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A generalized Hopf formula for higher homology groups

Ralph Stohr

1. Introduction

Let G be a group, l-&gt;/?-»F-»G-&gt;l a free présentation of G. One of the
pioneering results on homology of groups was Hopfs formula (H. Hopf [9]):
H2G =R C\F&apos;/[R, F], providing a purely group theoretical interprétation of the
second homology group of G. In this paper we obtam a generalized Hopf formula
expressing the even-dimensional homology groups H2cG in terms of free

présentations of G. Specifically, let 1 —&gt; /?, —&gt; J^ —&gt; G-&gt; 1 (i 1, 2,. c) be free

présentations of G and let F Fx * F2 * • • • * Fc be the free product of the Fr
We identify the Ft and Rt with their canonical images in F. In Section 3 we state

our main resuit (Theorem 1), the isomorphism

h2cg ([RuR2,...,Rc)nn)yc+iR/[Rl*2, • • •,RoF]rc+iR,

where R and N are canonically defined normal subgroups of the free group F.

Under the natural assumption that [Rlt Rc] is Ri in case c 1, this formula
holds for ail positive integers c and for c 1 it coincides with the classical Hopf
formula. Concerning the odd-dimensional homology groups, we prove in Section
7 that, under the additional assumption that G is finite, //2c-iG is isomorphic to a

certain factor of the center of F/yc+1R (Theorem 2).
An alternative interprétation of higher homology groups has been given by B.

Conrad [4], whose approach generalizes the notion of the multiplier of a group,
which was introduced by I. Schur [15] and later recognised as an interprétation of
H2G.

Concerning cohomology we mention, that a number of authors hâve given

interprétations of the higher cohomology groups Hk(G, A) extending the classical

work of Eilenberg and Mac Lane [5] (see Holt [8], Huebschmann [10], further

The author is greatly indebted to Professor K W Gruenberg, who suggested the undertaking of
this work in a very stimulating discussion dunng a short visit of the author at QMC, London, and

provided a copy of his unpubhshed paper [6]. The visit was supported by an SERC visiting fellowship,
that is also gratefully acknowledged.
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188 RALPH STOHR

références can be found in MacLane&apos;s Historical Note [11]). The basic idea in ail
this work is to combine Whitehead&apos;s notion of crossed modules with Yoneda&apos;s

interprétation of Ext as classes of long exact séquences. An entirely différent
description of Hk(G, A) has been given by K. W. Gruenberg [6]. Gruenberg&apos;s

approach involves free présentations, free products and commutator subgroups.
Some basic ideas of Gruenberg&apos;s construction hâve been adapted in the présent
paper.

The arrangement of this paper is as follows. Notations and some preliminary
notions will be introduced in Section 2. Our main resuit, the generalized Hopf
formula, will be stated in Section 3. The proof is given in Section 6 by exploiting
the preliminary discussion in Sections 4 and 5. Finally, in Section 7, we prove the
above mentioned resuit on odd-dimensional homology of finite groups.

2. Preliminaries

Let H be a group, alt acy b éléments of H and Sif. Sc subgroups of
H. As usual we define

ab b~xab, [au a2] aîla21

and, for c ^ 2,

[Slf... Se]=gp{[al9.. ae];a,eS,(i 1,. c)}.

In case c 1 it will be convenient to assume that [S1} Sc] is simply 5j. The
lower central séries H yxH 3 H1 y2H 3 y3H 3 • • • of H is defined inductively

l), Le.

yfi [H,..., H] (i times, i ^ 1).

Let F be a free group with free basis X. The quotient Flyc+XF is the free

nilpotent group of class c with free generators x xyc+1F {x e X). If G is any

group, FG dénotes the free group with free basis Y {axg;x eX, g e G}. The
action of G on Y defined by aXfg aXtgh {h e G) induces an action of G on the free

nilpotent group FG/yc+lFG. The semidirect product of FGlyc+xFG with G via the
induced action is the 9îc-verbal wreath product of F/yc+tFby G and is written for
short as F/yc+lF wr^c G ($lc is the standard notation for the variety of ail

nilpotent of class at most c groups, see [14]). The normal subgroup FG/yc+1FG is

termed the base group of the wreath product.
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Suppose

1—+R—*F-^G-^1 (1)

is an exact séquence of groups, i.e. a free présentation of G. We record hère a

spécial case of Shmel&apos;kin&apos;s gênerai embedding theorem.

LEMMA 1 (A. L. Shmel&apos;kin [16]). The mapping xy( + lR-^xjt • âx (x eX)
extends to an embedding of F/yc + lR into Flyc + xFwrYi( G.

An important feature of the Shmel&apos;kin embedding is that the subgroup
R/yc+ïR is mapped isomorphically into the base group FG/yc+]FG.

In case c 1 the above verbal wreath product is simply the ordinary restricted
direct wreath product F IF&apos; wr G (see [14]) and the embedding of Lemma 1 is the

Magnus embedding F/R&apos;-&gt;F/F&apos; wr G (W. Magnus [12]). The base group
FGb FG/(FG)&apos; of the direct wreath product becomes a G-module via conjuga-
tion in F/F&apos; wr G. It is easily seen that FGb is a free G-module with free

generators axA{FG)&apos; (xeX). The free abelian group Rab R/R&apos; carries, by
conjugation in F, the structure of a G-module, which is usually called the relation
module of G associated with the free présentation (1). The restriction of the

Magnus embedding to Rab induces an embedding ju : Rab-*FGb. Let /G dénote the

augmentation idéal of the intégral group ring ZG and let a dénote the surjection
FGb-+lG defined by axA(FG)&apos;-* 1 - xjt. By a theorem of Blackburn [2],

(2)

is an exact séquence of G-modules. In another context the exact séquence (2)
appeared already in Gruenberg&apos;s paper [17]. It is customarily referred to as the
relation séquence (stemming from the free présentation (1)) and the embedding ]U

is called the Magnus embedding for modules (see also [3], p. 43).
Well-known facts and standard notations concerning cohomology of groups

will be used without citing spécial références; thèse however can easily be found
in K. Brown&apos;s book [3]. In particular, if Aïy. An are G-modules, the tensor
product Aa® • • -®An (over Z) will always be regarded as a G-module with
diagonal action. Also, G-modules (including abelian subquotients of (multiplicative)

groups with induced G-action) will be written additively. Concerning
commutator calculus, which will be used in Sections 4 and 5, we refer to [13].
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3. Theorem 1

For the rest of this paper, let G be a group, c^la fixed positive integer,

1—&gt;Rt^I&lt;^G-*l (i l,2,...,c) (3)

free présentations of G and let X, dénote a set of free generators for F,. The free

product

F Fx * F2 * • • • * Fc

is itself a free group with free basis X X{L) - • -UXC. We will identify the F, and

Rt with their canonical images in F. Let F dénote the free nilpotent group
F/yc+1F and consider the verbal wreath product F wr^€ G. The base group of the
latter is the free nilpotent group FG FG Iyc+XFG with free generators âXtg-
aXtgyc+1FG (xeX,ge G). The mapping

x-*xstràXtl (xel,,i l,...,c) (4)

extends to a homomorphism

a : F-* F v/Tsjic G.

The kernel of this homomorphism can be described as follows. Let n dénote the

homomorphism form F onto G defined by xn xnt {x e Xn i 1, c) and put
R — ker n. Then

is a free présentation of G. By construction, there is a commutative triangle

F —£-^ Fvrut G

f
where the vertical homomorphism is the Shmel&apos;kin embedding for F/yi + lR (see

Lemma 1) and the diagonal is the natural homomorphism from F onto its

quotient F/yc+1/?. It follows that the kernel of oc coïncides with y&lt; + ïR.
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Now consider the lower central séries of the base group of F wr^c G. The last
non-trivial term is ycFG ycFGIyc+XFG. This is an abelian normal subgroup of
F wr«Rc G and so is the commutator [ycFG, G]. The mapping (4) defines a

homomorphism

We dénote the kernel of this homomorphism by N. Now we are able to state our
main resuit expressing H2cG as a certain factor of the free group F.

THEOREM 1. There is an isomorphism

H2cG ([Ru ...,Rc]n N)yc+lR/[Ru Rc, F]yc+lR.

The proof of the theorem will be given in Section 6. We conclude this section
with an examination of the case c 1. In this case one has F Fl9 R Ri and the

homomorphism /} maps F into

(direct product). Consequently, we hâve N F&apos; DR and the formula of Theorem
1 gives

H2G (RPi F&apos;)R&apos;/[R, F]R&apos; R D F&apos;/[R, F],

the classical Hopf formula.

4. The verbal wreath product F wrWf G

In this section we examine the verbal wreath product F y/t^c G. Let Ft and FG

(/ l,...,c) dénote the quotients Ft/yc+lF, and FG/yc+lFG, respectively.
Obviously, the free nilpotent groups FG are canonically embedded in the base

group FG and the verbal wreath products F, wr^r G are canonically embedded in
F wr^ G in the obvious way (in fact, FG is the sJîc-coproduct of the Fp, see [14],
Chapter 1, §8). Now consider ycFG, the c-th term of the lower central séries of
FG. This is a free abelian group and the G-action on FG induces on y^ the
structure of a G-module. Obviously, [F?, FG, FG] is a submodule of ycFG.

LEMMA 2. The submodule [FG, FfG] is a direct summand of ycFG and
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the mapping

K,*,, • • •. ô*J-«,, *XF?Y ® • • • ® «^(^°)&apos;.

H&gt;/tere jc, e Jf,, g, € G (i 1,. c) extends to an isomorphism

V : [F?,.. F?]-^ (F?)ab

Proo/. Assume the free generators â^ (x e X, g e G) of FG totally ordered so

that for ail xl e Xn gt e G (i 1,.. c)

ax2,g2 &lt; ax,,g, &lt; ^3,g3 &lt; • • &lt; axc,gc-

The free abelian group y^ has a free Z-basis consisting of ail basic commutators
of weight c defined over the âxg basic commutatiors of weight 1) with respect
to the above introduced ordering. Then [Ff, Fp] is, as a Z-module, freely
generated by ail left-normed basic commutators [âXug],. âXcgc] (xt eXn gte
G, i 1, c) and YcF0 décomposes (as a Z — module) into the direct sum

Yc^^lF?, ...,F?]®A, (5)

where A is (freely) generated by ail remaining basic commutators of weight c.

In fact, (5) is a direct décomposition of ycFG as a G-module and, in

particular, [FG, FG] is a direct summand of ycFG, as desired. To verify this,
it suffices to show that A is a G-submodule. For, let v v(âXxgl, âXctgc) be a

basic commutator of weight c involving the free generators âXi&gt;gi, âXctgc,

where xt e ATAr(l), 1 ^ k(i) ^ c, gteG (/ 1, c) and suppose that v is one of
the generators of A. We hâve to show that, for any g eG,

vg v(âXuglg,.. âXctgcg)

is also in A.

Case 1. v is not left-normed. Then there is obviously no left-normed basic

commutator in the unique Z-linear combination of basic commutators expressing
v8. Hence, v8 eA.

Case 2. v is left normed and k{i) k(j) for some ij (1 ^ i &lt;j&apos;^ c). Then any
basic commutator occurring in the unique Z-linear combination expressing vK

involves the free generators âXitgtg and âXrgjg with k(i) — k{j). Hence, vK e A,
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Case 3. v is left-normed and k(i) =ék(J) for ail i,j (i^i&lt;j^c). Then we hâve

y [àXl,gt&gt; • • •, âXctgc], where xt e Xk(i) and (fc(l), fc(2),..., k(c)) * (1, 2,..., c).
But in this case v* [âXi)glg, 5XefgJ is itself a left normed basic commutator
with (k(l),..., /c(c)) # (1,. c) and, consequently, v

Now it remains to check that the mapping defined in the lemma extends to the
desired isomorphism. But this is clear, since the mapping is obviously compatible
with the corresponding G-actions and provides a one-one correspondence of free
Z-bases of [F?,..., FCG] and (F?)ab ® • • • ® (F?)ab. D

5. The quotient [Ru Rc]yc+1R/yc+iR

Now we return to F. In this section we examine the quotient

[Rly. Rc]yc+1R/yc+lR. (6)

Being a subgroup of the free abelian group ycR/yc+1Rt (6) is itself a free abelian

group. Conjugation in F induces on ycR/yc+1R the structure of an F-module.
Since R acts trivially, ycR/yc+iR may be regarded as a G-module by defining

where m e ycR, g eG and y e F with yn g. For rt e Rt (i 1,..., c) one has

obviously

(l/ï,. rc]yc+lR) • g [rl9 rc]yyc+1/î

where y, e i^ and y/jr y^r g. Hence, (6) is a submodule of ycR/yc+lR.
Let at{\^i^c) dénote the restriction of the homomorphism a to the free

factor Ft of F. Then we hâve a commutative diagram

Ft —&apos;-*&gt; F, wrs^G c F v/r^cG,

where the vertical homomorphism is the Shmel&apos;kin embedding for FJYc+xRj.
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Consequently, a maps the free factor F, onto the image of this Shmel&apos;kin

embedding. In particular, the subgroup R, is mapped into F?œFg and ar,

induces a monomorphism iÂl:(Rl)ai,-^(F?)ab (if reR,, then {rRr,)fx, r&lt;*,(F,G)&apos;),

which is just the Magnus embedding for modules stemming from the free
présentation (3).

Let rt e R, (i 1, c) and consider the commutator [ru rc] e

[Ri, f Rc]. The homomorphism a maps [rlf rc] into [Ff, Ff].
Hence, the isomorphism i/; from Lemma 2 can be applied to [rly. rc]ar. The
resuit is

[ru ,rc

{rxR[ ® - • • ® r,/?^! ® • • • ® juc.

It follows, that the image of [Rl9 Rc] under the homomorphism a is

isomorphic to the image of the canonical homomorphism

which is the tensor product of the Magnus embeddings \it (i 1, c). Hence,

we hâve proved the following.

LEMMA 3. The mapping

[r,, rc]yc+lR-^ rxR[ ®--®rcR&apos;c

(r, € /?,, i 1, c) extends to an isomorphism

R —* (fl,U ® • • • ® (IÎCU. D

Moreover, we hâve seen that there is a commutative square

[Ru R(]y( + l

0)
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where the upper horizontal homomorphism is induced by the restriction of a to

6. Proof of Theorem 1

Now we proceed to the proof of Theorem 1. The homomorphism /? (see

Section 3) maps the subgroup [Rlf Rc] ç F into

[F?, F?][ycFG, G)/[ycFG, G] £ YcFG/[YcFG, G).

Clearly, yc+iR and [Rlf. Rc, F] are in the kernel of ]8. Hence, the restriction
of 0 to [/?!,..., /?c] induces a homomorphism

• /îc, F]yc+1/Î

-&gt;[FG,...,FG][rcFG,G]/[YcFG,G].

The kernel of this homomorphism is

ker j3* ([/?u /îc] fl^y^^/I/Î!, Rc, F]ïc+lR.

Consequently, the theorem will be proved once we show that ker/3* is

isomorphic to H2cG.

There are canonical isomorphisms

[Ru Rc]Yc+lR/[Rl9 ...,RC, F]Yc+lR

([Ru Rc]yc+lR/Yc+iR) ® al, (8)

YcFg/[ycFg, G] ycFG ® gZ,

where Z (the ring of integers) is considered as a trivial G-module. Since

[Ff, FG] is a direct summand of ycFG, the latter implies that there is an

isomorphism

[F?. m^F0, G]/[YcFc, G] a [F?, ...,F?]&lt;8&gt; OZ. (9)

Using (8) and (9), /?* can be rewritten as

P*:([RU /?c]yc+1i?/yc+1/?)® OZ-&gt;[F?,. FCG]® GZ

and this is, in view of the commutative square (7), équivalent to the canonical
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homomorphism

It remains to show that the kernel of this homomorphism is H^G. In fact, this is

an easy conséquence of the results in K. W. Gruenberg&apos;s paper [17]. However,
for completeness we give a formai argument.

The commutative triangle

((RiU ® • • • ® (RcU) ®CZ—+ ((F?)ab ® (F2G)û6 ® • • • ® (F?)af&gt;) ® CZ

»

GZ

defines a décomposition of (/*a ® • • • ® ^c) &lt;8&gt; 1. We daim that (1 &lt;8&gt; ^2 ® &quot; • • ®
juc) ® 1 is injective. Indeed, put

P

and consider the short exact séquence

flfc ® • • • ® (Rc)ab

® (F2G)a6 ® • • • ® (F?)aft^ (FfU ® P^ 0.

Since (Ff)ab ® P is a free G-module, this séquence remains exact after tensoring
(over G) with Z. Hence, (1 ® \i2 % • • • ® jUc) ® 1 is injective and we can state
that

Now consider the short exact séquence

-&gt; /G ® (iî2)flft ® • • • ® (l^U^ 0, (10)

obtained by tensoring the relation séquence for G associated with (3) (i 1) with
&gt;

and note that (Ff)a6 ® (/Î2)fl/, ® • • • ® (Rc)ab is a free
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G-module. By tensoring (10) with Z (over G) we get

ker (p, &lt;g&gt; 1 ® • • • ® 1) ® 1 Torf (/G ® (R2)ab ® • • • ® (flc)afc, Z).

By using the well-known réduction identities

Torf (/G ® fl, Z) Tor?+1 (fl, Z)

Tor? ((/?,)„„ ® B, Z) Torf+2 (fl, Z)

(dimension shifting) one gets

Torf (/G ® (/?2U ® ¦ • • ® (flrU Z) Torg (Z, Z) //2cG

and this complètes the proof of the theorem.

We conclude this section with the following

Remark. A simple analysis of our proof shows that Theorem 1 can be

generalized as follows. Let w(xu xc) be a basic commutatur of weight c with
independent entries xlf ,xc. Then there is an isomorphism

H2cG (w(Ru ...,Rc)n N)yc+lR/[w(Ru Rc), F]ïc+iR,

where

w(Ru. ,Rc) gp{w(gw - - ,gc), gt e /?,(« !&gt;• • • &gt;c)}-

7. Theorem 2

Let Z(F/yc+iR) dénote the center of the quotient F/yc+lR. It is well-known
that Z(F/yc+1R) coincides with (ycR/yc+lR)G, the group of fixed points on
YcR/ïc+iR, and that this group is non-trivial if and only if G is a fini te group (see
[1] for the case c 1, [7] for the gênerai case). Assume now that G is finite and
let r dénote the trace map, i.e. the G-module homomorphism defined by

meycR/yc+1R.

Note that {ycRlyc+xR)xçi(ycRlyc+lR)
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THEOREM 2. Let G be a finite group. Then there is an isomorphism

Proof. In view of

Z(F/yc+lR) H [Ru Rc]yc+lR/yc+lR ([Ru Rc]yc+lR/yc+lR)G

and Lemma 3, the group on the right hand side of the formula in Theorem 2 is

isomorphic to

((Rl)at

This quotient is, by définition, the Tate cohomology group H°(G, (R\)ab ® • • • ®
(Rc)ab)- By using repeatedly the isomorphism

(dimension shifting), we get

H°(G, (R,)ab ® • • • ® (/?CU) s H~2c(G, Z) /f2( _, G

and this complètes the proof of the theorem.

Added in proof. Alternative generalizations of Hopfs formula hâve been

obtained independently in récent papers by A. Rodicio [18] and R. Brown and G.
Ellis [19]. Finally, I would like to thank K. W. Gruenberg and the référée for
helpful comments on this paper.
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