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On the outradius of the Teichmiiller space

TosHIHIRO NAkANISHI and Hiro-0 YAMAMOTO

Dedicated to Professor Kotaro Oikawa on his 60th birthday

Abstract. Let I' be a fuchsian group which preserves the unit disc A and hence also its complement A*
in the Riemann sphere C. The Bers embedding represents the Teichmiiller space T(I') of I' in the
space B(A*, I') of bounded quadratic differentials for I'in A*. Then, T(I') is included in the closed
ball centred at the origin of radius 6 in B(A*, I') with respect to the norm employed in a paper by
Nehari [The Schwarzian derivative and Schlicht functions; Bull. Amer. Math. Soc. 55 (1949),
545-551}]. In other words the outradius o(I") of T(I') is not greater than 6. The purpose of this paper
is to give a complete characterization of a fuchsian group I" for which the outradius o(I') of T(I)
attains this extremal value 6. The main theorem is: Let I be a fuchsian group preserving A*. Then the
outradius o(I") of the Teichmiiller space T(I") equals 6 if and only if for any positive number d, either
(i) there exists a hyperbolic disc of radius d precisely invariant under the trivial subgroup, or (ii) there
exists the collar of width d about the axis of a hyperbolic element of I'.

Introduction

Let I" be a fuchsian group which preserves the unit disc A= {zeC:|z| <1}
and hence also the complement A* of the closure A in the Riemann sphere C. In
this paper we treat the Teichmiiller space T(I') of I represented as a subregion
of the Banach space B(A*, I') of bounded quadratic differentials for I by means
of the Bers embedding ([1]). By a classical theory of Nehari [§8], in B(A*, I') the
Teichmiiller space T(I) is included in the closed ball of radius 6 centered at the
origin. In other words the outradius o(I') of T(I') does not exceed 6. The
purpose of this paper is to give a complete characterization of those fuchsian
groups I for which o(I') attains the extremal value 6. Our main theorem is:

THEOREM 1.1. Let I be a fuchsian group preserving A*. Then the outradius
o(IN) of the Teichmiiller space T(I') equals 6 if and only if I satisfies one of the
following conditions:

(O,) For any positive number d, there exists a hyperbolic disc of radius d
which is precisely invariant under the trivial subgroup {1} of I.

(O,) For any positive number d, there exists the collar of width d about the axis
of a hyperbolic element of I.
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We shall refer to the notations in the theorem in Section 1. Theorem 1.1
means a geometric condition of the fuchsian group I reflects the property that
o(I') equals 6 or not. First we discuss in Section 1 preliminary notions and
definitions concerning fuchsian groups and Teichmiiller spaces. In Section 2 we
give some lemmas needed to prove Theorem 1.1. A proof of Theorem 1.1 is
carried out in Sections 3 and 4. The final section, Section 5, is devoted to some
examples concerning the conditions (O;) and (O,) of Theorem 1.1.

We wish to acknowledge many suggestions by Professors M. Masumoto and
M. Shiba which were helpful and improved this paper.

1. Preliminaries

1.1. Our basic reference for the content of this section is [2]. Let Mob (C) be
the group of M&bius transformations of the Riemann sphere C onto itself; that is,
mappings

v(z) = (az + b)/(cz + d), a,b,c,deC, ad — bc =1.
Let A*={ze€C:|z| >1} U {=}. The hyperbolic metric defined on A*,
p*(2) |dz| = (|z|*—1)7" |dz|

has constant curvature —4. Geodesics with respect to this metric or hyperbolic
lines are circles or straight lines which are orthogonal to the unit circle {|z| = 1}.
Denote by Mob (A) the subgroup of Méb (C) which preserves the unit disc A (as
well as A*). Then all transformations of Mob (A) are of the form:

v(z) = (az + b)/(bz +a), la*—|b*=1. (1.1)

A Mobius transformation (1.1) is an orientation preserving hyperbolic motion,
which means that p*(z) = p*(y(z)) |y'(z)| for z € A*. The hyperbolic distance
between z and w in A* will be denoted by d(z, w).

A fuchsian group I is a subgroup of Mob (A) which acts discontinuously on A
and hence also on A*. Let G be a subgroup of I" which is also a fuschsian group.
A subset D of A* is said to be precisely invariant under G if y(D)= D for all
vyeG and y(D)ND = for all yeI' — G. Let y be a hyperbolic element of I.
The hyperbolic line in A* connecting the fixed points of y is called the axis of y
and denoted by A*(y). Let Stab (I, A*(y)) be the stabilizer of A*(y) in I', that
is,

Stab (I, A*(y)) ={ne:n(A*(y))=A*(y)}.
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Then Stab (I, A*(y)) is either the infinite cyclic group generated by a hyperbolic
transformation or a group generated by two elliptic elements of order 2. Let
U*(d)=U*d, A*(y))={z e A*:d(z, A*(y)) <d}. We say that U*(d, A*(y)) is
the collar of width d about A*(y) if U*(d) is precisely invariant under
Stab (I, A*(y)).

Let y(z) = (az + b)/(bz + a) be a transformation in Mob (A). If b #+0, then »
is not fixed by y. In this case the isometric circle I(y) of y is defined to be
{z:|bz +a| =1}. We mean by the exterior of /(y) the complementary region of
I(y) which contains ». Let I" be a fuchsian group. Suppose that « is not fixed by
any element of I' — {1}. The set %#(I') of all points in A* exterior to the isometric
circles of all the transformations of I" — {1} is referred to here the Ford region for
I' in A*. The Ford region is a fundamental region for the action of I' in A*
([2, Sec. 15)).

1.2. Let I be a fuchsian group. A holomorphic function ¢ in A* is a bounded
quadratic differential for I if it satisfies

¢(z)=p(y(2))y'(z)* forall yel and zeA*, (1.2)

and
¢l = sup p*(2) % |¢(2)| <o, (1.3)

where p*()~?|¢(®)| means lim,_,. p*(z)"*|¢(z)|. The Banach space of bo-
unded quadratic differentials for I with the norm, | ||, defined by (1.3) is
denoted by B(A*, I').

A quasiconformal automorphism w of C is said to be compatible with a
fuchsian group I if the correspondence y— wyw ' defines an isomorphism of I
into Mob (€). Let Q(A*, I') be the family of all quasiconformal automorphisms
of C compatible with I" and conformal in A*. The Teichmiiller space T(I') of I is
the set of the Schwarzian derivatives [w]=w"/w') —(1/2)(w"/w’)* of we
Q(A*, I') in A*. By the well known properties of the Schwazian derivative,
[wl(z), we Q(A*, I), satisfies (1.2). Moreover as the Schwarzian derivative of a
univalent function in A*, it holds that ([8]):

I[wil = 6. (1.4)

Thus T(I')= B(A*, I'). The outradius o(I') of T(I') is defined to be
sup {|l¢|l: ¢ € T(I')}. By (1.4) we have o(I') =6.



On the outradius of the Teichmiiller space 291

2. Some lemmas

LEMMA 2.1. Let {y,} be a sequence in Mob (A). If there exists R >1 such
that |y,(<)| > R for all n, then {v,} contains a subsequence which converges to a
transformation in Mob (A).

Proof. Let y.(z)=(a,z+b,)/(b,z+a,), l|a.)>—|b,>=1. By assumption
17,(2)| = |a,,/b,| = |a,| (la,)>—1)""*>R >1. It follows that |a,| = R(R>—1)"'"2
and |b,| =(R*-1)""2% Choose subsequences |a,| and |b,| in such a way that
hm, .. a, =ag and hm,_, .. b,.,} = b, for some a, and b, € C. Then the subsequence
{yn} converges to yo(z) = (aoz + bo)/(boz + do).

LEMMA 2.2. Let {y,} be a sequence in Mob (A) converging to the identity
transformation 1. Then there exist a subsequence {y, } and a sequence of integers
{k(j)} such that v, converges to a transformation y which is neither 1 nor an
elliptic transformation of order 2.

Proof. By replacing {y,} with a suitable subsequence, if necessary, we may
assume that {y,} contains only elliptic or parabolic or hyperbolic elements. Here
we give a proof only for the case where {y,} contains only elliptic elements, but
other cases can be treated in a similar manner.

Assume that v, is elliptic of order v,. Let p, be the fixed point of y, in A.
Then y% corresponds to the matrix in SL(2, C)

1 [l"kpn Mpa' (An—As ")pn"l}
Pn=Pa' L —(A=24%)  Ap,—A7p. T

where A, = e?™. Since y,— 1, we have that v,— and (A, — A, ")/(p. —p;")
— 0 as n— . Choose a subsequence {y, } so that p, converges to a point p. If
|p| <1, then let k(j) be a nearest integer to v, /3. Then y,,(’) converges to the
elliptic transformation y of order 3 represented by the matrix

1 [A —Ap~" (A=A I)p"']
p—p"" A=27Y Ap-a"'p!

where A=¢e>"?. If |p|=1, then choose k(j) so that |A;’ — A ¥D|/|p, —p.7|
(j=1,2,...) are bounded and bounded below by a positive number. Then by
replacing {y,} with some subsequence, we may assume that (A;" -
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AV (p,, — Pr") converges to a number § e C— {0}. Then |yf"(«)| converges
to |£7'(1+1£1°)*>1. By Lemma 2.1 y;’ converges to a Mdbius transforma-
tion y. Since |p, — p,'|—>0, we have that |A5") — 49| — 0. Thus it follows that
tr ya? = [(AsY — 4, “")> +4|—>4 and hence that |try|*=4. Since |y(x)| =
1EI7 (1 + 1§12 #®, y cannot be the identity transformation. Now we can
conclude that y is a parabolic transformation.

LEMMA 2.3. Let k(z)=2z + z~' be defined in A*.Then,

() [k](2) = 6(z— 1)2;

(i) p*(z)2|[k](z)| =6, where the equality holds if and only if z lies on the
segment Aj = {z € A*:Im z =0} U {o};

(iii) If v is a transformation in Mob (A) for which

[k](z) = [k](v(2))y'(2)", 2.1)

then vy is either the identity transformation, or an elliptic transformation of order 2
which preserves A, or a hyperbolic transformation with the axis Ag.

Proof. Conclusions (i) and (ii) are verified by a direct calculation. Now let
¥(z) = (az + b)/(bz + @) be a transformation satisfying (2.1). Then (i) yields

(z2=1)*=((a* - b»)z* + 2(ab — ab)z — (a* — b?))%

Comparing the coefficients of the above polynomials in z, it follows that ab = ab
and a*+ b*=(—a+b)*/(—b +a)*=1. Therefore y preserves the set of two
points {1,—1}. If y fixes each of 1 and —1, then y is either the identity
transformation or a hyperbolic transformation with the axis Ag. If y interchanges
1 and —1, then v is elliptic of order 2 and preserves Ag.

3. Proof of theorem 1.1.(I)

In this section we shall prove the “only if”’ part of Theorem 1.1, that is, that a
fuchsian group I" with o(I') = 6 satisfies one of the conditions (O,) and (O,). The
proof is rather lengthy, hence we divide it into several steps (3.1-3.5).

3.1. Suppose that o(I')=6 holds for a fuchsian group I'. Let {¢,} be a
sequence of positive numbers decreasing to 0. By definition there exists a
sequence of bounded quadratic differentials {¢,} in T(I') for which 6 —¢, <
||l = 6. Choose a point z, of A* so that 6 — ¢, < p*(z,)”* |¢.(z,)| = 6. Here by
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replacing z, with another point nearby if necessary, we may assume that z, is not
fixed by any element of I — {1}. Conjugate I' by a transformation 4, in Mb (A)
with #,(®) = z, and denote A, Ik, ' by I,,. (Here we remark that, by the choice of
z,, the Ford region for I, can be defined. We use this fact in the next paragraph.)
It is easy to see that v,(z)= ¢,(h,(z))h,(z)*> belongs to T(I,), and that
6— €, <p*(®)7?|y,()| =6. Let f, be the solution of the differential equation
[£.](z) = ¥,(z), which has the following normalized form

f(2)=z+byz ' +bz72+-

Here we may assume that b, is real positive, because if otherwise, we need only
to replace h,(z) with h,(e”*z) and f,(z) with €%, (e *°z), where 6= —
(1/2) arg b,,;. Since y, € T(I,,), f, is univalent in A*. Then the area theorem (cf.
[9; p- 19]) yields

b2, + > v|b,*=1. (3.1)
v=2

Since 6 — g, < p*(®) 2 |y,(®)| = 6b,; =6, b,, converges to 1. Then the inequality
(3.1) implies that f, converges to k(z) =z +z~' locally uniformly in A* with
respect to the spherical metric of C. Also, 1, converges to [k](z) = 6(z%— 1)2
locally uniformly in A* with respect to the spherical metric.

3.2. For each n we choose a y, € I,, — {1} in such a way that the radius r, of
the isometric circle of y, is the largest of those of the elements in I, — {1}. If {r,}
contains a subsequence {r,} which converges to 0, then the Ford region %(I,)
converges to A*. This means that I satisfies the condition (O,), since I' and I;,
are conjugate in Mob (A) and we can find a disc contained in %(I,) whose
hyperbolic radius tends to « as j tends to «. Therefore we need only to consider
the case that {r,} is bounded below by a positive number r,. Then, for
Ya(2) = @,z + B5,)/(bpz +@"), 1, — balP =1, we have [y,()| = |a,/b,| Z (1 +
r3)"2. By Lemma 2.1 it follows that a subsequence of {y,} converges to a Mobius
transformation y,. For convenience we denote this subsequence again by {y,}.

Since v, € I,,, it holds that ¥,(z) = ¥,(v.(2))y.(z)*. By letting n— = in this
equation, we obtain that [k](z) = [k](yo(z))Yi(z)?. By Lemma 2.3, y, is either the
identity transformation or an elliptic transformation preserving A; or a hyper-
bolic transformation with the axis A.

3.3. The above sequence {y,} contains only finitely many parabolic elements
and elliptic elements of order >2. To see this, assume that {y,} contains an
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infinite subsequence {7, }, where 7, is either parabolic or elliptic of order >2. As
the limit of 7,, y, is the identity transformation. By Lemma 2.2 there exist a
subsequence {7, } and a sequence of integers {k(j)} such that 15"’ converges to
a Mobius transformation 7 which is neither the identity nor elliptic of order 2. As
the limit of parabolic or elliptic elements, 7 is not hyperbolic. By letting j— o in
the equation ,(z)=v,(n:"(2))(n:")'(z)>, we obtain that [k](z)=
[k])(n(2))n’'(z)>. However this contradicts Lemma 2.3. In a similar manner we
can show that for a subsequence {7, } of hyperbolic elements in {y,}, if any, the
axis of 7,, converges to A;. Assume that the axis of 7, does not converge to A.
Then 7y, is again the identity transformation. Choose a subsequence {7, } and a
sequence of integers {k(j)} so that n’,ﬁf“ converges to a nontrivial transformation
n. As the limit of hyperbolic elements 7 is either parabolic or hyperbolic. If 7 is
hyperbolic, then by the assumption the axis of n is different from Ag;. Then as
above we can deduce a contradiction.

Now, by eliminating a finite number of elements and choosing a subsequence,
we can assume that one of the following two cases occurs for {y,}:

Case (A). {y.} contains only elliptic elements of order 2, and ¥, is an elliptic
transformation of order 2 and preserves Ag.

Case (B). {v,} contains only hyperbolic elements, and y, is either the identity
transformation or a hyperbolic transformation. Moreover the axis A*(y,)
converges to Ag.

We shall consider the two cases (A) and (B) separately.

3.4. Case (A). In this case we shall show that I satisfies the condition (O,),
or otherwise that we can transfer the argument to Case (B).

We take a 8, € I, in such a way that the radius r,, of the isometric circle of 9§,
is the largest of those of elements in I, — {1, v,}. If {r,} contains a subsequence
converging to 0, then we can see easily that I' satisfies the condition (O,). On the
other hand if {r,} is bounded below by a positive number, then by Lemma 2.1 a
subsequence of {6,} converges to a Mobius transformation 6,. Choosing a
subsequence and relabelling if necessary, we can assume that Case (A) or (B)
occurs for {9, }. If Case (A) occurs, then both y, and §,, are elliptic of order 2.
Since y, # 08,, 7,0, is hyperbolic and converges to yS. By applying the argument
in 3.3 we can show that Case (B) occurs for {y,0,}. Therefore Case (B) occurs

for {8,} or {¥.0.}.

3.5. Case (B). In this case we shall show that I' satisfies the condition (O,).

Let R, be the region exterior to the isometric circles of y, and y,'. Among
the elements of I, — Stab (I,, A*(y,)) whose isometric circles meet R,,, choose a
6, which has the isometric circle of the largest radius ,. Assume that {r,} is
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bounded below by a positive number. By Lemma 2.1 we can find a subsequence,
which is denoted again by {8,}, of {§,} converging to a Mobius transformation
do- As in 3.2 we can show that §, preserves Ag. For n =0 denote by G,, the group
generated by y, and é,. Since §, € I, — Stab (I,, A*(v,)), G, is non-elementary
for n = 1. Let x, : G,— G,, be the mapping which is the canonical extension of the
correspondings x,(vo) = v, and x,(8,) = 8,.. By [4, Proposition 1 and Theorem 2]
G, is fuchsian and x, is homomorphism of G, onto G, for sufficiently large n.
Thus G, is a non-elementary fuchsian group. However G, is elementary because
both y, and J, preserve Aj. This is a contradiction. Therefore {r,} contains a
subsequence converging to 0. Since I' is conjugate to I, in Mob (A), I satisfies
the condition (O,). The first half of the proof is now completed.

4. Proof of Theorem 1.1.(I)

In this section we shall prove the “if”’ part of Theorem 1.1 and complete the
proof.

4.1. We consider also the action of a fuchsian group I" on the unit disc A with
the hyperbolic metric p(z) |dz| = (1 —|z|*)~"|dz|. Let R(z)=1/z be the reflec-
tion with respect to the unit circle. Note that R is an isometry of (A*, p* |dz|)
onto (A4, p |dz|) and that R conjugate I to itself; R"'TR=T. Let A, be the
segment {z € A: Im z =0}. If M6b (A,) denotes the subgroup of Mob (A) which
preserves A, and also Aj, then each element y of Mob(A,)— {1} has the
following form:

_(A+A)z+(1-4)

= . A>0 and A#1, 4.1
Y@=z (1 +4) 0 and 4% (414}
if y is hyperbolic, and
ANz =D ) and A1, (4.1b)

Y= =+ a)

if y is elliptic of order 2. Neither a parabolic transformation nor an elliptic
transformation of order #2 belongs to Mob (A,).

Let V be the segment {a: —3/2 <a < 1/2}. For each a in V, define a function
Uq IN C:
(6(a) —1D)(1—2%)/(1—-2%) for zeA,

— _ 4.2
Ha(2) {O for ze A*, (4.2)
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where 6(a) = (1 —2a)"? (with §(0) =1). Note that ess. sup |u,| = |6(a) — 1| < 1.
A direct calculation using (4.1a) and (4.1b) yields:

Ha(2) = pa(¥(2))7'(2)/y'(z) forall yeMob (Ao). (4.3)

Let h(z)=i(1-2z)/(1+z) be a Mobius transformation sending A* onto the
lower half plane #*. Then the Beltrami equation

W;: = U W,

has a solution W, expressed by

_[—2i8(—=0)°/[h(2)h(z)°"" — (=i)°] for zeA
Welz) = {—Zié(—i)"/[h(z)"-—(——i)"’] for zeA*,

with d =6(a) and a fixed branch of z° in #*. The function W, is a
quasiconformal automorphism of €, conformal in A* and has the normalized
form: W,(z) =z + O(|z|™") as z— ». Moreover, [W,](z) =4a(z*—1)"%in A*.

Remark. We learned the above construction of the function W, from a paper
by Kalme [5].

For the remainder of this section, the notion of convergence of functions
defined in € will be considered in the spherical metric.

4.2. First we shall show that o(I')=6 holds for any fuchsian group I
satisfying the condition (O,). Now let I satisfy (O,). Choose a sequence of
positive numbers {d, } increasing to <. Conjugate I by a transformation #, in
MGb (A) so that a hyperbolic element y, of I, = h,Ih;;' has A, as its axis and so
that the collar Uy(d,) of width d, about A, exists. Let G, = Stab (I,,, Ay). By the
definition of collar:

y(U(d,)) = Uyd,) for yeG, and
Y(Us(d,)) N Up(d,) =D for yel, -G, (4.5)

Define functions ., (n=1,2,...)in C:

Ha(2)7'(2)/y'(z) if w=y(z) for some z € Uy(d,)
Ua (W)= and for some y € I,,. (4.6)
0 otherwise
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Since G, « Mob (A,), we can see by (4.3) and (4.5) that u, , is well defined. The
support of u, , is in the closure of U, r, Y(Uy(d,)) and in particular u, ,=0 in
A*. By definition u, , is a Beltrami coefficient for I,, that is,

ess. sup |Uq.nl =6(a) — 1| <1, (4.7)
and
Ban(2) = Ran(¥(2))Y' (2)]¥'(z) forall yel, (4.8)

4.3. Let W, , be the solution of the Beltrami equation

(Wa,n)z' = .uoz,n(ch,n)z

which satisfies the normalization condition: W, ,(z) =z + O(|z|™') as z— =. Let
K(a)=(1+|6(a) - 1|)/(1 = |6(a) — 1]). As a consequence of (4.6), (4.7) and
(4.8) W,, is K(«)-quasiconformal automorphism of C, conformal in A* and
compatible with I,. From the normalization condition {W,, ,},_; forms a normal
family ([6, Chap. II]). On the other hand the support of pu, — u, , is included in
A —Uy(d,). Since the Lebesgue measure of A — Uy(d,) decreases to 0 as n—, a
subsequence of {u,,} converges a.e. to u, ([10, Chap. 4, Proposition 17]). by
replacing {u, ,} and {W, ,} with suitable subsequences, and denoting them again
by {4, .} and {W, ,}, the following situation arises:

(i) W, , converges uniformly to a K(a)-quasiconformal automorphism W, ,
of C.

(i1) p, . converges a.e. to U,.
Then W, , is a good approximation to W, in the sense given in [6, Chap. IV,
5.4]. Therefore, by the normalization condition, W,,=W,. Let y,.(z)=
[W,.](z) for z € A*. Then y,,e T(I,) and vy, ,.(z) converges to [W,](z)=
4a(z* — 1) locally uniformly in A*. In particular it follows that ||y, .|| — 4 |a/|.

Recall that I, = h,Ih, ! for some Mébius transformation h,. Thus, ¢, .(z) =
Van(ha(2))h,(z)? belongs to T(I) and ||@a.pll = ||Wa.nll—4|a|. Choose a posi-
tive number & to be sufficiently small so that a =—3/2+ ¢/4€V. Then for
sufficiently large n we have that 6 —2¢ <||¢, ,||. Since & can be arbitrarily small
and o(I')=6 always holds, we can now conclude that o(I') =6, whenever I
satisfies the condition (O,).

4.4. The proof for the case where I satisfies the condition (O,;) proceeds in a
way similar to the preceding case. Now let I' satisfy (O;). For a choice of a
sequence of positive numbers {6, } decreasing to 0, let D, ={z € A:|z|<1-6,}.
Then we can conjugate I' by a transformation A, in M6b (A) in such a way that
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I, = h,Ih; ' has the following property:
y(D,)ND,=0 forall yel,—{1}.
For an « € V, define functions u,, (n=1,2,...)in C:

u.(2)y'(2)/y'(z) if w=y(z)forsome zeD,
Uon(W) = and for some y e I,
0 otherwise.

Then each u, , is a Bertrami coefficient for I, with ess. sup |y, .| =[0(a) — 1| <1.
Note that the support of u, —pu., is included in A— D,, whose Lebesgue
measure decreases to 0. With the normalized solution W, , of the Beltrami
equation (W, ,); = ke n(Wa.n)., now we are in the same situation as in 4.3. Thus
by the same argument there we can conclude in this case also that o(I") = 6. Now
we complete the proof of Theorem 1.1.

5. Examples

We list some examples of fuchsian groups concerning the conditions (O,) and
(02).

(a) Any fuchsian group I' of the second kind satisfies the condition (O,). Thus
for such a group we have o(I') = 6. Theorem 1.1 includes the former result by
Sekigawa and Yamamoto [12], [13].

(b) For each integer n, define two circles A, = {z: |z —2n + 1/2| = 1/2} and
B,={z:1z—2n-1/2|=1/2}. Then y,(z)=((1+4n)z—8n*)/(2z+ 1—4n)
maps the exterior of A, onto the interior of B,. The collection {y,} generates a
subgroup I of the modular group PSL (2, Z). The region in the upper half plane
which is exterior to every A, and B, is a fundamental region of I" and it contains
{z:Im z >1}. Since we can find there a hyperbolic disc of an arbitrary radius, I'is
a fuchsian group of the first kind satisfying the condition (O,).

(c) Let R be the complex plane with infinitely many punctures C — {27, —
27"*}z_, endowed with the hyperbolic metric pr(z)|dz|. Then the annulus
A, ={z: 2~ < z| < 2“"2} is included in R. Let g, be a simple closed curve in
A,, which separates the two boundary components of A,. There exists a unique
simple closed geodesic g, freely homotopic to g, in R. Denote its length by /(g,).
Next let g, be the simple closed geodesic freely homotopic to g, with respect to
the hyperbolic metric of the annulus A,. Denote by /(g) and I(g}) its length with
respect to the hyperbolic metric of R and that of A,, respectively. Since A, c R,
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it holds that pg(z) <p,(z) for z € A,, where p,_ is the density of the hyperbolic
metric of A,. Therefore we have I(g,) =1(g") <I(g"). Moreover we have that
I(g")— 0 as n— = since the module log 2"**V*/2" of A, tends to «. Thus, for any
€ >0, there exists a simple closed geodesic on R whose length is smaller than e.
Then the collar lemma ([3]) ensures that a fuchsian group representing R satisfies
the condition (O,).

(d) A cyclic group I' generated by a hyperbolic transformation in Mob (A)
and its extension of index 2 satisfy both (O,) and (O,).

(e) A finitely generated fuchsian group I' of the first kind satisfies neither of
the conditions, and hence the outradius o(I') is strictly less than 6. This result is
first proved by Sekigawa [11]. On the other hand, there exist fuchsian groups I,
(n=1,2,...) quasiconformally equivalent to I', for which o(I;)— 6. This is
proved in a generalized form in [7].
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