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Les valeurs propres inférieures à 1/4 des surfaces de Riemann de
petit rayon d&apos;injectivité

Bruno Colbois* et Gilles Courtois

0. Introduction

Dans ce travail, on étudie le comportement des petites valeurs propres d&apos;une

famille de surfaces de Riemann Se, de genre fixé g, dont certaines géodésiques
fermées dégénèrent, c&apos;est-à-dire dont la longueur tend vers 0. &quot;Petite&quot; valeur

propre signifie valeur propre A telle que 0 ^ À &lt; \. On sait, [Bul], qu&apos;elles sont en
nombre fini, inférieur ou égal à 4g — 3. Intuitivement, les surfaces Se

&quot;convergent&quot; vers une surface limite S non compacte, de volume fini, non
nécessairement connexe; exemple voir Fig. 1. On montre que le passage à la
limite se fait de façon continue pour les valeurs propres À de Se, 0 ^ À &lt; J.

Précisément, chaque surface SE se décompose en pantalons hyperboliques, i.e.
Se PI U • • • U Pen, n 2g - 2, où chacune des géodésiques yftP j 1, 2, 3, d&apos;un

pantalon Pf est recollée à une géodésique yf\jf de même longueur (/(yf,;)
l(YÎ&apos;,j&apos;)) d&apos;un autre pantalon.

La famille de surfaces Se dégénère lorsqu&apos;une partie fixée des couples

{yfj, yf&apos;tJ&apos;} de géodésiques identifiées vérifie /(yf,y) l(Yr,j)-*0 pour £—»0, alors

que tous les autres couples {y*,i, y*,r} de géodésiques identifiées sont de

longueur constante indépendante de e, /(y|,i) liylv) &apos;m-

La surface &quot;limite&quot; S admet une décomposition en pantalons (éventuellement
non compacts) S PtU - • • UPn, où Pt est obtenu à partir de Pf de la façon
suivante: les trois géodésiques yltP j 1, 2, 3, du pantalon Pt sont de longueur
l(yltJ) lim^o l(yei,i)&gt; Ie cas KYi,j)= 0 correspondant à un cusp. Les identifications

entre les géodésiques yltJ des Pt de longueur non nulle sont les mêmes que les

identifications entre les yffJ des Pf.
La surface S n&apos;est pas nécessairement connexe et est non compacte. Au delà

de \ son spectre est essentiel, cf. [Dy]. Notons O /i1=-=]Um&lt;jLim+1^-^
fiM &lt; | les valeurs propres de 5 inférieures à \. Remarquons que la multiplicité m

* Durant l&apos;élaboration de ce travail, le premier auteur bénéficiait d&apos;une bourse de la Fondation
Pierre Mercier.
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de la valeur propre 0 correspond au nombre de composantes connexes de S. On
ne sait pas si génériquement 0 est la seule valeur propre de S.

Notons 0 Af &lt; Af ^ • • • ^ k% &lt; \ ^ k%+t les valeurs propres de 5e. A priori, N
dépend de e.

Nous allons prouver le résultat suivant:

THÉORÈME 01. Lorsque e est assez petit, Se a au moins autant de valeurs

propres que S appartenant à l&apos;intervalle [0, J[, Le. N**M, et de plus: lime^0 A|
[Âkpour le**M et lim^^o Af J pour k&gt;M.

Remarque 02. En particulier, pour Hmon obtient lime^0A| 0. Ce résultat
est conséquence du théorème de Schœn-Wolpert-Yau [S-W-Y]. Dans ce cas,
on peut calculer le comportement asymptotique de A| en fonction des longueurs
des géodésiques tendant vers 0, [Br], [OC], [OslJ, [Cs2].

Remarque 03. Dans [B-B-D] les auteurs obtiennent entre autre que, pour
m « 1, lime^K) sup Af &gt; fa-

La preuve du théorème 01 comporte les trois étapes suivantes.
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Etape 1. Chaque fonction propre fe de Se de valeur propre inférieure à \
strictement est de H1-norme de plus en plus petite autour de chaque géodésique
dont la longueur tend vers 0. Précisément, il existe un voisinage tubulaire dont le

rayon tend vers l&apos;infini lorsque £—»0 autour de chacune de ces géodésiques tel
que la H^norme de la fonction propre de fe sur la réunion Te de ces voisinages
tende vers 0 avec e. (Fig. 2a)

Etape 2. Toute fonction propre de la surface limite S de valeur propre
inférieure à \ est de H1-norme de plus en plus petite sur des voisinages Tfe de plus
en plus fins de l&apos;infini sur chaque cusp (Fig. 2b).

Etape 3. On peut choisir Te et T&apos;e de sorte qu&apos;il existe une quasi-isométrie
entre Se\Te et S\T&apos;e dont le rapport tend vers 1 lorsque e-*0. Cette quasi-
isométrie et les étapes 1 et 2 permettent d&apos;associer à toute fonction propre de Se

de valeur propre inférieure à J une fonction de S sans changer beaucoup le

quotient de Rayleigh et réciproquement. Le principe du minimax permet alors de

comparer les \ik aux Xk.
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1. Etape 1. Comportement des fonctions propres de S£

Soit yIj vaiG géodésique dont la longueur tend vers 0 avec s. D&apos;après le
Lemme du Collier [RI], il y a un cylindre CftJ sur lequel la métrique s&apos;écrit en
coordonnées de Fermi:

ds2 * dr2 + e\,ch2r dd2 0 *s 6 ^ ln&gt; 0 ^ \r\ ^ arg ch(l/neltJ) (1.1)

Fixons dans la suite les indices i, j et notons pour simplifier neltJ e {demi-
longueur de yIj)*

Posons Le (arg ch Ile)112 et le L\a.
Notons TZi {(r, 6) e CftP \r\ &lt;le} le voisinage tubulaire de rayon le de yftJ

PROPOSITION 1.1. Soir fe une fonction propre de Se de valeur propre
comprise dans l&apos;intervalle [0, \[telle que \\f*\\H\st)~ 1- Alors lime^0 ll/€llHl(rJey) 0.

Preuve. La Proposition 1.1 découle du fait que

0 (1.2)

Afin d&apos;établir (1.2) nous allons développer fe en série de Fourier et étudier les

coefficients de Fourier. Rappelons que toute fonction propre /e se développe en
série de Fourier sur Cfj

fe(r, 0) m ôg(r) + f (««0 *&gt;**e + «W «»nB) (1.3)

et compte tenu de l&apos;équation Âfe~kefe les coefficients de Fourier aen et ben

vérifient l&apos;équation différentielle.

Q (1.4)

Les conditions au bord étant déterminées par les valeurs de fe et de dfe/dr sur les

bords de Cf^

H/*HWi&lt;r» - * f i («5 + &amp;5)W (1.5)

«(f £ «2 + *i2
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où an û£(r); bn b%{r) et a0 b0 * flo(r)- Comme dans [OH] p 292, en posant

u(r) c/t1/2r *(r), (1.4) se transforme en (1.7)

ainsi, en posant &lt;xn chmr an et j8rt =*chmr bn pour n 2*0 les relations (1.5) et
(1.6) s&apos;écrivent:

11/11Wr» e f [ S (^n + Pi)) dr (1.9)

2 K2+^;2)

£ «2(^ + fàch^re-2)) (1.10)

Nous allons déduire (1.2) de (1.9), (1.10) et du

LEMME 1.2. Soient %e et XB deux nombres positifs tels que lim^oXe/^e ^ 0

et lime^oXe 00&gt; &amp; une famille de fonctions ve e C°°([0, Xe]) telle que ve soit
positive et strictement croissante sur [0, Xe], Alors limc-^0 /8e v£/J^* vc 0

Preuve du lemme. On a

Xe) * Xe/ve(Xe)(Xe ~ Xe) Xel(Xe - &amp;). ¦
Soient sn(r) (resp. cn(r)) la solution de (1.8) telle que sn(0)-Q, 5^(0) 1 (resp.
crt(0) l, ci(0) 0). Les fonctions {sn(r)t cn(r)} forment une base de l&apos;espace

des solutions de (1.8). Notons que cn et s&apos;n sont des fonctions paires et que sn et cfn

sont impaires du fait de la parité du coefficient de l&apos;équation différentielle (1.8).
On a

an=Ancn+AX (LU)
pn « Bncn + BX (1.12)

où

/•y »
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et

Le fait que \thrcnc&apos;n\ ^ \{c\ + c&apos;n) implique

tyn vérifie une inégalité analogue avec (snf s&apos;n) à la place de (cn, c&apos;n).

On obtient donc

&gt;(r) (1.15)

où

.« E (Al + BÎ)\c2Jl

de (1.15) on déduit:

rh t.,,211/ llH&apos;({|r|«.

crt et sn vérifiant (1.8), les fonctions {c2n, c&apos;n2, s2n, s&apos;2}n*0, {c2js2ch2r, s2je2ch2r}n^
sont positives croissantes sur [0, Le]. ((1.8) implique en particulier que pour n ** 1

Cn ** ^»&gt; -y« ^ ^n sur [0, Le]. Comme chr&quot; cAr, 5/ir&quot; shr Sturm-Liouville montre

que cjchr et sjchr sont croissantes). On se trouve ainsi dans les hypothèses du

Lemme 1.2. On déduit ainsi
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2. Etape 2. Comportement des fonctions propres sur les cusps

Soit 5 une surface à courbure -1, de volume fini, avec des cusps. Considérons

une fonction propre S de valeur propre X&lt;\. Nous allons montrer que la

/f^norme de / tend vers 0 sur l&apos;extrémité des cusps.
Rappelons qu&apos;un cusp C admet la métrique:

0&lt;r&lt;oo d e[0,2n] (2.1)

Notons Ue {(r, 0) \ r ^ re, avec lim€__»0 re &lt;*&gt;}

LEMME 2.1. Soit f une fonction propre de S telle que

Alors lim£_o ||/||jfiw) 0

Ce lemme est conséquence du théorème de convergence dominée de Lebesgue.

3. Une quasi-isométrie

3.1. On a vu que la //1-norme des fonctions de S tend vers 0 à l&apos;extrémité We des

cusps et que, d&apos;autre part, la /fx-norme des fonctions propres associées aux
valeurs propres inférieures à \ tend vers 0 sur un voisinage 7^ des géodésiques
dont la longueur tend vers 0.

On a la situation de la Figure 3.

On va montrer qu&apos;il existe une quasi-isométrie &lt;pe de rapport ke entre 5 - We

et Se-Ve avec limÊ_0^e l- Cette quasi-isométrie sera définie pantalon par
pantalon. Sur les pantalons Pf bordés par des géodésiques de longueur constante

(i.e tels que Pf i^Ve) on identifie naturellement Pf et Pé.

Sur les pantalons Pf dont au moins une des géodésiques du bord a une
longueur qui tend vers 0, on procède de la façon suivante. Il y a trois cas selon

que une, deux ou trois géodésiques voient leur longueur tendre vers zéro (voir
Fig. 3 pour le cas d&apos;une longueur tendant vers zéro) mais la méthode est la même

dans chacun de ces trois cas.
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P

D =argchl/e

Pe Pf ième pantalon de Se

Métrique:
ds2 dr2 + t\ch2r dB2

K {(r, S), r&lt;lJ2)

P Pt îème pantalon de 5
Métnque.
ds2 dr2 + oP^ dB2

We {(r, 0) \r&lt;0}

Fig. 3.

Soient

Pe {(r, 6) | (IJ2) &lt; r &lt; De}Pe, Pe a Pe

P {(r,O)\0&lt;r&lt;D&apos;e}

P~P\{(rf6)\r&lt;D&apos;e}
P&gt;P(zP

Nous allons montrer qu&apos;il existe d&apos;une part une quasi-isométrie q&gt;e de Pe sur P,
identifiant dPe et dP et d&apos;autre part une quasi-isométrie &lt;pe de Pe sur P avec la
même identification des bords.

La quasi-isométrie q&gt;e de Pe\Ve sur P\We s&apos;obtient alors en recollant #e et q&gt;e.

5.2 Construction de q&gt;e

Rappelons que sur Pe on a la métrique

et sur P la métrique:

(3.1)

(3.2)
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Au moyen d&apos;une translation de Ve 4/2, la métrique sur Pe s&apos;écrit:

le/2. (3.3)

Posons cs D&apos;J(De - le/2). On définit la quasi-isométrie &lt;pe par:

&lt;p£:Pe-&gt;P

(r,6)-+(c.r,0) (3.4)

La métrique induite sur Pe via cpe est

II s&apos;agit de comparer gA à g3 en examinant le rapport g4(r, 0)/g3(r, 6)
En fait on voit:

avec limA:e l (3.5)

En effet lime^oce 1 et e2(Ce~1)r converge uniformément vers 1 lorsque e-&gt;0 sur
l&apos;intervalle [0,D£-/e/2].

3.3. Construction de $e. Le pantalon Pe est obtenu en recollant deux hexagones

hyperboliques identiques He (Fig. 4a). Il en est de même pour le pantalon P avec
deux exemplaires de l&apos;hexagone H (dont un côté est de longueur nulle) (Fig. 4b)

On va construire $&gt;e de Êe sur Ê. (cf. Fig. 4).

Notations. yaf yb, yXe, yye, Yce&gt; Yx&gt; Yy&gt; Yz représentent les géodésiques bordant
Ûe et Û de longueur a, b, xe&gt; y€, ze, x, y, z. yCe et yc représente le bord de Pe

dans Pe [resp. P dans P] (cf. Fig. 3) de longueur 1. Notons que yCt et yc ne sont

pas des géodésiques. yc est un horocycle et yCe est une parallèle à la base du

pantalon Pe de longueur 2e.

Des calculs standards de trigonométrie hyperbolique (voir [Bd], [Bu2])
montrent que

lim(xB,ye) ze) (x,y, z).
0
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Fig. 4.

En premier lieu, cpe va identifier les côtés de même longueur (a et b

respectivement) de Êe et Ê.
La valeur de #e | yCe est également imposée par la construction de &lt;pe qui est

déjà définie sur y^.
Pour construire (f&gt;e on sépare Êe et Ê en trois parties (Figs. 5a et 5b) au

moyen de segments géodésiques y€e&gt; yfe, ye, yf joignant respectivement yXe à

Yye n Yce, Yxe à yCe H yZe, yx à yy D yc, yxkycn yzy et orthogonaux à yXe et yx.
On note Ê{ (resp. Ê&apos;) ces trois parties.
On va décrire l&apos;application fa entre Ê{ et ÊJ, j 1, 2, 3. Faisons-le par

exemple pour j 1.

(a)

Fig. 5.
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FiG. 6.

Notons x\ (resp. xl) la longueur de l&apos;intersection de H\ avec yXe (resp. de Ê1
avec Yx) (Fig; 6)

Soit Q € H\. Soit qe la distance de g à yXe.

Il existe un unique segment géodésique ye à yye, passant par Q, orthogonal à

YxE-

Notons re la longueur de ce segment, pe la distance du pied de ce segment sur
YXe à y«.

Alors Q est univoquement caractérisé par les deux rapports (pjx\f qelre). $e
enverra ye sur une géodésique y, orthogonale à yxf telle que la distance du pied
de y sur yx à ya soit aussi dans un rapport pelx\ avec jc1. fye(Q) sera sur y, dans le
même rapport que Q sur le segment ye.

Des calculs standards de trigonométrie hyperbolique montrent que #e ainsi
définie est une quasi-isométrie dont le rapport ke tend vers 1 lorsque £-»0.

Remarquons que l&apos;on a bien ainsi l&apos;identité sur ya et yb. Notons que le cas de
Êl~+ H3 est plus délicat, du fait que &lt;pe | yCe est imposée. L&apos;idée de repérer les

points de È\ au moyen de géodésiques orthogonales à yXe reste valable, mais
l&apos;image d&apos;une telle géodésique est imposée par $e | yCe. Cependant le défaut pour
$&gt;e | Yce à être une isométrie est déterminée par (pe | cYe. Cela est lié à la différence
entre (3.3) et (3.2). Or cette différence tend vers 1. On obtient alors que $e | É\
est une quasi-isométrie dont le rapport tend vers 1 lorsque £-*0. Ce qui précède
montre la

PROPOSITION 3.1. Vapplication &lt;pe:Pe\Ve-&gt;P\We obtenue en recollant $e
et &lt;pe est une quasi-isométrie dont le rapport ke tend vers 1 lorsque e tend vers 0.
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4. Preuve du Théorème 01

Soite SE une famille de surfaces comme dans le Théorème 01 et S la surface
limite associée. La quasi-isométrie permet de transplanter les fonctions de S sur
Se et réciproquement.

La quasi-isométrie n&apos;étant définie que partiellement de Pf sur Piy on
commence par annuler les fonctions sur les voisinages des parties y? du bord des

Pf dont la longueur tend vers 0 avec e (resp. sur les voisinages de l&apos;infini des

cusps de Pé)

On le fait en les multipliant au moyen de fonctions uB et ve définies sur la Fig.
7 (comparer à la Fig. 3).

f 1 au delà de le f 1 au delà de IJ2
u&lt; Vaut lo entre 0 et IJ2

V&lt; VaUt lu avant l&apos;horocyde

et est linéaire entre 4/2 et le de longueur fie et est linéaire sur [o, le/2]

Fig. 7.

On a le

LEMME 4.1. Soient fe (respf) une fonction propre de Se (resp. de S) telle que

Alors \\fe -feuB\\Hi(st) o(l) pour e-»0

11/ ~MhKs) - o(i) pour e-+0.

(o(l) signifie que le terme de gauche tend vers 0 avec e)

Preuve, Le résultat provient du fait que \ue\, \ve\, \Vue\, \Vve\ sont bornés



Les valeurs propres inférieures 361

uniformément et du fait que d&apos;après l&apos;étape 1 et 2, /e et / tendent vers 0 en
H^norme là où ue et ve varient et sont nulles. ¦

On peut ainsi associer à chaque fonction propre fe de Se (resp. g de S) associée
à une valeur propre inférieure à \ une fonction fE (resp. g€) nulle sur Ve (resp.
nulle sur We) et dont le quotient de Rayleigh a très peu changé, i.e.

f IYÊI2 f |V/£|2

&gt;(1) pour £-&gt;0

reSp J. £- — 0(i) | pour

Comme Se - Ve et S - We sont quasi-isométriques de rapport tendant vers 1

lorsque e-»0, on déduit le théorème 0.1 par le minimax. ¦
5. Quelques remarques

Remarque 1. Le problème étant de nature locale, le résultat est également
vrai pour une suite de surfaces Sn convergeant vers une surface à cusps S

(composée d&apos;un nombre fini de composantes connexes) au sens où il existe une

décomposition de Sn et de S en pantalons telle que les pantalons de Sn convergent
vers les pantalons correspondant de S dans un sens évident.

Remarque 2. On pourrait travailler sur des familles de surfaces non compactes
(avec cusps et vasques hyperboliques) dégénérant en certains endroits.

Remarque 3. Bien que l&apos;effort ait été porté sur la convergence des valeurs

propres, la construction montre que l&apos;on a également une convergence des

fonctions propres.

Remarque 4. Les auteurs viennent de prendre connaissance d&apos;un preprint de
D. A. Hejhal, cf. [H12], où le Théorème 0.1 est prouvé par d&apos;autres méthodes.
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