generated by the Hamil-
tonian flow with Hamiltonian W. If W e 9tF, then &lt;p e £ft and /° q&gt; € 9tF for any
function f e 9tF.

Proof. We dénote by z &lt;p&apos;(Ç) the Hamiltonian flow of équation (3.1)
satisfying the initial condition z £ at / 0. Let f(z) be an analytic function. We
note from Lemma 5.1 that &lt;p&apos;(Ç) is defined for |f|&lt;2. Then we can express
/°&lt;p&apos;(Ç) in the form

(7.4)

where

ad°wf =/, ad%f

Indeed we can easily prove that

/ d\m
1, 2,...)

by using the above notation, and therefore the relation (7.4) represents the

Taylor expansion of f° &lt;p&apos;(£). Setting t 1 in (7.4), we hâve

Assume that /, W e SWF. Then one can see from Lemma 7.1 that adwf(Z) € 9tF for
any m 0,1,..., inductively. Hence it follows that /° &lt;p(Ç) e 9tF.

Next we notice the identity

/° &lt;p&lt;&gt; C-Hh&apos;) =/°C&quot;1 o(Co &lt;poC&quot;1)^), w - CÇ (7.5)
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Hère f,f°(pedtF, and therefore f°C~~l(w) and fo&lt;p°C~~\w) are real analytic
fonctions of w. Since/° C~l(w) can be taken as an arbitrary real analytic fonction
of w, the identity (7.5) implies that C°q)°C~l is real mapping, namely

C° ç&gt;° CT1 C° &lt;p° C&quot;1,

which is équivalent to (7.3). This complètes the proof. D

Let us now specify the form of the linear transformation T. Notice that the

linear transformation z^&gt;Cz diagonalize the linearized vector field of the System

(1.1) in such a way that C~lAC diag (A^ kn, -klf..., -Art), where

A =/ Hessff(O). In the real case, the eigenvalues of A occur also in pairs kk, kk.

We can choose (see [11, §15]) the symplectic matrix C so that (i) kke

{kîf..., kn} unless kk is purely imaginary, and (ii) the transformation z* Tz is

given by

~iXk if A* ispurely imaginary;

k yik otherwise,

where lk is the number (1 &lt; 4 &lt; n) such that klk kk.
We consider one itération step described in Proposition 3.3.

PROPOSITION 7.3. In addition to the assumption of Proposition 3.3, assume
that Gj e ffiF, where the matrix T in the reality condition is given by (7.6). Let W be
the polynomial whose Hamiltonian flow générâtes the canonical transformation q&gt;

in Proposition 3.3. Then W e 9tF and (pedt.

Proof Since the W satisfies the system (3.5), it satisfies the équation
especially for k 1. In that équation, replacing the coefficients by their complex
conjugates and changing the variable £ into T£, we obtain

Hère we note that the linear transformation £»-» TÇ given by (7.6) takes ^krjk into
~~%kïïk tf &amp;k is purely imaginary and into g^i* otherwise. Therefore if Gx e 9tF,

then not only gi, ût 6 9lF but also P^lôx € 9tF. Hence by using (7.2) the above

identity leads to
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This implies that W(TÇ) satisfies the first équation of (3.5) (k 1). Recall that in
the proof of Proposition 3.3, the solution W was déterminée uniquely so that it
satisfies the first équation of (3.5) and the condition PNW~0. Then since

PNW(TÇ) 0, it follows that W(7t) W(Ç), i.e., W e9tF. It follows from
Lemma 7.2 that q&gt; e 9t. This complètes the proof.

From Lemma 7.2 and Proposition 7.3, G1°&lt;p(Ç)e9tF if G1e9tF under the

assumption of Proposition 3.3. Hence we can see inductively that if Gx(z)
G[°\z) e mF, then G[v+1) G[v)&lt;&gt; q&gt;v € 9tF for any v 0, 1,.... Moreover since
9t forms a group, &lt;f&gt;y &lt;po° • • • ° &lt;pv e 9i and consequently the limit 0 defined by
(3.11)belongsto9t.

Finally we note that the condition w (u, v) Cz e R2&quot; is équivalent to the
condition z Tz, which is rewritten as

where we hâve the last equality since 0 e 9t. Hence the condition w e R2&quot; is

équivalent to the condition \ 7£ which is expressed by using the form (7.6) of T
as follows:

r\k if* if A* is purely imaginary;
U/* f*&gt; *?/* *?* otherwise.

If the transformation z &lt;£(£) is convergent, one can find a real analytic
canonical transformation which takes the original (real analytic) Hamiltonian into
the real Birkhoff normal form. It is defined by choosing real variable in place of
Ç (£, r\) satisfying the condition (7.7). As an example, let us consider the case
when ail the eigenvalues ±Xlf..., ±Xn are purely imaginary. Then if we carry
out a linear canonical transformation Ç M(q, p) defined by

I* y^(&lt;?* + Vie), r\k ^ (Pk + iqk) (* 1,...,»), (7.8)

it follows from (7.7) that h&gt; (m, v) € R2&quot; if and only if (q, p) e R2&quot;. Therefore the
canonical transformation (w, v) Co4&gt;°M(qfp) is real analytic. Since we hâve
£**?* (i/2)(ql + jp|), this transformation takes the Gk (k 1,..., n) into
analytic functions of n variables (qj + /?/)/2 (/ 1,...,»). This proves Theorem
1.4. The quadratic part of the normal form of the Hamiltonian Gt is given by

h
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8. Canonical mapping case

In this section, as an application of Theorem 3.6 we prove analogous results to
Theorems 1.3 and 1.4 for canonical mappings near a fixed point. As before, we
first consider analytic case and later treat real analytic case by imposing the reality
condition on the original mapping.

Let us consider an analytic canonical mapping (symplectic diffeomorphism)
defined in a neighbourhood of the origin in C2n. We dénote it by z* /(z) with
2 (z, y) and z* (x*, y*) and assume that /(0) 0. Then it is written in the

form

z*=Az + -«-, (8.1)

where A is a 2n x 2n nondegenerate matrix and the part not written out explicitly
is a vector of convergent power séries containing terms of order &gt;2 only. Since A
is the Jacobian matrix df at the origin, A is symplectic and consequently its

eigenvalues occur in pairs kk, kkl (k 1, n) (see [1]). The fixed point (the
origin z 0) is called non-resonant if thèse kk (k 1, n) satisfy a condition

fi Kk * 1 for any (m1,...,mn)e Z&quot;\{0}. (8.2)
k \

An analytic function G(z) is called an intégral of/if G(z) is invariant under/,
i.e., the identity G(f(z)) G(z) holds. Our resuit is stated as follows:

THEOREM 8.1. Let z* =/(z) be an analytic canonical mapping defined in a

neighbourhood of the origin z 0 e C2n. Assume that the origin is a non-resonant
fixed point off and that the f possesses n analytic functionally independent intégrais
Gk(z) {k 1, n). Then there exists an analytic canonical transformation
z &lt;t&gt;{t) (£ (£&gt; *?)) fl^ûr the origin such that &lt;/&gt;(0) 0 and the resulting mapping
Ç* ^o/o^Ç) has the form

|î %k exp (//„,), rjt r\k exp (-HWk) (k 1, n), (8.3)

where H is an analytic function of n variables o)t £7rç/ (/ 1, n). The

intégrais Gk° #(£) a^so become analytic functions of (ol (/ 1, n).

A canonical mapping of the form (8.3) is called Birkhoff normal form. We

note that it is generated by the integrable Hamiltonian flow with Hamiltonian H
which is in normal form in the sensé of functions.
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Since the eigenvalues kkf À* * (k 1,..., n) are ail distinct under the non-
resonance condition (8.2), we can find a linear canonical transformation z^&gt;Cz

such that the resulting mapping z* C~l°f&lt;&gt;C(z) has the forai

** **** + •••&gt; yl Klyk + -- (k l, ...,n). (8.4)

In the following, we assume that/is in the form (8.4) and prove the existence of a

normalizing transformation z 0(Ç) of the form (1.3) such that 4&gt;~lof°(f&gt; is in
normal form (8.3). This transformation 0 is called Birkhoff transformation.

We introduce the following définition.

DEFINITION 8.2. (i) A canonical mapping Ç* =/(£) is called (Birkhoff)
normal form of order d (&gt;1) if it has the form (8.3) with a polynomial H
of degree d + 1 in f, r\ which is actually a polynomial of n variables œk t;kr]k

(* 1,. ..,n).
(ii) A canonical mapping Ç* ==/(£) is said to be in normal up to terms of order

d if it is expressed as

f=f*°V&gt; (8.5)

where fd is the Birkhoff normal form of order d and ift e ©d.
We note that the mapping (8.4) is in normal form up to terms of order 1 and is

expressed in the form (8.5) with

xk, yk^Klyk (k l,...,n). (8.6)

Hère this mapping/! is expressed in the form (8.3) with

n

#=2 *kxkyk, e«k kk.
Ar l

Therefore using the following proposition inductively, one can prove the
existence of the desired Birkhoff transformation formally. Hère &lt;f&gt; is obtained in
the form (3.11), where &lt;pv q&gt; in the following proposition with d 2V.

PROPOSITION 8.3. Let z* =/(z) be a canonical mapping which is in normal
form up to terms oforder d. Assume that the origin is a non-resonant fixed point of
/. Then there existe a unique canonical transformation z &lt;p(Ç) € (£d such that (i)
the transformation (p~l°f° &lt;p is in normal form up to terms of order 2d, and (ii) q?

is generated by the Hamiltonian flow with Hamiltonian W of the form (3.2)
satisfying a condition PNW 0.
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Proof. To prove the existence of the desired polynomial W, we first prove the
existence of a homogeneous polynomial W Wd+2 such that the canonical
transformation generated by the Hamiltonian flow with this Hamiltonian W takes

/ into normal form up to terms of order d + 1. For the proof, we use the similar
arguments to [6].

According to the Définition 8.2, we express / in the form (8.5), i.e.,

/ =fd° V&gt; V € ©rf- Let z 9(£) &amp;e ^e canonical transformation generated by the
Hamiltonian flow with Hamiltonian W Wd+2. Since &lt;p € @rf, /&apos; &lt;p~l°f°&lt;p can
be also expressed as/&apos; =fd°tlff with ty&apos; e ©d. Therefore the relation &lt;p°f =f°(p
gives

Let U Ud+2 and K Kd+2 dénote the lowest order parts (homogeneous
polynomials of degree d -f 2) of the polynomial W in the expression (2.9) for xj&gt;

and \p* respectively. Then comparison of terms of order d + 1 in (8.7) gives

/ÏW(AÇ) + AJVK(Ç) A/TC/(£) + A/ÏW(Ç), (8.8)

where f •-? Af dénotes the linear transformation (8.6), namely the A is a 2n x 2n

diagonal matrix with components Xt,..., Xn, Âf1,..., Â~\ If we set V(£)
W(AÇ), we hâve FV(Ç) AÏW(AÇ). Since /A&apos;^A/, équation (8.8) is

équivalent to PV + VK F(/ -f VW. By the homogeneity of V, K, U and W, this
implies that

(8.9)

Setting W Eiori+i/si»^^^^^^ one obtains

^(0 - ^(0; y fi a?&quot;a -1.V
Hère, due to the non-resonance condition (8.2), y 0 only if a p. Therefore by
imposing the condition PNW — 0, we can détermine the coefficients cap uniquely
so that K~PNU, i.e., K~Kd*2 is a polynomial of n products û&gt;* §*rk
(k — 1,..., n). Consequently we can write the transformation tj&gt;f as a composition

tyf yd+i0*!*&quot;» where

^+i :&amp;»-&gt;&amp; exp (^), ij^ ^ nk exp (-^) (* « 1,...,»),
and ^* €©&lt;*+t. Noting that l^ij^ are invariant under ipd+tf the
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is the Birkhoff normal form of order d +1. Hence /&apos; q)~l°f°q&gt; is in normal
form up to terms of order d + 1. If we express fd in the form (8.4) with H Hd+\,
a polynomial of degree d +1 in normal form, then fd°il&gt;d+1 is expressed in the
same form with H Hd+l + K Hd+1 + PNU.

Let &lt;prf+1 dénote the canonical transformation &lt;p which has been determined

just above. Hère we note that the above discussion is valid for any d and
therefore we can define canonical transformations q?d+2,..., q)24 successively.
Let us consider the composition ^ ç)rf+1oç&gt;rf+2 çiM, Then the mapping
(p~l°f°fy is in normal form up to terms of order 2d. Notice that each «p7*1

(/ d,..., 2d - 1) has the form (2.9) with W W/+2. Therefore the composition

(j) is written in the form (2.9) with (2.10). On the other hand, if we consider a
canonical transformation generated by the Hamiltonian flow with Hamiltonian
W y/d+2 + + w74*1, the power séries of this transformation is equal to (p up
to terms of order 2rf. Therefore it also transforms / into the normal form up to
terms of order 2d. From the above discussions the polynomial W is uniquely
determined by the condition PNW 0. Hence it is the desired unique canonical
transformation. This complètes the proof. D

Proof of Theorem 8.1. The proof of Theorem 8.1 is done by reducing it to
Theorem 3.6. Let Gk (k 1,..., n) be n intégrais of/and we dénote thèse Gk in
the form (2.3) again. By the same arguments as in Section 2, we can assume that
their lowest order parts G°kf which are polynomials of degree sk&gt; are functionally
independent. Since Gk are intégrais of z* =/(z), the identity

Gk(f(z)) Gk(z) (8.10)

holds. Hère we can assume that/is in the form (8.4), and therefore comparison
of the lowest order terms of this identity gives

Due to the non-resonance condition (8.2), the G°k are reduced to polynomials of
n variables xkyk (k*= 1,...,«). Therefore they satisfy the condition (2.5). We
note the following fact.

LEMMA 8.4. Let Gk Gk(z) be intégrais of a canonical transformation f Iff
is in normal form up to terms of order d, then Gk is in normal form up to terms of
order sk

Proof By the transformation / which is in normal form up to terms of order
d, xkyk is transformed into the form xkyk 4- O(zd*2). Assume that the intégral Gk
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is in normal form up to ternis of order sk+j(O^j^d~-2). Then the comparison
of ternis of order sk -f / + 1 in (8.10) gives

It follows from the non-resonance condition that G{+1 is in normal form. Hence
we complète the proof by induction.

Suppose that Gk(z) (k 1,... ri) are intégrais of the canonical mapping
z* =/(z) which is in normal form up to terms of order d. Let z (p(Ç) be the
canonical transformation described in Proposition 8.3. Then, since Gk°&lt;p are
intégrais of &lt;p~lo/°&lt;p, one can see from Proposition 8.3 and Lemma 8.4 that the
transformation &lt;p takes Gk which is in normal form up to terms of order sk + d — 1

into the normal form up to terms of order sk + 2d - 1. If we set q&gt; &lt;pv for d 2V.

it satisfies the assumptions of Theorem 3.6. Consequently Theorem 8.1 follows
from Theorem 3.6.

Next we consider the case when the original mapping (8.1) is real analytic. We
consider the original mapping (8.1) in w (u, v) variables and suppose that the

mapping (8.4), which we dénote by/, is obtained by subjecting a linear canonical
transformation h&gt; Cz to (8.1). Then the original mapping is given by w*
CofoC~\w) and therefore its reality means C°f&lt;&gt;C~l C°f°C~\ which is

équivalent to the condition / e 91 (see Section 7).

The symplectic matrix C diagonalizes the linearized mapping of (8.1) in such a

way that C~XAC diag (Âx,..., Àw, ÀJf1,..., A^1). We can choose the matrix C

so that (i) kk 6 {ku kn} unless |A*| 1, and (ii) the transformation z* Tz is

given by

f*&gt;-&lt;*, yt—tx* if|A*l-i;
l*Ê *tk&gt; yt yik otherwise.

where lk is the number (1 &lt; 4 &lt; ri) such that klk %k.

We consider one itération step described in Proposition 8.3. Let z* =/(z) be

a canonical mapping satisfying the assumption of Proposition 8.3 and let

z « *p(Ç) € ©^ be the canonical transformation described there. Then, since / and
&lt;p~lo/°?&gt; are in normal form up to terms of order d and 2d respectively, we can

write them in the form

/»/*•* V~l •/•*«/*!•?&apos;. (812)
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where fi (j d, 2d) is the Birkhoff normal form of order ; and tp € &lt;5d, tyr e S^-
Suppose that fi is expressed in the form (8.3) with H /fy+1, where H/+1
(/ d, 2d) is a polynomial of degree &lt;/ + 1, which is in normal form in the sensé
of fonctions. Then we hâve

PROPOSITION 8.5. Assume that fe 91 and //rf+1e9iF under the above
assumptions and notations, Then q?~l °/° &lt;p € 91 and HM+i e 9tF.

Proof. In the following, we use the same notations as in the proof of
Proposition 8.3. Notice that fd e 91 under the assumption. Therefore it follows
that ^ e 9ï with the notation (8.12). The xp e &lt;5d is written in the form

where f/; is a homogeneous polynomial of degree / in Ç. One can easily see that
the condition t/; 6 91 implies U e 9îF by comparison of both sides of the relation
ip(TÇ) T^(Ç). Recall that in the proof of Proposition 8.3, we hâve solved

équation (8.9) for W Wd+2 so that K PNU with 1/ Ud+2t i.e.,

W(AÇ)-W(£) /&gt;*£/(£).

Since U=Ud+2ediF and the linear transformation T is given by (8.11), we
conclude W(£) € 9tF in the same way as in the proof of Proposition 7.3. From
Lemma 7.2, this implies that &lt;prf+1e9l and hence (&lt;pd+1)~1°f&lt;&gt;&lt;pd+l edl.
Moreover we hâve Hd+2 :== Hd+X + PNU e 9tF.

By repeating the above discussions, we can prove that W Wd*2 H h

WM+1 e 9tF and Z/^+i e 9tF. Since the transformation &lt;p in Proposition 8.3 is

generated by Hamiltonian flow with Hamiltonian W, it follows from Lemma 7.2
that q&gt; € 91. This complètes the proof. D

Notice that the mapping/given by (8.4) belongs to 91 and H2 Eï»i #***)&gt;* €

9tF. Therefore by using the above proposition, we can see that if / € 91, the $ in
Theorem 8.1 belongs to 91 and the function H in (8.3) belongs to 9tF. By the

same way as in Section 7, we can prove that the condition w e R2&quot; is équivalent to
£ T£ which is written in the form

-f if|A*l l;
|/» f*. % *?* otherwise.

By choosing the real variable in place of £ (£, 77) satisfying (8.13), we can
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find a real analytic canonical transformation which takes the original real analytic
mapping into the real normal form. In particular, the fixed point (the origin) is

called elliptic if \kk\ 1 for ail k 1,..., n. In this case, if we carry out a linear
canonical transformation (7.8), then we hâve eo* £**?* (*72)(#| + /?|).
Therefore H^^-iH^ with TA: (^| + p|)/2. Hence we obtain the following
resuit, where we use (f, rç) in place of {q, p).

THEOREM 8.6. Let z* =/(z) be a real analytic canonical mapping defined in
a neighbourhood of the origin z^OeR2&quot;. Assume that the origin is a non-
résonant elliptic fixed point of f and that the f possesses n analytic functionally
independent intégrais Gk(z) (k 1,..., n). Then there exists a real analytic
canonical transformation z &lt;p(£) (£&gt; *?)) near the origin such that 0(0) 0

and the resulting mapping £* (j)&quot;1 °/° &lt;t&gt;{Ç) has the form

r\î -|* sin (HXk) + rik cos (Htk) (k 1,..., n),

where H is a real analytic function of n variables xt (%j + rfi)l2 (/ 1,..., n).
The intégrais Gk°&lt;p(Ç) also become analytic functions of xt (l 1,..., n).

9. Appendix

In this appendix, we give a proof of Lemma 2.1 following Ziglin [13].
First we présent a fact obtained by using the knowledge of the field theory.

Let k[Z] k[zu • • • &gt; zm] be a polynomial ring over k C or R. For the proof of
Lemma 2.1, the following fact plays a key rôle.

LEMMA 9.1. If fi,... ,frek[Z] are algebraic independent, then they are
functionally independent.

The converse is obvious, and therefore this lemma implies the équivalence of
algebraic independence and functional independence for polynomials.

Proof In the following, for any ocu or, which are éléments of some
extension field of k, k(at,..., ocj) dénotes a minimal field containing alf..., ocÉ

and k. In particular, K k(zi,..., zm) is the field of rational functions of the
variables zXf..., zm over k. Since k » C or R, we note that any extension of k is

of characteristic 0. Under the assumption, F~k(flf... ,/r) is a separably
generated and finitely generated extension of k of transcendence degree r. Hère
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the separability follows from the fact that F is of characteristic 0. Then by a resuit
on dérivations over a field [4, Chap. X Theorem 10], there exist r dérivations
Dk (k 1,. r) on F such that

Dkf, ôkr (9.1)

Since K is also a separably generated and finitely generated extension of F (of
transcendence degree m - r), there exist r dérivations Dl {k 1,..., r) on K
such that Dk Dk on F. We note that the set of ail dérivations on K is a
m-dimensional vector space over K which is spanned by d/dzt,. d/dzm.
Therefore we can write Dk as

^-, Pkl(z)eK

and hence

DU ïpu(z)§. (9.2)
z=i azi

It follows from (9.1) and (9.2) that the rank of r x m Jacobian matrix (dfj/dzt) is

r. This proves the functional independence of fl9... ,/r. D

Proof of Lemma 2.1. Since fît... ,/r are functionally independent, we can
find a non-vanishing (i.e., &amp;0) minor M det(d(/i,... ,fr)ld{zlx,.. zlr)) in
the Jacobian matrix d{fly ,/r)/3(2i,. zm). We set

where and in what follows d(f) dénotes the degree of the lowest order part f° of
a power séries /. Notice that Af0 : det (&lt;9(/?,..., f^)/d(zllf.. zir)) is either a

homogeneous polynomial (^0) of degree ££=i d(fk) — r or equal to 0 identically.
Therefore fi(flt... ,/r)&gt;0 and Afo^0 (which implies the functional independence

of /?,..., /?) if and only if /*(£,..., fr) 0.

Now assume that /?,... ,/?-i are functionally independent and /?,...,/?
are functionally dépendent. Then by Lemma 9.1 /?,...,/? are also algebraic
dépendent, i.e., there exists a polynomial P e k[zx,..., zr] (k e C or R) such that

..,/?) 3*0. (9.3)
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We choose the P such that its degree is minimal among the polynomials satisfying
this identity. We set

and define Û det (3(/i,..., /r-i, F)/d(zh,..., zlV)). Then we hâve

Hère if dP/dzr(zx,..., zr)*0, then the identity (9.3) implies the functional
dependence of/?,... ,/JLi, which contradicts the assumption. Hence dP/dzr&amp;0

and it follows from the minimality of the degree of P that (3P/9zr)(/?,...,/?) ^ 0.

Therefore M^O, that is, fu.**,fr-i, F are functionally independent. Let
P(z) Sor^z*, zar zf1 • • • Zr% and define a positive number v as follows:

v:«nrin|£M(/*)|c.*O,*,=

Then it follows that

d(Û) d(M) + d( —¦ Oi,..., /r) d(M) + v - d(Jr),

and that v&lt;rf(F). Moreover the quantity i*(fi,.. -, fr-u F) is calculated as

follows:

Kfu /r-t, F) - rf(A3T) + r - 2 d(A) - d(F)

v - d(/r) + r -

Repeating this process, one can find a function fr such that fu • -. &gt;fr-\&gt; îr are

functionally independent and ^(/j,... ,/r-i,/r)=s0. This implies the functional
independence of/?,... ,/î-i,/?. The last assertion of Lemma 2.1 can be easily
seen. TWs complètes the proof.
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