Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 64 (1989)

Artikel: Les valeurs propres inférieures a 1/4 des surfaces de Riemann de petit
rayon d'injectivité.

Autor: Colbois, Bruno / Courtois, Gilles

DOl: https://doi.org/10.5169/seals-48951

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-48951
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 64 (1989) 349-362 0010-2571/89/030349-14$01.50 + 0.20/0
© 1989 Birkhiuser Verlag, Basel

Les valeurs propres inférieures a 1/4 des surfaces de Riemann de
petit rayon d’injectivité

Bruno CoLBois* et GILLES COURTOIS

0. Introduction

Dans ce travail, on étudie le comportement des petites valeurs propres d’une
famille de surfaces de Riemann S,, de genre fixé g, dont certaines géodésiques
fermées dégéncrent, c’est-a-dire dont la longueur tend vers 0. “Petite” valeur
propre signifie valeur propre A telle que 0 < A < }. On sait, [Bul], qu’elles sont en
nombre fini, inférieur ou égal a 4g —3. Intuitivement, les surfaces S,
“convergent” vers une surface limite S non compacte, de volume fini, non
nécessairement connexe; exemple voir Fig. 1. On montre que le passage a la
limite se fait de fagon continue pour les valeurs propres A de S,, 0<A <3.

Précisément, chaque surface S, se décompose en pantalons hyperboliques, i.e.
S, =P{U---UP;, n=2g—2, ot chacune des géodésiques y;;, j=1, 2, 3, d’un
pantalon Pf est recollée a une géodésique y; ; de méme longueur (I(y;;) =
I(y; ;) d’un autre pantalon.

La famille de surfaces S, dégénére lorsqu’une partie fixée des couples
{vi; vi;} de géodésiques identifi€es vérifie I(y;;) = I(y; ;-)— 0 pour €—0, alors
que tous les autres couples {y:i, Yi11} de géodésiques identifi€es sont de
longueur constante indépendante de €, I(y;.1) = I(Yi1) = li1-

La surface “limite” S admet une décomposition en pantalons (éventuellement
non compacts) S=P,U---UP,, ou P, est obtenu a partir de P; de la fagon
suivante: les trois géodésiques v;;, j=1, 2, 3, du pantalon P, sont de longueur
I(y;;) = lim. I(¥i,), le cas I(y;,;) = 0 correspondant & un cusp. Les identifications
entre les géodésiques y;; des P; de longueur non nulle sont les mémes que les
identifications entre les y;; des P;.

La surface S n’est pas nécessairement connexe et est non compacte. Au dela
de 1 son spectre est essentiel, cf. [Dy]. Notons 0=p; =+ =p, <l <+ <
ta < % les valeurs propres de S inférieures a 4. Remarquons que la multiplicité m

* Durant I’élaboration de ce travail, le premier auteur bénéficiait d’'une bourse de la Fondation
Pierre Mercier.
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de la valeur propre 0 correspond au nombre de composantes connexes de S. On
ne sait pas si génériquement 0 est la seule valeur propre de S.

Notons 0 =A{ <A <---<A§y<}=<A%,, les valeurs propres de S,. A priori, N
dépend de &.

Nous allons prouver le résultat suivant:

THEOREME 01. Lorsque € est assez petit, S, a au moins autant de valeurs
propres que S appartenant a Uintervalle [0, 3[, i.e. N=M, et de plus: lim,_,, AL =
Ui pour k<M et lim,_o AL =3} pour k > M.

Remarque 02. En particulier, pour k£ <m on obtient lim,_,, A; =0. Ce résultat
est conséquence du théoréme de Schoen—Wolpert-Yau [S-W-Y]. Dans ce cas,
on peut calculer le comportement asymptotique de A; en fonction des longueurs
des géodésiques tendant vers 0, [Br], [C-C], [Csl1], [Cs2].

Remarque 03. Dans [B-B-D] les auteurs obtiennent entre autre que, pour
m =1, lim,_,osup A = p,.

La preuve du théoréme 01 comporte les trois étapes suivantes.
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(a) S

(b) S
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Fi1G. 2.

Etape 1. Chaque fonction propre f° de S, de valeur propre inférieure a 31
strictement est de H'-norme de plus en plus petite autour de chaque géodésique
dont la longueur tend vers 0. Précisément, il existe un voisinage tubulaire dont le
rayon tend vers l'infini lorsque €— 0 autour de chacune de ces géodésiques tel
que la H'-norme de la fonction propre de f° sur la réunion T, de ces voisinages
tende vers 0 avec &. (Fig. 2a)

Etape 2. Toute fonction propre de la surface limite § de valeur propre
inférieure a § est de H'-norme de plus en plus petite sur des voisinages T'. de plus
en plus fins de l'infini sur chaque cusp (Fig. 2b).

Etape 3. On peut choisir 7, et T, de sorte qu’il existe une quasi-isométrie
entre S,\7, et S\T, dont le rapport tend vers 1 lorsque €—0. Cette quasi-
isométrie et les étapes 1 et 2 permettent d’associer a toute fonction propre de S,
de valeur propre inférieure 3 3 une fonction de S sans changer beaucoup le
quotient de Rayleigh et réciproquement. Le principe du minimax permet alors de
comparer les u; aux A,.
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1. Etape 1. Comportement des fonctions propres de S,

Soit y;; une géodésique dont la longueur tend vers 0 avec & D’aprés le
Lemme du Collier [Rl], il y a un cylindre C}; sur lequel la métrique s’écrit en
coordonnées de Fermi:

ds*=dr*+ el,ch’rdd* 0<6@<2mx,  O<|r|<argch(l/m¢)) (1.1)

Fixons dans la suite les indices i, j et notons pour simplifier ne;;= € (demi-
longueur de v;;).

Posons L, = (argch 1/e) et I, = L2

Notons T{;= {(r, 0) € Ci;, |r| <l.} le voisinage tubulaire de rayon I, de y;,

PROPOSITION 1.1. Soit f® une fonction propre de S, de valeur propre
comprise dans Dintervalle [0, Y[telle que ||f *|| s,y = 1. Alors lim_ ||f || sr¢rs) =0-

Preuve. La Proposition 1.1 découle du fait que
i I vz _
e—o||f "Hi(c.;)

Afin d’établir (1.2) nous allons développer f° en série de Fourier et étudier les
coefficients de Fourier. Rappelons que toute fonction propre f° se développe en
série de Fourier sur C;;

0 (1.2)

fe(r, ) =al(r) + 2, (a%(r) cos n6 + bi(r) sin nd) (1.3)
n=1
et compte tenu de I’équation Af°=A°f* les coefficients de Fourier a;, et b,
vérifient I’équation différentielle.

n2

e%ch®r

Les conditions au bord étant déterminées par les valeurs de f*° et de 3f */3r sur les
bords de C;;.

(D"+thr<b’+(}.‘- )q>=0 (1.4)

I e =e[_ (2, @+ 6D)chr 1.9
19 e = ([ (3, @52+ 012 )ehr (1.6

e
+] 2 n¥a2+ bf,)ch”‘rs”z)

~ynm=l
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ol a, =a,(r); b, = b,(r) et ap= by = ag(r). Comme dans [C-H] p 292, en posant

u(r) = ch'?r &(r), (1.4) se transforme en (1.7)
un._((l__ks)_{_ 1 + nz )u 1.8
¢ 4ch?r  €%chr (1.8)

ainsi, en posant a, =ch'?r a, et B, =ch?r b, pour n =0 les relations (1.5) et
(1.6) s’écrivent:

I e = [ 3, (a2 + 2] ar (1.9
1 e = ([ (%[5, a2+ 8]+ S (a7

~thr| 3 (@it BB+ 3 n¥ad + Bchre?)) (L10)

n=0 n=0

Nous allons déduire (1.2) de (1.9), (1.10) et du

LEMME 1.2. Soient x. et X, deux nombres positifs tels que lim,_ o x./X. =0
et lim,_qx. =%, et une famille de fonctions v, € C*([0, X.]) telle que v, soit
positive et strictement croissante sur [0, X,]. Alors lim,_,, [§v./[¥ v, =0

Preuve du lemme. On a

Xs e Xe X,
Osf v,/[ vesf vc/f Ve
0 0 0 Xe

<VU(Xe) * Xe/Ve ()Xo — X)) =X/ (X — %) W

Soient s,(r) (resp. ¢,(r)) la solution de (1.8) telle que s,(0) =0, s5,(0) =1 (resp.

c,(0) =1, ¢,(0)=0). Les fonctions {s,(r), c,(r)} forment une base de I’espace

des solutions de (1.8). Notons que c, et s,, sont des fonctions paires et que s, et c,

sont impaires du fait de la parité du coefficient de I'équation différentielle (1.8).
On a

&, =A,c, +Als, (1.11)

Bn = Bucn + B,s, (1.12)
‘y - -]

e W e = | 3 (4+ BDoa+ A7+ BW, (1.13)
-y n=

ou

th>r n? )
Pp = c,z,(l +2 + szchzr) + ¢)? — thre,c,,
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et

th’r n?
Y, = s?,(l + 2 + ezchzr) + 52— thrs,s,.

Le fait que |thr c,c;| < 3(c2 + ¢,?) implique

(1 )+ <o [0+ 5
= + l<@,<- r
2 [ 1 e2chy) T | S P 4l 1+152ch2r) +C"] (114)

Y, vérifie une inégalité analogue avec (s, s,,) a la place de (c,, c,).
On obtient donc

Y 1 2 7"
[[vor=e 1 Bsman <3 [ ¥) (1.15)
0 0

ou

W= 00)= 3 a3+ B[ i1+ ) + e

2
+(A2+ B,?)[s?,(l 2nh2 ) +s'2].

de (1.15) on déduit:

If i< 7 I v
If *Wercom<ran f ¥(r)

c, €t s, vérifiant (1.8), les fonctions {cZ, c,?, 52, 5:2}n=0, {€2/€*ch?r, s%/€*Ch?r}pay

sont positives croissantes sur [0, L.]. ((1.8) implique en particulier que pour n =1
ch=cC,, Sh=s, sur [0, L.]. Comme chr” = chr, shr” = shr Sturm-Liouville montre
que c,/chr et s, /chr sont croissantes). On se trouve ainsi dans les hypothéses du
Lemme 1.2. On déduit ainsi

I W _
= | fIncci
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2. Etape 2. Comportement des fonctions propres sur les cusps

Soit S une surface a courbure —1, de volume fini, avec des cusps. Considérons
une fonction propre S de valeur propre A<1. Nous allons montrer que la
H'-norme de f tend vers 0 sur I'extrémité des cusps.

Rappelons qu’un cusp C admet la métrique:

ds?=dr*+e % d6? 0<r<ow 9€l0, 2] (2.1)
Notons U, = {(r, 8) | r =r., aveclim,_,o7, = ®}
LEMME 2.1. Soit f une fonction propre de S telle que

||f||H1(S) =1

Alors im0 | f || 1w,y = 0
Ce lemme est conséquence du théoréme de convergence dominée de Lebesgue.

3. Une quasi-isométrie

3.1. On a vu que la H'-norme des fonctions de § tend vers 0 A 'extrémité W, des
cusps et que, d’autre part, la H'-norme des fonctions propres associées aux
valeurs propres inférieures 2 4 tend vers 0 sur un voisinage 7, des géodésiques
dont la longueur tend vers 0.

On a la situation de la Figure 3.

On va montrer qu’il existe une quasi-isométrie @, de rapport k. entre S — W,
et 5. —V, avec lim,_ ok, =1. Cette quasi-isométrie sera définie pantalon par
pantalon. Sur les pantalons P; bordés par des géodésiques de longueur constante
(i.e tels que P; = P,V¢) on identifie naturellement P; et F,.

Sur les pantalons P; dont au moins une des géodésiques du bord a une
longueur qui tend vers 0, on procéde de la fagon suivante. Il y a trois cas selon
que une, deux ou trois géodésiques voient leur longueur tendre vers zéro (voir
Fig. 3 pour le cas d’une longueur tendant vers zéro) mais la méthode est la méme
dans chacun de ces trois cas.
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P
—~—~A ;
Be=2Tag r lfe

L /2
2b £
L ) DE—-—lnBE/2A
€ C rd

D€=argch1/e

& 5
-~ P

P, = P; = i¢me pantalon de S, P = P, =i¢me pantalon de §

Métrique: Métrique:
ds® = dr* + eZch’r d6* ds*=dr* + a%e” d6*
V.={(r, 0), r<1l./2} W, ={(r, 0)|r<0}
B. =2¢€ ch(l./2).
FiG. 3.

Soient

P.={(r,6)|(./2)<r<D,}P,, P.cP.
P.=P\{(r,0)|r<D,}
P={(r,0)|0<r<D}}

P=P\{(r, 6)|r<D2) P,PcP

Nous allons montrer qu’il existe d’une part une quasi-isométrie ¢° de B sur P,
identifiant 3P, et 3P et d’autre part une quasi-isométrie @° de P. sur P avec la
méme identification des bords.

La quasi-isométrie ¢°de P.\V, sur P\W, s’obtient alors en recollant ¢° et @°.
3.2. Construction de @°

Rappelons que sur P, on a la métrique

2
g1=dr2+(§) ch*rd®®* I 2<r<D, 0<60<2n (3.1)

et sur P la métrique:
g2=dr*+a%*d0 0<r<D, 0<0<2n (3.2)



Les valeurs propres inférieures 357

Au moyen d’une translation de I, =1,/2, la métrique sur P. s’écrit:
1+ thll)? 1—thl))?
o LB | (1= dhiy)

4 4
0<0=<2m 0<r<D,-1]/2. : (3.3)

gs=dr’+ ai( +3(1- thzl;)) de?

Posons ¢, = D./(D, — I./2). On définit la quasi-isométrie @, par:

@c: P> P
(r,0)— (c.r, 0) (3.4)

La métrique induite sur P¢ via ¢° est
ga=c2dr*+ a?e*’ do

Il s’agit de comparer g4 & g; en examinant le rapport g4(r, 0)/gs(r, 6)
En fait on voit:

sgi‘ske avec limk, =1 (3.5)
3

&e—0

3
ke

2(¢ce—1)r

En effet lim,_,oc.=1ete converge uniformément vers 1 lorsque €— 0 sur

Iintervalle [0, D, —I./2].

3.3. Construction de ¢°. Le pantalon P, est obtenu en recollant deux hexagones

hyperboliques identiques H, (Fig. 4a). Il en est de méme pour le pantalon P avec

deux exemplaires de I’hexagone H (dont un c6té est de longueur nulle) (Fig. 4b)
On va construire ¢, de H, sur A. (cf. Fig. 4).

Notations. Y., Y, Vx> Yye» Yeo» Yo Vy» Y TEPrésentent les géodésiques bordant
H, et H de longueur a, b, x., y., 2., x, y, z. Y., €t y. représente le bord de B
dans P, [resp. P dans P] (cf. Fig. 3) de longueur 1. Notons que 7., et ¥, ne sont
pas des géodésiques. y. est un horocycle et y. est une parallele a la base du
pantalon P, de longueur 2¢.

Des calculs standards de trigonométrie hyperbolique (voir [Bd], [Bu2])
montrent que

lim (., e, 2:) = (5, , 2).
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Fi1G. 4.

En premier lieu, ¢, va identifier les cotés de méme longueur (@ et b
respectivement) de A, et A.

La valeur de @, | v., est également imposée par la construction de @, qui est
déja définie sur y,,.

Pour construire ¢, on sépare H, et H en trois parties (Figs. 5a et 5b) au
moyen de segments géodésiques Y., Y., Y., Y joignant respectivement y, a
Vye N Verr Yr @ Yo, N Yz Y23 Y, NYe, ¥x @ YN 7Y,, et orthogonaux a y,, et y,.

On note K, (resp. ) ces trois parties.

On va décrire I'application ¢, entre H. et A/, j=1, 2, 3. Faisons-le par
exemple pour j =1.

FiG. 5.
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FIG. 6.

Notons x; (resp. x') la longueur de I'intersection de H! avec y, (resp. de A*
avec ¥, ) (Fig. 6) ‘

Soit Q € A Soit g, la distance de Q 2 7, .

Il existe un unique segment géodésique y, a y, , passant par Q, orthogonal a
1£X

Notons r, la longueur de ce segment, p, la distance du pied de ce segment sur
Yxe a Ya-

Alors Q est univoquement caractérisé par les deux rapports (o./x., g./r.). ¢,
enverra ¥, sur une géodésique y, orthogonale a y,, telle que la distance du pied
de y sur y, 2 ¥, soit aussi dans un rapport p,/x. avec x'. @.(Q) sera sur y, dans le
méme rapport que Q sur le segment y,.

Des calculs standards de trigonométrie hyperbolique montrent que ¢, ainsi
définie est une quasi-isométrie dont le rapport k. tend vers 1 lorsque £ — 0.

Remarquons que 1’on a bien ainsi 'identité sur y, et y,. Notons que le cas de
A3— AP est plus délicat, du fait que @, |y, est imposée. L’idée de repérer les
points de A2 au moyen de géodésiques orthogonales a Y, Teste valable, mais
Pimage d’une telle géodésique est imposée par @, | y.,. Cependant le défaut pour
@, l Y., a €tre une isométrie est déterminée par @, | c,,. Cela est lié a la différence
entre (3.3) et (3.2). Or cette différence tend vers 1. On obtient alors que ¢, | A3
est une quasi-isométrie dont le rapport tend vers 1 lorsque €— 0. Ce qui précéde
montre la

PROPOSITION 3.1. L’application @, :P.\V,— P\W, obtenue en recollant ¢*
et ¢° est une quasi-isométrie dont le rapport k. tend vers 1 lorsque € tend vers 0.
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4. Preuve du Théoréeme 01

Soite S, une famille de surfaces comme dans le Théoréme 01 et S la surface
limite associ€e. La quasi-isométrie permet de transplanter les fonctions de S sur
S, et réciproquement.

La quasi-isométrie n’étant définie que partiellement de P; sur P, on
commence par annuler les fonctions sur les voisinages des parties y; du bord des
P; dont la longueur tend vers 0 avec € (resp. sur les voisinages de l'infini des
cusps de F)

On le fait en les multipliant au moyen de fonctions u, et v, définies sur la Fig.
7 (comparer a la Fig. 3).

{1 au dela de [, N {1 au dela de /,/2
U, vaut O entre O et /,/2 Ve 0 avant ’horocycle
et est linéaire entre /,/2 et [,  de longueur B, et est linéaire sur [o, /./2]

Fi1G. 7.

Onale
LEMME 4.1. Soient f, (resp f) une fonction propre de S, (resp. de S) telle que
fellzrressy = I1f sy = 1.

Alors ||f. = fettel| rrrs,) = 0(1) pour e—0

If = fvellansy = o(1) pour e— 0.

(o(1) siéniﬁe que le terme de gauche tend vers 0 avec €)
Preuve. Le résultat provient du fait que |u,|, |ve|, |Vu.|, |Vv,| sont bornés
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uniformément et du fait que d’aprés I’étape 1 et 2, f. et f tendent vers 0 en
H'-norme 13 ol u, et v, varient et sont nulles. W

On peut ainsi associer a chaque fonction propre f, de S, (resp. g de S) associée
a une valeur propre inférieure 2 4 une fonction f, (resp. g.) nulle sur V, (resp.
nulle sur W,) et dont le quotient de Rayleigh a trés peu changg, i.e.

J wre [ e

— =o0(1) pour e—0

13 fz
Se Se

S

S
fgi fgz
S S

Comme §, —V, et §— W, sont quasi-isométriques de rapport tendant vers 1
lorsque £¢— 0, on déduit le théoréme 0.1 par le minimax. W

[[vge [ e

resp. =0(1) | pour e—0

S. Quelques remarques

Remarque 1. Le probleéme étant de nature locale, le résultat est également
vrai pour une suite de surfaces S, convergeant vers une surface a cusps §
(composée d’'un nombre fini de composantes connexes) au sens ol il existe une
décomposition de S, et de S en pantalons telle que les pantalons de S, convergent
vers les pantalons correspondant de S dans un sens évident.

Remarque 2. On pourrait travailler sur des familles de surfaces non compactes
(avec cusps et vasques hyperboliques) dégénérant en certains endroits.

Remarque 3. Bien que l'effort ait été porté sur la convergence des valeurs
propres, la construction montre que 'on a également une convergence des
fonctions propres.

Remarque 4. Les auteurs viennent de prendre connaissance d’un preprint de
D. A. Hejhal, cf. [HI2], ol le Théoréme 0.1 est prouvé par d’autres méthodes.
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