Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 64 (1989)

Artikel: Les valeurs propres inférieures à 1/4 des surfaces de Riemann de petit

rayon d'injectivité.

Autor: Colbois, Bruno / Courtois, Gilles

DOI: https://doi.org/10.5169/seals-48951

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les valeurs propres inférieures à 1/4 des surfaces de Riemann de petit rayon d'injectivité

Bruno Colbois* et Gilles Courtois

0. Introduction

Dans ce travail, on étudie le comportement des petites valeurs propres d'une famille de surfaces de Riemann S_{ε} , de genre fixé g, dont certaines géodésiques fermées dégénèrent, c'est-à-dire dont la longueur tend vers 0. "Petite" valeur propre signifie valeur propre λ telle que $0 \le \lambda < \frac{1}{4}$. On sait, [Bu1], qu'elles sont en nombre fini, inférieur ou égal à 4g-3. Intuitivement, les surfaces S_{ε} "convergent" vers une surface limite S non compacte, de volume fini, non nécessairement connexe; exemple voir Fig. 1. On montre que le passage à la limite se fait de façon continue pour les valeurs propres λ de S_{ε} , $0 \le \lambda < \frac{1}{4}$.

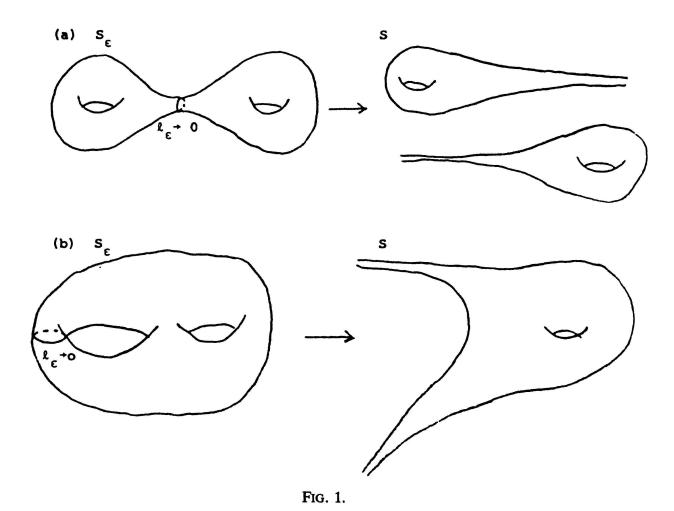
Précisément, chaque surface S_{ε} se décompose en pantalons hyperboliques, i.e. $S_{\varepsilon} = P_1^{\varepsilon} \cup \cdots \cup P_n^{\varepsilon}$, n = 2g - 2, où chacune des géodésiques $\gamma_{i,j}^{\varepsilon}$, j = 1, 2, 3, d'un pantalon P_i^{ε} est recollée à une géodésique $\gamma_{i',j'}^{\varepsilon}$ de même longueur $(l(\gamma_{i,j}^{\varepsilon}) = l(\gamma_{i',j'}^{\varepsilon}))$ d'un autre pantalon.

La famille de surfaces S_{ε} dégénère lorsqu'une partie fixée des couples $\{\gamma_{i,j}^{\varepsilon}, \gamma_{i',j'}^{\varepsilon}\}$ de géodésiques identifiées vérifie $l(\gamma_{i,j}^{\varepsilon}) = l(\gamma_{i',j'}^{\varepsilon}) \to 0$ pour $\varepsilon \to 0$, alors que tous les autres couples $\{\gamma_{k,1}^{\varepsilon}, \gamma_{k',1'}^{\varepsilon}\}$ de géodésiques identifiées sont de longueur constante indépendante de ε , $l(\gamma_{k,1}^{\varepsilon}) = l(\gamma_{k'1'}^{\varepsilon}) = l_{k,1}$.

La surface "limite" S admet une décomposition en pantalons (éventuellement non compacts) $S = P_1 \cup \cdots \cup P_n$, où P_i est obtenu à partir de P_i^{ε} de la façon suivante: les trois géodésiques $\gamma_{i,j}$, j=1, 2, 3, du pantalon P_i sont de longueur $l(\gamma_{i,j}) = \lim_{\varepsilon \to 0} l(\gamma_{i,j}^{\varepsilon})$, le cas $l(\gamma_{i,j}) = 0$ correspondant à un cusp. Les identifications entre les géodésiques $\gamma_{i,j}$ des P_i de longueur non nulle sont les mêmes que les identifications entre les $\gamma_{i,j}^{\varepsilon}$ des P_i^{ε} .

La surface S n'est pas nécessairement connexe et est non compacte. Au delà de $\frac{1}{4}$ son spectre est essentiel, cf. [Dy]. Notons $0 = \mu_1 = \cdots = \mu_m < \mu_{m+1} \le \cdots \le \mu_M < \frac{1}{4}$ les valeurs propres de S inférieures à $\frac{1}{4}$. Remarquons que la multiplicité m

^{*} Durant l'élaboration de ce travail, le premier auteur bénéficiait d'une bourse de la Fondation Pierre Mercier.



de la valeur propre 0 correspond au nombre de composantes connexes de S. On ne sait pas si génériquement 0 est la seule valeur propre de S.

Notons $0 = \lambda_1^{\varepsilon} < \lambda_2^{\varepsilon} \le \cdots \le \lambda_N^{\varepsilon} < \frac{1}{4} \le \lambda_{N+1}^{\varepsilon}$ les valeurs propres de S_{ε} . A priori, N dépend de ε .

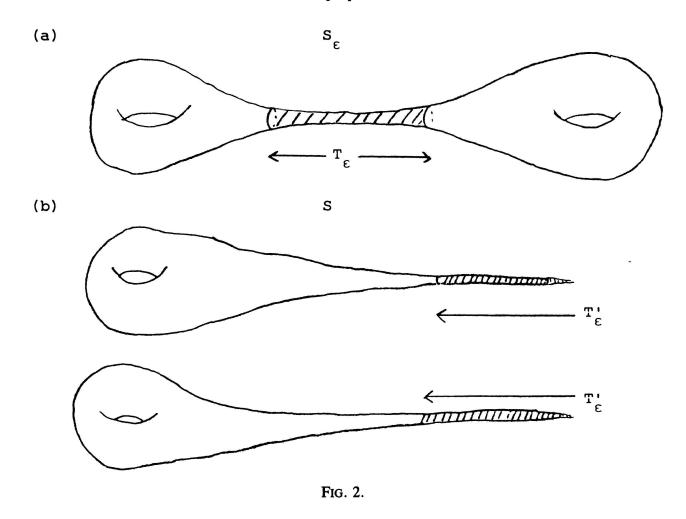
Nous allons prouver le résultat suivant:

THÉORÈME 01. Lorsque ε est assez petit, S_{ε} a au moins autant de valeurs propres que S appartenant à l'intervalle $[0, \frac{1}{4}[$, i.e. $N \ge M$, et de plus: $\lim_{\varepsilon \to 0} \lambda_k^{\varepsilon} = \mu_k$ pour $k \le M$ et $\lim_{\varepsilon \to 0} \lambda_k^{\varepsilon} = \frac{1}{4}$ pour k > M.

Remarque 02. En particulier, pour $k \le m$ on obtient $\lim_{\varepsilon \to 0} \lambda_k^{\varepsilon} = 0$. Ce résultat est conséquence du théorème de Schoen-Wolpert-Yau [S-W-Y]. Dans ce cas, on peut calculer le comportement asymptotique de λ_k^{ε} en fonction des longueurs des géodésiques tendant vers 0, [Br], [C-C], [Cs1], [Cs2].

Remarque 03. Dans [B-B-D] les auteurs obtiennent entre autre que, pour m = 1, $\lim_{\epsilon \to 0} \sup \lambda_2^{\epsilon} \ge \mu_2$.

La preuve du théorème 01 comporte les trois étapes suivantes.



Etape 1. Chaque fonction propre f^{ε} de S_{ε} de valeur propre inférieure à $\frac{1}{4}$ strictement est de H^1 -norme de plus en plus petite autour de chaque géodésique dont la longueur tend vers 0. Précisément, il existe un voisinage tubulaire dont le rayon tend vers l'infini lorsque $\varepsilon \to 0$ autour de chacune de ces géodésiques tel que la H^1 -norme de la fonction propre de f^{ε} sur la réunion T_{ε} de ces voisinages tende vers 0 avec ε . (Fig. 2a)

Etape 2. Toute fonction propre de la surface limite S de valeur propre inférieure à $\frac{1}{4}$ est de H^1 -norme de plus en plus petite sur des voisinages T'_{ε} de plus en plus fins de l'infini sur chaque cusp (Fig. 2b).

Etape 3. On peut choisir T_{ε} et T'_{ε} de sorte qu'il existe une quasi-isométrie entre $S_{\varepsilon} \setminus T_{\varepsilon}$ et $S \setminus T'_{\varepsilon}$ dont le rapport tend vers 1 lorsque $\varepsilon \to 0$. Cette quasi-isométrie et les étapes 1 et 2 permettent d'associer à toute fonction propre de S_{ε} de valeur propre inférieure à $\frac{1}{4}$ une fonction de S sans changer beaucoup le quotient de Rayleigh et réciproquement. Le principe du minimax permet alors de comparer les μ_k aux λ_k .

1. Etape 1. Comportement des fonctions propres de S_{ε}

Soit $\gamma_{i,j}^{\varepsilon}$ une géodésique dont la longueur tend vers 0 avec ε . D'après le Lemme du Collier [RI], il y a un cylindre $C_{i,j}^{\varepsilon}$ sur lequel la métrique s'écrit en coordonnées de Fermi:

$$ds^2 = dr^2 + \varepsilon_{i,i}^2 ch^2 r d\theta^2 \qquad 0 \le \theta \le 2\pi, \qquad 0 \le |r| \le \arg ch(1/\pi \varepsilon_{i,i}) \tag{1.1}$$

Fixons dans la suite les indices i, j et notons pour simplifier $\pi \varepsilon_{i,j} = \varepsilon$ (demilongueur de $\gamma_{i,j}^{\varepsilon}$).

Posons $L_{\varepsilon} = (\arg ch \ 1/\varepsilon)^{1/2} \ et \ l_{\varepsilon} = L_{\varepsilon}^{1/2}$.

Notons $T_{i,j}^{\varepsilon} = \{(r, \theta) \in C_{i,j}^{\varepsilon}, |r| < l_{\varepsilon}\}$ le voisinage tubulaire de rayon l_{ε} de $\gamma_{i,j}^{\varepsilon}$

PROPOSITION 1.1. Soit f^{ε} une fonction propre de S_{ε} de valeur propre comprise dans l'intervalle $[0, \frac{1}{4}[telle que ||f^{\varepsilon}||_{H^{1}(S_{\varepsilon})} = 1$. Alors $\lim_{\varepsilon \to 0} ||f^{\varepsilon}||_{H^{1}(T_{i,j}^{\varepsilon})} = 0$.

Preuve. La Proposition 1.1 découle du fait que

$$\lim_{\varepsilon \to 0} \frac{\|f^{\varepsilon}\|_{H^{1}(T_{ij}^{\varepsilon})}}{\|f^{\varepsilon}\|_{H^{1}(C_{ij}^{\varepsilon})}} = 0 \tag{1.2}$$

Afin d'établir (1.2) nous allons développer f^{ε} en série de Fourier et étudier les coefficients de Fourier. Rappelons que toute fonction propre f^{ε} se développe en série de Fourier sur $C_{i,j}^{\varepsilon}$

$$f^{\varepsilon}(r, \theta) = a_0^{\varepsilon}(r) + \sum_{n=1}^{\infty} \left(a_n^{\varepsilon}(r) \cos n\theta + b_n^{\varepsilon}(r) \sin n\theta \right) \tag{1.3}$$

et compte tenu de l'équation $\Delta f^{\varepsilon} = \lambda^{\varepsilon} f^{\varepsilon}$ les coefficients de Fourier a_n^{ε} et b_n^{ε} vérifient l'équation différentielle.

$$\Phi'' + \operatorname{thr} \Phi' + \left(\lambda^{\varepsilon} - \frac{n^2}{\varepsilon^2 c h^2 r}\right) \Phi = 0 \tag{1.4}$$

Les conditions au bord étant déterminées par les valeurs de f^{ε} et de $\partial f^{\varepsilon}/\partial r$ sur les bords de $C_{i,i}^{\varepsilon}$.

$$||f^{\varepsilon}||_{L^{2}(\{|r|<\gamma\})}^{2} = \varepsilon \int_{-\gamma}^{\gamma} \left(\sum_{n=0}^{\infty} \left(a_{n}^{2} + b_{n}^{2}\right)\right) chr$$

$$(1.5)$$

$$\|\nabla f^{\varepsilon}\|_{L^{2}(\{|r|<\gamma\})}^{2} = \varepsilon \left(\int_{-\gamma}^{\gamma} \left(\sum_{n=0}^{\infty} (a_{n}^{\prime 2} + b_{n}^{\prime 2}) \right) chr + \int_{-\gamma}^{\gamma} \sum_{n=1}^{\infty} n^{2} (a_{n}^{2} + b_{n}^{2}) ch^{-1} r \varepsilon^{-2} \right)$$
(1.6)

où $a_n = a_n^{\varepsilon}(r)$; $b_n = b_n^{\varepsilon}(r)$ et $a_0 = b_0 = a_0^{\varepsilon}(r)$. Comme dans [C-H] p 292, en posant

$$u(r) = ch^{1/2}r \Phi(r)$$
, (1.4) se transforme en (1.7)

$$u'' = \left(\left(\frac{1}{4} - \lambda^{\varepsilon} \right) + \frac{1}{4ch^2 r} + \frac{n^2}{\varepsilon^2 ch^2 r} \right) u \tag{1.8}$$

ainsi, en posant $\alpha_n = ch^{1/2}r$ a_n et $\beta_n = ch^{1/2}r$ b_n pour $n \ge 0$ les relations (1.5) et (1.6) s'écrivent:

$$||f^{\varepsilon}||_{L^{2}(\{|r|<\gamma\})}^{2} = \varepsilon \int_{-\gamma}^{\gamma} \left[\sum_{n=0}^{\infty} \left(\alpha_{n}^{2} + \beta_{n}^{2}\right) \right] dr \tag{1.9}$$

$$\|\nabla f^{\varepsilon}\|_{L^{2}(\{|r|<\gamma\})}^{2} = \varepsilon \left(\int_{-\gamma}^{\gamma} \left(\frac{th^{2}r}{4} \left[\sum_{n=0}^{\infty} (\alpha_{n}^{2} + \beta_{n}^{2}) \right] + \sum_{n=0}^{\infty} (\alpha_{n}^{\prime 2} + \beta_{n}^{\prime 2}) \right. \right.$$
$$\left. - thr \left[\sum_{n=0}^{\infty} (\alpha_{n}\alpha_{n}^{\prime} + \beta_{n}\beta_{n}^{\prime}) \right] + \sum_{n=0}^{\infty} n^{2}(\alpha_{n}^{2} + \beta_{n}^{2})ch^{-2}r\varepsilon^{-2} \right) \right) \quad (1.10)$$

Nous allons déduire (1.2) de (1.9), (1.10) et du

LEMME 1.2. Soient χ_{ε} et X_{ε} deux nombres positifs tels que $\lim_{\varepsilon \to 0} \chi_{\varepsilon}/X_{\varepsilon} = 0$ et $\lim_{\varepsilon \to 0} \chi_{\varepsilon} = \infty$, et une famille de fonctions $v_{\varepsilon} \in C^{\infty}([0, X_{\varepsilon}])$ telle que v_{ε} soit positive et strictement croissante sur $[0, X_{\varepsilon}]$. Alors $\lim_{\varepsilon \to 0} \int_{0}^{\chi_{\varepsilon}} v_{\varepsilon}/\int_{0}^{X_{\varepsilon}} v_{\varepsilon} = 0$

Preuve du lemme. On a

$$0 \leq \int_{0}^{\chi_{\varepsilon}} v_{\varepsilon} / \int_{0}^{X_{\varepsilon}} v_{\varepsilon} \leq \int_{0}^{\chi_{\varepsilon}} v_{\varepsilon} / \int_{\chi_{\varepsilon}}^{X_{\varepsilon}} v_{\varepsilon}$$
$$\leq v_{\varepsilon} (\chi_{\varepsilon}) \cdot \chi_{\varepsilon} / v_{\varepsilon} (\chi_{\varepsilon}) (X_{\varepsilon} - \chi_{\varepsilon}) = \chi_{\varepsilon} / (X_{\varepsilon} - \chi_{\varepsilon}). \quad \blacksquare$$

Soient $s_n(r)$ (resp. $c_n(r)$) la solution de (1.8) telle que $s_n(0) = 0$, $s'_n(0) = 1$ (resp. $c_n(0) = 1$, $c'_n(0) = 0$). Les fonctions $\{s_n(r), c_n(r)\}$ forment une base de l'espace des solutions de (1.8). Notons que c_n et s'_n sont des fonctions paires et que s_n et c'_n sont impaires du fait de la parité du coefficient de l'équation différentielle (1.8).

On a

$$\alpha_n = A_n c_n + A_n' s_n \tag{1.11}$$

$$\beta_n = B_n c_n + B_n' s_n \tag{1.12}$$

$$\varepsilon^{-1} \|f^{\varepsilon}\|_{H^{1}(\{|r|| < \gamma\})}^{2} = \int_{-\gamma}^{\gamma} \sum_{n=0}^{\infty} (A_{n}^{2} + B_{n}^{2}) \varphi_{n} + (A_{n}^{\prime 2} + B_{n}^{\prime 2}) \psi_{n}$$
 (1.13)

où

$$\varphi_n = c_n^2 \left(1 + \frac{th^2 r}{4} + \frac{n^2}{\varepsilon^2 ch^2 r} \right) + c_n'^2 - thrc_n c_n'$$

et

$$\psi_n = s_n^2 \left(1 + \frac{th^2r}{4} + \frac{n^2}{\varepsilon^2 ch^2 r} \right) + s_n^{\prime 2} - thrs_n s_n^{\prime}.$$

Le fait que $|thr c_n c'_n| \le \frac{1}{2}(c_n^2 + c'_n^2)$ implique

$$\frac{1}{2} \left[c_n^2 \left(1 + \frac{n^2}{\varepsilon^2 c h^2 r} \right) + c_n^{\prime 2} \right] \le \varphi_n \le \frac{7}{4} \left[c_n^2 \left(1 + \frac{n^2}{\varepsilon^2 c h^2 r} \right) + c_n^{\prime 2} \right]$$
(1.14)

 ψ_n vérifie une inégalité analogue avec (s_n, s'_n) à la place de (c_n, c'_n) . On obtient donc

$$\int_{0}^{\gamma} \psi(r) \leq \varepsilon^{-1} \|f^{\varepsilon}\|_{H^{1}\{|r| < \gamma\}}^{2} \leq \frac{7}{4} \int_{0}^{\gamma} \psi(r)$$
 (1.15)

où

$$\psi(r) = \psi_{\varepsilon}(r) = \sum_{n=0}^{\infty} (A_n^2 + B_n^2) \left[c_n^2 \left(1 + \frac{n^2}{\varepsilon^2 c h^2 r} \right) + c_n'^2 \right] + (A_n'^2 + B_n'^2) \left[s_n^2 \left(1 + \frac{n^2}{\varepsilon^2 c h^2 r} \right) + s_n'^2 \right].$$

de (1.15) on déduit:

$$\frac{\|f^{\varepsilon}\|_{H^{1}(\{|r|< l_{\varepsilon}\})}^{2}}{\|f^{\varepsilon}\|_{H^{1}(\{|r|< L_{\varepsilon}\})}^{2}} \leq \frac{7}{4} \frac{\int_{0}^{l_{\varepsilon}} \psi(r)}{\int_{0}^{L_{\varepsilon}} \psi(r)}$$

 c_n et s_n vérifiant (1.8), les fonctions $\{c_n^2, c_n'^2, s_n^2, s_n'^2\}_{n \ge 0}$, $\{c_n^2/\varepsilon^2 ch^2 r, s_n^2/\varepsilon^2 ch^2 r\}_{n \ge 1}$ sont positives croissantes sur $[0, L_{\varepsilon}]$. ((1.8) implique en particulier que pour $n \ge 1$ $c_n'' \ge c_n$, $s_n'' \ge s_n$ sur $[0, L_{\varepsilon}]$. Comme chr'' = chr, shr'' = shr Sturm-Liouville montre que c_n/chr et s_n/chr sont croissantes). On se trouve ainsi dans les hypothèses du Lemme 1.2. On déduit ainsi

$$\lim_{\varepsilon \to 0} \frac{\|f^{\varepsilon}\|_{H^{1}(T_{ij})}^{2}}{\|f^{\varepsilon}\|_{H^{1}(C_{ij})}^{2}} = 0$$

2. Etape 2. Comportement des fonctions propres sur les cusps

Soit S une surface à courbure -1, de volume fini, avec des cusps. Considérons une fonction propre S de valeur propre $\lambda < \frac{1}{4}$. Nous allons montrer que la H^1 -norme de f tend vers 0 sur l'extrémité des cusps.

Rappelons qu'un cusp C admet la métrique:

$$ds^2 = dr^2 + e^{-2r} d\theta^2, \qquad 0 < r < \infty \ \theta \in [0, 2\pi]$$
 (2.1)

Notons $U_{\varepsilon} = \{(r, \theta) \mid r \ge r_{\varepsilon}, \text{ avec } \lim_{\varepsilon \to 0} r_{\varepsilon} = \infty\}$

LEMME 2.1. Soit f une fonction propre de S telle que

$$||f||_{H^1(S)} = 1$$

Alors $\lim_{\epsilon \to 0} ||f||_{H^1(U_{\epsilon})} = 0$

Ce lemme est conséquence du théorème de convergence dominée de Lebesgue.

3. Une quasi-isométrie

3.1. On a vu que la H^1 -norme des fonctions de S tend vers 0 à l'extrémité W_{ε} des cusps et que, d'autre part, la H^1 -norme des fonctions propres associées aux valeurs propres inférieures à $\frac{1}{4}$ tend vers 0 sur un voisinage T_{ε} des géodésiques dont la longueur tend vers 0.

On a la situation de la Figure 3.

On va montrer qu'il existe une quasi-isométrie φ_{ε} de rapport k_{ε} entre $S-W_{\varepsilon}$ et $S_{\varepsilon}-V_{\varepsilon}$ avec $\lim_{\varepsilon\to 0}k_{\varepsilon}=1$. Cette quasi-isométrie sera définie pantalon par pantalon. Sur les pantalons P_{i}^{ε} bordés par des géodésiques de longueur constante (i.e tels que $P_{i}^{\varepsilon}=P_{i}\forall \varepsilon$) on identifie naturellement P_{i}^{ε} et P_{i} .

Sur les pantalons P_i^{ε} dont au moins une des géodésiques du bord a une longueur qui tend vers 0, on procède de la façon suivante. Il y a trois cas selon que une, deux ou trois géodésiques voient leur longueur tendre vers zéro (voir Fig. 3 pour le cas d'une longueur tendant vers zéro) mais la méthode est la même dans chacun de ces trois cas.



Soient

$$\bar{P}_{\varepsilon} = \{(r, \theta) \mid (l_{\varepsilon}/2) < r < D_{\varepsilon}\} \bar{P}_{\varepsilon}, \hat{P}_{\varepsilon} \subset P_{\varepsilon}
\bar{P}_{\varepsilon} = P_{\varepsilon} \setminus \{(r, \theta) \mid r < D_{\varepsilon}\}
\bar{P} = \{(r, \theta) \mid 0 < r < D'_{\varepsilon}\}
\bar{P} = P \setminus \{(r, \theta) \mid r < D'_{\varepsilon}\}
\bar{P}, \hat{P} \subset P$$

Nous allons montrer qu'il existe d'une part une quasi-isométrie $\hat{\varphi}^{\varepsilon}$ de \hat{P}_{ε} sur \hat{P} , identifiant $\partial \hat{P}_{\varepsilon}$ et $\partial \hat{P}$ et d'autre part une quasi-isométrie $\bar{\varphi}^{\varepsilon}$ de \bar{P}_{ε} sur \bar{P} avec la même identification des bords.

La quasi-isométrie φ^{ε} de $P_{\varepsilon} \setminus V_{\varepsilon}$ sur $P \setminus W_{\varepsilon}$ s'obtient alors en recollant $\hat{\varphi}^{\varepsilon}$ et $\bar{\varphi}^{\varepsilon}$.

3.2. Construction de $\bar{\varphi}^{\varepsilon}$

Rappelons que sur \bar{P}_{ε} on a la métrique

$$g_1 = dr^2 + \left(\frac{\varepsilon}{\pi}\right)^2 ch^2 r d\theta^2 \qquad l_{\varepsilon}/2 \le r \le D_{\varepsilon}, \qquad 0 \le \theta \le 2\pi$$
 (3.1)

et sur \bar{P} la métrique:

$$g_2 = dr^2 + \alpha_{\varepsilon}^2 e^{2r} d\theta \qquad 0 \le r \le D_{\varepsilon}', \qquad 0 \le \theta \le 2\pi$$
 (3.2)

Au moyen d'une translation de $l'_{\varepsilon} = l_{\varepsilon}/2$, la métrique sur \bar{P}_{ε} s'écrit:

$$g_3 = dr^2 + \alpha_{\varepsilon}^2 \left(e^{2r} \frac{(1 + thl_{\varepsilon}')^2}{4} + e^{-2r} \frac{(1 - thl_{\varepsilon}')^2}{4} + \frac{1}{2} (1 - th^2 l_{\varepsilon}') \right) d\theta^2$$

$$0 \le \theta \le 2\pi, \ 0 \le r \le D_{\varepsilon} - l_{\varepsilon}/2. \tag{3.3}$$

Posons $c_{\varepsilon} = D_{\varepsilon}'/(D_{\varepsilon} - l_{\varepsilon}/2)$. On définit la quasi-isométrie $\bar{\varphi}_{\varepsilon}$ par:

$$\bar{\varphi}^{\varepsilon} : \bar{P}^{\varepsilon} \to \bar{P}$$

$$(r,\theta) \to (c_{\varepsilon}r, \theta) \tag{3.4}$$

La métrique induite sur \bar{P}^{ε} via $\bar{\varphi}^{\varepsilon}$ est

$$g_4 = c_{\varepsilon}^2 dr^2 + \alpha_{\varepsilon}^2 e^{2c_{\varepsilon}r} d\theta$$

Il s'agit de comparer g_4 à g_3 en examinant le rapport $g_4(r, \theta)/g_3(r, \theta)$ En fait on voit:

$$\frac{1}{k_{\varepsilon}} \leq \frac{g_4}{g_3} \leq k_{\varepsilon} \quad \text{avec} \quad \lim_{\varepsilon \to 0} k_{\varepsilon} = 1 \tag{3.5}$$

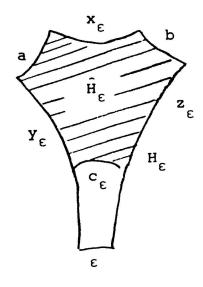
En effet $\lim_{\varepsilon\to 0} c_{\varepsilon} = 1$ et $e^{2(c_{\varepsilon}-1)r}$ converge uniformément vers l'intervalle $[0, D_{\varepsilon} - l_{\varepsilon}/2]$.

3.3. Construction de $\hat{\varphi}^{\varepsilon}$. Le pantalon P_{ε} est obtenu en recollant deux hexagones hyperboliques identiques H_{ε} (Fig. 4a). Il en est de même pour le pantalon P avec deux exemplaires de l'hexagone H (dont un côté est de longueur nulle) (Fig. 4b) On va construire $\hat{\varphi}_{\varepsilon}$ de \hat{H}_{ε} sur \hat{H} . (cf. Fig. 4).

Notations. γ_a , γ_b , $\gamma_{x_{\epsilon}}$, $\gamma_{y_{\epsilon}}$, $\gamma_{c_{\epsilon}}$, γ_x , γ_y , γ_z représentent les géodésiques bordant \hat{H}_{ε} et \hat{H} de longueur a, b, x_{ε} , y_{ε} , z_{ε} , x, y, z. $\gamma_{c_{\varepsilon}}$ et γ_c représente le bord de \hat{P}_{ε} dans P_{ε} [resp. \hat{P} dans P] (cf. Fig. 3) de longueur 1. Notons que $\gamma_{c_{\varepsilon}}$ et γ_c ne sont pas des géodésiques. γ_c est un horocycle et $\gamma_{c_{\varepsilon}}$ est une parallèle à la base du pantalon P_{ε} de longueur 2ε .

Des calculs standards de trigonométrie hyperbolique (voir [Bd], [Bu2]) montrent que

$$\lim_{\varepsilon\to 0} (x_{\varepsilon}, y_{\varepsilon}, z_{\varepsilon}) = (x, y, z).$$



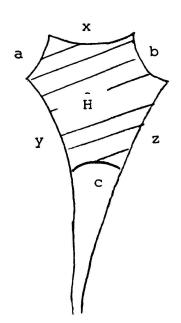


FIG. 4.

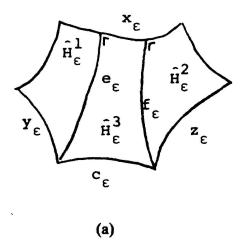
En premier lieu, φ_{ε} va identifier les côtés de même longueur (a et b respectivement) de \hat{H}_{ε} et \hat{H} .

La valeur de $\hat{\varphi}_{\varepsilon} \mid \gamma_{c_{\varepsilon}}$ est également imposée par la construction de $\bar{\varphi}_{\varepsilon}$ qui est déjà définie sur $\gamma_{c_{\varepsilon}}$.

Pour construire $\hat{\varphi}_{\varepsilon}$ on sépare \hat{H}_{ε} et \hat{H} en trois parties (Figs. 5a et 5b) au moyen de segments géodésiques $\gamma_{e_{\varepsilon}}$, $\gamma_{f_{\varepsilon}}$, γ_{e} , γ_{f} joignant respectivement $\gamma_{x_{\varepsilon}}$ à $\gamma_{y_{\varepsilon}} \cap \gamma_{c_{\varepsilon}}$, $\gamma_{x_{\varepsilon}}$ à $\gamma_{c_{\varepsilon}} \cap \gamma_{z_{\varepsilon}}$, γ_{x} à $\gamma_{y} \cap \gamma_{c}$, γ_{x} à $\gamma_{c} \cap \gamma_{z}$, et orthogonaux à $\gamma_{x_{\varepsilon}}$ et γ_{x} .

On note \hat{H}^i_{ε} (resp. \hat{H}^i) ces trois parties.

On va décrire l'application $\hat{\varphi}_{\varepsilon}$ entre $\hat{H}_{\varepsilon}^{j}$ et \hat{H}^{j} , j=1, 2, 3. Faisons-le par exemple pour j=1.



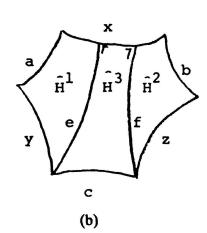
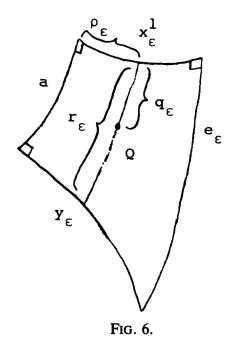


FIG. 5.



Notons x_{ε}^1 (resp. x^1) la longueur de l'intersection de \hat{H}_{ε}^1 avec $\gamma_{x_{\varepsilon}}$ (resp. de \hat{H}^1 avec γ_x) (Fig. 6)

Soit $Q \in \hat{H}^1_{\varepsilon}$. Soit q_{ε} la distance de Q à $\gamma_{x_{\varepsilon}}$.

Il existe un unique segment géodésique γ_{ε} à $\gamma_{y_{\varepsilon}}$, passant par Q, orthogonal à $\gamma_{x_{\varepsilon}}$.

Notons r_{ε} la longueur de ce segment, ρ_{ε} la distance du pied de ce segment sur $\gamma_{x_{\varepsilon}}$ à γ_a .

Alors Q est univoquement caractérisé par les deux rapports $(\rho_{\varepsilon}/x_{\varepsilon}^{1}, q_{\varepsilon}/r_{\varepsilon})$. $\hat{\varphi}_{\varepsilon}$ enverra γ_{ε} sur une géodésique γ , orthogonale à γ_{x} , telle que la distance du pied de γ sur γ_{x} à γ_{a} soit aussi dans un rapport $\rho_{\varepsilon}/x_{\varepsilon}^{1}$ avec x^{1} . $\hat{\varphi}_{\varepsilon}(Q)$ sera sur γ , dans le même rapport que Q sur le segment γ_{ε} .

Des calculs standards de trigonométrie hyperbolique montrent que $\hat{\varphi}_{\varepsilon}$ ainsi définie est une quasi-isométrie dont le rapport k_{ε} tend vers 1 lorsque $\varepsilon \to 0$.

Remarquons que l'on a bien ainsi l'identité sur γ_a et γ_b . Notons que le cas de $\hat{H}^3_{\varepsilon} \to \hat{H}^3$ est plus délicat, du fait que $\hat{\varphi}_{\varepsilon} \mid \gamma_{c_{\varepsilon}}$ est imposée. L'idée de repérer les points de \hat{H}^3_{ε} au moyen de géodésiques orthogonales à $\gamma_{x_{\varepsilon}}$ reste valable, mais l'image d'une telle géodésique est imposée par $\hat{\varphi}_{\varepsilon} \mid \gamma_{c_{\varepsilon}}$. Cependant le défaut pour $\hat{\varphi}_{\varepsilon} \mid \gamma_{c_{\varepsilon}}$ à être une isométrie est déterminée par $\bar{\varphi}_{\varepsilon} \mid c_{\gamma_{\varepsilon}}$. Cela est lié à la différence entre (3.3) et (3.2). Or cette différence tend vers 1. On obtient alors que $\hat{\varphi}_{\varepsilon} \mid \hat{H}^3_{\varepsilon}$ est une quasi-isométrie dont le rapport tend vers 1 lorsque $\varepsilon \to 0$. Ce qui précède montre la

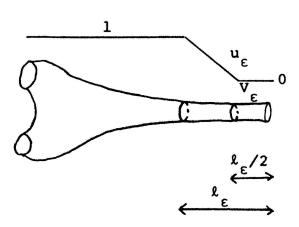
PROPOSITION 3.1. L'application $\varphi_{\varepsilon}: P_{\varepsilon} \setminus V_{\varepsilon} \to P \setminus W_{\varepsilon}$ obtenue en recollant $\hat{\varphi}^{\varepsilon}$ et $\bar{\varphi}^{\varepsilon}$ est une quasi-isométrie dont le rapport k_{ε} tend vers 1 lorsque ε tend vers 0.

4. Preuve du Théorème 01

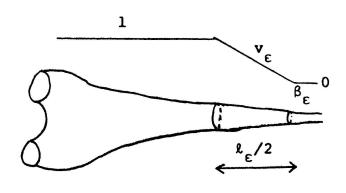
Soite S_{ε} une famille de surfaces comme dans le Théorème 01 et S la surface limite associée. La quasi-isométrie permet de transplanter les fonctions de S sur S_{ε} et réciproquement.

La quasi-isométrie n'étant définie que partiellement de P_i^{ε} sur P_i , on commence par annuler les fonctions sur les voisinages des parties $\gamma_{ij}^{\varepsilon}$ du bord des P_i^{ε} dont la longueur tend vers 0 avec ε (resp. sur les voisinages de l'infini des cusps de P_i)

On le fait en les multipliant au moyen de fonctions u_{ε} et v_{ε} définies sur la Fig. 7 (comparer à la Fig. 3).



 u_e vaut $\begin{cases} 1 \text{ au delà de } l_e \\ 0 \text{ entre } 0 \text{ et } l_e/2 \end{cases}$ et est linéaire entre $l_e/2$ et l_e



 v_{ε} vaut $\begin{cases} 1 \text{ au delà de } l_{\varepsilon}/2 \\ 0 \text{ avant l'horocycle} \end{cases}$ de longueur β_{ε} et est linéaire sur $[o, l_{\varepsilon}/2]$

Fig. 7.

On a le

LEMME 4.1. Soient f_{ε} (resp f) une fonction propre de S_{ε} (resp. de S) telle que $||f_{\varepsilon}||_{H^1(S^{\bullet})} = ||f||_{H^1(S)} = 1$.

Alors $||f_{\varepsilon} - f_{\varepsilon} u_{\varepsilon}||_{H^{1}(S_{\varepsilon})} = o(1) \ pour \ \varepsilon \rightarrow 0$

$$||f - fv_{\varepsilon}||_{H^1(S)} = o(1) \ pour \ \varepsilon \rightarrow 0.$$

(o(1) signifie que le terme de gauche tend vers 0 avec ε)

Preuve. Le résultat provient du fait que $|u_{\varepsilon}|$, $|v_{\varepsilon}|$, $|\nabla u_{\varepsilon}|$, $|\nabla v_{\varepsilon}|$ sont bornés

uniformément et du fait que d'après l'étape 1 et 2, f_{ε} et f tendent vers 0 en H^1 -norme là où u_{ε} et v_{ε} varient et sont nulles.

On peut ainsi associer à chaque fonction propre f_{ε} de S_{ε} (resp. g de S) associée à une valeur propre inférieure à $\frac{1}{4}$ une fonction \bar{f}_{ε} (resp. \bar{g}_{ε}) nulle sur V_{ε} (resp. nulle sur W_{ε}) et dont le quotient de Rayleigh a très peu changé, i.e.

$$\frac{\int_{S_{\epsilon}} |\nabla \bar{f}_{\epsilon}|^{2}}{\int_{S_{\epsilon}} \bar{f}_{\epsilon}^{2}} - \frac{\int_{S_{\epsilon}} |\nabla f_{\epsilon}|^{2}}{\int_{S_{\epsilon}} f_{\epsilon}^{2}} = o(1) \quad \text{pour } \epsilon \to 0$$

$$\left(\operatorname{resp.} \frac{\int_{S} |\nabla \bar{g}_{\epsilon}|^{2}}{\int_{S} \bar{g}_{\epsilon}^{2}} - \frac{\int_{S} |\nabla g|^{2}}{\int_{S} g^{2}} = o(1) \right) \text{pour } \epsilon \to 0$$

Comme $S_{\varepsilon} - V_{\varepsilon}$ et $S - W_{\varepsilon}$ sont quasi-isométriques de rapport tendant vers 1 lorsque $\varepsilon \to 0$, on déduit le théorème 0.1 par le minimax.

5. Quelques remarques

Remarque 1. Le problème étant de nature locale, le résultat est également vrai pour une suite de surfaces S_n convergeant vers une surface à cusps S (composée d'un nombre fini de composantes connexes) au sens où il existe une décomposition de S_n et de S en pantalons telle que les pantalons de S_n convergent vers les pantalons correspondant de S dans un sens évident.

Remarque 2. On pourrait travailler sur des familles de surfaces non compactes (avec cusps et vasques hyperboliques) dégénérant en certains endroits.

Remarque 3. Bien que l'effort ait été porté sur la convergence des valeurs propres, la construction montre que l'on a également une convergence des fonctions propres.

Remarque 4. Les auteurs viennent de prendre connaissance d'un preprint de D. A. Hejhal, cf. [HI2], où le Théorème 0.1 est prouvé par d'autres méthodes.

BIBLIOGRAPHIE

- [Bd] A. F. BEARDON, The geometry of discrete groups, Springer Verlag, Berlin, 1983.
- [Br] M. Burger, Dégénérescence de surface de Riemann et petites valeurs propres, Preprint, Bâle, 1987.
- [B-B-D] M. BURGER, P. BUSER et J. DODZIUK, Riemann surfaces of large genus and large λ_1 , Preprint, 1987.
- [Bu1] P. BUSER, On Cheeger inequality $\lambda_1 \ge h^2/4$, Proc. of Symp. in Pure Math. 36, pp. 29-77, 1980.
- [Bu2] P. Buser, Riemannsche Flächen und Längenspectrum vom trigonometrischen Standpunkt, Aus Habilitationsschrift, Bonn, 1980.
- [Cl] I. CHAVEL, Eigenvalue in riemannian geometry, Academic Press, New York, 1984.
- [Cg] S. Y. CHENG, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143, 1975, pp. 289-297.
- [C-C] B. COLBOIS et Y. COLIN DE VERDIÈRE, Sur la multiplicité de la première valeur propre d'une surface de Riemann à courbure constante, Prépublication de l'Institut Fourier no. 62 (1986). A paraître aux Comm. Math. Helv.
- [Cs1] B. Colbois, Petites valeurs propres du laplacien sur une surface de Riemann compacte et graphes, C. R. Acad. Sci. Paris 301, 1985, pp. 927-930.
- [Cs2] B. Colbois, Sur la multiplicité de la première valeur propre non nulle du laplacien des surfaces à courbure 1, Thèse, Lausanne, 1987.
- [C-H] R. COURANT et D. HILBERT, Methods of Mathematical Physics, Wiley-Interscience I, 1953, II 1962.
- [Dy] H. DONNELLY, On the essential spectrum of a complete riemannian manifold, Topology 20, pp. 1-14, 1981.
- [RI] B. RANDOL, Cylinders in Riemann surfaces, Comm. Math. Helv. 54, pp. 1-5, 1979.
- [S-W-Y] R. SCHOEN, S. WOLPERT et S. T. YAU, Geometric bounds of the low eigenvalues of a compact surface, Proc. symp. Pure Math. 36, pp. 279-285, 1980.
- [HI1] D. A. HEJHAL, A continuity method for spectral theory on Fuchsian groups in: *Modular forms*. Rankin, R. A. (ed), Ellis-Horwood (1984) pp. 107-140.
- [HI2] D. A. HEJHAL, Regular B-groups, degenerating Riemann surfaces and spectral theory, Preprint Chalmers University of Technology and the University of Göteborg (1987).
- [CV] Y. COLIN DE VERDIÈRE, *Résonances*, Séminaire de Théorie Spectrale et Géométrie, Université de Grenoble, Institut Fourier, 1984-85.
- [WT] S. WOLPERT, Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces. Comm. Math. Phys. 112 (1987) 283-315.

B. Colbois
Inst. Math. Univ. Lausanne
et DMA-EPFL
CH 1015 Lausanne, Suisse

G. Courtois
DMA-EPFL
CH 1015 Lausanne, Suisse
et Institut Fourier
B. P. 74
F 38402 St Martin d'Hères,
France