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Calibrated geometries in Grassmann manifolds

Herman Gluck, Frank Morgan and Wolfgang Ziller

We take up hère the search for the subvarieties of Lie groups and

homogeneous spaces which can be shown to be volume minimizing in their
homology classes by applying the method of calibrated geometries to the
invariant differential forms.

As a first step, we study the real Grassmann manifolds GkRn of oriented
&amp;-planes through the origin in n-space. Using normalized Euler forms and other
calibrations, we prove

THEOREM. If k is an even integer &gt;4, then in the Grassmann manifold GkRny
each subgrassmannian in the séquence

GkRk+l c GkRk+2 c • • c GkRn~l

is volume minimizing in its homology class. Moreover, any other minimizer in the

same homology class is congruent to it.

Remarks. 1) When k 2, the above submanifolds are ail complex sub-
manifolds of the Kâhler manifold G2Rn, and are well known to minimize volume
in their homology classes; see Wirtinger [Wi] 1936 and Fédérer [Fe] 1969.

Uniqueness fails because there are other complex submanifolds in thèse homology

classes. The same argument shows that in the case of complex Grassmann
manifolds GkCn, ail the subgrassmannians minimize volume in their homology
classes.

2) When k — 4, the G4Rm are quaternionic submanifolds of the quaternionic
Kàhler manifold G4Rn, and hence minimize volume in their homology classes by
the work of Berger [Be] 1972. He established an analog of Wirtinger&apos;s inequality
for a quaternionic form. He then used this to prove that if a manifold is

quaternionically Kâhler, and hence admits a closed quaternionic form, then the
normalized powers of that form calibrate ail quaternionic submanifolds, and show

them to be volume minimizing in their homology classes. In particular,
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Cahbrated geometnes m Grassmann manifolds 257

quaternionic projective subspaces HPm in HP&quot; are homologically volume
minimizing.

3) When k is odd, each GkRm bounds over the reals in GkRn. We note in §4

how this follows directly from a présentation of the real cohomology of the
Grassmann manifold. But thèse submanifolds do not necessarily bound over the
integers. For example, G3RS does not bound over the integers in G3/?6, but twice
it does.

4) Using the isometry of GkRn with Gn-kR&quot;, we can expand the above
theorem to cover the submanifolds

Gnn—k+ l _ /~i nn—k+2— t /^» D&quot; —1

of GkRn, according to the value of n — k.

5) Exampies of totaliy géodésie submanifolds which minimize volume in their
homology classes in other symmetric spaces were provided by A. T. Fomenko
[Fo] in 1972 by différent methods. For example, he established the existence of
homologically volume minimizing round 3-spheres in ail simply connected

compact Lie groups. Also, he proved that in quaternionic projective space HP&quot;,

each HPm is volume minimizing in its homology class, by a method qui te différent
from Berger&apos;s.

6) Using a method essentially équivalent to that of calibrations, D. C. Thi
[Th] gave in 1977 other examples of homologically volume minimizing sub-
varieties. Some of thèse were not totaliy géodésie; others had singularises.

7) H. Tasaki [Ta] 1985, using the method of calibrations, has given examples
of homologically volume minimizing cycles in Lie groups. Recently, he has

observed that our methods show equally well that in quaternionic Grassmann
manifolds GkHn, the subgrassmannians GkHm are uniquely volume minimizing in
their homology classes, with no restriction on the value of k. Note that thèse

quaternionic Grassmann manifolds are not quaternionically Kàhler, and hence

are not covered by Berger&apos;s theorem.

8) Using the method of calibrations to identify the homologically volume

minimizing submanifolds of the unit tangent bundle of the round 3-sphere, it was
shown in [G-Z] in 1986 that a unit vector field on the 3-sphere has minimum
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volume if and only if it is tangent to a Hopf fibration. This unit tangent bundle is

a homogeneous space, but not symmetric.

Consider the following table of real Grassmann manifolds, displaying the
various inclusions.

u
G4R5

U

G3R4

U

G2R3

U

cz G4R6 cz

U

cz G3R5 cz

U

cz G2R cz

u
G4R7c

U

G,R6a
U

G2/?5&lt;=

U

G4R«

U

G,/?7

U

G2/?6

U U U U

G,/î2 c Gî/?3 c G,/?4 cz G,/?5 cz • • •

GUIDING QUESTION, /aï the above table, which little Grassmann
manifolds are homologically volume minimlzing in which larger onesl

The présent theorem answers this question for inclusions which go across rows
or up columns.

The first case not covered by this theorem is whether or not G2R4 minimizes
volume in its homology class in G3R6. The answer is No, and reveals the simplest
example of a subgrassmannian which is homologically nontrivial over the reals,

yet does not minimize volume in its homology class. There is another 4-cycle in
G3/?6, homeomorphic to the suspension of /?F3, which lies in the same homology
class as G2R4 but has smaller volume. This involves us in the calibrated geometry
of the first Pontryagin form and the search for natural generators of the rational
homotopy of the Grassmann manifolds, and will be dealt with in a separate

paper.

This work has been partially supported by grants from the National Science

Foundation.

1. Calibrated geometries

Let V be a finite dimensional real vector space with an inner product, and \i a

d-form on V (that is, an alternating, d-fold multilinear map to the reals). Suppose
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that jU satisfies the înequahty

jU(f1AU2A A Vd)&lt; VOl (VY A V2 A A^), (*)

with equahty occurnng somewhere Then we say that jU îs a calibration on V, and
that ît calibrâtes those onented d-planes in V for whose ordered bases equahty
holds in (*)

Now let X be a Riemannian mamfold, and suppose that jU îs a smooth closed

d-form satisfying the înequahty (*) at every point of X Let M be a smooth

compact onented d-dimensional submanifold of X for which (*) îs an equahty
whenever i/^^a a vd îs tangent to M Then this submanifold must be

volume minimizing in îts homology class m X For if M&apos; îs another d-dimensional
submanifold in the same homology class, then

vol M Mu I
jU &lt; vol M&apos;,

Jm Jm

by equahty m (*), Stokes&apos; theorem and înequahty in (*), respectively We say
that jx calibrâtes M If vol M vol M&apos;, then \x also calibrâtes M&apos; In this way, the
d-form fi détermines a family (possibly empty) of d-dimensional submanrfolds of
X, each of which mimmizes volume m îts homology class A form \i satisfymg (*)
and admitting equahty at some point of X îs called a calibration on X

To distinguish the two situations above, we will sometimes say that \i
calibrâtes infinitesimally certain onented d-planes in the vector space V, and that
ît calibrâtes globally certain d-dimensional submanifolds of the Riemannian
manifold X

The standard example îs provided by the powers of the Kahler form wona
Kahier mamfold X For each mteger s} 1 &lt;s &lt; dimc X, the 2s-form fi œs/s^ îs

closed and satisfies (*) by the Wirtinger mequahty [Wi] The corresponding
submanifolds of X are just the canomcally onented complex submanifolds of
complex dimension s Many more examples are provided by Reese Harvey and
Blâme Lawson in their beautiful foundational essay [H-L], m which they
concentrate mostly on calibrated geometnes in Rn given by differential forms with
constant coefficients But they call attention in part V 1 to the question of
determming the geometnes on Grassmann manifolds calibrated by the invariant
forms which represent the universal charactenstic classes See also [Ha] and [Mo]
and [Mo 2]
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2. Calibrations on tensor products

The Grassmann manifold GkRn is a symmetric space,

GkRn SO(n)/SO(k)xSO(n-k),

and inherits, from the bi-invariant metric on SO(n), a Riemannian metric and an
action of SO(n) as isometries. The SO(n)-invariant differential forms on GkRn

are automatically closed, with precisely one in each cohomology class [Wo].
We can express the cohomology in yet a simpler way. Let m n — k. Let K be

an oriented k-plane in k + m space, hence a point in the Grassmann manifold
GkRk+m. Then the tangent space to GkRk+m at K is isomorphic to Rk &lt;g&gt; Rm, and
the isotropy subgroup SO(k) x SO(m) of K acts on this tensor product by acting
on the individual factors. The SO(k) x SO(m) invariant alternating multilinear
forms on Rk &lt;8&gt; Rm correspond in one-one fashion to the SO(k + m)-invariant
differential forms on GkRk+m, and hence to the cohomology classes of the
Grassmann manifold.

We will consider, for each choice of p-dimensional subspace Rp in Rm&gt; the

p-fold column subspace Rk &lt;8&gt; Rp of Rk®Rm. When Rk ® Rm is identified with
the tangent space to GkRk+m at a point, the /?-fold column subspaces are tangent
to the subgrassmannians GkRk+p.

We suppose henceforth that k is even and that an orientation of Rk has been
fixed.

If eXi ek is an ordered basis for Rk consistent with this orientation, and if
fi,... yfp is a randomly ordered basis for Rpf we give Rk ®RP the orientation
determined by the ordered basis

ek ®fu ex ®fp,. ek

Because k is even, this orientation doesn&apos;t dépend on an orientation for Rp. If the
orientation on Rk is reversed, the orientation on Rk ®RP is reversed if/? is odd,
but is unchanged \ip is even. We call this the canonical orientation for Rk ®RP.

We will construct in this section a family of SO(k) x SO(m) invariant
kp&apos;forms Xp on Rk ® Rm which calibrate thèse canonically oriented /7-fold column
subspaces, and which, for k ^4, calibrate nothing else.

To begin the construction, let / be a complex structure on Rk consistent with
its given orientation, that is, an orthogonal transformation /: Rk-+Rk such that
J2 -/, and such that the orientation on Rk associated with this complex
structure agrées with the given one. For each such J, define a complex structure
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of the same name on Rk &lt;8&gt; Rm by the formula J(u ® v) J(u) &lt;8&gt; v. Let (Oj dénote
the corresponding Kàhler form on Rk ® Rm. Then consider on this space the
kp-îoxm o)jrpl{rp)\y where k 2r.

We now define a twisted average of thèse powers of Kàhler forms over the

space of ail possible complex structures / on Rk, equivalently over the group
O{k), as follows. Fix the complex structure / on Rk. Then for each g in O(k),
consider the corresponding complex structure g~xJg on Rk, and by our convention,

also on Rk &lt;8&gt; Rm. Let g*(o)j) (og-iJg. Then define the p-fold column form
kp to be the average over ail g in O(k) of the forms

r k/2.

PROPOSITION 2.1. For even k, the p-fold column form kp is an

SO(k) x SO(m) invariant kp-form on Rk ® Rm which calibrâtes the canonically
orientée p-fold column subspaces, andy when k&gt;A&gt; nothing else.

Remark. For k 2, kx is the Kàhler form, and kp is proportional to (Â^. For
k 4, ki was identified as a calibration of type (3, 3) in [D-H-M, Chapt. 3].

Proof Note that for each choice of complex structure / on Rk, the Kàhler
form (Oj on Rk®Rm is O(m)-invariant. Then the averaged form kp is certainly
SO(k)®O{m) invariant, but, because of the twisting factor (detg^, it is

O(k) (8) O(m) invariant only when p is even.

By Wirtinger&apos;s inequality, the form co/p/(rp)\ calibrâtes those oriented
fc/?-planes in Rk&lt;8Rm which are canonically oriented complex r/?-planes with
respect to /. Then kpy as a twisted average of such forms over O(k), calibrâtes
those oriented kp-planes in Rk ® Rm which are complex rp-planes with respect to
ail of the complex structures g~lJg as g ranges over O{k), and which for even p
are canonically oriented for ail g in O{k), but for odd p are canonically oriented
only when g lies in SO(k), and are &quot;canonically misoriented&quot; when g lies in

O(k)-SO(k).
The canonically oriented p-fold column spaces hâve exactly this property, and

hence are calibrated by kp. We must show that for k &gt;4, the form kp calibrâtes

nothing else.

Let elt e2,.. • ek be an orthonormal basis for Rk, let R2 dénote the subspace

spanned by ex and e2, and Rk~2 its orthogonal complément. Suppose P is an

oriented fcp-plane in Rk ® Rm calibrated by kp. Let v + w be a vector in F, with v
in R2 ® Rm and w in Rk~2 &lt;8&gt; Rm. Let g be the transformation in O(k) - SO(k)
which changes the sign of el9 but is the identity on its orthogonal complément.
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Let / dénote the complex structure on Rk such that J(el) e2, J(e3) e4, etc.
And let it also dénote the corresponding complex structure on Rk ® Rm. Since P
is calibrated by kp, it is closed under application of /, and hence contains

J(v + w) =J(v) +J(w). But it is also closed under application of g~lJg, and
hence must contain g~lJg(v 4- w) —J(v) +J(w). Hence P contains J(v), and
therefore also v. A similar argument applies to any two-dimensional subspace R2

ofRk.
Now write any vector in P in the form u, + t&gt;2+ * * * + vk, where v, lies in

ef®/?m. We may assume vx^0. Since fc&gt;3, we conclude as above that P
contains v{ + v2, and also vx + v3, and also v2 +1^3. Hence P contains vx. Write

f 1 ex &lt;8&gt; w, with w in Rm. But there is a complex structure / on Rk taking ex to

any desired et. Since P is closed under the induced action of / on Rk ® /?m, it
must also contain each et ® w. Thus P must contain the single column space
Rk ® w. Splitting this column off from P and iterating the argument, P must itself
be ap-fold column subspace, as claimed, completing the proof of the proposition.

Remark. It is interesting to compare the p-fo\d column forms Xp with the

powers kp of the Euler k-ioxm À.

For ail even k, we easily see that kx is proportional to À, as follows. The Euler
form A is, up to multiplication by a constant, the unique SO{k) x SO(m) invariant
*&gt;form on Rk&lt;8&gt;Rm with the property that if g lies in O(k) - SO(k), then

g*k —À. This follows because the other invariant forms (Pontryagin forms, and

dual Euler forms in the case that m is also even) are ail O(k) invariant. Our
column form kx has the same symmetry as the Euler form À, and so must be

proportional to it.
But in gênerai, kp is not proportional to kp. This first happens in G4R8, where

k2 is not proportional to À2.

The power kp of the Euler form k is obtained by first averaging a form and
then raising that average to the pth power. The p-fold column form kp is obtained

by starting with the same form, but first raising it to the pth power and then

averaging this power. So they differ by an interchange in the order of carrying out
thèse two processes.

3. Proof of the main theorem

With Proposition 2.1 in hand, we immediately obtain the existence part of the
main theorem.

PROPOSITION 3.1. If k is an even integer, then the subgrassmannian
GkRk*p of GkRk+m is volume minimizing in its homology class.
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Proof. As mentioned earlier, when we view Rk ® Rm as the tangent space to
GkRk+m at a point, the p-fold column subspaces Rk®Rp are tangent to the
subgrassmannians GkRk*p through that point. By Proposition 2.1 thèse linear
subspaces are calibrated by the SO(k) x SO(m) invariant linear kp-form kp on
Rk&lt;g&gt;Rm. This linear form then détermines an SO(k + m) invariant differential
kp-form kp on GkRk+m, which by homogeneity calibrâtes the subgrassmannians at

every point, thus showing them to be volume minimizing in their homology class.

The uniqueness part of the main theorem will follow by combining Proposition

2.1 with the next resuit.

PROPOSITION 3.2. Let k be an integer &gt;2. Let Mkp be a kp-dimensional
subvariety of GkRk+m, tangent at each point to a subgrassmannian of the form
GkRk+p. Then Mkp must itself be one of thèse subgrassmannians.

When k l, the grassmannians and subgrassmannians are round sphères and

great subspheres. Because great subspheres through a point exist in ail possible
directions, the requirement on a subvariety, of being tangent to a great subsphere
at each of its points, is no restriction at ail. So the proposition is clearly false in
this case.

The first case in which the proposition is true is

/c 2, p l, m—/? 1, ra 2,

that is, for surfaces in G2R4 tangent at each point to a subgrassmannian of the
form G2R3. It is easy to see the truth visually in this case: the grassmannian G2R4

is isometric to S2 x S2; subgrassmannians of the form G2R^ appear in this product
as graphs of orientation preserving isometries; and a surface in S2 x 52 tangent at
each point to the graph of an orientation preserving isometry is itself clearly the

graph of such an isometry.
Before giving the proof in gênerai, it will be convenient to set up local

coordinates in the Grassmann manifold GkRk+m. Let K be an oriented k -plane

through the origin in k -h m space, and hence an élément of GkRk+m, and K1 its

orthog* al complément. Let elf ek and/!, ,/m be orthonormal bases for
K and Kxf respectively. Define a map

„ T}k /O\ nm r^ nk + m

which takes E alJel &lt;8&gt;/J to the oriented k -plane spanned by the ordered basis
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This map parametrizes a large neighborhood of K in GkRk+m, consisting of ail
orientée! A:-planes K1 whose orthogonal projection to K is nonsingular and
orientation preserving.

In the following diagram of Rk*m, we show the A:-plane K spanned by
eu ,ek, while its orthogonal complément is split up into the /7-plane P
spanned byfi, ,fp and the m-p plane N spanned by fp+1, ,/m. Suppose Kf
is an oriented *&gt;plane in Rk+m close to K, as shown in the figure. Any k +p plane
in Rk+m containing K&apos; and close to K + P will meet P + N in a p-plane P1 close to
P.

N

Suppose now that a subgrassmannian of the form GkRk+p is given containing
Kf and lying close to Gk{K + P). Then it must be of the form Gk(Kr + P&apos;), with
P&apos; as above. We want to characterize the tangent Ap-plane to Gk(Kr + P&apos;) at Kf
in terms of the local coordinates in Rk ® Rm. We assert

(3.3) The tangent kp-plane to a GkRk+p near Gk(K + P) is the graph of a

linear map of the form Id® L:Rk ®RP-+Rk ® Rm~py where L is a linear map

We verify (3.3) as follows. Let K&apos; be spanned by the basis

where
on

and

Vi a^p+Jp+t + • • • + aimfmt 1 &lt; / &lt; &amp;.

If we move out from K&apos; along a curve in the subgrassmannian Gk{K&apos; + P&apos;), then
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each of the velocity vectors u[ + v[, u&apos;k + v&apos;k must lie in P&apos;. But P&apos;, lying
close to P in P + N, is the graph of a linear map L:P-*N. So v[ L{u[) for
1 &lt;/&lt;/:. Hence in local coordinates as above, the tangent fc/?-plane to this

subgrassmannian is the graph of the linear map Id ® L, as claimed.

Proof of Proposition 3.2. Let M*p be a fcp-dimensional subvariety of GkRk+my

tangent at each point to a subgrassmannian of the form GkRk+p. We can suppose
that Mkp passes through the point K, and is tangent there to the subgrassmannian

Gk(K + P). Using local coordinates in /?*®/?m, the subvariety Mkp appears
there as the graph of a smooth function F\Rk®Rp-*Rk® Rm~p with F(0) 0

and dF0 0.

GRAPH OF F

LEMMA 3.4. Let k&gt;2. Let F:Rk &lt;8)Rp-*Rk ® Rm~p be a smooth function
with F(0) 0, dF0 0 and dFu Id ® Luy where Lu : Rp-*Rm~p is a linear mapy
which may dépend on u. Then F 0.

The primitive case occurs when k 2, p l, m—p — \ and m 2. We hâve

u u(xy y)y v v(x, y) with Jacobian matrix

d(u,v) (B{xyy) 0/£(x,)0 0 \
\ 0 B(xyy)JB(xyy)J

and initial conditions u(0, 0) 0, u(0, 0) 0 and B(0, 0) 0. Now
implies u m(jc), which implies B(jc, y) du/dx is a function of jc alone. Likewise
dv/dx 0 implies v f(}&gt;), which implies B(xy y) dv/dy is a function of y
alone. Thus B must be constant, and in view of the initial condition, we hâve
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B 0. Hence u — u(x, y) and v v(x, y) are also constant, and again in view of
the initial conditions, we hâve u 0 and v 0.

The proof in gênerai is no différent.

Now our subvariety Mkp appears in Rk &lt;8&gt; Rm as the graph of a function F
which, because of (3.3), satisfies the hypothèses of the above lemma. Hence
F 0 and Mkp coincides in a neighborhood of K with the subgrassmannian
Gk(K + P) GkRk+p. Since the corresponding statement is true in a neighborhood

of each point of Mkp, this subvariety must itself be one of thèse

subgrassmannians, completing the proof of Proposition 3.2.

PROPOSITION 3.5. // k is an even integer &gt;4, then the subgrassmannians
GkRk+p inside GkRk+m are uniquely volume minimizing in their homology classes.

Let Mkp be a /cp-dimensional subvariety of GkRk+m which also minimizes
volume in the homology class of the subgrassmannian GkRk+/\ Then it too must
be calibrated by the p-fold column form kp at every point. By Proposition 2.1,
when k is an even integer &gt;4, the form Xp calibrâtes the /?-fold column spaces and

nothing else. But thèse are just the tangent spaces to the subgrassmannians of the

form GkRk+p. Thus Mkp must be tangent at each of its points to such a

subgrassmannian, and therefore by Proposition 3.2 coincides with one of them, as

claimed.

This complètes the proof of the main theorem.

4. The case when k is odd

It remains to see that if k is odd and n &gt; k + 2, then GkRnï bounds in GkRn

over the reals. To do this, we first describe the cohomology ring of GkRn with real

coefficients, in terms of generators and relations. We thank Steve Costenoble for
explaining this to us. See [Bo].

Some of the Pontryagin classes pu p2, and (if k is even) the Euler class ek

of the canonical /:-plane bundle over GkRn appear among the generators of
H*(GkRn;R). The Pontryagin class pt has dimension 4/, the Euler class ek has

dimension k. Some of the Pontryagin classes p,, p2, and (if n - k is even) the

Euler class ën~k of the canonical n-k plane bundle over GkRn provide most of the

remaining generators. The relations among thèse generators ail follow from the

fact that the sum of the two canonical bundles is trivial. When k and n-k are both
odd, there is an extra generator jcrt_j of dimension n — 1, whose square is zéro.
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The actual présentations are as follows, with four cases, according to the parity of
k and n.

H*G2rR2r+2s R[pu ,/v_lf e2r&gt;pu ,ps_l9 ë^/l,

where / is the idéal of relations generated by e^ë^ 0 and the relations in

where / is the idéal generated by the relations in

(1 + p, -h • • • +/?r_! + e22)(l +pt + • • • +p5)

where / is generated by the relations in

E[x2r+z,+l]®R[Pu ...,pr,pu.. .,ps]/I

where the first factor is the exterior algebra on a single generator of dimension
2r 4- 2s + 1, and where / is generated by the relations in

Remark. Note from the form of the preceding relations that the dual

Pontryagin classes Pi,p2&gt;... can be solved for in terms of the original
Pontryagin classes and both the original and dual Euler classes. But the dual

Euler class can not be expressed in terms of the remaining generators: it provides

genuinely new information.

We now look at thèse présentations for the cohomology of GkRn, and use

them to show that this space has no cohomology (and hence no homology) in
dimension k(n — 1 — k), where the submanifold GkRn~l résides.

So let k be odd, and first assume that n is odd. Then the dimension of GkRn~l
is odd. But in this case the cohomology of GkRn is zéro in odd dimensions, as a

glance at the table shows. Hence GkRn~l bounds in GkRn over the reals.
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Now assume that n is even. Write k 2r +1 and n 2r + 2s + 2 to conform
with the notation of the table. The subgrassmannian GkRn~* has dimension
(2r + l)2s, while the bigger Grassmannian GkRn has dimension (2r + l)(2s + 1).

The codimension is 2r +1. If the cohomology of GkRn were nonzero in this
codimension, then by Poincaré duality it would also be nonzero in dimension
2r +1. But a glance at the last case in the table shows that ail the generators of
H*(GkRn; R) are even dimensional, with the single exception of x2r+2s+i- Hence
2r 4- 2s + 1 is the first odd dimension in which one finds nonzero cohomology. But
s &gt; 1, since n^k + 2. Thus the cohomology is zéro in dimension 2r 4-1. Hence
G*/?&quot;&quot;1 bounds in GkRn over the reals.

This complètes the case when k is odd.
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