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Rigid versus non-rigid cyclic actions

KarRL HEINZ DoOVERMANN,* MikiyA MasubpaA, and DoNG Your SuH

§0. Introduction

Let p denote an odd prime number, and let G, be the cyclic group of order p.
In this paper we study (locally) smooth G, actions whose fixed point set consists
of a codimension two component and an isolated point. Following [M1] we say
that such a G, action is of Type Il,. Of particular interest is the case where the
underlying space is a closed manifold having the same cohomology (or the same
homotopy type) as CP". Such a space is called a cohomology CP" or homotopy
CP" respectively.

When we study transformation groups, we often adopt the following ap-
proach. First we take a familiar action as a model and compute its invariants.
Then we ask if a general action has similar invariants provided that the underlying
space has a topological type similar to that of the model action. We take a linear
G, action of Type II, on CP” as the model. The invariants which are of interest in
this paper are Pontrjagin classes, tangential representations at fixed points, and
defects [M1].

We explain why we study Type II; actions especially. For that we pose our
problem in a more general setting. Suppose G, acts (locally) smoothly on a
cohomology CP" denoted by X. Let {F};_, be the set of fixed point components
of the action. The Fixed Point Theorem of Bredon and Su [B, p. 382] says that

(0.1) Each F; has the same cohomology ring as CP™ for some n; with Z,
coefficients and ¥, (n;+ 1)=n +1,

(0.2) the restriction map from H*(X;Z,) to H*(F; Z,) is surjective.

Fix a generator x of H*(X;Z) and let x; be its restriction to F. To simplify
notation we regard x; also as a class in H*(F; Q). Motivated by the linear model
actions we make the

DEFINITION. A (locally) smooth G, action on X is algebraically standard if

* Partially supported by NSF Grant MCS 8514551.
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270 K. H. DOVERMANN. M. MASUDA AND DONG YOUP SUH

the following three conditions are satisfied:

(0.3) p(F)=(1+x{)**" in H*(F; Q).

(0.4) |x*[E]l = Dx(F)=1, the number Dyx(F;) defined here is called the
defect of F; in X.

(0.5) The tangential representations of G, at fixed points are of the linear
type.

The concept of tangential representations of the linear type has been
introduced by A. Hattori [Ha] (see also [Hs]). There only S' actions are treated,
but the definition of the linear type can be adopted with no difficulties to G,
actions. In case of Type Il, actions this means

(0.5)" TtX=nv|q as real representations. Here T.X is the tangential
representation at the isolated fixed point f, v is the normal bundle to the

codimension 2 fixed point component F, and v | q is the restriction to a point g of
F.

Remark. It follows quite easily from (0.2) that Dy(F)+#0. The term of
algebraically standardness was introduced in [D1] for actions of Type II, in a
slightly different way, two more conditions were given, i.e.

pX)=(1+x)"",

c(v) =1=j*x, where j: F— X is the inclusion map.

A lemma shows that these two definitions are nevertheless equivalent.
It is natural to ask.

Question. Is a (locally) smooth G, action on a homotopy CP" algebraically
standard?

In general, the answer is no. In fact, in [DM] we showed

THEOREM. For any odd integer m and any odd n =3, there are infinitely

many homotopy CP"’s with smooth G,, actions which satisfy neither (0.3) nor
(0.4).

As for (0.5), G, actions of non-linear type with isolated fixed points are
constructed in [P1, 2], [MT], [T], [DM]. In these counterexamples, and also in
the ones in the last theorem, the dimensions of the fixed point components are
small in comparison with the dimension of the ambient manifold. In fact, they are
less than half of it. To the contrary one has the vague feeling that an action with a
fixed point component of low codimension is restrictive (see [D1], [M1,2] for
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example). In this sense Type Il actions are the extreme case. Thus we are led to
study Type I, actions.
Our first result is a rigidity theorem.

THEOREM A. Let X be a cohomology CP". There is a constant cyx, which
depends only on the Pontrjagin class of X, such that any (locally) smooth G,
action of Type Il, on X is algebraically standard if p = cy.

This, and several other studies of cyclic actions on homotopy complex
projective spaces, were motivated by Petrie’s Conjecture [P1]. It may be stated as
follows:

Suppose S' acts smoothly and effectively on a closed manifold X homotopy
equivalent to CP". Then p(X) = (1 +x?)"*".

This conjecture has been verified in several special cases, and for a long
bibliography see [D2]. In particular it holds if the action is semifree (which is
equivalent to having two fixed point components) [Wgl], [Y]. Theorem A
provides a new proof of Petrie’s Conjecture for Type II, actions of S' (cf. [M2]).
In fact, it follows from Theorem A and the above remark that we have

COROLLARY. Let X be a homotopy CP" with non-standard Pontrjagin
class. Then p Zcy (cx as in Theorem A) implies that X does not admit a (locally)
smooth Type Il, G, action.

The interesting aspect of this alternative proof is that it is merely based on the
G Signature formula for elements of sufficiently large but finite prime order. In
addition we do not need that the action is smooth, but only that it is locally
smooth.

In contrast we have

THEOREM B. Let ¢,=1 if n=3 (mod4) and ¢,=0 otherwise. If
[(n—2)/4] —¢,Z(p + 1)/2, then there are infinitely many homotopy CP™’s with
smooth G, action of Type Il, such that (0.3) is not satisfied, in particular they are
not algebraically standard. (The inequality holds if n =2p + 8).

We note that a smooth free S' action on the standard sphere $**~' which
restricts to a linear G, action on $**~' produces a homotopy CP" with a smooth
G, action of Type II, having the S' orbit space of $**~' as the fixed point
component of codimension two (see §3 for details). The inequality in Theorem B
is a sufficient condition for infinitely many such actions to exist (Theorem 3.2).
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Theorem 3.2 is valid even when p = 1. It then says that there are infinitely many
smooth free S' actions on $**~' provided that n =8 or n = 6. This almost proves
a main theorem of Wang [Wg2] (in fact, Wang proves the existence for n =7).
Our proof is quite different from his proof and much simpler.

Having both Theorems A and B in mind we make this

Conjecture. There exists a function d(n) such that (locally) smooth Type 1],
actions of G, on cohomology CP"’s are algebraically standard if p = d(n).

It would mean that cy in Theorem A depends only on n. As supporting
evidence we quote experience from Theorems A and B. Low dimensional
evidence is also the main result of [D1].

THEOREM C ([D1]). A (locally) smooth Type I, action of G, on a
cohomology CP" is algebraically standard if

(1) n=3

2) n=4andp =5

(3) n=S5, p =7 and the relative class number h,(p) is odd or p = 29.

Some computer assisted computation in the spirit of [D1] also show further
cases of this theorem:

() n=6and T=p =43

5) n=7and 11=p =19.

In spite of the estimate for d(n) in Theorem B it seems reasonable to expect
that d(n) is approximately n, up to a small additive constant. This guess is based
on the locally linear PL discussion of Theorem B in [D1].

This paper is organized as follows. In the first two sections we study rigidity
phenomena of G, actions, (0.4) and (0.5) in Section 1 and (0.3) in Section 2. In
Section 3 we prove Theorem B. We also construct infinitely many smooth free S*
actions on $2"~! which restricts to linear G, actions. In Section 4 we relate our
results to one announced by Connolly-Weinberger [We].

§1. Rigidity of defects and tangential representations

As is well known the G signature theorem imposes a profound constraint on
invariants of G actions. In this and the next section we observe to what extent it
restricts our invariants of G, actions of Type II,. The G signature theorem holds
for semifree tame actions ([Wal, 14B]), and for G, actions of Type 1I, tameness is
equivalent to local smoothness ([D1]). In the following we consider locally
smooth G, actions of Type II,.
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Roughly speaking our results say that those actions resemble the linear action
of Type II, on CP" provided that p is sufficiently large. Our argument works for a
family of closed orientable even dimensional manifolds X satisfying the following
three conditions:

(1.1) The second Betti number dim H*(X;Q) of X is one. There is an
element x € H*(X; Z) which descends to a generator of H*(X;Z)/torsion. We
sometimes consider x as an element of H*(X; Q).

(1.2) If dim X = 2n, then x" #0.

(1.3) The total Pontrjagin class of X is a polynomial of x in H*(X; Q).

This family contains Z, (Z or Q) cohomology CP"’s, i.e. closed smooth
manifolds having the same cohomology ring as CP" with Z,, (Z or Q) coefficients.
Examples of another type are non-singular algebraic hypersurfaces of CP"*!
(nZ3).

Throughout this section X will denote a closed manifold of dimension 2n
satisfying the above three conditions and we fix an element x in (1.1).

DEFINITION/OR CONVENTION 1.4. We choose an orientation class [X]
so that the defect D(X) defined as x"[X] is non-negative. By (1.2) it is a positive
integer.

Suppose X supports a locally smooth G, action of Type II,. We denote the
fixed point component of codimension two by F and the isolated fixed point by f.
The G signature formula is described in terms of local information around the
fixed point set. We need more notations and conventions to write it down.

DEFINITION/OR CONVENTION 1.5. We choose an orientation class [F]
for F so that the defect Dy(F) = j*x"~'[F] of F in X is a non-negative integer (cf.
Introduction).

The orientations on X and F determine a unique orientation on the normal
bundle v of F in X such that their juxtaposition agrees with the orientation of X.
Once v is oriented, it can be regarded as a complex line bundle as usual. Let ¢*
denote the complex 1-dimensional representation of any subgroup G of S' such
that g € G acts by multiplication with g“. The identification of an appropriate
element g € G, with exp(2xi/p) in S' identifies G, with a subgroup of S' such that

1

vig=t—" for qePF. (1.6)

We fix this identification of G, with the subgroup of p-th roots of unity.
The tangential representation T;X at the isolated fixed point f is oriented. As
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is well known one can put a complex structure on it such that the induced
orientation agrees with the one given by the orientation of X, although such a
complex structure is not unique. We choose integers m; such that 1= |m;| <p/2
and

j=1

J

As a step towards algebraical standardness, we pose an intermediate
definition.

DEFINITION 1.8. We say that a locally smooth G, action of Type Il is
weakly algebraically standard if D(X)= Dx(F)=1 (cf. (0.4)) and the m; can be
chosen to be 1 for every j (i.e. the action is of the linear type, cf. (0.5)).

Our main theorem in this section is

THEOREM 1.9. Let X be a closed manifold of dimension 2n satisfying (1.1),
(1.2), and (1.3). Define a, by setting ¥, a,x** = p(X). Then there is a constant by
depending only on {a,}, the Betti numbers of X, and the number of torsion
elements of H*(X; Z) such that if p Z by, then any locally smooth G, action of
Type I, on X is weakly algebraically standard.

The rest of this section is devoted to the proof of this theorem. The following
lemma is proved in Lemma 2.8 of [M2].

LEMMA 1.10. (1) D(X) divides Dx(F).
(2) ¢1(v) = Dx(F)/D(X)j*x, where c,(v) denotes the first Chern class of v.

Set Dx(F)/D(X)=d, j*x =% and exp 2mi/p = z. Since G, is considered as a
subgroup of S', z is an element of G,. We apply the G signature theorem (see
[HZ, p. 50]) together with (1.6), (1.7) and Lemma 1.10 (2) to get an identity

-1 _2dx n m
z7 e +1 z2"+1
]+U .

Sign(z, X)=‘;:l—e_2_d‘:r:—:_—1_L(F)[F lzml— 1 (111)

Here L(F) denotes the Hirzebruch L polynomial of F. One can easily verify that

Z—IEde‘+1 22 n—1 (Ede__l)k

z‘lew—-lzl—z—lkzo z—1
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The sum in this expression is finite because (2°*—1)’ vanishes for j=n as
dim F <2n. Moreover, Hirzebruch’s signature formula states that

L(F)[F]=Sign F.

Substituting both in (1.11) and multiplying the resulting identity by (z —1)",
we get

0= (z — 1)*(Sign(z, X) — Sign F) + Zz{nil (z = 1)1 - l)k}L(F)[F]

k=0

—(z=1) H ™+ 1)/(z™=1). (1.12)

We shall estimate the value of each term in this identity for a sufficiently large
value of p. We begin with

LEMMA 1.13. (1) Let sy be the sum of all Betti numbers of X and the
number of torsion elements in H*(X; Z). Then

|Sign(z, X) — Sign F| =sy.

Q) |z=1D"IT ™+ 1)/(z™-1)|<2".

BG) 1= [T (™ +1)/(z"=1)|<2""'(1 + tan’z/p) unless |mj=1 for
every |.

Proof. (1) It easily follows from the definition of the G signature that

ISign(z, X)| = dim, H*(X; C).

As for Sign F, it follows from the definition of the signature and the universal
coefficient theorem that

Sign F| = dimp H"™'(F; R)=dim, H""'(F;Z,).
On the other hand it is known (see p. 144 of [B]) that

> dim, H'(F;Z,)= 2, dim, H(X;Z,).

iZn—1 iZn—1
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These show that
|Sign(z, X) — Sign F| = |Sign(z, X)| + |Sign F|

=dime H'(X;C)+ 2, dimy, H'(X;Z,) Ssy.

iZn—1

(2) Since z = exp 27i/p, we have

[(z™ —=1)/(z™ + 1)| = [tan mz /p]|.

Hence

I(z—=1)" [T (z"+1)/(z"™ = 1)
=|(z+1)"(z=1)"/(z+ 1)"|[I1 "+ 1)/(z™ = 1)|
<2"[l |tan (;t/p)/tan(m;x/p)]. (1.14)

Remember that |m;| are chosen so that 1= |m;| <p/2. Since tany is a monotone
increasing function in the domain |y| </2, (2) follows from (1.14).
(3) Unless |m;| =1 for every j, we have

[1Itan /p/tan myz/p| < |tan xt/p/tan 27/p)|. (1.15)

Here tan2m/p =2tan (n/p)/(1 +tan’zx/p). Now (3) follows from (1.14) and
(1.15). Q.E.D.

We now consider the second summand of (1.12). By multiplicativity of the L
polynomial we have

L(F)=j*L(X)L(v)™".
By Lemma 1.10 (2) we have
L(v)=1+p,(v)/3=1+c,(v)*/3=1+d**/3.

On the other hand since p(X) is a polynomial of x by assumption (1.3) and L(X)
is a polynomial of Pontrjagin classes, we may then write

|n/2]

LX)=D Ax*  (Ag=1)
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with A, € Q. Consequently we have

L(F) = (2 Akak)(Z (- d2£2/3)’>. (1.16)

Put this into the second summand of (1.12) and expand it with respect to d. Then,
since (¥)"![F] = Dx(F) = dD(X) by the definition of Dx(F) and d, the exponent
of d is at most n. In fact, we can express

the second summand of (1.12) = >, B,(z)d’
ji=0

with polynomials B;(z) of degree less than or equal to n. We shall collect
properties of B;(z) in the following lemma. The proof is easy, so we leave it to
the reader.

LEMMA 1.17. (1) If p=n+1, then B;(z) is described in terms of the
coefficients of the polynomial p(X) =Y. a;x**.

(2) B(1)=0forj<n

(3) B,(1)=2"D(X).

We need one more lemma.

LEMMA 1.18. d #0, i.e. d is a positive integer.

Proof. Suppose d =0. Then, since (£)""'[F] = Dx(F)=dD(X)=0 and L(F)
is a polynomial of x (see (1.16)), the first term in the right hand side of (1.11)
vanishes. Hence identity (1.11) turns into

Sign(z, X) = ﬁ ™+ 1)/(™—1). (1.19)

However this is impossible as observed below. The proof is essentially the same

as in Theorem 7.1 of [AB].
Let R(G,), denote the ring localized at the prime ideal of R(G,,) vanishing at
z. Identity (1.19) implies that

Sign(G,, X) = [ (¢™ + 1/t~ 1) in R(G,).
j=0
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where ¢ denotes the standard complex 1-dimensional representation of G, as
before. Multiplying both sides by [I (™ —1), it turns out that the resultant
identity in R(G,), comes from R(G,). Since the kernel of the natural map from
R(G,) to R(G,), is the ideal generated by the cyclotomic polynomial Y2_, ¢/, one
concludes that

Sign(G,, X) [T (™ — 1) =[] ™+ 1)+ h(z rf) in R(G,)

with some integer h. Here we can evaluate this identity at ¢t = 1. Then it reduces
to

0=2"+hp
which is impossible because p is odd. Q.E.D.

Proof of Theorem 1.9. We now fix the underlying manifold X. If we take
p sufficiently large, then z converges to 1. We denote this by z=~1. By Lemma
1.13 (1) one can see that

the first term of (1.12) ~0. (1.20)

On the other hand, the third term of (1.12) is bounded independent of the value
of p by Lemma 1.13 (2). These together with Lemma 1.17 imply that the values
of d are also bounded. Hence one can conclude by Lemma 1.17 that

the second summand of (1.12) =2"d"D(X). (1.21)
Suppose |m;| =2 for some j. Then Lemma 1.13 (3) tells that since tan &/p =0,
the absolute value of the third term of (1.12) converges to a value strictly less
than 2". However this contradicts (1.12) together with (1.20) and (1.21) because

2"d"D(X) = 2" by Definition 1.4 and Lemma 1.18.
Thus we have established that m;= + 1 for every j. Then

the third term of (1.12) =2" [ m,. (1.22)

Since d and D(X) are positive integers and [Im; = % 1, it follows from (1.20),
(1.21), and (1.22) that

d=1, DX)=1 and [[m=1
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Remember that there was an ambiguity of a choice of a complex structure on
TzX. The only constraint is that the orientation on 7.X induced from the complex
structure agrees with the given one. As is easily seen, it is equivalent that the sign
of [I m; is positive. Hence we may assume m; =1 for eachj. Q.E.D.

§2. Rigidity of Pontrjagin classes

Let X be the same as in (1.1). We use the notation of §1 freely. The following
definition is consistent with that of the Introduction.

DEFINITION 2.1. We say that a locally smooth G, action of Type II, on X is
algebraically standard if it is weakly algebraically standard and p(F) = (1 + £%)" in
H*(F; Q).

The purpose of this section is to prove

THEOREM 2.2. Let a locally smooth G, action of Type Il, on X be weakly
algebraically standard. Suppose the induced action of G, on H"(X; Q) is trivial.
Then the G, action is algebraically standard provided that p Zn + 2.

Remark 2.3. If X is a Q-cohomology CP", then G, acts trivially on the
cohomology because dimg H"(X; Q)=1. Generally, if we take a basis on the
vector space H"(X;Q) coming from H"(X;Z), the induced action of G, on
H"(X; Q) gives a homomorphism from G, to a general linear group GL(r, Z)
where r =dimg H"(X; Q). Therefore if GL(r, Z) does not contain an element of
order p, then the assumption is satisfied. This is the case if p = r + 2. The proof is
as follows. Diagonalize the image of z =e*™” over C. Then the trace is a
polynomial of z over Z with at most r factors of degree less than p. It must be an
integer as the image of z € G, lies in GL(r, Z). Since a minimal polynomial of z
over Z (or Q) is the cyclotomic polynomial ¥%- z/, the above polynomial does
not contain any factor of z/ (0 <j<p). This means that the image of z is the
identity matrix.

COROLLARY 2.4. Let X and by be the same as in Theorem 1.9. Then a
smooth G, action of Type I, on X" is algebraically standard if p Zcyx=
max {by, n + 2, dimg H"(X; Q) + 2}.

Proof of Theorem 2.2. Triviality of the induced action of G, on H"(X; Q)
implies that Sign(z, X) is equal to Sign X. Since the action is weakly algebraically
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standard, i.e. d =1 and m; = 1 for every j, (1.12) turns into
0=(z —1)"(Sign X — Sign F)

+ 2z{g (z — 1)1 k(e¥ — 1)"}L(F)[F] —(z+1)". (2.5)

In this identity the coefficients of z’ are rational numbers and the degree of z is at
most n. Because the minimal polynomial of z is of degree p — 1, the coefficients
of z/ must identically vanish as p =n + 2.

Look at the constant term in (2.5). Since it must be zero, we get

Sign X — Sign F = (—1)".

Putting this into (2.5), we have
22{:20 (z =11 e¥ - l)k}L(F)[F] =(1+z)"-(1-2)". (2.6)

Compare the coefficients of z’/ inductively. The values of (e** — 1)*L(F)[F] are
then uniquely determined for each k. They determine L(F), because L(F) is a
polynomial of ¥ (see (1.16)). On the other hand the linear G, action of Type Il
on CP" also satisfies (2.6) and F =CP"*! in that case. Hence one can conclude
that p(F) = (1 + x%)" in general. Q.E.D.

§3. Free smooth S' actions on lens spaces

Let X be a homotopy CP™ with a homotopy equivalence 4 from Y to CP™.
Let h*y be the pullback of the canonical line bundle y over CP™ by h. Let
D(h*y) (resp. S(h*y)) denote the disk (resp. sphere) bundle of A*y. Then
S(h*vy) is a homotopy sphere with a smooth S' action induced from the complex
multiplication on fibers.

Suppose that
(3.1) S(h*y) with the restricted G, action is equivariantly diffeomorphic to the
unit sphere S§>"*! of C™*' with the linear G, action of weight one (i.e.
S((m + 1)t)).

Remark. 1f S(h*vy) with the restricted G,, action is equivariantly diffeomorphic
to $>"*! with a linear G, action, then it must be S((m + 1)t). In fact, the
Reidemeister torsion of the orbit space S(h*y)/G, is the same as that of the lens
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space of weight one because it is fibered over a homotopy complex projective
space Y (see [Wal, Prop. 14E.8(c)]). On the other hand linear lens spaces are
distinguished by Reidemeister torsion invariants up to diffeomorphism (see
[Mi, 12.7]).

If (3.1) is satisfied, then we can attach the unit disk D?"*2 of C™*! with the
linear G, action of weight one equivariantly to D(h*y) along the boundary. The
resulting space turns out to be a homotopy CP™*' with a smooth weakly
algebraically standard G, action of Type II, whose fixed point set consists of Y
and the center of D*"*2, Hence a pair (Y, k), which satisfies (3.1) but the total
Pontrjagin class p(Y) of Y is not of the same form as p(CP™), yields a weakly
algebraically standard but algebraically non-standard smooth G, action of Type
II,. In this section we use classical surgery theory to find such pairs.

Let L™(p) denote the standard lens space defined as the orbit space of §2"*!
by the linear G, action of weight one. There is a natural S' fiber bundle
a™(p):L™(p)— CP™. Let Y be the total space of the pullback of this S* bundle
via h and let A: Y— L™(p) be the induced map covering h. We note that A is a
simple homotopy equivalence, hence so is & ([A]). To assign a pair (Y, A) to
(Y, h) gives a map

™ (p)*:hS(CP™)— hS(L™(p))-

Here hS(Z) denotes the set of simple homotopy smoothings of Z, namely it is the
set of equivalence classes of pairs (W, g) such that W is a smooth manifold and g
is a simple homotopy equivalence from W to Z. In case Z has a boundary 9Z, a
set hS(Z, 3Z) similar to hS(Z) is defined. But it is required in addition that g
restricts to a diffeomorphism on the boundary. The set hS(Z) or hS(Z, 3Z) has a
distinguished element defined as a pair of Z and the identity map on Z. The
inverse image of the distinguished element in AS(L™(p)) by a™(p)* is called the
kernel of 7™(p)*, and it is denoted by Ker x™”(p)*.

Since Y is exactly the orbit space of S(h*y) by the restricted G, action,
statement (3.1) is equivalent to: Y is diffeomorphic to L™(p). Thus we are led to
study Ker z”(p)*. Our aim is to find an element (Y, h) € Ker n”(p)* having
non-standard total Pontrjagin classes. A sufficient condition for such an element
to exist is that Ker #7(p)* is infinite, because diffeomorphism types of homotopy
CP™’s are distinguished by Pontrjagin classes up to finite ambiguity, and up to
homotopy there are only two homotopy equivalences from Y to CP™. In the
sequel we ask

Question. When is Ker 2”'(p)* infinite?



282 K. H. DOVERMANN, M. MASUDA AND DONG YOUP SUH

Our answer is the following.

THEOREM 3.2. Suppose m = 3.

(1) If p=m +2, then Ker n™(p)* is finite.

(2) If [(m—1)/4] — €,,_1 =(p +1)/2, then Ker x™(p)* is infinite, where ¢; is
the same as in Theorem B of the Introduction and p may also be one.

Remark 3.3. (1) One can ask the same question in the PL category. In this
case a complete answer is obtained in [D1]. It says that the kernel of
a™(p)*:hPL(CP™)— hPL(L™(p)) is infinite if and only if p =m + 1. There the
classification theorem of hPL(L™(p)) ([Wal, §14]) plays a role. In the smooth
category, however, such a classification theorem is not known. Nevertheless it
seems plausible to conjecture the same conclusion as in the PL case. One only
would need some ‘‘additivity” for ™ (p)*.

(2) Infiniteness of Ker #™(p)* means that L™(p) admits infinitely many
smooth free S' actions. Since L™(1) = $*"*!, Theorem 3.2 (2) can be considered
as an extended version of Wang’s result [Wg2] as indicated in the Introduction.

The proof of Theorem 3.2 (1) is the same as that of the PL case. In fact, it is
shown in [D1] that if (Y, h) e hPL(CP™) belongs to Ker n™(p)*, then the PL
Pontrjagin class p(Y) is of the same form as p(CP™) provided p =m + 2. The
argument is also essentially the same as the proof of Theorem 2.2.

The rest of this section is devoted to the proof of Theorem 3.2 (2). We note
that the sets AS(CP™) and AS(L™(p)) do not support natural group structures.
This makes our problem difficult. To solve it we find suitable subsets of hS(CP™)
and AS(L™(p)) which form abelian groups and on which 7#™(p)* is a homo-
morphism. Then we estimate their ranks explicitly. The inequality in Theorem 3.2
(2) is a sufficient condition that the rank of the subset of AS(CP™) is greater than
that of hS(L™(p)).

Fix k between 1 and m and let P, (resp. P,) denote the submanifold of CP™
defined by the equations w;=0 for k+1=j=m (resp. 0=j=k) where w,
denotes the j + 1th homogeneous coordinate of CP™. Let v; denote small open
tubular neighborhoods of P. Remove v, and v, from CP™ and denote the
resulting space by P. Let Q denote the inverse image of P by n™(p). The
following lemma is an easy consequence of the A-cobordism theorem.

LEMMA 3.4. The manifold P (resp. Q) is diffeomorphic to the product of the
S (resp. G,) orbit space of $***' x §S*™~*=D*1 gnd the unit interval, where the S'
(resp. G,) action on $**! x §2m=%*D*1 s the diagonal one induced from complex
multiplication on each factor.



Rigid versus non-rigid cyclic actions 283

Since P (resp. Q) is diffeomorphic to a product of a closed smooth manifold
and the unit interval, the set AS(P, 9P) (resp. hS(Q, 3Q)) admits a natural
abelian group structure (see §10 of [Wal]). Let &:(Q, 3Q)— (P, 3P) denote the
restriction of ™ (p). It is clear that & induces a homomorphism 7x*: hS(P, 9P)—
hS(Q, Q) with respect to the group structures given above.

Given an element (W, g) of hS(P, P), one can glue v; to W along the
boundary via the diffeomorphism g | 9W : 9W — 9P. This defines a map kp from
hS(P, 9P) to AS(CP™). Similarly we have a map k, from AS(Q, 3Q) to
hS(L™(p)). These maps fit into the following commutative diagram:

hS(P, 5P) — hS(CP™)
x* a"(p)*
hS(Q, 8Q) — hS(L™(p))
The following lemma ensures that Ker 77 (p)* is infinite if Ker * is infinite.
LEMMA 3.5. The map kp is finite to one.

Proof. The surgery exact sequence yields a diagram:

0=L,,+(1)= hS(P, 3P)— [P/3P, F/O]— La,,(1)

j"/l 14'
0=L,,,+1(1)=hS(CP™)— [CP™, F/O]— L,,,(1)
where g* is induced by the quotient map q:CP™— CP"/v,Uv,= P/3P. The
middle square in this diagram is commutative and ¢* is a homomorphism.

Therefore it suffices to show that the kernel of g* is finite, in other words, g* is
injective when tensored by (). The following fact is well known.

Fact 3.6. There are isomorphisms between these three groups:
[Z, F/IO]® Q—[Z, BO|®Q=KO(Z)® Q— > HY(Z;Q)

for any finite CW complex Z. In fact, the former map is induced from the natural
map from F/O to BO and the latter one is the Pontrjagin character.
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These isomorphisms are functorial, so the problem reduces to the injectivity
of

q*:HY(P/3P; Q)= HY(CP™" /v, U v,; Q)— HY(CP™; Q).

The cohomology exact sequence of the pair (CP™, v{Uv,) yields an exact
sequence:

HY (v, Uvy; Q)— HY(CP™/v, U v,; Q)L AY(CP™; Q).
Here the left most term vanishes because v; is homotopy equivalent to the
complex projective space F,. This proves the lemma. Q.E.D.

Now we shall estimate the rank of Ker w*. The surgery exact sequence yields
a commutative diagram:

0= Ly, (1) —2> hS(P, 3P)—— [P/3P, F/ O] —— L,,(1)
Lom.oG,) =5 hS(Q, 30) = [Q/3Q, F/O]—> Lyy.1(G,)

where 1 is the map induced from s. Here all the terms are abelian groups and all
the maps are homomorphisms. It follows that

rk Ker n* =rk hS(P, OP) — rkn* (3.7)
rk hS(P, OP) Z rk[P/3P, F/O] - rk L,,,(1),
(3.8)

rka*=rkngen*+rkwy=rktenp+rkwyo=rkt+rk wgy,

where rk indicates the rank of an abelian group or a homomorphism. Replace the
right hand side of (3.7) by (3.8). Then we get a lower bound of rk Ker 7*:

rk ker t* Zrk[P/3P, F| O] — rkL,,,(1) — rkt — rkag

=rk Ker t —rkL,,,(1) — rkw,. (3.9)

LEMMA 3.10. (1) rkL,,.(1) = {1+ (=1)"}/2.
(2) rk wg =(p —1)/2.
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B) If k=zm—k—1, (i.e. 2k=m —1, we may assume this without loss of
generality), then rk Ker v =[m/2] — [(k + 1)/2}.

Proof. (1) L,,,(1) is isomorphic to Z if m is even and is isomorphic to Z, if m
is odd (see [Wal, §13]). This means (1).

(2) It is known that the rank of w,, is the same as that of the reduced L group
of L,,,+2(G,) and the latter is (p — 1)/2 (see §14E of [Wall]). This verifies (2).

(3) By Fact 3.6 rkKert agrees with the rank of the kernel of
x*: Y HY(P, 3P; Q)— Y. HY(Q, 3Q; Q). Remember that P is diffeomorphic to
(§%+1 x §2m=—k=D+1y/§1 x [ where [ is the unit interval. The projection from P to
the last two factors of the product gives rise to a fibration: P— CP™*~! x [ with
fiber S%**!. The Serre spectral sequence of this fibration (relative boundary)
collapses because the fiber is a sphere of dimension greater than or equal to that
of the base space by the assumption k =m — k — 1. It implies an isomorphism:

H*(P, aP’ @) = H*({:Pm—k—l X (1’ aI), @) ® H*(52k+1; @)

On the other hand H*(CP™" * 'x(l,80):Q) is isomorphic to
H*~}(CP™*~'; Q). Consequently we have an isomorphism

H*(P, 3P; Q)= H*"{(CP™ %1 Q) @ H*($**"; Q).
Similarly we have an isomorphism
H*(Q, 3Q; @)=H*"{(L"*"(p); Q) ® H*($**; Q).

Through these isomorphisms s* splits into x™ *~!(p)* @ id* where id
denotes the identity map on S***!, Hence the kernel of &* in degree 4;j is given
by HY*=2(CP™*',Q) ® H**'(§**';Q) through the above isomorphism.
This shows that a kernel of rank one appears for each j between [(k + 1)/2] + 1
and [m/2]. That we may assume k=m —k —1 follows as we could have
exchanged P, and P, freely in, and just before, Lemma 3.4. In fact, it would just
interchange k and m — k — 1. This implies (3). Q.E.D.

This lemma and (3.9) show that

rk Ker n* Z[m/2] — [(k + 1)/2] — {1+ (-1)")/2 = (p - 1)/2
=[(m = 1)/2] - [(k + 1)/2] = (p - D)/2.

Since 2k =2m — 1, we have

k+12 ((m+1)/2)
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where (v) denotes the least integer greater than or equal to v. We take
k = ((m +1)/2) — 1. Then it is sufficient for rk Ker * to be positive that

[(m —1)/2] - [{(m +1)/2)/2] Z (p + 1)/2.

As easily observed the left hand side of this inequality reduces to [(m — 1)/4] —
€n+1- This completes the proof of Theorem 3.2 (2).

§4. Comparison with a result of Connolly—-Weinberger

In this section we combine the preceding results to obtain deeper insight into
smooth cyclic group actions on homotopy complex projective spaces.
Recently Connolly and Weinberger announced the following result.

THEOREM 4.1 (Connolly-Weinberger). Let M be a closed submanifold of
CP" of codimension two. Then there exists a semifree smooth G, action on CP"
whose fixed point set consists of M and an isolated point if and only if M is a
cohomology CP"~' with Z,, coefficient and defect Dcp(M) =1, where k is any
integer.

Remark 4.2. Their original statement (Corollary 2 in p. 276 of [We)) is false
in its form. The above statement is the revised form which they communicated to
the authors, cf. Zentralbratt 566, 57025.

A conclusion of Theorem 4.1 is that if the imbedded M is a homotopy CP"~!
and D¢ps(M) =1, then for any prime number p there is a smooth G, action of
Type 11, which fixes M.

On the other hand Theorem B says that if (p + 1)/2=[(n —2)/4] — ¢,, then
there is a homotopy CP"X with a smooth G, action of Type II, such that

(1) the fixed point component F of codimension two is a homotopy CP"™"
and Dy(F) =1,

(2) p(F) (resp. p(X)) is not of the same form as p(CP"~") (resp. p(CP")).
However Theorem A says that F is never fixed under any smooth G, action on X
if p = cx. This contrasts the above result of Connolly-Weinberger. Namely this
shows that Theorem 4.1 holds only for submanifolds of the standard CP".
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