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Minimal measures

John N. Mather

Abstract. For a finite composition of exact, area preserving, positive twist diffeomorphisms of the
infinité cylinder, we will show that an invariant measure whose support consists of minimal orbits
strictly minimizes the average action.

§1. Introduction

In [6], we proved the existence of certain invariant sets for exact, area
preserving twist diffeomorphisms of an annulus, which provides a kind of &quot;weak

solution&quot; for the problem for which KAM theory provides a true solution,
namely the problem of finding invariant circles. In [1], Aubry and Le Daeron
independently developed a theory of minimal configurations. There is a cor-
responding theory of minimal orbits of twist diffeomorphisms, which slightly
generalizes the author&apos;s theory in [6], and gives an alternative proof of the main
resuit of [6].

The &quot;Aubry-Mather sets&quot;, whose existence was proved in [1] and [6], carry
unique invariant measures. In this paper, we characterize thèse measures by a

minimality property. Our principal resuit is not at ail surprising, given what is

already known, and the proofs are basically an exercise in applying what is

known, but they are not totally obvious, so we hâve written them down.
Our principal resuit concerns the average action A(f, fi) of an /-invariant

measure fi, where/is a finite composition of exact, area preserving, positive twist
diffeomorphisms of the infinité cylinder. The notion of average action is an
obvious extension of the standard notion of the action of a periodic orbit. The
définition of A(f, fi) AHri(f, fi) dépends on a choice of a periodic Hamiltonian
H such that / is the time one map of the associated flow, as well as a choice of a
one form rç on the infinité cylinder.

We show a couple of variants of standard results in our context. First,
changing H changes AH&gt;r}(f, fi) only by a constant of intégration. Second,
changing rç changes AH&gt;n{f, fi) according to the formula

AH,nf (/, fi) =AHttl(f, fi) + [r,&apos; -r,]- p(f&gt; fi),
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376 JOHN N. MATHER

where p(f, fi) dénotes the rotation number of fi and [r\* - rj] Jrrç&apos; - rj, where
Fis any closed curve which winds once around the cylinder. Thus, A(ff fi) is well
defined modulo an affine function in the rotation number.

This leads to our définition of minimal measure: An /-invariant measure \i
will be said to be minimal if there exists XeU such that fi minimizes

A(f, jli) - Ap(/, fi) over ail/-invariant measures fi.
In terms of the Aubry theory of minimal orbits, the minimal measures (of /)

may be described as follows. Let o&gt; e U and let RMœ dénote the set of récurrent
minimal orbits of rotation number co. Hère, &quot;minimal&quot; is taken in Aubry&apos;s sensé
and récurrent in the usual sensé of topological dynamics. Our principal resuit is

that a measure is minimal if and only if its support lies in RMW, for some w. Note
that when m is irrational, RMm is the &quot;Aubry-Mather set&quot; which, being a Denjoy
minimal set (in the sensé of topological dynamics), carnes a unique invariant
measure fim. Thus, for oo $Q, our principal resuit implies that, for suitable A, the

measure fim minimizes A(f, fi) — Ap(/, fi) and this uniquely characterizes fi^.
Let A(co) Aj(û)) -A(f, fiw)f where //&lt;» is any measure with support in RMm.

Aubry proved in 1983 that A((o) is strictly convex. As far as I know this proof has

never been published, so I will présent Aubry&apos;s proof in §4, since this resuit is

needed to prove the results just referred to. Since A is convex, it has a

sub-derivative at each o&gt;. Conversely, if A e M, then there is a unique a&gt; at which
À is a sub-derivative of A. Uniqueness follows from the strict convexity, and
existence is easily proved. Thus, our principal results may be restated, as follows:
If À is a sub-derivative of A at œ, then an /-invariant probability measure fi on
the infinité cylinder minimizes A(f, fi) - Ap(/, fi) if and only if supp fi c RMœ.

$2. Action

In this section, we review some standard notions (from e.g. Cartan [3]) in
Hamiltonian dynamics. Let (Af, Q) dénote a symplectic manifold, i.e. we suppose
that M is connected and 2n-dimensional and Q is a symplectic 2-form on it, i.e.
dQ « 0 and Qn Q a • • • a Q) vanishes nowhere. If H is a sufficiently smooth
fonction on Af x R (called a Hamiltonian), then there is a time dépendent vector
field X XH, called the symplectic gradient of H, defined by

for every vector field Y on M. Hère Ht(x) H(x, t), for x e M, and y • Ht dénotes
the directional derivative of Ht in the direction Y. We will suppose that XH is

globally integrable, in the sensé that there is a (sufficiently smooth) mapping
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&lt;t&gt; : M x R -&gt; M such that 0o(x) * and d&lt;f&gt;t(x)/dt X,(0,(x)), for ail x e M and

te M. Hère, 0,(*) 0(*&gt;O- BY a finite trajectory T of //, we will mean a

(sufficiently smooth) mapping T:[*&lt;&gt;, tt]-+M such that dr(t)/dt H(r(t), t), for
to&lt;t&lt;tx. We will suppose that Q is exact, i.e. there exists a 1-form r\ such that
dt] fi. Following Hamilton, Poincaré, and Cartan (see [3]), we define the action
of such a finite trajectory as

-H du

In what follows, we will be interested in the case when H is periodic of period
one in t We let / dénote the time one map of the flow associated to H, i.e.
7 0!. If F is a trajectory of the flow generated by H, then JT(i),...) is an
orbit of/. In this way, we hâve a one-one correspondence between the orbits of/
and the trajectories of the flow generated by //. If 0 Ph is an orbit of
/, and F is the corresponding trajectory of the flow, we set (for i&lt;j e Z)

We still call this the action of the trajectory (r(0,..., A/)).
For Ln(0)(i, j) to be invariant of/, it would hâve to dépend only on/, i, and

/, and be independent of H and rç. However, this is not the case. Next, we
analyze the dependence on H and rj, in order to construct invariants of / out of

v
First, we consider changing H. Let H&apos; be a second Hamiltonian such that/is

still the time one map of the flow it générâtes. Let

C(x)=\ r\-H&apos;dt-\ 7]-

where F(x) is the trajectory of the flow generated by H between t 0 and t 1,

starting at x and ending (of course) at f(x), and where Ff(x) is defined in the
same way in terms of H1.

In fact, C(x) is independent of x by an argument in Cartan [3], Hère is a

version of this argument. Since M is connected, any two points in M may be

connected by a smooth curve xs, 0 ^ s ^ 1. We let S dénote the surface in M x R

swept out by f(xs), 0&lt;s^l, where t(t)-(r(t), t). Since, for fixed s, the

tangent to the curve F(xs) is in the kernel of d{y\ -Hdi)~ Q-dH Adt (by
définition of the Hamiltonian flow), we hâve that the restriction of d(rj -Hdt) to
S vanishes. Hence, by Stokes&apos;s Theorem, the intégral of Y\-Hdt around the
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boundary of 5 vanishes. We may apply the same argument to the surface S&apos;,

swept out by F&apos;(xs) and the 1-form r\ - i/&apos; dt; we find that the intégral of
y —H&apos; dt around the boundary of S&apos; vanishes. Note that S and S&apos; hâve the curves
A — {xs : 0 ^ s :s 1} in M x 0 and fA in M x 1 in common, and that the restriction
of tj -H&apos; dt to each of thèse curves is the same as the restriction of rj - Hdt.
Therefore,

f ri-Hdt- ri-H&apos;dt 0.

This shows that C(x) is independent of x.
Let C C(x). Since the constant of intégration C is independent of x,

replacing H by H&apos; changes L,,(C)(i, j) by C(J -i). Note that C is independent of
0, i, and /. It does dépend, however, on rç.

Thus, changing H changes Ln{6)(i,j) only by a constant of intégration.
Changing ij makes a more serious change. Clearly, Lny (0)(i, j) — Ln (0)(i, j)
Jr tj

&apos; ~ î?. If 0 is periodic of period j — i then F is a closed trajectory and we hâve

^(^ft^-M^ft/)888!»?&apos;-»?!-^!!!,;!] where [ff&apos; — ff] dénotes the de

Rham cohomology class in H\M,R) of rj&apos; — rj and [jT | [i, /]] dénotes the
homology class in HX(M, M) of r\[i,j]. Note that rj&apos;-rf is closed, since

dti&apos;**dri**a.

Let M dénote the covering space of M whose fundamental group is the kernel
of the Hurewiez homomorphism 7tl{M)-^H1{M, R). Let 0 be a lift of the flow to
M, so $0 ^ identity, &lt;j&gt;t is a lift of &lt;f&gt;t to M, and &lt;j&gt;t dépends continuously on ail
variable. Let/ $u i.e. /is the time one map of the flow on M generated by H.
Then / is a lift of/ to M.

We define the rotation number of a periodic orbit € of/ (with respect to a lift/
of/), by

if € is periodic of period j — i, where F is the trajectory of the flow generated by
H corresponding to 0. Thus, p(/, 0) e Ht(Mt R). Note that p(/, &lt;?) dépends ônly
on the lift / of / to M, and not otherwise on H. In fact, we could alternatively
define p(f, €) by choosing a lift $ Pit...) of 0* and setting

where A is the image in M of a curve in M Connecting Pt to Pj. It is an easy



Minimal measures 379

exercise in the theory of covering spaces to see that [A] e HX(M, 08) is independ-
ent of the curve chosen and that [A] [F | [i, /]].

This permits us to write the effect of changing rj in the following form:

L,, (O)(t /) - MO)fc J) 0* &quot; Ofo&apos; ~ 1] - P(/&gt; °)&apos;

AH this is standard. There is, furthermore, an obvious generalization to the
case of invariant measures. Let fi be an /-invariant probability (Borel) measure
on M. We define the average action,

A(f,(i)=l d(i(x)\ rj-Hdt,

if this intégral exists. For example, if fi is the unique invariant measure supported
by a periodic orbit 0 of period j - i, then A(f, fi) L^iOXi, /)/(; - i).

We will sometimes write this as AHr)(J, fi) or An(/, ju) to make the

dependence on H and r) explicit. If we change H, the average action changes only
by a constant of intégration:

AH.,n(f, p)-AHt1l(ï, !*) €,

where

C=f t]-H&apos;dt-\ Y]-
Jr(x) Jr{x)

Hdt.

We proved above that C is independent of x, so, of course, it is independent of fi.
To analyze the dependence on r\, we need the notion of the rotation number

of an invariant measure fi. We consider a Borel function U:M-^&gt;Hi(M, R), such

that U°T-U [T] for any Deck transformation T, where [rie/f^M, R)
dénotes the homology class corresponding to T. (Recall that since the fundamen-
tal group of M is the kernel of the Hurewicz homomorphism jtl{M)-^Hl{Mf M),
the group of Deck transformations of M over M is canonically isomorphic to the
image of this homomorphism.) For simplicity, we will suppose that Ht(M, R) is

finite dimensional. We provide HX(M&gt; U) with its usual topology as a finite
dimensional vector space. Also, when we talk about &quot;manifold&quot;, we always take
as part of the définition the hypothesis that a manifold is Hausdorff and has a

countable basis for its topology. A Borel function U as above is easily
constructed: take any Borel fundamental domain of M over M and choose U to
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be any Borel function on the fondamental domain. Then it has a unique extension
to ail of M satisfying U°T-U [T], for every Deck transfonnation T.

It is easily seen that U°f - U is invariant under every Deck transformation.
Hence, U°f — U may be considered as a function on M; we define

as long as this intégral exists, i.e. as long as U°f - U is an L1 function on M with
respect to the measure fi. In fact, we will define p(/, /à) by the above formula, as

long as there is one Borel function U satisfying U°T - U [T], for which the
above intégral exists. It is easily seen that p(/, ju) is independent of U satisfying
thèse conditions, since fi is /-invariant.

Moreover, if € is a periodic orbit and fi is the unique invariant measure
supported in 0, then p(f, fi) is just the p(/, 6) defined above. The change in the

average action when we change r\ is then given by

iWtf li)-AH.n(f, fi) W - V] • P(/, fO,

where / is the lift to M of / which is the time one map of the flow on M which is

generated by the Hamiltonian H. This formula is valid as long as both sides are
defined. It may be proved by observing that since dr\ drj&apos;, the lift of r\&apos; - tj to
M is exact, i.e. r\&apos; - r\ dUon M, where U°T-U [rjf -tj]- [T], for any Deck
transformation T, and that JYoc)*?&apos; -V** U°f(x) - U(x), since dF(x) =/(jc) ~ je.

Note that both sides are defined and therefore the formula above is valid
when fi has compact support. From the above formulas for the change in the

average action when we change H or r), we see that fi—&gt; AHfV(f, fi) is changed by
at most an affine function of p(/, fi) e H^M, R).

§3. Minimal orbite

In this section, we recall the notion of minimal orbits, due to Aubry [1], as

generalized by Bangert [2]. The notion of minimal orbits is defined by thèse
authors only for a spécial class of mappings, although other authors hâve
considered related set-ups [5], [11]. We need the following notation to describe
the class of mappings which we wiû consider hère. We let ÏÏ\ dénote the set of
exact area preserving, orientation preserving, positive monotone twist mappings
of the infinité cylinder (R/Z)xR which préserve the ends, twist each end

infinitely, and hâve fi as a uniform lower bound for the amount of twisting. A
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detailed définition of ST\ is given in [8, §2], where it is called Jfi. We let 9\ dénote
the set of finite compositions of éléments of 3~\. We let

ST1 U $~b and 91 U 9\.
p&gt;o p&gt;o

It is known that an exact area preserving C1 dififeomorphism / of the infinité
cylinder which préserves the ends is the time one map of the flow generated by a

suitable Hamiltonian H. Of course, we must allow H to be time dépendent for
this to be true, but we may take H to be periodic of period one. In the language
of diflferential topology, this amounts to the assertion that / is isotopic to the

identity in the class of exact area preserving C1 diffeomorphisms of the infinité
cylinder. This resuit is well known to experts in diflferential topology. For a proof,
see the fine print at the end of [4]. For example if / g &amp;1, the average action

AHrt(f, fi) is defined, where, as before, we choose a 1-form rj such that drj Q,
the area form on the infinité cylinder. If/ e ST1, so it has a generating fonction h,
the average action is given by

in the case that r\ y dx, where M is the infinité cylinder, / is the lift of / to the
universal cover R2 of M which is the time one map of the flow generated by the
Hamiltonian H, and f(x, y) (x&apos;f y&apos;). Note that since f(x + 1, y) (x&apos; 4-1, y&apos;)

and h(x + 1, x&apos; 4-1) h(x, x&apos;), this intégral is well defined as an intégral over M,
even though (x, y) and (xf, y&apos;) dénote points in the universal cover. Hère, C is a

constant of intégration, which is independent of the measure ju.

To prove this formula, we relate the generating fonction h to the action, as

follows. Let A {(xs,ys):0^s^ 1} be a smooth curve in the cylinder M
(R/Z) x R. For each s, let rs r(xs, ys) : [0,1]-» M x R dénote the curve used in
the définition of the average action in the last section, i.e. Fs(t) (&lt;f&gt;t(xs, ys), i)y
where &lt;j&gt; is the flow generated by the Hamiltonian H. Let 5 dénote the surface

swept out by J^ as 5 varies between 0 and 1. By Stokes&apos;s theorem, we hâve

f r\-Hdt= \a-
hs Js

dH

since the tangent to Fs is in the kernel of d(r\ -Hdt) and therefore Q - dH a dt
vanishes identically on S. We hâve 35 Fo + Af — f[ - A, where A&apos; =/A Setting
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f(xs, ys) (x&apos;s, ys), we have

r0

Hère, the first équation is the définition of h, the second équation follows from
the définitions and our choice r\ y dx, and the third équation follows from the
fact that dt vanishes identically on A and A&apos;, together with the previous équation.

We may express this équation more simply as

/*(*,*&apos;) \r\-Hdt-C
Jr

for (x,y) in the cylinder, f(x,y) (xf,y&apos;), and F r(x, y) : [0, l]-»Af xU as

above. Hère, C is a constant of intégration, independent of x and y. If fi is an /
invariant probability measure, we may integrate the last formula with respect to

fi, and obtain the formula for the average action we stated at the beginning of this
section.

We may generalize this formula for the average action to the situation when

/ € 9X, as follows. Let / =/* • • -fx with / € &amp;\ Let hu hk be the cor-
responding generating functions. For (jc, y)eU2, let fx(x, y) (*&apos;, y&apos;),

f2fi(x, y) (x&quot;, y&quot;),..., A • ¦ -Mx, y) (x™, /*&gt;). Then

-I (1) y) + C,

for any /-invariant measure fi, where rj =ydx and C is a constant, independent
of fi.

In [8], we proved that for ft e J&quot;1, the corresponding generating function ht
satisfies (Hi) and (H2) of [8]. It follows that each ht is uniformly bounded below.
The above formula for h(x, x&apos;) then shows that the average action AHri(f, fi) is

well defined, for any/-invariant probability measure fi, although it may be +«&gt;.

So far in this section, we have considered the average action AHtt}(J, fi) only
for i} ~ydx. If the/-invariant measure fi has compact support, we may apply the
formula at the end of the last section for the dependence of the average action on
H and tj, and obtain a formula for AWtn&gt;(J, fi) for any rç&apos;. In this case
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where M is the cylinder and F is any smooth, closed curve, which goes once
around M in the positive sensé. Moreover, the rotation number is given by

=f (x&apos;-x)dfi(xty)en=H1(M,U),

where f(x, y) (x&apos;, y&apos;), as usual.

In the gênerai case, when \i does not necessarily hâve compact support, we
hâve that if AHttl(f, ju) &lt; +00, then p(/, n) is defined, in the sensé that
jt&apos; - x € L\M, ji). This again follows from the last formula for AH&gt;v(f, ju) and the
formula before that for h(x, x&apos;). For, consider / e ?F\ and its generating function
h. We hâve that y -dxh(x, x1) and y&apos; d2h(x, x&apos;) go to ±00 as xr - x goes to
±00, unifonnly in x. Consequently, there exist constants Ct and C2 such that

for ail (x, x&apos;) € M2. The fact that x&apos; - x e L\M, fi) when AH&gt;ri(f, fi) &lt; +00 follows
immediately. The other assertions may be proved as before.

For each / e &amp;1 and each œ e R, there is an /-invariant probability measure
\im whose support consists entirely of minimal orbits of rotation number û&gt;. If co is

a rational number p/q, we may obtain such a measure by choosing a minimal
orbit, periodic of period (q, p), and taking iim to be the unique /-invariant
probability measure supported by that orbit. If co is irrational, the existence of pm

may be deduced from the theory developed in [6] or from the theory developed in
[1], although we need to refer to [2] for proofs in the generality considered hère.
The measure nw is the unique invariant measure with support in the &quot;Aubry-

Mather set&quot; of rotation number œ. Note that in [8], we proved that the
variational principal h ht*- - &apos;*hk associated to / satisfies (Hi)-(H4) of [8],
where h1*h2 is the &quot;conjunction&quot; of hx and h2, defined by hx*h2(xf x&apos;)

mmy (ht(x, y) + h2(y, x&apos;)). This permits us to apply the theory of [2].
We will dénote A(f, fi^) by A(œ) or Af((o). Note that A(œ) is well defined

when (o is irrational because iim is unique in that case. It is well defined when œ is

rational because the action of ail minimal orbits of the same period coincides. In
what follows, it will be convenient to assume that îj =ydx and H is chosen so
that the constant C of intégration vanishes. With thèse conventions, we hâve

A(û&gt;)= h(x, xf) dpcix, y),

where f(x, y) (x&apos;f y&apos;). This follows from the previous formula for the average
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action and the observation that

i=0

for (x, y)esupp/iû&gt;. Note that for a gênerai /-invariant measure ju, this

simplification is not possible; we hâve used the fact that any orbit in suppju^ is

minimal.

§4. Strict convexity of Aj

As Aubry pointed out to me in 1983, the fonction Aj((o) A((o), defined in
the last section, is a strictly convex fonction of a&gt;, i.e. the line segment joining
any two points of the graph of A lies above the graph of A. The proof which he

told me (for the case / e 2T1) follows very simply from his theory. We présent it
hère under the more gênerai hypothesis that / e 91. The only fact about /which
we use is the fact proved in [8] that its variational principal h satisfies the
conditions (Ht)-(H6).

We begin with the following approximate value for h(xif..., Xj) when
(xh Xj) is a minimal segment of a configuration. This is more précise than
what is needed for Aubry&apos;s proof, but may nonetheless be of interest. Since

/ € 9l U/3&gt;o &amp;p&gt; it is in 9\ for some fi &gt; 0. Let 0 cot /î. Then the variational
principal h of/satisfies (H^), as was proved in [8]. We will show that

\h(xit ...,*&gt;)- (/ - i)A((Xj -Xi)l(j - 0)1 * 80.

The proof of this inequality follows very easily from properties of the

conjunction developed in [8]. Let H^h*— -*h dénote the conjunction of h with
itself (/ - i)-times. Since (*,,..., x/) is minimal, we hâve h(xif..., xj)
H(xh Xj). Let m * (x§ - Xi)/(j - i). Then

- i)A(a&gt;) - f H(£h &amp;

where we set /&apos;(£, y) (fit îj,). Hiis formula may be proved in the same way as

the formula at the end of the last section for A(o&gt;) was proved. From this

formula, it follows that to prove the inequality, it is enough to approximate
H(xh Xj) - H($h |;), for ail (f, î?) in jr&quot;&quot;x(supp (*„) H 9 where n : R2-&gt; (R/Z) x
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R M dénotes the projection and 2 is a suitably chosen fundamental domain of
the Deck transformation (jc, y)—&gt; (x + 1, y).

Let n € Z be such that |a&gt;(; -1) - n\ &lt; i Let (£°, rç°) € ^&quot;^suppji^) be such

that |§? -*,| &lt; 1 and |§? + » - x,| &lt; 1 where g is defined in terms of (£°, rç0) in
the same way as §, was defined in terms of (§, rç) above. Set Y —dxHfâ, %f)

92H(Sa-/, I?). By [8, §5], we hâve that H satisfies (Hty(H5) and {Hœ), since it is

a conjunction of functions satisfying thèse conditions. By an obvious extension of
[8, Lemma 6.1], we then hâve that

l)\^2df \Y-d2H(u,u&apos;±)\&lt;2e

when \u - §?! &lt; 1 and \ur - £? - n\ ^ 1. Hence, by the mean value theorem,

\H(xt, xf) - H(|f, §,) - 7(1, - x, -1;

whenever |Ç? —§,|^1 and |Ç? + n~§;|&lt;l. We may obviously choose the
fundamental domain 2b so that thèse conditions are satisfied whenever (£, rj) e^S. But,

^/ ~ ^i (/ ~ 0» (§y - ?i

so the previous inequality implies

H{xt,x,)-\ H(|,,
•/Af

;80.

By the last équation above, we then obtain (/&apos; — i)A(û&gt;) as an approximate value

of h(xn Xj) //(*„ jc7), with error bounded by 80.

Hère is Aubry&apos;s proof. Consider real numbers û)0&lt;o)i and let co (l-
Â)o&gt;o +Ao&gt;lf where O&lt;A&lt;1. Let u and v be minimal configurations of rotation
numbers co0 and œu resp. We consider a bi-infinite séquence of integers
• • -&lt;ij&lt;ij+i&lt;- - • and a configuration iv such that for even /, the segment

{wt:ij^i&lt;i,+i} of w is the segment of a translate uJ of u, and for odd /, this

segment is the segment of a translate vJ of v. We recall that to say that u1 as a

translate of u means that there are integers a and b such that u\ « af_fl + b, for ail
i. We suppose, in addition, that for / even and i i;, we hâve \u{ -1/^&quot;1! &lt; 1 and

for j odd and *&apos; ip we hâve |vi - u?rl\ &lt; 1. In fact, for any bi-infinite increasing

séquence • • • &lt;i;&lt;i;+i&lt; • • • we may easily construct such a configuration w.
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Now we consider such a séquence satisfying i/+1 ~ i7—&gt;oo, (i2/+i-/2y)/(/2y-
*2/-i)~*(l — A)/A, and (j/+1 —Z,)/!*,!—&gt;0, as y—» ±00. There is no difficulty in
finding such a séquence of i/s. It is easily seen that (o is the rotation number of w
and

A(o)) &lt; lim /*(wm,..., wrt)/(n - m) (1 - A)A(tw0) + XA{a)x).

Hère, the inequality is a conséquence of the approximate value of h(xu jcy)

obtained at the beginning of this section. This proves that A is convex.
To prove strict convexity, it is then enough to consider the case when co0 and

o)i are rational and co (coo + cwi)/2. Let Q be a common denominator of coo and

Q)t. We consider periodic minimal configurations u and v of rotation numbers coo

and a&gt;i, so wl+ô al + P0 and t/.+g t/, + P,, where (Oq^Pq/Q and cox PJQ.
Since t; has larger rotation number than u, their graphs cross, and since both are
minimal, they cross exactly once. Choose an interval [i, i + Q] in which thèse

graphs cross. Then vt&lt;ult mi+0&lt;î;i+g==î;i + P1&lt;mi + P1 ui+ô + P1~Po) and

Ml+2G + P1-P0 Ml+e + P1&lt;vI+ô4-P1 î;l^2O. Let Wj max (uJt uy) for /&lt;/&lt;

i + g and Wj min (m; + Pt - Po, v;) for i + g-s/^i+2g. Then
Pt 4- Po. Define w, for ail j, by requiring ^v/+2(2 &gt;v7 + Pj 4- Po. Then

(2g) l[h(u VÎ/,,...,MV vi+q) + Mw AU,,...,MA Vf+ô)]

This complètes Aubry&apos;s proof of the strict convexity of A.

§5. Minimal measures

An orbit is û&gt;-(resp. a-) récurrent in the sensé of topological dynamics if it
cornes back arbitrarily close to itself under forward (resp. backward) itération.
Let f €0*1. By the theory of Aubry, as generalized by Bangert [2], a minimal
orbit offis ar-recurrent if and only if it is co -récurrent, and the set of ail récurrent
minimal orbits of rotation number co is a closed subset of the cylinder, which we
will dénote RMm ~RMm{f). Moreover, if co is irrational, then \im is uniquely
defined and RMm — supp fim ; if co is rational, RMm is the union of ail minimal
periodic orbits of rotation number co.

Recall that a number A is said to be a sub-derivative of A Aj at co if the Une

in the plane of slope A through (cofA(co)) lies below graph A; such a
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sub-derivative exists at each point, since A is convex, as we proved in the last
section. Throughout this section, / will be a fixed élément of &amp;l. We will prove
the main resuit of this paper:

PROPOSITION. If X is a sub-derivative of Aj at co, then an f-invariant
probability measure fi minimizes A(f} fi) - Ap(/, fi) if and only if supp fi c: RMm.

We will call an /-invariant probability measure minimal if it minimizes

A(f, fi) — Ap(/, fi) for some real number A.

Note that if fi is an/-invariant probability measure with support in RMœ, then

A(f, fi) A((o) and p(/, fi) &lt;o. In fact, if o&gt; is irrational then fi fimf and if o&gt; is

rational then fi is in the closed convex hull of invariant probability measures
supported on periodic orbits of rotation number co.

Consequently, to prove the proposition, it is enough to prove that if fi is an
/-invariant probability measure, then A(f, fi) — Ap(/, fi) &gt; A(co) — Xwy with
equality if and only if supp fi a RMW.

In fact, it is enough to consider ergodic measures. Recall that an /-invariant
probability measure fi is said to be ergodic if every /-invariant Borel set has

fi -measure 0 or 1. We assert that to prove the proposition, it is enough to show
that if fi is an ergodic /-invariant probability measures then A(f, fi) - Ap(/, fi) &gt;

A(co) — ko)t with equality if and only if supp fi c RMœ.
This réduction to ergodic measures is a conséquence of well known facts in

functional analysis, together with our discussion of the average action in §2. We
recall the relevant results.

The space of Borel probability measures on a compact metric space X is a

compact, convex subset of the dual C(X)* of the Banach space C(X) of
continuous fonction on X with the sup norm, where C(X)* is provided with the
weak topology defined by C(X). If T:X-^&gt;X is a continuous mapping, the set of
T-invariant probability measures is compact and convex. A T-invariant probability

measure fi is ergodic if and only if it is an extremal point of the set of ail
T-invariant probability measures. Since the set of T-invariant probability
measures is compact and convex, it is the closed convex hull of the set of its
extremal points, i.e. of the ergodic measures, by the Krein Milman theorem.

To apply thèse gênerai results to our situation, we take for X the end

compactification S2 of the cylinder. This is the union of the cylinder and two
points: the bottom end and the top end. It is homeomorphic to the two sphère.
Obviously, /extends to a homeomorphism of S2, which we continue to dénote by

/ By the assumption we made at the outset, the extended homeomorphism /fixes
each end. We extend the définition of A(f, fi) to/-invariant probability measures
on S2, by setting A(f, fi) « +a&gt; if the /i-mass of either end is positive.
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Moreover, ju •—&gt;&gt;!(/, /i) is a lower semi-continuous fonction with values in
R U {&lt;»}, i.e. for every real number a, we hâve that {fi :A(f, fi) &gt; a} is open in
the weak topology on /-invariant probability measures defined by C(S2). This
follows from the formula in §3 for the average action in terms of the ft/s, and the
fact that the A/s are bounded below, since they are continuous and satisfy (fd)
and (H2) of [2], as was verified in the example in [8, §3].

At this point, it is useful to recall that the définition of A(f, fi) dépends on the
choice of coordinates (x, y) on the infinité cylinder, x being defined mod 1, and if
we replace (x, y) by (x, y — Xy) then r\ y dx is replaced by r\

&apos;

(y — À) dx and

A(f, fi) is replaced by A(f, fi) - Xp(f, fi) by the formula we obtained above for
the ambiguity of the average action. Consequently, we hâve that the mapping

fi *-*A(f, fi) — Âp(/, fi) is lower semi-continuous. Obviously, it is also affine.
Since the mapping fi &gt;-*A(f, fi)—Xp(f, fi) is lower semi-continuous and affine

on the compact, convex set of ail /-invariant probability measures, we hâve that
the set of fi which minimize A(J, fi) — Xp(f, fi) is also compact and convex, and
its extremal points are extremal points of the set of ail /-invariant measures, i.e.
they are ergodic measures.

Consequently, if A(f, fi) — Xp(f, fi)^A((o) — Xco for ergodic p, this is also

true for ail ^u ; if equality implies supp fi c RMm for ergodic fi, we also hâve this
implication for ail \x. This complètes our réduction to the case when fi is ergodic.

From now on, we let /ibea fixed ergodic /-invariant probability measure on
the cylinder. As we observed above, it is enough to prove that A(f, fi) -
Àp(/, fi) s: A(o&gt;) — km with equality if and only if supp fi c RM^. We let (x, y) be

a fixed generic point in the plane for fi and set (xt, yt) =fl(x, y). By a &quot;generic

point&quot;, we mean a point such that the Birkhoff sums n&quot;1 EÎm? u(xlf yt) and
n&quot;1 EiTo1 &quot;(*-*&gt; y~d converge $Mudfi, for every continuous fonction u on the
cylinder which is also in Ll(M, fi). The Birkhoff ergodic theorem shows that
/i-almost every point is generic, since the space of fonctions we consider has a

countable dense set with respect to the ZZ-norm.
Since (jc, y) is generic, we hâve

lim (xs — Xi)l\j — i)

and

lim ^ 21 **+i(l«+«» f*I+*+i)/(/ ~ i) &gt;l(/&gt; M),

where we use the formula of §3 for the average action. It follows from the last
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équation that

lim sup h(xJf.

in view of the définition of h as the conjunction of the Aa&apos;s.

For each positive integer N, we let v\N\ —N &lt; j &lt; TV, be a minimal segment of
a configuration with v^ *„ i -N, N. Then

liminf h(x.N,. xN)l2N&gt; lim h(v&lt;?l..., v^)/2N A(p(ft j*)),

by the estimate for h(xt,. x;) when (xn jc;) is minimal, given at the
beginning of §4.

The last two inequalities yield A(f, [i)&gt;A(p(f, ju)). Since A is a sub-
derivative of A at œ, we obtain A(f, /i) — Ap(/, ju) ^ A(p(f, n)) — Ap(/, ]u) ^
A((o) - ko. This is the first assertion we need to prove in order to prove the
proposition; it remains to prove that suppju czRM^ when A(f, ju) — Ap(/, ju)

A((o) — kco.

In this case, the inequalities we just obtained become équations, i.e.
A(f, ju) — Ap(/, fi) A(p(f, ju)) — Ap(/, ju) A(û&gt;)~ Aco. Since A is a sub-
derivative of &gt;1 at a), it follows that p(/, /i) a&gt;. Consequently, A(f, jâ)=:A(ù)).

At this point, we hâve to recall the real valued function tym of a real variable
which we introduced in [7]. It is a monotone non-decreasing function satisfying
t/&gt;û,(f + 1) ^(0 + 1 which is continuous from the left and has the property that
its derivative dtp^^ldt (which may be thought of as a measure on R/Z by
monotonicity and periodicity) is the projection of /im on R/Z. For identification

purposes, we remark that %pm is the generalized inverse of ^ in the sensé that
graph if&gt;w is the reflection of graph &lt;/&gt;œ about the t — x axis. Hère, 0W is the
function of [6] which minimizes /£,(&lt;£) l\h(&lt;f&gt;{i), &lt;/&gt;(t + o)))dt; in Aubry&apos;s

terminology, it is a hull function of a minimal configuration of rotation number co.

Note that since \iœ is unique when œ is irrational, ip^ is unique up to addition
of a constant. When &lt;o is rational, there may be more than one choice of xl&gt;mf just
as there may be more than one choice of juw.

When œ is irrational, (Âm is non-atomic; consequently, tp^ is continuous.
Moreover (when œ is irrational), iim&apos;-*juû&gt; weakly when û)r-+(o; consequently,
VV~-»^cu&gt; uniformly. See [7].

Weset

- (O,
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where f(x,y) (x&apos;,y&apos;). Then Ww is a fonction on R2; but, Wn{x + \,y)
Wm(x, y), so it may also be thought of as a fonction on the cylinder (R/Z) x R.

To prove that supp fi c RM^ when A(f, ju) — Ap(/, fi) — A(co) — Àa&gt;, we
consider two cases, depending on whether m is irrational or rational. First, we
consider the case when w is irrational. In this case, we will show that W^ 0

/i-almost everywhere, by contradiction. Let u(7V) be defined in ternis of
(...,*,,...) as before. We then hâve the same inequalities as before. We will
obtain a contradiction by showing that one of thèse inequalities may be replaced
by a strict inequality, viz.,

A(f, n) &gt; lim sup h(x.N,..., xN)/2N
N-+ao

&gt; lim h(v«$,..., v&lt;iP

Since p(/, ju) û&gt;, this will contradict the fact that A(f, ii) — A((o), which we
proved above.

The only thing left to prove (in the case a&gt; is irrational) is the strict inequality.
For this, we use:

LEMMA. Let v be a minimal segment of a configuration, There existe a real
number m&apos; such that no ground configuration of rotation number œf crosses v.

Hère, we use the terminology of Aubry: A ground configuration is a minimal
configuration whose corresponding orbit in the cylinder is récurrent.

Proofofthe lemma. Let U (resp. D) dénote the set of œ&apos; e R for which there
is a ground configuration of rotation number co&apos; crossing v in the upwards
(resp, downwards) direction. It is clear from the Aubry crossing lemma that if
coeD and m&apos;eU then m&lt;m\ Moreover, D and U are open. This is a

conseqeunce of the fact that if û&gt;f-* o) as î -* », then

lim infRMmiiy

Hère, lim inf is the standard notion, associated to convergence in the Hausdorff
topology. See e.g. [10, §§8,12]. The above inclusion is implicit in Aubry&apos;s theory.

Sinee D and U are open and /&gt;&lt;£/, there exists a&gt;&apos; $ D U U.
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To prove the strict inequality above, we use the crossing équation

h{x v yu x v yj) + h(x a yt9 x a yf)

h(xl9 Xj)

Hère, /*/, is the measure on the plane defined in [9, §3]. The sum is taken over ail
rectangles R of the form [xlf yt] x [yl+1, xl+1] with xt &lt;yt and yl+l &lt;xl+1 or of the
form [yt, xt] x [xl+1, yl+1] with yt &lt;xt and xl+1 &lt;yl+1.

We let coN e M be such that no ground configuration of rotation number œN

crosses i/w. This exists by the lemma. We choose an increasing séquence ua,

ao&lt;oc&lt;a2 of ground configurations of rotation number œN with the property
that there is an index ax with ao&lt;a1&lt;a2 such that w*(1) is below t&gt;(Ar) and
war(1)+1 is above vw. We set wf&lt;°&gt;-1 -» and uf(2)+1 +&lt;*&gt;, for ail i. We let

w? u?-i vjc, a uf,

for tf0 ^ or &lt; arx + 1. Applying the crossing équation (a2 — û&apos;q + l)-times, we
obtain

&lt;x(2) a(2)+l
h(x-N&gt;...,xN)+yZh{u«_Nt...,u%)= 2 A(m;\...,^) + SM«).

or(0) cr(O) «

The final sum is taken over an appropriate collection of rectangles R. We will not
need to détermine this collection of rectangles explicitly, although this could be

done, but only use certain properties of it, which will be discussed later. For
a &lt; &lt;*!, we hâve wf u? for i -N, N. For a ocx + 1, we hâve wf xt v(tN\

for i -iV, N. For a &gt; ocx + 1, we hâve &gt;&lt; wf&quot;1, for i -N, AT. Since ua and
u(7V) are minimal, we obtain

h(u°LNy. uaN)&lt;h(w°LN,...

*(v&lt;J»,. t/ff&gt;) ^ fc(w%,... O, or ocx + 1,

A(w^,. uST1) ^ A(»v^n, ...,&lt;), oc &gt; ocx + 1.

From the previous équation, we then obtain

/*(*_„,. xN) - *(t;îîîJ, v»0) ^ 2 ^(«),
R

where the sum is taken over the same collection of rectangles as before.
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Let Ât dénote the contribution to E* iÀh(R) of ail crossings of graph x with
some graph ua between (i, xt) and (i + 1, *,+i), so E/? jU/,(/î)= EiliV A- H graph
w* crosses graph * between (i, *,) and (i +1, jci4.i), we hâve fih([xlt u?] x
[uf+1, *I+J) or jMA([iir, jc,] x [jci+1, iif+1]) as a lower bound for An since in
applying the crossing équation to get the above inequality, we may introduce the
wa&apos;s in any order we wish. Furthermore, we may introduce as many u°&quot;$ as we
wish, since introducing new wa&apos;s can only increase Ei?jU/,(/?). Let &lt;5,w dénote the

supremum of nh([xt, ut] x [ut+u x^]) or iih([ult xt] x [xI+1, wl+1]) over ail ground
configurations u of rotation number coN such that graph u crosses graph x between

(i, xt) and (i + 1, xt+1). We then hâve

by the previous inequality.
Our assumption that Wm does not vanish ju-almost everywhere implies that

there exists a compactly supported continuous fonction a on R with values in
[0,1] and with 0 $ supp a such that JM aWœ d\i &gt; 0. Let K \cd \ + max |supp a| +
3. By (ifi) and (H5) of [8], there exists a positive constant p0 such that
lAh&gt;podx dx&apos; on {\x&apos; — x\ ^ iiC}. If Ww(xn yt) e supp a and iV is large enough, we
hâve ôP^poO*,-*,)(*i+i ~w*+i)- This is because |al+1 —11,-0) |^1, for N
large enough, since Q)N^*co as iV—?&lt;» and o&gt; is irrational, and because

\xt+1~xt ~&lt;o|&lt;max|suppa| + 2, since Wm(xt, yt)e supp cr. Therefore, the
relevant rectangle, [jc,, ut] x [mi+1, oci+1] or [ut, xt] x [jrl+1, wl+1], is in {\xf -x\&lt;K}
and we obtain 6{/v)^Po(iij—^i)(jci+i —n#+i), as asserted. Moreover, this
inequality is valid for any ground configuration u such that graph u crosses graph x
between (i, xt) and (i + 1, *l+1).

In order to get a good lower bound for ô$N), we choose u by setting
+i) - (i + 1)û&gt;*&gt; ï (r + r&apos;)/2, and u,

min {^«,(^) - 4&gt;m(i) :tf -1 &gt; min (|supp a

Since iw is irrational, ^ is strictly increasing. Since O^suppa, we then hâve
ô&gt;0. For N large enough, and Wm(xt,yt)€$uppo, we hâve \ut-xt\, \ut+x~
jtJ+1| ziôi This is because *Pa&gt;(N)-* *» uniformly, as iV-*a&gt;. This convergence is

valid because o&gt; is irrational. It follows immediately from the fact that
tya&gt;(N)-&gt; il&gt;a&gt;&gt; uniformly, which is a conséquence of the uniqueness of the élément
minimizing t(fw, proved in [7],



Minimal measures 393

Thus, we hâve ô$N) &gt; poô2 &gt; 0, when N is large enough (independently of ï)
and *Fœ(xt, y,) e supp a. The density in Z of the set of i for which Vm(xit yt) €

supp a is &gt; jM oWa dp &gt; 0, since (x, y) is jU-generic and a ^ 1. It follows that

lim inf [h(x-N,.. xN) — h(v^,..., v

N

^ lim inf 51

Thus, we hâve obtained the strict inequality which was required to contradict our
hypothesis that W^ does not vanish jU-almost everywhere.

For any orbit (xl9 yt),. on which Wm vanishes, we hâve that
WOO ~ m is a constant t, and hence &lt;f&gt;m(t + a&gt;i—) ^xt ^ &lt;f&gt;œ(t + a&gt;/4-). It follows
that such an orbit is forward and backward asymptotic to an orbit in supp/i^.
Since Wm 0, /i-almost everywhere, as we hâve just proved, it follows that
supp fi &lt;= supp fia RMœ. This complètes the proof when co is irrational.

Now we consider the case when co is rational, say ci) ^p/q. To show that
supp fi c RMm, we may reduce to the case co 0 by replacing / by fq and / by
f*T~p9 where T(x, y) (jc +1, y). We hâve p(fqT~p, ]u) 9p(/, ^)~P =0,

where the constant C of intégration is the same in the two cases. Moreover, the
assumption that fi is /-invariant implies that it is also /^-invariant, and the
assumption that / is in &amp;1 implies that fq is in 91. Thus to prove that
supp fi c RMm(f) when a&gt; is rational, it is enough to consider the case co 0.

It will be convenient to assume minx h(x, x) 0. Since h is determined only up
to addition of a constant, we may assume this. Under this assumption, A0) 0.

Since fi is ergodic and has rotation number 0, we hâve

N
lim xji 0, lim 2 A(*«&gt; xt

By (3.4) of [9], we hâve

S h(x,,x,+1)/2N= 2 Kx,,x,)/2N

2

where 4; is the triangle {(y, *):*,&lt;)&gt;&lt;z^jcf+i} or
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according to whether xt or xl+1 is greater. Since \iml^f±QOxl/i 0, the limit of the
second terni on the right vanishes. The other two terms on the right are
non-negative, so their limits vanish, too. Since the limit of the third term
vanishes, the density in the integers of {i :\xl+1-xt\ &gt;e} vanishes, for every
£&gt;0. Since the limit of the first term vanishes, {i:h(xt, xt)&gt;e} also has

vanishing density, for every e &gt; 0. Since (x, y) is jU-genenc, thèse facts imply that
supp ju c {(x, y) :h(x, *) 0 and y -dxh{xf x) d2h(x, x)} RMQ.

This complètes the proof of the proposition stated at the beginning of this
section.
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