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Minimal measures

JoHN N. MATHER

Abstract. For a finite composition of exact, area preserving, positive twist diffeomorphisms of the
infinite cylinder, we will show that an invariant measure whose support consists of minimal orbits
strictly minimizes the average action.

§1. Introduction

In [6], we proved the existence of certain invariant sets for exact, area
preserving twist diffeomorphisms of an annulus, which provides a kind of “weak
solution” for the problem for which KAM theory provides a true solution,
namely the problem of finding invariant circles. In [1], Aubry and Le Daeron
independently developed a theory of minimal configurations. There is a cor-
responding theory of minimal orbits of twist diffeomorphisms, which slightly
generalizes the author’s theory in [6], and gives an alternative proof of the main
result of [6].

The ‘“‘Aubry-Mather sets’’, whose existence was proved in [1] and [6], carry
unique invariant measures. In this paper, we characterize these measures by a
minimality property. Our principal result is not at all surprising, given what is
already known, and the proofs are basically an exercise in applying what is
known, but they are not totally obvious, so we have written them down.

Our principal result concerns the average action A(f, u) of an f-invariant
measure u, where f is a finite composition of exact, area preserving, positive twist
diffeomorphisms of the infinite cylinder. The notion of average action is an
obvious extension of the standard notion of the action of a periodic orbit. The
definition of A(f, u) = Ay ,(f, u) depends on a choice of a periodic Hamiltonian
H such that f is the time one map of the associated flow, as well as a choice of a
one form 7 on the infinite cylinder.

We show a couple of variants of standard results in our context. First,
changing H changes Ay,(f, #) only by a constant of integration. Second,
changing # changes Ay ,(f, u) according to the formula

AH,rp (f; M) =AH,n(f’ “‘) + [71' - 77] * p(f’ !‘),
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376 JOHN N. MATHER

where p(f, u) denotes the rotation number of u and [n' —n]= [rn' —n, where
I is any closed curve which winds once around the cylinder. Thus, A(f, ) is well
defined modulo an affine function in the rotation number.

This leads to our definition of minimal measure: An f-invariant measure u
will be said to be minimal if there exists AeR such that g minimizes
A(f, u) — Ap(f, u) over all f-invariant measures p.

In terms of the Aubry theory of minimal orbits, the minimal measures (of f)
may be described as follows. Let w € R and let RM,, denote the set of recurrent
minimal orbits of rotation number w. Here, “minimal” is taken in Aubry’s sense
and recurrent in the usual sense of topological dynamics. Our principal result is
that a measure is minimal if and only if its support lies in RM,,, for some w. Note
that when w is irrational, RM,, is the ‘“Aubry—Mather set”” which, being a Denjoy
minimal set (in the sense of topological dynamics), carries a unique invariant
measure yu,,. Thus, for w ¢ Q, our principal result implies that, for suitable A, the
measure U, minimizes A(f, u) — Ap(f, u) and this uniquely characterizes p,,.

Let A(w) = A{w) = A(f, p,), where y,, is any measure with support in RM,,.
Aubry proved in 1983 that A(w) is strictly convex. As far as I know this proof has
never been published, so I will present Aubry’s proof in §4, since this result is
needed to prove the results just referred to. Since A is convex, it has a
sub-derivative at each w. Conversely, if A € R, then there is a unique @ at which
A is a sub-derivative of A. Uniqueness follows from the strict convexity, and
existence is easily proved. Thus, our principal results may be restated, as follows:
If A is a sub-derivative of A at w, then an f-invariant probability measure u on
the infinite cylinder minimizes A(f, #) — Ap(f, ») if and only if supp 4 = RM,,.

§2. Action

In this section, we review some standard notions (from e.g. Cartan [3]) in
Hamiltonian dynamics. Let (M, £2) denote a symplectic manifold, i.e. we suppose
that M is connected and 2n-dimensional and £ is a symplectic 2-form on it, i.e.
dQ=0 and Q" (=2 A - A Q) vanishes nowhere. If H is a sufficiently smooth
function on M X R (called a Hamiltonian), then there is a time dependent vector
field X = X}, called the symplectic gradient of H, defined by

Q(Y) Xt) =Y- lI,,
for every vector field Y on M. Here H,(x) = H(x, t), for x e M, and Y - H, denotes

the directional derivative of H, in the direction Y. We will suppose that X, is
globally integrable, in the sense that there is a (sufficiently smooth) mapping
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¢ :M X R— M such that ¢o(x) =x and d¢,(x)/dt = X,(¢,(x)), for all x e M and
teR. Here, ¢,(x)=¢(x,t). By a finite trajectory I' of H, we will mean a
(sufficiently smooth) mapping I":[¢, t;]— M such that dI'(¢t)/dt = H(I'(¢), t), for
to=t=t,. We will suppose that £ is exact, i.e. there exists a 1-form 7 such that
dn = L. Following Hamilton, Poincaré, and Cartan (see [3]), we define the action
of such a finite trajectory as

L,,(T)=frn—Hdt.

In what follows, we will be interested in the case when H is periodic of period
one in . We let f denote the time one map of the flow associated to H, i.e.
f = ¢,. If T'is a trajectory of the flow generated by H, then (..., I'(i),...) is an
orbit of f. In this way, we have a one—one correspondence between the orbits of f
and the trajectories of the flow generated by H. f 0= (..., P, ...) is an orbit of
f, and I is the corresponding trajectory of the flow, we set (for i <j € Z)

L,(0)G, j) = Ly (T | [i, j.

We still call this the action of the trajectory (I'(i), . .., I'(j)).
For L, (0)(i, j) to be invariant of f, it would have to depend only on f, i, and
j, and be independent of H and 7. However, this is not the case. Next, we
analyze the dependence on H and 7, in order to construct invariants of f out of
L,(0)G, )). ]
First, we consider changing H. Let H' be a second Hamiltonian such that f is
still the time one map of the flow it generates. Let

Clx)= n—H'dt—J’ n — Hdt,

I'(x) r(x)

where I'(x) is the trajectory of the flow generated by H between ¢t =0 and t =1,
starting at x and ending (of course) at f(x), and where I''(x) is defined in the
same way in terms of H'.

In fact, C(x) is independent of x by an argument in Cartan [3]. Here is a
version of this argument. Since M is connected, any two points in M may be
connected by a smooth curve x,, 0 =<s =1. We let S denote the surface in M X R
swept out by I'(x,), 0=<s=1, where I'(tf)=(I'(¢), t). Since, for fixed s, the
tangent to the curve I'(x,) is in the kernel of d(n — Hdt)=Q — dH A dt (by
definition of the Hamiltonian flow), we have that the restriction of d(n — H dt) to
$ vanishes. Hence, by Stokes’s Theorem, the integral of n — Hdt around the
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boundary of S vanishes. We may apply the same argument to the surface S’,
swept out by I''(x,) and the 1-form n — H'dt; we find that the integral of
n — H' dt around the boundary of S’ vanishes. Note that S and S’ have the curves
A={x,:0=<s5s=1}in M x0 and fA in M X 1 in common, and that the restriction
of n — H' dt to each of these curves is the same as the restriction of n — H dt.
Therefore,

Cxy))—Cxo)=| n—Hdt—| n—H'dt=0.
o8

as’

This shows that C(x) is independent of x.

Let C=C(x). Since the constant of integration C is independent of x,
replacing H by H' changes L, (0)(i, j) by C(j —i). Note that C is independent of
0, i, and j. It does depend, however, on 1.

Thus, changing H changes L,(O)(i,j) only by a constant of integration.
Changing 1 makes a more serious change. Clearly, L,, (0)(i, j)— L, (0)(i, j) =
frn' —n. If O is periodic of period j — i then I'is a closed trajectory and we have
Ly, (0)G, j) = L,(0)G. /) =[n"—n]- [T [i, ]| where [n’~n] denotes the de
Rham cohomology class in H'(M,R) of n'—n and [I'|[i,j]] denotes the
homology class in H,(M,R) of I'|[i,j]. Note that n'—n is closed, since
dn' =dn= Q.

Let M denote the covering space of M whose fundamental group is the kernel
of the Hurewiez homomorphism &,(M)— H,(M, R). Let ¢ be a lift of the flow to
M, so ¢, =identity, @, is a lift of ¢, to M, and ¢, depends continuously on all
variable. Let f = ¢,, i.e. f is the time one map of the flow on M generated by H.
Then f is a lift of f to M.

We define the rotation number of a periodic orbit O of f (with respect to a lift f
of f), by

p(f, O)=[T'|[ jll/(j i),

if @ is periodic of period j — i, where I is the trajectory of the flow generated by
H corresponding to 0. Thus, p(f, 0) € H,(M, R). Note that p(f, 0) depends only
on the lift f of f to M, and not otherwise on H. In fact, we could alternatively
define p(f, O0) by choosing a lift 6= (..., P, ...) of O and setting

p(f, 0)=[A)/(j —i),

where A is the image in M of a curve in M connecting P, to P. It is an easy
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exercise in the theory of covering spaces to see that [A] € H;(M, R) is independ-
ent of the curve chosen and that [A] =[I" | [i, j]]-
This permits us to write the effect of changing 7 in the following form:

Ly, (0)(i, j) — Ly(0)(G, )= (G = DIn' —n]- p(f, 0).

All this is standard. There is, furthermore, an obvious generalization to the
case of invariant measures. Let u be an f-invariant probability (Borel) measure
on M. We define the average action,

AG, 1) = [Mdu(x) n—-Hd,

I'(x)

if this integral exists. For example, if u is the unique invariant measure supported
by a periodic orbit O of period j — i, then A(f, u) = L,(0)(i, j)/(j —i).

We will sometimes write this as Ag,(f,u) or A,(f u) to make the
dependence on H and n explicit. If we change H, the average action changes only
by a constant of integration:

AH’.n(f) ”) -AH,n(f’ ”’) = C:

where

cC=| n-Hd&-| n-Har

I'(x) I'(x)

We proved above that C is independent of x, so, of course, it is independent of pu.

To analyze the dependence on 7, we need the notion of the rotation number
of an invariant measure u. We consider a Borel function U: M — H,(M, R), such
that UeT — U =[T] for any Deck transformation 7, where [T]e H;(M, R)
denotes the homology class corresponding to 7. (Recall that since the fundamen-
tal group of M is the kernel of the Hurewicz homomorphism x,(M)— H,(M, R),
the group of Deck transformations of M over M is canonically isomorphic to the
image of this homomorphism.) For simplicity, we will suppose that H;(M, R) is
finite dimensional. We provide H,(M, R) with its usual topology as a finite
dimensional vector space. Also, when we talk about “manifold”’, we always take
as part of the definition the hypothesis that a manifold is Hausdorff and has a
countable basis for its topology. A Borel function U as above is easily
constructed: take any Borel fundamental domain of M over M and choose U to
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be any Borel function on the fundamental domain. Then it has a unique extension
to all of M satisfying U T — U =[T], for every Deck transformation T.

It is easily seen that Uof — U is invariant under every Deck transformation.
Hence, Uof — U may be considered as a function on M; we define

o(f, ) = [M(Uof — U)du e H(M, R),

as long as this integral exists, i.e. as long as Uef — U is an L' function on M with
respect to the measure u. In fact, we will define p(f, u) by the above formula, as
long as there is one Borel function U satisfying UeT — U =[T], for which the
above integral exists. It is easily seen that p(f, 1) is independent of U satisfying
these cqnditions, since p is f-invariant.

Moreover, if @ is a periodic orbit and u is the unique invariant measure
supported in O, then p(f, u) is just the p(f, @) defined above. The change in the
average action when we change 7 is then given by

Apn(fy 0) = Auo(f, w)=[n"— 0l p(f, u),

where f is the lift to M of f which is the time one map of the flow on M which is
generated by the Hamiltonian H. This formula is valid as long as both sides are
defined. It may be proved by observing that since dn =dn’, the lift of n’ — 7 to
M is exact, i.e. n' — ) =dU on M, where U°T — U =[n' — 5] - [T), for any Deck
transformation 7, and that [r,,n' —n = Uef(x) — U(x), since 3I'(x) =f(x) — x.

Note that both sides are defined and therefore the formula above is valid
when u has compact support. From the above formulas for the change in the
average action when we change H or 7, we see that u— Ay .(f, u) is changed by
at most an affine function of p(f, u) € H;(M, R).

§3. Minimal orbits

In this section, we recall the notion of minimal orbits, due to Aubry [1], as
generalized by Bangert [2]. The notion of minimal orbits is defined by these
authors only for a special class of mappings, although other authors have
considered related set-ups [5], [11]. We need the following notation to describe
the class of mappings which we will consider here. We let J; denote the set of
exact area preserving, orientation preserving, positive monotone twist mappings
of the infinite cylinder (R/Z) X R which preserve the ends, twist each end
infinitely, and have B as a uniform lower bound for the amount of twisting. A
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detailed definition of J is given in [8, §2], where it is called J;. We let 2 denote
the set of finite compositions of elements of 7. We let

IJ'=U T and ?'={J P

B>0 B>0

It is known that an exact area preserving C' diffeomorphism f of the infinite
cylinder which preserves the ends is the time one map of the flow generated by a
suitable Hamiltonian H. Of course, we must allow H to be time dependent for
this to be true, but we may take H to be periodic of period one. In the language
of differential topology, this amounts to the assertion that f is isotopic to the
identity in the class of exact area preserving C' diffeomorphisms of the infinite
cylinder. This result is well known to experts in differential topology. For a proof,
see the fine print at the end of [4]. For example if f € !, the average action
Ap(f, p) is defined, where, as before, we choose a 1-form 7 such that dn = Q,
the area form on the infinite cylinder. If f € 7, so it has a generating function A,
the average action is given by

Ann(F 1) = th(x, x') du(x, y) +C,

in the case that 7 =y dx, where M is the infinite cylinder, f is the lift of f to the
universal cover R? of M which is the time one map of the flow generated by the
Hamiltonian H, and f(x, y)=(x’, y'). Note that since f(x +1, y)=(x'+1,y')
and h(x +1, x' +1) = h(x, x'), this integral is well defined as an integral over M,
even though (x, y) and (x’, y’) denote points in the universal cover. Here, C is a
constant of integration, which is independent of the measure u.

To prove this formula, we relate the generating function A to the action, as
follows. Let A={(x,, y;):0=s=1} be a smooth curve in the cylinder M =
(R/Z) X R. For each s, let I, = I'(x,, y,):[0, 1] > M X R denote the curve used in
the definition of the average action in the last section, i.e. I;(¢) = (¢.(x;, ¥s), 1),
where ¢ is the flow generated by the Hamiltonian H. Let S denote the surface
swept out by I as s varies between 0 and 1. By Stokes’s theorem, we have

n—Hdt=fg—dHAd:=0,
S

as

since the tangent to I is in the kernel of d(n — H dt) and therefore Q —dH A dt
vanishes identically on S. We have 35 = I+ A’ — I; — A, where A’ =fA. Setting
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f(xs’ ys) = (x.s") y;), we have
B, x0) — hxo, x9) = [ y' v’ —y d
A
=fn—fn= n—Hdt—| n-Hat.
A’ A n e}

Here, the first equation is the definition of A, the second equation follows from

the definitions and our choice 7 =y dx, and the third equation follows from the

fact that dr vanishes identically on A and A’, together with the previous equation.
We may express this equation more simply as

h(x,x’)=fr)—Hdt~—C
r

for (x, y) in the cylinder, f(x,y)=(x',y'), and I'=I(x, y):[0,1]>M X R as
above. Here, C is a constant of integration, independent of x and y. If u is an f
invariant probability measure, we may integrate the last formula with respect to
@, and obtain the formula for the average action we stated at the beginning of this
section.

We may generalize this formula for the average action to the situation when
feP, as follows. Let f=f.---f; with feJ". Let hy,..., h, be the cor-
responding generating functions. For (x,y)eR? let fi(x,y)=(',y"),
LA Y)=G" "), o fio Al y) = (), y@). Then

k—1
Au,(f )= 5 > hia(x@, x V) du(x, y) + C,
i=0

for any f-invariant measure u, where 7 =y dx and C is a constant, independent
of u.

In [8], we proved that for f; € I, the corresponding generating function A;
satisfies (H,) and (H,) of [8]. It follows that each A; is uniformly bounded below.
The above formula for h(x, x’) then shows that the average action Ay ,(f, u) is
well defined, for any f-invariant probability measure u, although it may be +.

So far in this section, we have considered the average action Ay ,(f, u) only
for n =y dx. If the f-invariant measure u has compact support, we may apply the
formula at the end of the last section for the dependence of the average action on
H and 7, and obtain a formula for A ,.(f, u) for any '. In this case

[n'~n1=Ln'—neR=Hl(M, R),
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where M is the cylinder and I' is any smooth, closed curve, which goes once
around M in the positive sense. Moreover, the rotation number is given by

pU. W)= | ('~ x)dux,y) €R=Hi(M, R),

where f(x, y) =(x’, y'), as usual.

In the general case, when u does not necessarily have compact support, we
have that if Ay, (f u)<+w, then p(f, u) is defined, in the sense that
x' —x € L'(M, u). This again follows from the last formula for A ,(f, #) and the
formula before that for A(x, x'). For, consider f € I 5 and its generating function
h. We have that y = —3,h(x, x') and y’' = 3,h(x, x") go to £ as x' — x goes to
too, uniformly in x. Consequently, there exist constants C; and C, such that

|x" —x| < Cy + Cyh(x, x'),

for all (x, x’) € R The fact that x’ —x € L'(M, u) when Ay ,(f, u) < + follows
immediately. The other assertions may be proved as before.

For each f € ?! and each w € R, there is an f-invariant probability measure
K, Whose support consists entirely of minimal orbits of rotation number w. If w is
a rational number p/q, we may obtain such a measure by choosing a minimal
orbit, periodic of period (g, p), and taking u, to be the unique f-invariant
probability measure supported by that orbit. If w is irrational, the existence of u,,
may be deduced from the theory developed in [6] or from the theory developed in
[1], although we need to refer to [2] for proofs in the generality considered here.
The measure u, is the unique invariant measure with support in the “Aubry-
Mather set” of rotation number w. Note that in [8], we proved that the
variational principal h =h,*- - -xh; associated to f satisfies (H,;)-(H,) of [8],
where h;*h, is the ‘“conjunction” of h, and h,, defined by h,*h,(x,x')=
min, (h,(x, y) + hy(y, x')). This permits us to apply the theory of [2].

We will denote A(f, u,) by A(w) or A{w). Note that A(w) is well defined
when o is irrational because y,, is unique in that case. It is well defined when w is
rational because the action of all minimal orbits of the same period coincides. In
what follows, it will be convenient to assume that n =y dx and H is chosen so
that the constant C of integration vanishes. With these conventions, we have

A(w) = fuh(x, x') dpto (5, y),

where f(x, y) = (x', y'). This follows from the previous formula for the average
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action and the observation that

k-1
h(xr x(k)) = 2 hi+1(x(')) x(l+1)))
i=0

for (x,y)esuppp,. Note that for a general f-invariant measure u, this
simplification is not possible; we have used the fact that any orbit in supp y,, is
minimal.

§4. Strict convexity of A;

As Aubry pointed out to me in 1983, the function A{w) = A(w), defined in
the last section, is a strictly convex function of w, i.e. the line segment joining
any two points of the graph of A lies above the graph of A. The proof which he
told me (for the case f € ) follows very simply from his theory. We present it
here under the more general hypothesis that f € #'. The only fact about f which
we use is the fact proved in [8] that its variational principal # satisfies the
conditions (H,)—-(Hs).

We begin with the following approximate value for h(x;, ..., x;) when
(xi, . .., x;) is a minimal segment of a configuration. This is more precise than
what is needed for Aubry’s proof, but may nonetheless be of interest. Since
f e P =Upso P}, it is in P} for some B >0. Let 6 = cot B. Then the variational
principal k of f satisfies (Hg ), as was proved in [8]. We will show that

(i, . . . x) = (= DA — %)/ — )| <86.

The proof of this inequality follows very easily from properties of the
conjunction developed in [8]. Let H = h* - - - * h denote the conjunction of h with
itself (j—i)-times. Since (x;,...,x;) is minimal, we have h(x;,...,x;)=
H(x;, x;). Let @ = (x; — x;)/(j — i). Then

(i~ DA@) = | H(E: &) dua (8, m),

where we set f/(&, n) = (§;, n;). This formula may be proved in the same way as
the formula at the end of the last section for A(w) was proved. From this
formula, it follows that to prove the inequality, it is enough to approximate
H(x;, x;) — H(&;, &), for all (&, n) in &~ (supp p,,) N D where n:R*— (R/Z) X
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R = M denotes the projection and 9 is a suitably chosen fundamental domain of
the Deck transformation (x, y)— (x + 1, y).

Let n € Z be such that |w(j —i) —n|<31. Let (&% n°) e #~(supp u.,) be such
that |&) —x,| <1 and |&) + n — x;| <1 where &} is defined in terms of (£° 7°) in
the same way as ; was defined in terms of (&, 1) above. Set Y = -3, H(&}, &) =
3,H (&Y, &7). By [8, §5], we have that H satisfies (H;)—(Hs) and (Hg), since it is
a conjunction of functions satisfying these conditions. By an obvious extension of
[8, Lemma 6.1], we then have that

Y + 3, H(ux, u')| =280, |Y —3,H(u, u't)| <206
when |u — E| <1 and |u’' — E? — n| = 1. Hence, by the mean value theorem,
|H (x;, xj) — H(&, E;) -Y(&—x— §j +xj)| =80,

whenever |E?—E&)|=<1 and |E?+n— §l=1. We may obviously choose the
fundamental domain 2 so that these conditions are satisfied whenever (§, 1) €
7~ Y(supp u,) N 2. But,

%= 5= =D = | =85 duE ).

so the previous inequality implies

I Hx, %) = LH (&ir &) dpo (&, 1) l =86.

By the last equation above, we then obtain (j —i)A(w) as an approximate value
of h(x;, ..., x;) = H(x;, x;), with error bounded by 86.

Here is Aubry’s proof. Consider real numbers w,<w; and let w =(1-
Awo+ Aw,, where 0<A <1. Let u and v be minimal configurations of rotation
numbers w, and w,, resp. We consider a bi-infinite sequence of integers
+++<ij<ij;;<--- and a configuration w such that for even j, the segment
{w;:i;<i<i;,,} of wis the segment of a translate ¥’ of u, and for odd j, this
segment is the segment of a translate v/ of v. We recall that to say that w’ as a
translate of ¥ means that there are integers a and b such that u}=u;_, + b, for all
i. We suppose, in addition, that for j even and i =i;, we have |u/—v/™'|<1 and
for j odd and i =i;, we have |v}—u/~|<1. In fact, for any bi-infinite increasing
sequence - -+ <i;<i;;1<--- we may easily construct such a configuration w.
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Now we consider such a sequence satisfying i;,; —i;—>®, (iy1—iy)/(iy—
i-1)—> (1 —A)/A, and (ij41—1i;)/|i] >0, as j— too. There is no difficulty in
finding such a sequence of i;’s. It is easily seen that w is the rotation number of w
and

A(w)=limh(w,, ..., w,)/(n —m)=(1-1)A(w,) + AA(w,).

Here, the inequality is a consequence of the approximate value of h(x;, ..., x;)
obtained at the beginning of this section. This proves that A is convex.

To prove strict convexity, it is then enough to consider the case when w, and
, are rational and w = (w, + ,)/2. Let Q be a common denominator of w, and
;. We consider periodic minimal configurations u and v of rotation numbers w,
and w,, so u;,o=u;+ P and v, o =v; + P, where w,=F/Q and w,=P,/Q.
Since v has larger rotation number than u, their graphs cross, and since both are
minimal, they cross exactly once. Choose an interval [i, i + Q] in which these
graphs cross. Then v;<u;, U; o <Viyo=v;+ P <u;+ P=u;, o+ P, —F, and
Uiszo+t Po— Po=uino+ P<v;.o+ P =0;,50. Let wy=max (u;, v;) for i<j=
i+Q and wi=min(u; + P,— B, v;) for i+ Q=<j=<i+2Q. Then w;,o=w,;+
P, + F,. Define w; for all j, by requiring w;,,o =w; + P, + F,. Then

A((D)< (ZQ)—lh(wlr s e ey WZQ)
=QO) Mh(m vy, ..., uvv ) +h(UAY;, ..., uAVLE)]

=) Mh, - - -, Uivg) +R(v;, . . ., Virg)]-

This completes Aubry’s proof of the strict convexity of A.

§5. Minimal measures

An orbit is w-(resp. a-) recurrent in the sense of topological dynamics if it
comes back arbitrarily close to itself under forward (resp. backward) iteration.
Let f € #'. By the theory of Aubry, as generalized by Bangert [2], a minimal
orbit of f is a-recurrent if and only if it is w-recurrent, and the set of all recurrent
minimal orbits of rotation number w is a closed subset of the cylinder, which we
will denote RM,, = RM,,(f). Moreover, if w is irrational, then u, is uniquely
defined and RM,, =supp u,,; if @ is rational, RM,, is the union of all minimal
periodic orbits of rotation number w.

Recall that a number A is said to be a sub-derivative of A = Ajat w if the line
in the plane of slope A through (w, A(w)) lies below graph A; such a
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sub-derivative exists at each point, since A is convex, as we proved in the last
section. Throughout this section, f will be a fixed element of #'. We will prove
the main result of this paper:

PROPOSITION. If A is a sub-derivative of A; at w, then an f-invariant
probability measure u minimizes A(f, u) — Ap(f, u) if and only if supp u < RM,,.

We will call an f-invariant probability measure minimal if it minimizes
A(f, u) — Ap(f, u) for some real number A.

Note that if u is an f-invariant probability measure with support in RM,,, then
A(f, u)=A(w) and p(f, u) = w. In fact, if w is irrational then u = u,,, and if @ is
rational then u is in the closed convex hull of invariant probability measures
supported on periodic orbits of rotation number w.

Consequently, to prove the proposition, it is enough to prove that if u is an
f-invariant probability measure, then A(f, u)—Ap(f, u)=A(w) - Aw, with
equality if and only if supp u =« RM,,.

In fact, it is enough to consider ergodic measures. Recall that an f-invariant
probability measure u is said to be ergodic if every f-invariant Borel set has
pu-measure 0 or 1. We assert that to prove the proposition, it is enough to show
that if u is an ergodic f-invariant probability measures then A(f, u) — Ap(f, p) =
A(w) — Aw, with equality if and only if supp u = RM,,.

This reduction to ergodic measures is a consequence of well known facts in
functional analysis, together with our discussion of the average action in §2. We
recall the relevant results.

The space of Borel probability measures on a compact metric space X is a
compact, convex subset of the dual C(X)* of the Banach space C(X) of
continuous function on X with the sup norm, where C(X)* is provided with the
weak topology defined by C(X). If T: X— X is a continuous mapping, the set of
T-invariant probability measures is compact and convex. A T-invariant probabil-
ity measure u is ergodic if and only if it is an extremal point of the set of all
T-invariant probability measures. Since the set of T-invariant probability
measures is compact and convex, it is the closed convex hull of the set of its
extremal points, i.e. of the ergodic measures, by the Krein Milman theorem.

To apply these general results to our situation, we take for X the end
compactification S of the cylinder. This is the union of the cylinder and two
points: the bottom end and the top end. It is homeomorphic to the two sphere.
Obviously, f extends to a homeomorphism of S, which we continue to denote by
f. By the assumption we made at the outset, the extended homeomorphism f fixes
each end. We extend the definition of A(f, u) to f-invariant probability measures
on $?%, by setting A(f, u) = += if the u-mass of either end is positive.
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Moreover, u+—> A(f, u) is a lower semi-continuous function with values in
R U {=}, i.e. for every real number a, we have that {u:A(f, u) >a} is open in
the weak topology on f-invariant probability measures defined by C(S?). This
follows from the formula in §3 for the average action in terms of the A,’s, and the
fact that the A;’s are bounded below, since they are continuous and satisfy (H,)
and (H,) of [2], as was verified in the example in [8, §3].

At this point, it is useful to recall that the definition of A(f, #) depends on the
choice of coordinates (x, y) on the infinite cylinder, x being defined mod 1, and if
we replace (x, y) by (x, y —Ay) then n =y dx is replaced by n' = (y —A) dx and
A(f, u) is replaced by A(f, u) — Ap(f, u) by the formula we obtained above for
the ambiguity of the average action. Consequently, we have that the mapping
u— A(f, u) — Ap(f, u) is lower semi-continuous. Obviously, it is also affine.

Since the mapping u— A(f, u) — Ap(f, u) is lower semi-continuous and affine
on the compact, convex set of all f-invariant probability measures, we have that
the set of u which minimize A(f, u) — Ap(f, u) is also compact and convex, and
its extremal points are extremal points of the set of all f-invariant measures, i.e.
they are ergodic measures.

Consequently, if A(f, u) —Ap(f, n) = A(w) — Aw for ergodic u, this is also
true for all u; if equality implies supp u = RM,, for ergodic u, we also have this
implication for all u. This completes our reduction to the case when u is ergodic.

From now on, we let u be a fixed ergodic f-invariant probability measure on
the cylinder. As we observed. above, it is enough to prove that A(f, u)—
Ap(f, u) = A(w) — Aw with equality if and only if supp 4 =« RM,,. We let (x, y) be
a fixed generic point in the plane for u and set (x;, y,) =f'(x, y). By a “generic
point”’, we mean a point such that the Birkhoff sums n~' ¥7-J u(x;, y;) and
n 'Y u(x_,, y_;) converge [, udu, for every continuous function u on the
cylinder which is also in L'(M, u). The Birkhoff ergodic theorem shows that
pu-almost every point is generic, since the space of functions we consider has a
countable dense set with respect to the L'-norm.

Since (x, y) is generic, we have

lim (3~ %)/ — i) = p(f, w)
J>+>

and

-1 k-1
lim z 2 ha+1(Ekivar Sxiva+1)/( —J) =A(f» 1),

=™ j=j a=0
I

where we use the formula of §3 for the average action. It follows from the last
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equation that

lijr_rlfgp h(xj, ..., x)I( =) =A(f u),

>+

in view of the definition of 4 as the conjunction of the A,’s.
For each positive integer N, we let v{™), —N <i =< N, be a minimal segment of
a configuration with v™ =x;, i = —N, N. Then

liminfh(x_n, . .., xn)/2N = lim R, ..., v{)/2N = A(p(f, 1)),
N—oo

N-—>x

by the estimate for h(x;, ..., x;) when (x;, ..., x;) is minimal, given at the
beginning of §4.

The last two inequalities yield A(f, u)=A(p(f, #)). Since A is a sub-
derivative of A at w, we obtain A(f, u) —Ap(f, W)= A(p(f, u)) — Ap(f, u) =
A(w) — Aw. This is the first assertion we need to prove in order to prove the
proposition; it remains to prove that supp u = RM,, when A(f, u) — Ap(f, n) =
A(w) — Aw.

In this case, the inequalities we just obtained become equations, i.e.
A(f, u) = Ap(f, u) = A(p(f, u)) — Ap(f, ) = A(w) —Aw. Since A is a sub-
derivative of A at w, it follows that p(f, u) = w. Consequently, A(f, u) = A(w).

At this point, we have to recall the real valued function v, of a real variable
which we introduced in [7]. It is a monotone non-decreasing function satisfying
Yo (t +1) =y, (¢) + 1 which is continuous from the left and has the property that
its derivative dvy,,(¢)/dt (which may be thought of as a measure on R/Z by
monotonicity and periodicity) is the projection of u, on R/Z. For identification
purposes, we remark that y,, is the generalized inverse of ¢, in the sense that
graph y,, is the reflection of graph ¢, about the ¢ =x axis. Here, ¢, is the
function of [6] which minimizes F,(¢)= [h(¢(t), ¢(t + w))dt; in Aubry’s
terminology, it is a hull function of a minimal configuration of rotation number w.

Note that since y,, is unique when o is irrational, y,, is unique up to addition
of a constant. When o is rational, there may be more than one choice of y,,, just
as there may be more than one choice of u,,.

When o is irrational, u, is non-atomic; consequently, vy, is continuous.
Moreover (when w is irrational), u, - — u, weakly when w’'— w; consequently,
Yo —> Yo, uniformly. See [7].

We set

Wm(x’ y) = Wm(x') - ww(x) -,
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where f(x,y)=(x’,y’). Then ¥, is a function on R? but, ¥,(x +1,y)=
¥,(x, y), so it may also be thought of as a function on the cylinder (R/Z) X R.

To prove that suppu = RM, when A(f, u)—Aip(f, u)=A(w)—iw, we
consider two cases, depending on whether w is irrational or rational. First, we
consider the case when w is irrational. In this case, we will show that ¥, =0
u-almost everywhere, by contradiction. Let v™ be defined in terms of
(..., x;...) as before. We then have the same inequalities as before. We will
obtain a contradiction by showing that one of these inequalities may be replaced
by a strict inequality, viz.,

A(f, W) =limsup h(x_n, . . ., xy)/2N
N—wx

> lim A(v %R, . .., v{)/2N = A(p(f, u)).

N—x

Since p(f, u) = w, this will contradict the fact that A(f, u) = A(w), which we
proved above.

The only thing left to prove (in the case w is irrational) is the strict inequality.
For this, we use:

LEMMA. Let v be a minimal segment of a configuration. There exists a real
number w' such that no ground configuration of rotation number @' crosses v.

Here, we use the terminology of Aubry: A ground configuration is a minimal
configuration whose corresponding orbit in the cylinder is recurrent.

Proof of the lemma. Let U (resp. D) denote the set of w’ € R for which there
is a ground configuration of rotation number w’ crossing v in the upwards
(resp. downwards) direction. It is clear from the Aubry crossing lemma that if
weD and w'eU then w <w’'. Moreover, D and U are open. This is a
conseqeunce of the fact that if w;— w as i— x, then

RM,,, clim iﬂfRMm(,').

j—»00

Here, lim inf is the standard notion, associated to convergence in the Hausdorff
topology. See e.g. [10, §§8, 12]. The above inclusion is implicit in Aubry’s theory.
Since D and U are open and D < U, there exists ' ¢ D U U.
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To prove the strict inequality above, we use the crossing equation

h(XVy,. ..., xVvy)thXxXAy,...,xAY)

=h(x;y...,x)+h(y,...,y)+ ; tn(R).

Here, u, is the measure on the plane defined in [9, §3]. The sum is taken over all
rectangles R of the form [x;, y;] X [yis+1, Xi+1] With x; <y; and y;,, <Xx;,, or of the
form [y;, x;] X [Xi41, yi+1] With y; <x; and X; ;1 <y;1.

We let wy € R be such that no ground configuration of rotation number wy
crosses v™. This exists by the lemma. We choose an increasing sequence u®,
@<= a =< o, of ground configurations of rotation number w, with the property
that there is an index a; with a,< ;< a, such that u*® is below v® and

u*M*1 is above v™. We set u¥©@ ! = —» and uf®@*+1 = 4o, for all i. We let

w¥=uf"1vx; Auf, —~N=<i=N,

for ay=a=a,+1. Applying the crossing equation (a,— @y + 1)-times, we
obtain

a(2) a(2)+1
R(X_py oo X))+ D, AUy, ..., uf) = % h(Wen, . . ., w§)+§uh(R).
a(0) a(0

The final sum is taken over an appropriate collection of rectangles R. We will not
need to determine this collection of rectangles explicitly, although this could be
done, but only use certain properties of it, which will be discussed later. For
@ < &,;, we have w¥ =u® for i = —N, N. For & = &, + 1, we have w¥=x;, =v™,
for i=—N, N. For « > a; + 1, we have w¥ =uf"!, for i =—N, N. Since u“ and
v™ are minimal, we obtain

h(un, ..., up)<h(Wwy, ..., wn), o<
R, ..., v =h(WN, ..., WR), a=a;+1,
Ry, ..., u ) <hWn, ..., W), a>a;,+1.

From the previous equation, we then obtain

h(x--N) sy xN) - h(U(_Ag, ey v;{;’)) 2% ”h(R))

where the sum is taken over the same collection of rectangles as before.
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Let A; denote the contribution to Y.z u,(R) of all crossings of graph x with
some graph u® between (i, x;) and (i + 1, x;4,), so Lz us(R) = LX\ A,. If graph
u® crosses graph x between (i,x;) and (i +1, x;.;), we have u,([x;, uf]x
(U1, xie1])) or u,([uf, x;] X [x:41, ui1]) as a lower bound for A;, since in
applying the crossing equation to get the above inequality, we may introduce the
u®s in any order we wish. Furthermore, we may introduce as many u*’s as we
wish, since introducing new u*’s can only increase Yz us(R). Let 6 denote the
supremum of pu,([x;, ;] X [4i+1, Xiv1]) OF wn([w;, x:] X [Xi41, Ui+1]) Over all ground
configurations u of rotation number w,, such that graph u crosses graph x between
(i, x;) and (i + 1, x;,,). We then have

N

h(X_ns ... X)) =B, ..., o) = D oM,
i=—N

by the previous inequality.

Our assumption that ¥, does not vanish u-almost everywhere implies that
there exists a compactly supported continuous function o on R with values in
[0, 1] and with 0 ¢ supp o such that [, 0¥, du >0. Let K = |w| + max |supp o] +
3. By (H,) and (Hs) of [8], there exists a positive constant p, such that
Un=podxdx’ on {|x' —x|=K}. If ¥,(x;, ;) esupp o and N is large enough, we
have 0" = po(u; — x;)(xis1 — u;41). This is because |u;4—u;,—w|=1, for N
large enough, since wy— @ as N—x and o is irrational, and because
|x;+1 — X; — @| = max |supp o| + 2, since ¥, (x;, y;) € supp 0. Therefore, the rele-
vant rectangle, [x;, ;] X 411, Xis1] OF [w;, X;] X [Xi41, Uisq], is in {|x" —x| =K}
and we obtain 6™ = po(u; — x;)(x;+1 — Ui+1), as asserted. Moreover, this in-
equality is valid for any ground configuration u such that graph u crosses graph x
between (i, x;) and (i + 1, x;41).

In order to get a good lower bound for 6{™, we choose u by setting
t=Y,mx) —ioy, t'=YemXis1)—((+Doy, t=(+t')/2, and u;=
P +joy). Let

é =min {¢,(t') — ¢, (¢):t' —t = min (|supp o|)/4}.

Since w is irrational, ¢, is strictly increasing. Since 0 ¢ supp o, we then have
6 >0. For N large enough, and ¥, (x;, y;) € supp o, we have |u; —x;|, |u;s1—
X;+1| = 8. This is because ¥, v)— ¥, uniformly, as N— . This convergence is
valid because w is irrational. It follows immediately from the fact that
Yo)—> Yo, uniformly, which is a consequence of the uniqueness of the element
minimizing y,,, proved in [7].
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Thus, we have 6" = p,6%>>0, when N is large enough (independently of i)
and ¥, (x;, y;) € supp 0. The density in Z of the set of i for which ¥,(x;, y;) €
supp o is =[, 0¥, du >0, since (x, y) is u-generic and o < 1. It follows that

liminf [A(x_y, . . ., xn) —B(WYR, ..., v)])/2N

N—x

N
= lim inf 2 O™ /2N Zpoézf oW, du>0.
M

N—® j=—-N

Thus, we have obtained the strict inequality which was required to contradict our
hypothesis that ¥, does not vanish u-almost everywhere.

For any orbit (...,(x; y),...) on which ¥, vanishes, we have that
Y, (x;) — iw is a constant ¢, and hence ¢, (¢t + wi—) =x; = ¢, (¢t + wi+). It follows
that such an orbit is forward and backward asymptotic to an orbit in supp u,,.
Since ¥, =0, u-almost everywhere, as we have just proved, it follows that
supp 4 < supp U, = RM,,. This completes the proof when w is irrational.

Now we consider the case when w is rational, say w =p/q. To show that
supp 4 < RM,,, we may reduce to the case w =0 by replacing f by ¢ and f by
fiT™P, where T(x,y)=(x+1,y). We have p(fiT?, u)=qp(f,u)—p =0,
A(F%, 1) =qA(J, 1) + C, Aj(0) =gAx®)+C, and RMy(f'T ) =RM,(f),
where the constant C of integration is the same in the two cases. Moreover, the
assumption that p is f-invariant implies that it is also f?-invariant, and the
assumption that f is in P' implies that f7 is in ?!. Thus to prove that
supp 4 < RM,,(f) when w is rational, it is enough to consider the case w = 0.

It will be convenient to assume min, 2(x, x) = 0. Since A is determined only up
to addition of a constant, we may assume this. Under this assumption, Ax0) = 0.
Since u is ergodic and has rotation number 0, we have

N
lim x;/i=0, lim > h(x;, Xi41)/2N=0.

i—> o0 N—o» j-_N
By (3.4) of [9], we have

N-1 N-1

> h(x;, xi)/2N= 3, h(x;, x)/2N

i=—=N i=—N
XN N

+ [ oy, y ) dy2N + S m(8)I2N,

XN i=—N

where A, is the triangle {(y, z):x; Sy =<z =x;.1} or {(y, 2): X1 =z2=<y=x]},
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according to whether x; or x,,, is greater. Since lim,;_, 1., x;/i =0, the limit of the
second term on the right vanishes. The other two terms on the right are
non-negative, so their limits vanish, too. Since the limit of the third term
vanishes, the density in the integers of {i:|x;., —x;|> €} vanishes, for every
€>0. Since the limit of the first term vanishes, {i:h(x;, x;)>¢} also has
vanishing density, for every € > 0. Since (x, y) is u-generic, these facts imply that
supp u < {(x, y):h(x, x) =0 and y = —03,h(x, x) = 3,h(x, x)} = RM,.

This completes the proof of the proposition stated at the beginning of this
section.

Acknowledgement

I would like to thank ETH, where this was written, for its hospitality.

REFERENCES

[1] S. AUBRY and P. Y. LEDAERON, The discrete Frenkel-Kantorova model and its extensions I.
Exact results for ground states, Physica 8D, (1983), 381-422.

[2] V. BANGERT, Mather sets for twist maps and geodesics on tori; preprint to appear in Dynamics
Reported.

[3] E. CARTAN, Legons sur les invariants integrals. Paris: Hermann (1922).

[4] C. CoNLEY and E. ZEHNDER, The Birkhoff—-Lewis fixed point theorem and a conjecture of V. I.
Arnold. Invent. Math. 73 (1983), 33-49.

[5] J. DENZLER, Mather sets for plane Hamiltonian systems, preprint ETH Ziirich (1987).

[6] J. MATHER, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus,
Topology 21 (1982), 457-467.

[7] 3. MATHER, Concavity of the Lagrangian for quasiperiodic orbits, Comment. Math. Helv. 57
(1982), 356-376.

(8] J. MATHER, Modulus of continuity for Peierls’s barrier. Periodic Solutions of Hamiltonian
Systems and Related Topics, P. H. Rabinowitz et al. eds. NATO ASI series. Series C; vol. 209.
Dordrecht, Holland: D. Reidel (1987), 177-202.

[9] J. MATHER, Destruction of Invariant Circles, preprint, Forschungsinstitut fiir Mathematik ETH
Ziirich (1987). To appear in Ergodic Theory and Dynamical Systems.

[10] J. MATHER, A criterion for the non-existence of invariant circles, Publ. IHES 63 (1986), 153-204.
[11] J. MOSER, Monotone twist mappings and the calculus of variations, Ergodic Theory and
Dynamical Systems 6 (1986), 401-413.

Princeton University

Fine Hall, Washington Road
Princeton, New Jersey 08544
J/USA

Received November 30, 1987



	Minimal measures.

