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Leafwise hyperbolicity of proper foliations

Joun CantweLL! and LAWRENCE CONLON?

Introduction

A foliated manifold (M, %) is said to be proper if every leaf of  is proper. A
leaf L is proper if the relative topology of L in M coincides with the manifold
topology of L. This is equivalent to requiring that each point x € L lies in a
foliation chart U < M such that L N U is a single plaque. Equivalently, the leaf L
is not asymptotic to itself.

Proper foliated manifolds have been studied by various authors. For example,
in arbitrary codimension, Millett [Mi] has organized the leaves of such foliations
into a countable ordinal hierarchy that is completely analogous to the Epstein
hierarchy for foliations with all leaves compact [Ep].

In codimension one, with smoothness class at least C?, there is a more rigid
hierarchy by integral levels [C—C1]. Leaves at a given level wind in on those at
lower levels in a way reminiscent of the Poincaré—Bendixson theorem. In
[C-C2], this hierarchy is combined with Millett’s to prove that C*-smoothness for
proper foliated manifolds of codimension one implies C™-smoothability.

In the work of Gabai [Gal], [Ga2], [Ga3], proper foliated 3-manifolds occur
that are Reebless and of finite depth (which means that there is an upper bound
on the levels). Generally, these foliations may only be of class C° although
frequently they are smooth.

In what follows, (M, %) will denote a C>-foliated 3-manifold, where M is
compact and orientable and & is of codimension one and transversely orientable.

An interesting geometric problem is to find a Riemannian metric on M
relative to which each leaf of & is hyperbolic (i.e., has constant curvature —1).
We say that such a metric is leafwise hyperbolic.

MAIN THEOREM. Let (M, &) be proper and assume that each component
of OM is a leaf of . Then 3 a leafwise hyperbolic metric on M if and only if no
leaf of & is a torus or a sphere.

! Work partially supported by N.S.F. Contract 8420322.
2 Work partially supported by N.S.F. Contract 8420956.
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330 JOHN CANTWELL AND LAWRENCE CONLON

COROLLARY Let (M, ) be proper and assume that each component of oM
is either a leaf or is transverse to %. If no compact leaf of F is a torus, a sphere, a
disk, or an annulus, then 3 a leafwise hyperbolic metric on M.

This corollary is immediate upon doubling (M, %¥) along the transverse
boundary.

Gabai’s proper foliations of knot complements M = S\ N°(k) are taut (that is,
every leaf meets a closed transversal nontrivially) and admit a minimal genus
spanning surface of the knot k as a leaf [Gal, Theorem 5.5]. Together with the
fact that H,(M; Z) = Z, this implies that, for knots of genus greater than one, no
compact leaf is a torus, a sphere, an annulus, or a disk. If the foliation can be
chosen to be smooth, the corollary implies that it admits a leafwise hyperbolic
metric.

The “only if”” part of the Main Theorem is evident. The proof of the “if” part
uses the Poincaré-Bendixson theory of totally proper leaves [C-C1, §6] and the
smooth parametrization of hyperbolic structures by Fenchel-Nielsen coordinates

[Th, § 5].

Remark. The hypothesis in [C-C1] that oM = can be replaced with the
hypothesis that M is a union of leaves without affecting any of the theorems or
proofs in that paper. We fix this hypothesis throughout.

1. Constructing a hyperbolic skeleton

In this section, unless otherwise specified, (M, %) need not be proper.
We fix a smooth, one dimensional foliation #* of M that is everywhere
transverse to &. There corresponds a decomposition

TM)=T(¥) O T(F")

into the respective sub-bundles of tangents to the two foliations. We will fix a
Riemannian metric on T(%"). All metrics constructed on 7(M) will be
understood to induce this fixed metric on T(%*) and to make the two summands
orthogonal. Accordingly, in this and the following sections, the Riemannian
metrics that we will be constructing will be metrics on T(%).

Let O(%) denote the family of open, %-saturated subsets of M and, for
U € O(%), let U denote the completion of U in any Riemannian metric inherited
from a Riemannian metric on M. As is well known [Di], [C-C1], [H-H], [Go], U
is a manifold with boundary and the inclusion i: U < M induces a C> immersion
i: U— M that may identify some components of 3U pairwise. Then we obtain a
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C? foliation, i~ (%) =%, of U that is tangent to 3U, while i (F)=F"isa
smooth, one dimensional foliation of U, everywhere transverse to %.

Of special interest is the case in which U is diffeomorphic to L x [0, 1] in such
a way that the leaves of ¥ are identified with the intervals {x} x [0, 1], Vx € L.
Following our usage elsewhere (e.g., [C-C1]), we will say that U is a foliated
product. We will also identify L with the leaf i(L x {0}) of %, which may or may
not be the same as the leaf i(L X {1}).

DEFINITION. A closed subset X = M that is a finite union of leaves will be
called a skeleton of (M, #) if each component of M\X is a foliated product.

(1.1) LEMMA. If (M, %) is proper, it has a skeleton.

Proof. Choose a countable family {L;};=, of leaves of ¥ such that (|, L, is
everywhere dense in M. Let X, =\, L;,, Yk =1. Since (M, %) is proper, the
closure X, of X, is a finite union of leaves [C—C1, (4.7)]. Since U;_; X, is
everywhere dense in M, the components of M\ X, will all be foliated products,
for k sufficiently large [Di, Proposition 1].

Our proof of the Main Theorem will proceed by finding, first, a metric making
all leaves of the skeleton X hyperbolic and, then, by modifying the metric in each
of the complementary foliated products. For the first step, the only property of
the skeleton X that will be needed is that it is a compact union of finitely many
leaves.

Let X be a compact, nonempty, union of finitely many leaves of &, these
being, of necessity, proper whether or not the foliation is proper (the closure of a
nonproper leaf contains uncountably many leaves by the results in [C-C1, § 4 and
§ 5]). There will be an integer n =0 such that each leaf in X has level at most n
and, for each of the integers k=0, 1, ..., n, at least one leaf in X has level k.
The leaves at level 0 are exactly the compact ones, and the leaves at level kK >0
are asymptotic to some of the leaves at each level strictly less than k, but to no
others. For the general theory of levels, see [C-C1].

Let L c X be a leaf at level k > 0. The Poincaré—Bendixson theory of totally
proper leaves applies [C-C1, §6] and gives a decomposition

L=AUB'U---UPB,
together with projections

p B>,
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that are spirals onto leaves L’ c X at lower levels. Each p’ is a projection along
leaves of #* and is a semi-covering with covering semigroup the positive integers
Z*. Indeed, if y,€ B’ and p’(y,) =y € L/, there is a compact subarc of a leaf of
%+, having endpoints y, and y, which meets B’ in a sequence of points {y;},
that converges monotonically to y. The semigroup action of Z* on B’ is generated
by the proper imbedding x:B’— B’ defined by m(y,)=y,;. Finally, the sub-
manifold A is compact and connected, A N B’ = 3B’ is also a component of 94,
l1<j<r, and B NB = if i #j.

The above action of Z* corresponds to an element of contracting holonomy of
the leaf L’. This element of holonomy determines a compactly supported
cohomology class & € H.(L’; Z). The proof that « is compactly supported makes
essential use of the hypothesis that (M, %) is of class C>. The Poincaré dual of o
can be represented by a compact, connected, nonseparating submanifold N’ < L/
of codimension one, called the juncture of the spiral p’. In our case, dim (L') =2,
so N’ is always a circle.

The geometric interpretation of the juncture N’ is as follows. The manifold B’/
will be an “infinite repetition” of segments {B/}:_,, each diffeomorphic to a copy
of the manifold L/, with two boundary components that is obtained by cutting L’
along N’. If k> 1, then B/ and B/, will be disjoint, Vi =0, while BiN B.,, =
N!,, will be a common boundary component of these manifolds. We also let N},
denote 9B/, one of the two components of 3Bj. Finally, the projection p’ will
carry N/ diffeomorphically onto N/, Vi = 0.

For all of the above, only the homology class of N’ in L’ matters, so we will
always take the juncture to be a closed geodesic in a metric relativized from a
metric on M.

Finally, it should be remarked that the compact manifold A c L can be chosen
as large as desired. It follows that, if L is not topologically a plane or a cylinder,
then A can be chosen to be neither a disk nor an annulus.

For more details concerning the Poincaré—Bendixson theory of totally proper
leaves, the reader should consult [C-C1, § 6].

(1.2) PROPOSITION. Let X be a compact union of finitely many leaves of
%. Then, if no leaf in X is a torus or a sphere, 3 a Riemannian metric g on M and
an open neighborhood W of X such that g | W is a leafwise hyperbolic for F\W
and such that projection along the leaves of ¥ | W defines local isometries between
the leaves of ¥ | W.

Proof. We proceed by induction on the levels of the leaves in X. The leaves
at level 0 are compact and, by the hypothesis, each supports a hyperbolic metric.
In standard fashion, one constructs a metric on M that relativizes to the chosen
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hyperbolic metric on each leaf at level 0 in X. Arrange that, on the union W, of
suitable disjoint normal neighborhoods of these compact leaves (the normal fibers
are open subarcs of leaves of ), the metric is the lift, via the projection, of the
hyperbolic metric. Hence, the metric is leafwise hyperbolic in W, and projection
along the normal fibers defines local isometries between the leaves of ¥ | W,,.

Let X, denote the union of all leaves in X at levels at most k. This is a
compact set. Let W, c M be an open neighborhood of X, obtained as the
(generally not disjoint) union of sufficiently small normal neighborhoods of the
leaves in X,. Inductively, assume that a metric on M has been found relative to
which each leaf of % | W, has constant curvature —1 and such that the local
projections along leaves of ¥+ | W, define local isometries between the leaves of
F|W,. Let L be a leaf in X at level k+1. Choose a decomposition
L=AUB"U...U B’ with spirals p’: B’— L/, 1 <j <r. By the inductive hypoth-
esis, each of the leaves L’ is hyperbolic and we can arrange, as remarked above,
that the juncture N’ be a closed geodesic in L’. The metric on each leaf L’ is
lifted, via p’/, to a hyperbolic metric on B’ in which B’ is a closed geodesic.
Furthermore, this metric on B’ N W, agrees with the one already defined.

An easy induction on the level of L (necessarily > 1) shows that this leaf has
infinite genus, so the compact submanifold A can be chosen to be neither a disk
nor an annulus. Decompose A into “pairs of pants”. Each pair of pants has a
hyperbolic metric, uniquely specified (up to isometries that are isotopic to the
identity) by requiring each boundary circle to be a geodesic of specified length
[Po]. Using this, one readily extends the metric on _j—, B’ smoothly over A so as
to produce a hyperbolic metric on the leaf L. One does this for each leaf L < X at
level k + 1. There is a neighborhood W of X, , of the desired type, obtained by
extending W, via disjoint, normal neighborhoods of the compact sets L\ W,, and
the metric extends over W to be as desired. Select the new neighborhood W, of
X, by shrinking W slightly in the " directions and then modify the metric in
W\W,,, so that it extends C*-smoothly to a Riemannian metric on M.

2. The metric on the foliated products

In this section, we assume that (M, %) is proper. By (1.1) and (1.2), we
choose a skeleton X < M and a Riemannian metric on M that makes each leaf in
X hyperbolic.

Let U be a component of M\ X. Fix the identification U = L x [0, 1]. Let

p:Lx{0}— L x{1}
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be projection along the leaves of %*. That is to say, P(x,0)=(x, 1). Let
L=1i(L x{0}) and L =i(L x {1}). The projection p defines a diffeomorphism

p:L—>L

that is generally not an isometry. For instance, it is quite possible that L = L and
then, if L is not compact, it is impossible that p be the identity and generally it is
impossible that it be an isometry. Consequently, we cannot expect p to be an
isometry either.

Recall the decomposition of L into the compact submanifold A and ‘“‘arms”
B/, 1=j=r, together with p/:B'— L. Let A=1i(A X {1}), let B/ =i(B’ x {1}),
1<j=<r, and let p’ denote both of the spirals B’— L/ and B’— L’. The metrics
on B’ and B’ have been lifted by p’ from a hyperbolic metric on L/, Vj. If L=L,
then, depending on the side of the leaf L’ on which the arm B’ spirals, either p or
p~! carries B’ into itself and generates the covering semigroup Z* on B’. In any
case, p carries B’ isometrically onto B’ and it follows that, in U and relative to the
metric pulled back by #, the projection '

p:Lx{0}—Lx{1)

carries B’ x {0} isometrically onto B’ X {1}, 1=<j=<r. The problem alluded to in
the previous paragraph is that the diffeomorphism p | (A X {0}) of A X {0} onto
A X {1} is not generally an isometry. It is true, however, that p is an isometry of
the boundary geodesics since these are also boundary geodesics for the arms.

Fix a decomposition of A X {0} into pairs of pants, each bounded by closed
geodesics. Then p carries this to a decomposition of A X {1} into pairs of pants,
but the boundary circles that are not already components of 34 X {1} may not be
geodesics. These circles can be replaced with closed geodesics in their free
homotopy class, giving a decomposition of A X {1} that is diffeomorphic to the
first one. Finally, one smoothly alters %+ | (4 X [0, 1]), without changing it near
A x {0, 1} nor near A4 X [0, 1], so that p carries the decomposition of A X {0} to
the one of A x {1}, although not isometrically. Remark that #* itself has been
slightly modified, but in regions not affecting any preceding construction.

(2.1) LEMMA. The Riemannian metric on A X {0, 1} extends to a metric g’
on A X [0, 1] that restricts to a hyperbolic metric g, on each level set A X {t}. Fort
sufficiently near 0 or 1, respectively, the metric g, is independent of t. Finally, g,
makes each component X X {t} of JA X {t} into a geodesic isometric to X,
O=tr=1
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Proof. The space of isotopy classes of hyperbolic metrics on A, relative to
which the components of dA are closed geodesics of specified lengths, is smoothly
parametrized as a Euclidean space R", in a way that depends on the choice of
decomposition of A into pairs of pants. These coordinates, due to Fenchel and
Nielsen [Th, § 5], are the logarithms of the lengths of the boundary components
of the pairs of pants, other than the components of JA, together with real
numbers that record relative “twisting’”” along common boundary geodesics. Since
p carries the decomposition of A X {0} to that of A X {1}, we can view the
metrics on these manifolds as points (a,, ..., ay) and (b,, ..., by) in the same
Euclidean space R”. Choose a smooth path ¢:[0, 1]— R" that joins these points
and is constant near 0 and 1. Then o(¢) = g, is a hyperbolic metric on A X {t},
0=t=1, and all assertions follow.

Should it happen that % | (4 x [0, 1]) is the product foliation, we are done.
This is not generally the case. Furthermore, if X' is a component of A and if Fis
a leaf of % | (A x [0, 1]), the components of F N (2 x [0, 1]) need not be closed.

Let #' denote the product foliation of A X [0, 1] and let 7 denote the
foliation of that manifold induced by %. Then g’ is a Riemannian metric on
T(#K'). If v,eT, (), i=1, 2, let vieT,,(¥') be the unique vector that
differs from v; by an element of T(%%). Define a Riemannian metric g on T'(¥)
by setting g(v,, v2) =g’ (v}, v3).

(2.2) LEMMA. Under the metric g, each leaf of ¥ has constant curvature —1.

Proof. For v; and v; as above, it is evident that (v,, v,) is a g-orthonormal
frame if and only if (vj, v;) is g'-orthonormal. It will be enough, therefore, to
show that the respective curvature tensors satisfy the identity

(R(v1, v2)v2)" = R' (v}, v3)v.

Let A:A X [0, 1]— A be the canonical projection. Set w, = A,(v;) = A.(v)),
i=1,2. Let X; be a smooth extension of w, to a field on A. Let Y; e I'(T(3)) and
Y, e [(T(#')) be the unique elements that are A-related to X;, i=1,2. By
integrability, [Y;, Y,] e I'(T(%)) and [Y}, Y5]e (T (#')), and these fields are
A-related to [X,, X,]. It follows that [Y;, Y5]' =[Y}, Y3]. Let V and V' be the
respective Levi—Civita connections (along the leaves of # and ¥’, respectively)
for the metrics g and g’. The well known formula for the Levi-Civita connection
[K-N, p. 160] involves only the metric and the bracket operation, hence

(Vy 7o) = V3, Y5

and it follows that (R(v,, v,)v,)' = R'(vy, vy)v,. 0O
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(2.3) LEMMA. Let H be a leaf of #. Then each component of H N (8A X
[0, 1]) is a geodesic for the metric ng and A defines a local isometry of this
geodesic onto one of the closed geodesics bounding A.

Proof. Let J be a subarc of a component of H N (3A X [0, 1]), small enough
that A carries it one-one into A. Relative to g, let v be a unit tangent field along
J. At each point of J, the corresponding vector v’ has unit length relative to g'.
Since A is an isometry of each dA X {¢} (in the g’ metric) onto 3A, it follows that
A4(v) is a unit tangent field along A(J). The field A, (v) lifts to a field Z on A7'(J)
that is everywhere tangent to #. The corresponding field Z’, tangent to ', has
unit g’'-length and is everywhere tangent to curves that are geodesics in leaves of
#', hence V;.Z'=0. Then, as in the proof of (2.2), (V;Z) =V2Z' =0, so
V,Z =0. In particular, J is a geodesic segment for g | H. 0O

Remarks. Let g’ be the metric on B’ x [0, 1] lifted from B’ via projection.
Since OB’/ < 9A is a closed geodesic, the subarc J in the above proof has exactly
the same geodesic structure relative to the metric g’ as it has relative to g.

We now build the metric g on U (more precisely, on T(%)) by using the
metric constructed above in A X [0, 1] and using, in each arm B’ X [0, 1], the
lifted metric g/. The only problem is to make sure these definitions fit together
smoothly (i.e., C?). For this, it will be enough to verify leafwise smoothness.

(2.4) COROLLARY. The metric g, as defined above on U, is of class C* and
leaf -wise hyperbolic.

Proof. Let H be a leaf of # and let J be a small open subarc of
HN(3A x [0, 1]), as in the proof of (2.3). Let W be an open subset of H such
that WN(BAXx[0,1])=J. Let W"=WN(AXx[0,1]) and W =W N (B’ x
[0, 1]) and let @*: W*— H? be isometric mappings into the hyperbolic plane H>.
Then ¢~ (J) and @*(J) are hyperbolic line segments of the same length and,
by standard hyperbolic geometry, there is an isometry t7:H?— H? such
that (¢~ (J)) = @*(J). Thus, the isometric imbeddings 7o ¢ :W~— H* and
@*:W*— H? fit together to define an isometric imbedding @:W—>H%. O

(2.5) LEMMA. Outside of a compact subset of A X |0, 1[, the metric g is just
the lift, via projections along the leaves of %+, of the hyperbolic metric on 3U that
is pulled back from the skeleton X via i.

Proof. This is clear in the arms. In A X [0, 1], it follows from the relation
between g and g’ and the fact that, for ¢ sufficiently near 0 (respectively, 1), g, is
independent of t. [
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For each component U of M\X, we have produced a leafwise hyperbolic
metric of class at least C>. We claim that these metrics, together with the
hyperbolic metric on X produced in (1.2), assemble to form the desired C* metric
on M. Indeed, the metric in (1.2) is of class C* and, by (2.5), it agrees in a
neighborhood of X with the metric we have just produced. Since the only points
where differentiability could fail are the points of X, the proof of the Main
Theorem is complete.
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