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Torsion in equivariant cohomology

ALEJANDRO ADEM’

§0. Introduction

Let X be a finite dimensional G-CW complex, where G is a finite group.
Swan [S] introduced the notion of equivariant Tate Cohomology motivated by the
fact that it vanishes for free actions and that it is torsion over Z. This simplifies
and strengthens certain cohomological arguments involving spectral sequences.

In this framework, a natural question arises: what is the minimum integer m
which annihilates H&(X)? In this paper we will show that, roughly speaking, the
torsion in H%(X) quantifies the nature of the isotropy subgroups of G
cohomologically. More precisely,

THEOREM 3.1. Let X be a finite dimensional G—-CW complex. Then

r(X)

exp HE(X) | [] expy:
i=1

where yi,...,Yxx)€ H*(G,Z), r(X)=max {p-rankG, |G, is an isotropy
subgroup} and p ranges over all prime divisors of |G|.

The proof is based on a recent result due to Carlson [C2] concerning the
exponent of ZG-modules. His techniques apply readily to our geometric situation
by considering the cellular chain complex of X as a graded permutation module
over ZG. The main tools are from complexity theory: we summarize what we
need in §2.

For elementary abelian groups, the result can in fact be sharpened to

THEOREM 4.1. Let X be a finite dimensional G-CW complex, where
G = (Z/p)’. Then

exp H&(X) = max {|G,| | G, is an isotropy subgroup}.

! Partially supported by an NSF grant.
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402 ALEJANDRO ADEM

This can be thought of as an exponent version of a theorem due to Quillen
[Q], which states that the asymptotic growth rate of equivariant cohomology with
F, coefficients is determined by its p-elementary abelian isotropy subgroups. The
main difference is that the torsion information lies within a finite range of
dimensions.

As a corollary of the proof we obtain that for p-elementary abelian groups the
size of the largest isotropy subgroup is determined by the exponent of
A5(*)— H(X).

In terms of ordinary equivariant cohomology we obtain the following result:

COROLLARY 4.5. Let X be a finite dimensional G-CW complex, G =
(Z/p)'. If i >dim X, then there exists an isotropy subgroup G, c G such that

exp H'(X X EG, Z) | |G,|.

We recover a result due to Browder [B] for homology manifolds with an
orientation-preserving (Z/p)” action and in particular a generalization of his
estimate on the rank of symmetry, namely:

COROLLARY 4.2. Let X be a connected finite dimensional G-CW complezx,
G = (Z/p)’. Then

Gl/max {|G,|} | [] exp A~"(G, H'(X, Z))
i=1
as G, ranges over all the isotropy subgroups of G.

Finally we include an application of our techniques to exhibit the cohomology
classes of order p"*' in H*(E,, Z), where E,, is the extra-special p-group of order
p**1, p odd, all of those elements have exponent p.

The paper is organized as follows: in §1 we describe the main properties of
equivariant Tate Cohomology; in §2 we give the basic definitions and concepts
needed from complexity theory; in §3 we prove our main theorem and in §4 the
applications are given.

The author is indebted to J. Carlson for inspiring and motivating this work.

§1. Equivariant Tate (co)homology

In this section we will describe the main properties of equivariant Tate
(co)homology for a finite dimensional G-CW complex. G will be finite
throughout.
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DEFINITION 1.1. A complete resolution over ZG is an acyclic complex
F, = (E);ez of projective ZG-modules, together with a map €: F;— Z such that
€:F{—Z is a resolution in the usual sense, F} = (F);o.

Let X be a G-CW complex, with cellular integral chain complex C,(X).

DEFINITION 1.2. (1) The equivariant Tate homology of X is defined as
ﬁzG(X) = H;(F, ® 5 C«(X))

where F, is a complete resolution.
(2) The equivariant Tate cohomology of X is defined as

16(X) = H'(Homg (F,, C*(X)))

where F, is a complete resolution.

The usual properties of Tate (co)homology apply to these groups, and in
particular they are torsion over Z. The following proposition relates them to
ordinary equivariant (co)homology.

PROPOSITION 1.3. If i >dim X, then

T (X)=H'(XXgEG,Z), HF(X)=H(XXsEG,Z).
Proof. We have a short exact sequence of complexes
0> F;—>F,%F;—0.

In the long exact homology sequence associated to the above after tensoring
with C,.(X) over ZG, it is clear that for i =dim X

H(F: ®c Ca(X)) =0.

Hence ¢ induces the desired isomorphism; the argument for cohomology is
analogous.

The main advantage of Tate (co)homology (first introduced by Swan [S]) is
that it vanishes for free actions. This can be deduced from the second of two
spectral sequences available to compute HA(X) (analogous for homology)

E&*=AP(G, HY(X, Z))=> H%"(X)
E%?=H%(G, C°(X))=> A% (X).
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These arise from the two (filtrations on the double complex
Homg (F,, C*(X)). We quote a result due to Adem [A] which we will use later
on

THEOREM 1.4. If X is a connected finite dimensional G-CW complex, then
|G|/expim €* | [] exp A~"(G, H'(X, Z))
i=1
where €* :Z/|G|— H%(X) is induced by the augmentation.

§2. Complexity and cohomological varieties

We recall the notions of complexity theory necessary in the proof of the main
theorem.

Let K be a field of characteristic p > 0. For a finite group G, let H(G, K) =
H*(G, K) if p=2 and H(G, K) = ¥, H*(G, K) if p is odd; denote by V;(K)
its maximal ideal spectrum.

If M is a finitely generated KG-module, Extxs(M, M) is a finitely generated
module over H(G, K).

DEFINITION 2.1. Let M be a KG-module, then V;(M) is the collection of
all maximal ideals of H(G, K) that contain J(M), the annihilator in H(G, K) of
Ext;(G(M ’ M ).

Vs(M) is called the cohomological variety of M.
Now let P,— M be a minimal projective resolution of M over KG. The
complexity of M is the well defined integer

dim P,
m =O}.

s

cxg(M) = min {s =0 | lim

n—sx N

The following is a list of properties of V(M) which we will need later on (we
refer to [Be], [C1] for more details).

PROPOSITION 2.2

1. Vo(M) = {0} & M is projective.

2. dim Vg(M) = cxg(M).

3. Vo(M, ® M) = Va(M,) U (Vo(My).
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4. Vo(M, @ My) = V(M) N Va(M,).

5. V5(K) = p-rank of G, where char (K) = p.

Similarly if y € H(G, K), we define V;(y) = Subvariety of V;(K) consisting of
ideals which contain y.

Now let X be a G-CW complex with isotropy subgroups {G, },es-

DEFINITION 2.3. The cohomological isotropy variety of X at p is V5(X), =
ers VG(FP[G/GO])

Clearly, by 2.2 dim V5(X), =max {p —rank G,}. These cohomological va-
rieties carry the necessary information to extract our main result about the torsion
in H5(X).

§3. The main theorem

THEOREM 3.1. Let X be a finite dimensional G-CW complex. Then there
exist classes §;e H(G,Z) i=1, ..., r(X), such that

exp H&(X) ﬁ) exp &
where
r(X)= lr;ix {p —rank G, }.
Proof. Let 6,:H*(G, Z)— H*(G, F,) and denote M = ®, Z[G/G,]; clearly

Vo(X), =Vs(M/pM) and r(X)= oo {cxc(M/pM)}.

By a result due to Carlson [C2] we may choose &, .. ., §,xy€ H*(G, Z) such
that

(1 vete,&0) n Va(Miph) = (0}

for all p | |G|.
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It is not hard to see that the &; can be represented by maps &;
0—L,— Q(Z) -—§——> Z—0.

Here ©Q%(Z) is a dimension-shift (torsion free) of Z, i.e. H*(G, Q%(Z))=
A*(G, Z).

One can also verify (see [C1]) that V(6,(&;)) = Ve(L,/pL;). Now from 2.2(4)
it follows that

V(L1 ® - - - ® L,(x)® M/pM) = {0}.

Hence L;® - --® L,x, ® M is projective (2.2.1) and so each summand L, ®
+++ @ L,x)®Z[G/G,] is too. We conclude that the ZG-(co)chain complex
Li® - - ®L,x®C*(X) is made up of projective ZG-modules (twisting by
orientation characters does not matter).

Now for each i=1,...,r(X) we have a short exact sequence of ZG-
(co)chain complexes:

0-C*X)®L,®---QL—->C*(X)QL,Q---QL,_,® QZ)

1®--@1QE
_> C*(X)®L]® tt e ®L,’_1—)O.

3.2
We examine 1 ® - - - ® & in Tate cohomology:

A%G, C*(X)®L,® --- L, ® H(Z))
- A*G, C*(X)QL,® - QL,,).

By the obvious dimension-shifting, we have that

A%G, C*X)QL,® --- QL,_, ® 2(Z))
=f[**%G, C*(X)®L,®---®L,,)
and the map (1® --- ®1® &)* represents cup product by § e H(G, Z).
Clearly then we have that expim(1® - - - ® 1 ® &), divides exp ..
Now‘from the sequence 3.2 we derive that

exp A*(G, C*(X)® L, ® - - ® L,_,)/exp A*(G, C*X)® L, ® - - - ® L))

divides exp &,.
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Multiplying out these relations fori =1, ..., r(X) we obtain

r(X)

exp H&(X)/exp H*(G, C*(X) O L, ® - - - ® L,xy) | I ] exp &
i=1

Using the fact that C*(X)®@ L, ® --- ® L, is projective and the second
spectral sequence in §1 it is clear that A*(G, C*(X)® L, ® -+ - ® L,x)) =0,
thus completing the proof.

From the proof it is apparent that the classes §; € H*(G, Z) depend on how
the isotropy subgroups are related to G cohomologically. In general this may be
very complicated, but when G is p-elementary abelian, it is not. The following
corollary illustrates how torsion in the equivariant cohomology quantifies the size
of the isotropy subgroups; this will be made more precise in the following section.

COROLLARY 3.2. Let X be a finite dimensional G-CW complex, where
G =(Z/p). Then

exp A5(X) | max {|Gl}.

§4. Applications and Examples

Let X be a finite dimensional G-CW complex. There is an obvious
equivariant map X — *, which induces a map of G-chain complexes C,(X)=> Z.
This map factors through Cy(X), yielding a commutative triangle:

C.(X) -5--» Z

N /&
Co(X)

Let S denote a set of O-cells in X representing the G-orbits; then in Tate
Cohomology the above diagram induces

A5X) — & A%G,Z)
N /()"
® A*(G,. Z)

o€eS
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where (€°)* is the usual map induced by the augmentation, from which we
deduce that for all oin §

|G| | exp HE(X).

Using equivariant subdivision, it follows that the above holds for any isotropy
subgroup, and so we have

lem {|(G,)|} | exp HH(X).
For elementary abelian groups, 3.1 and the preceding remarks combine to yield.

THEOREM 4.1. If G =(Z/p)” and X is a finite-dimensional G-CW complex,
then

max {|G,|} = exp im £* = exp H%(X) = exp H%(X).
Given a G-CW complex X, where G =(Z/p)’, we have shown that
A%(pt)— HH(X)

measures the size of the largest isotropy subgroup. This can be estimated using
the first spectral sequence in §2: the only differentials involved are

E;77 L EYY rz2.

The term E2%° is the image of the map H%(G, H°(X))— H%(X) and the map
induced by €° factors through it. As in 1.4 we have

COROLLARY 4.2. If X is a connected, finite dimensional G-CW complex,
G =(Z/p)’, then

o

|Gl/max {|G,|} [ exp A7Y(G, H'(X)).

i=1

This was proved by Browder [B] for orientation preserving (Z/p) -actions on
homology manifolds, using the following result, which we recover using our
methods:

THEOREM 4.3. If G =(Z/p) acts cellularly on a homology manifold M"
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preserving orientation, then
|G|/max {|G,|} = |H"(M, Z)/j*H"(M X EG, Z)|
where j: M — M X ; EG.
Proof. Using duality it is not hard to see that
|H*(M, Z)/j*H"(M X EG, Z)| = |G|/exp HE(M).

An application of 4.3 completes the proof.

For groups that are not elementary abelian, 4.3 fails. Browder [B] has
constructed an example of a cellular Z/p>-action on X = 5% x $?*~! such that it
preserves orientation, im j* #0mod p (j: X— X Xz,: EZ/p?) but XZP" =@, This
means that exp A 7,2(X) = p? but still X Zir* = §. We also have

COROLLARY 4.4
Krull Dimension of H*(X X EG, F,) = gla();( {log, (exp H%(X))}

as E ranges over all p-elementary abelian subgroups of G.

The significance of 4.4 is that asymptotic information about H*(X X EG, F,)
can be obtained from a single Tate Cohomology group. In terms of ordinary
equivariant cohomology we have

COROLLARY 4.5. Let X be a G-CW complex G =(Z/p). Then, if
i >dim X, there exists an isotropy subgroup G, < G such that '

exp H'(X X EG, Z) | |G,|.

EXAMPLE 4.6. We now apply Theorem 4.3 to obtain cohomology classes
for the extra-special p-groups with elements of exponent p, for p odd. Denote by
E, the one of order p>**!, described by:

Generators: Xy, ..., Xn Yis -+ Yn» €

Relations: [x, y,-]=1 for i+j

[x, yi]l=c
[xil’ xiz] = [yi|’ yiz] = 1
xX¥=yP=1 for 1=i,j=n

¢ central.
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Let T denote the one-dimensional unitary representation of K c E,, the
subgroup generated by x,, . . ., x,, ¢, determined by

Xi,..., %1 and c—>e*P,

Then V =CE,®T is unitary, and E, acts cellularly on X =S(V). This
E,-space was used by Thomas in [Th] for K-theory calculations.
Notice that {c) acts freely on X, hence

AE(X)=HE i (X/(C)).

The elements x,,...,x,, »1,...,Y, map to a basis of the quotient group
E,/{c) =(Z/p)*. The isotropy subgroups are all of rank < n; hence we conclude
that exp A% (X) =p™.

Using the first spectral sequence described in §1 we obtain an exact sequence

A%~ Y(X)— Z/p***' % A*"(E,, Z).

Hence d(ux) = & is an element of exponent at least p"*!. However, as this is
the upper bound for exp H*(E,, Z), it has this exponent. It is the p"-th Chern
class of the representation V, and by its construction, &' has highest exponent for
all i = 1. (Carlson [C2] has supplied an algebraic argument to locate classes of this
exponent, Tezuka and Yagita [T-Y] have done this using Brown-Peterson

Cohomology).
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