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Rigidity of convex domains in manifolds with nonnegative Ricci
and sectional curvature

VIKTOR SCHROEDER and MARTIN STRAKE

1. Introduction

This paper is motivated by rigidity results of Gromov [BGS, §5] which were
generalized in [SZ]. One of these results is the following rigidity theorem for
convex domains in manifolds of nonnegative sectional curvature K=0 [SZ,
Theorem S5]:

Let X be a complete manifold with K =0, B a compact strictly convex region in
X and U a neighborhood of 8B. If the metric in U\B is locally symmetric of
rank = 3, then the metric is also locally symmetric in B.

A similar rigidity result cannot be expected in the category of manifolds with
nonnegative Ricci-curvature Ric = 0 since a symmetric space of non-compact type
has positive Ricci-curvature and a small local modification of the metric is
possible within this category.

If however the metric in U\B is assumed to be flat, then the above result
implies that the metric is flat in B and one can generalize this to the case Ric=0:

THEOREM 1. Let M be a compact Riemannian manifold with convex
boundary and nonnegative Ricci-curvature. Assume that the sectional curvature
is identically zero in some neighborhood U of M and that one of the following
conditions holds:

a) oM is simply connected
b) dim M is even and AM is strictly convex in some point p € M
Then M is flat.

We remark here that the proof of Theorem 1 is quite different from the proofs
in [SZ] where the rigidity part of the Rauch comparison theorems is used in an
essential way. This tool can obviously not work for Ric =0. Instead we use more
global arguments. An easy argument shows that M can be isometrically
embedded into a manifold N such that N\M is the complement of a compact set
in euclidean space. The Bishop—Gromov inequality then implies that N (and
hence also M) is flat. If one uses instead the solution of the positive mass
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174 VIKTOR SCHROEDER AND MARTIN STRAKE

conjecture, then the argument shows that Theorem 1 holds also for nonnegative
scalar curvature.

Thus the condition that the metric is flat in a whole neighborhood of oM is
very strong. One might expect that, for Ric=0, it suffices to assume that the
sectional curvature vanishes only on the boundary. We can prove this in the
special case of a metric ball:

THEOREM 2. Let M be a Riemannian manifold of dimension n =3 and let
B = B,(po) a convex metric ball embedded by the exponential map exp,, with
boundary H = OB. Assume that the Ricci-curvature is nonnegative on B and that
a) K(o) =0 for all 2-planes with footpoint on H which are tangent to H, if n is
odd.
b) H is strictly convex and K(0) =0 for all 2-planes with footpoint on H, if n is
even.
Then B is flat.

In the proof of this result we use ideas from [GW]. We finally prove the
rigidity of a product M = M, X M, with noncompact factors and K =0 under a
compact modification of the metric which preserves K = 0.

THEOREM 3. Let M,, M, be complete noncompact Riemannian manifolds
with sectional curvature K =0. Let QcM:=M, X M, be the complement of a
compact subset. If ¢ : Q— M is an isometric embedding, where M is a complete
manifold with K =0 and dim M =dim M then ¢ extends in a unique way to an
isometry ¢ :M— M.

This result was stated (without proof) by Gromov [BGS, p. 75] but we think
that the proof is not at all trivial. Note that one cannot expect such a result for
Ric = 0: If M,, M, are noncompact with K >0, then the products has Ric >0 and
one can deform the metric locally. The examples of [SY] show that Ric >0 allows
even surgery constructions starting from products. However there is a rigidity
result for Ric=0 if M contains a line, i.e. splits as M’ X R by the Cheeger-
Gromoll splitting theorem [CG]. Let M be a manifold which coincides with M
outside of a compact set. It is not difficult to show that also M contains a line and
splits as M’ X R. From this one concludes that M is isometric to M.

In section 4 we give an example of a manifold M = M, X M, with compact
factor M, and a manifold M which is isometric to M outside of compact sets but
which is not diffeomorphic to M.

We would like to thank J. Eschenburg, Min-Oo, M. Miiter and W. Ziller for
helpful discussions.
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2. Rigidity for nonnegative Ricci-curvature
The proof of Theorem 1 is based on the following observation:

LEMMA 1. Let M" be a compact Riemannian manifold with convex boundary
and assume that M is flat in some neighborhood U of dM. Then there exists an
isometric embedding f : M — N", where N is a complete open manifold which is flat
outside of f(M). If in addition OM is simply connected then N\f (M) is isometric to
R"\C, where C is a compact subset of R".

Remark. If the Ricci-curvature is nonnegative on M and M is not flat then N
has only one end. This is easily seen by the splitting theorem of Cheeger—
Gromoll, comp. [CG].

Proof of Lemma 1. For £ >0 let U, :={p e M | dist (p, 3M) < ¢}. Then for ¢
small enough U, is a subset of U and can be identified with M X [ — ¢, 0], where
(p, t) corresponds to exp tn, and 7, denotes the outer normal field along oM.
Consider the universal covering §— M and the group I" of decktransformations.
Then U, = oM X [—¢, 0] is diffeomorphic to (S X [ — ¢, 0])/I, where I' operates
trivially on the second factor. The product S X [—¢, 0] carries a flat metric
induced from the metric on U,=0M X [—¢,0]. As S X[—¢ 0] is simply
connected, there is an isometric immersion Dy:S X [—¢, 0]— R" (developing

map, comp. [Th]). Define & < (Dyg)49/ 3¢, then & is the outer unit normal vector
field along D,. As the immersion D, is convex, we can extend D, to an immersion
D:S X [—¢, ») by

D(p» t) = DO(p’ O) + tg(p’ 0)

and the pull back metric on § X [—¢, ) is flat and agrees on § X [—¢, 0] with the
given metric. Clearly I' operates isometrically and U, can be considered as a
subset of Ny:=(S X[—¢, ®)/I'). Under this identification M is a subset of
N:=(M\U,)U N,.

Now assume that M is simply connected. Then U, =9dM X [—¢, 0] is also
simply connected and we can consider the isometric immersion Dy:3M X
[—&, 0]—>R" As oM is compact and convex and since dim dM >1, D, is an
embedding by the theorem of Sackstedter [S]. If B = R" denotes the bounded
components of R"\Dy(3M X {—¢}) then we can define N:=M U, (R"\B). O

Proof of Theorem 1. a) By Lemma 1 we may assume that M is a subset of the
manifold N, where N\M is isometric to R"\C. As C is compact the limit
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liminf,_,.v,(¢)/t" is equal to liminf,_,. vo(t)/t", where v,(t) resp. vo(t) denotes
the volume of a ball of radius ¢ with center p in N resp. center 0 in the euclidean
space R". Now the condition Ric =0 on N implies that N is isometric to R" by the
rigidity part of the Bishop—Gromov inequality [G].

b) As AM is strictly convex in some point p € M (i.e. the Weingarten-map
with respect to the outer unit normal is strictly positive definte at p) and as M is
flat in some neighborhood of M we may assume without loss of generality that
oM is strictly convex everywhere. (This can be shown by iterating a standard
convolution process for the distance function p of the boundary dM. This method
leads to a strictly convex C”-function p which is arbitrarily close to p, comp.
[ES]. Note that by the remark above, we can assume that M has only one
component.) Consider the orientation covering M— M. Then M satisfies the
same conditions as M and in particular the intrinsic curvature of M is strictly
positive by the Gauss-equation. Furthermore AM is orientable and even-
dimensional. Therefore M is simply connected by the Lemma of Synge [CE].
Thus a) implies that M (and therefore M) is flat. O

Proof of Theorem. 2. The proof is subdivided into two steps. Let L resp. L,
be the Weingarten map of H resp. S,(0) with respect to the outer unit normal
vector, where S,(0) denotes the standard euclidean sphere of radius r.

(i) First we will show that Ric=0 on B implies

A f detLdv=| detLydV,=vol(5,0) (1)
H

S,(0)

Furthermore A =vol ($,(0)) is only possible if B,(p) is isometric to B,(0,) c
I,M=R"

As Ric=0 on B the Gromov-Bishop inequality [G] gives (compare B with
the euclidean ball B,(0)):

vol (H) = vol (§,(0)) (2)

The equality holds if and only if B is isometric to B,(0).
A similar comparison argument shows:

trace (L) =< trace (L)

The arithmetic-geometric mean inequality gives

0=det(L)"" = i— trace (L) =< % trace (Lo) = det (Ly)"" =r~"
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and therefore
J det LdV = j r=dV =r vol (5,(0)) = vol (5,(0))
H H

where equality holds iff B is isometric to an euclidean ball, compare (2).
(ii) Now we want to show that condition a) resp. b) of Theorem 3 implies:

f det L dV = vol (§,(0))

Then by (1) we have K =0 on B.

«) Assume that n is odd. As K(o)=0 for all 2-planes o tangent to H the
Gauss equation implies det L = G, where G is the Gauss—Bonnet integrand of the
even dimensional orientable hypersurface H. Therefore:

x(H)
2

f det LdV = f G dV =% vol (8,(0)) = vol (8,(0))

B) Assume that n is even. As H is simply connected (dim H = 2) the curvature
condition K(o) =0 for all 2-planes with footpoint in H implies the existence of a
parellel orthonormal trivialisation E,, . . ., E, of the bundle TMI u- Let N denote
the outer unit normal field of H. Define a Gauss-map ¢ : H— §,(0) by

o(p) = Z (N(p), Eeyex

where e, . . ., e, denotes the standard orthonormal basis of R”. Then

Qux = 2 (Lx, Ek>ek
k=1
and
¢*dVy=(det L)dV

Therefore
f det L dV =deg (¢)f dV, = deg (¢) vol ($,(0))
H 51(0)

As L is positive definite the differential ¢, is nonsingular and therefore ¢ is a
local diffeomorphism and hence a covering map. §,(0) is simply connected hence
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¢ is an (orientation-preserving) diffeomorphism and therefore deg(¢)= +1,
which completes the proof. [

Remark. 1) If n is even, n=3 and H is convex (but not necessarily strictly
convex) then deg(¢) =0 implies that the tangent bundle TH = TS,(0) is trivial
and therefore dim H =n — 1 € {3, 7} (comp. [GW, Lemma 9]). Hence Theorem 2
part b) remains true if H is only convex and n =3, n #4, 8.

2) In the case that dimM =3 and that the sectional curvature K is
nonnegative, one can prove a version for arbitrary convex sets (comp. [SS]
Theorem 2):

Let M be a compact Riemannian manifold of dimension 3 and with
nonnegative sectional curvature. Assume that the boundary oM is strictly convex
and that K(o) =0 for all 2-planes o which are tangent to M. Then M is flat.

3. Rigidity of products

For the proof of Theorem 3 we recall some facts from the structure theory of a
complete open manifold M with nonnegative sectional curvature (see [CG], [CE]
ch. 8):

If C is a compact totally convex subset in M with nonempty boundary 3C,
then also the sets

C'={peC|d(p, 3C)=1}

are totally convex. Let C™*=C" where a=sup{t=0|C'#C}. Then
dim C™ < dim C. By the basic construction of [CG] there exists an exhaustion of

M by compact totally convex subsets C,, t =0 such that C,= C{,, and C,= C™
def

for all ¢, s > 0. In particular dim Cy<dim C,=dim M for all t>0. If C(1) = C,

has nontrivial boundary, then let C(2) = C(1)™*. We obtain a sequence

Co=C(1)>---oC(k)=2, where k is the smallest integer such that C(k) is
wouthout boundary. 2 = C(k) is called a soul of M.

In the theorem we investigate a product M = M, X M,. For the factors M,,
i=1,2, we have the exhaustions C;, and the chain Ci(1)>: -2 Cik,) =2,
where 2; is the soul of M,.

We also recall the following construction of Sharafudtinov [Sh], see also [Y]:
Let C be a compact totally convex subset in M with nonempty boundary 3C.
Then there exists a strong deformation retract vy,:C— C’ which is distance
nonincreasing. Thus there exists also a contraction map y,: C,— C(1) and finally
a contraction yp:C— 2.
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For the proof of the theorem the following notation is useful: Let D < M and
D < M be subsets. We say that ¢(D) and D coincide outside of a compact set and
we write ¢(D) = D, if there are compact sets KM and K <M such that
¢|p\x: D\K— M is an isometry from D\K onto D\K. Note that we can use this
notation even when D is not completely contained in Q.

We prove first that ¢(M) < M, i.e. that Q =M \ ¢(£2) is compact. Therefore
we can assume that Q = M\ C, for a suitable a > 0. Since C, is totally convex and
dim M =dim M also Q is totally convex because every geodesic which enters
¢ (L) cannot leave ¢(£2). If O is noncompact then there exists a sequence g, € O
with d(g;, d0)— «. Furthermore there are p; € ¢(£2) with d(p;, 3Q)— ~. Then
a sequence of minimizing geodesics from g; to p; has an accumulation line which
intersects Q. By Toponogov’s splitting theorem M splits as M’ X R. We can
assume that (x,0)edQ for a point xe M’ and (x,t)e ¢(Q) for t>0 and
(x,t) e Q for t=<0.

Let y be a point in M'. For t,>0 large enough, (y,t,) € ¢(£2) and
(y, —to) € Q. Thus the line {y} X R intersects Q. Since 3Q is compact, the
distance d(x, y) is universally bounded and M’ is compact. But this is impossible
since M is a product of two noncompact factors. The contradiction shows that Q
is compact and ¢(M) = M.

For the rest of the proof we will assume (without loss of generality) that € is
the complement of C, , X C, , in M = M, X M, for a suitable positive constant a.

We consider the cylinder Z:=C, , X M, in M. Let Z = M\¢(M\Z). We claim
that Z is a totally convex subset of M. Note that the complement of Z in M is
isometric to the complement of Z in M. Since Z is totally convex, every geodesic
leaving Z cannot return. Thus the same is true for Z and hence Z is also totally
convex.

We claim that Z™*=2% and Z™*< $(Z°) = ¢(C,(1) X M,). Since
M £ ¢(M) it is clear that Z< ¢(Z) and Z' < ¢(Z"). It follows that dim Z* <
dimZ and hence Z™*=Z° and Z°< ¢(Z“). Thus we have proved that
Z(1) £ ¢(Z(1)). In the same way we obtain Z(2) = ¢(Z(2)) and finally
Z(k,) £ ¢(Z(k,)) = ¢(Z, X M,). For the proof of Theorem 3 the following result
is essential

LEMMA 2. § = Z(k,) is complete without boundary and isometric to the
product 2, X M,.

Proof of Lemma 2. The proof consists of three steps:

1. We show that § is complete without boundary.

2. Through every point x € § there exists a totally geodesic submanifold
isometric to M,.



180 VIKTOR SCHROEDER AND MARTIN STRAKE

3. We show that if M,(x) and M,(y) are two of these submanifolds of S, then
there exists a totally geodesic and isometric immersion G:[0, r] X M,— §
such that G(0, M,) = My(x) and G(r, M,) = M,(y). From this fact we
derive the product structure.

1. Let us assume to the contrary that 35 #(J. Then 3§ lies in a compact set
since S coincides with ¢(Z; X M,) outside of a compact set. For ¢ sufficiently
large, the set S'={p € S | d(p, 3S) =t} is contained in the set where S coincides
with the product ¢(Z, X M,) and we can define the projection x:5°‘— M,. Let
y:Z— S and y,:S— S’ be Sharafudtinov retractions. It is easy to check that the
construction of the maps v, y, (compare [Y]) also works in our context where Z
is not compact. Note that outside of a compact set y coincides with the product
map y' X id, where y':C, ,— X, is a Sharafudtinov retraction in M;. Choose
x,€9C,, and let i: M,— {x,;} X M, be an isometric embedding of M, into 3Z.
Then o =moy,oypeogei is a map from M, onto a proper subset of M, which
coincides with the identity outside of a compact set. Such a map is impossible for
topological reasons.

It follows that S = Z(k,) is the soul of the cylinder Z and S < ¢(Z; X M?).

2. We prove that though every point x € § there exists a totally geodesic
submanifold isometric to M,.

Consider a point ¢(x,, x,) € S, where x; € 2, and x, € M,, i.e. a point outside
of the compact set. Let y:[0, *)— M, be a unit speed ray with y(0)=x,. It
follows from the basic construction in [CG] that y(f)e 3C,, for t=0. We
consider the geodesic 7(s) = ¢(y(s), x,) in M. Since Z™* = Z* it follows that
d(¢(x,, x»), 3Z) = a. Since ¢p(y(a), x,) € 3Z, this geodesic is minimizing up to 5Z
and since the constant a can be choosen arbitrarily large, 7 is a ray in M. Let
¢:R—S be a geodesic in § with ¢(0)=@(xy, x,). Let W(¢) be the parallel
vectorfield along ¢(¢) with W(0) = #. It follows from [CG] Theorem 1.10 that

HGs, 1) = eXPzcy SW(2) 3)

is a totally geodesic isometric immersion of the flat halfplane [0, ©) X R into M.
Let c:R— M, be a geodesic with ¢(0) =x, and let ¢:R — § be the geodesic such
that ¢(¢) = ¢(x,, c(¢)) for |¢| small, then one checks easily that

H(s, 1) = ¢(v(s), c(1)) (4)

For b>0 we consider the manifold y(b) X M,c M. For b sufficiently large,
y(b) X M, is completely contained in Q. Let Y = ¢(y(b) X M;) < M. Note that
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(—y(b), 0) defines a globally parallel vectorfield V on Y. By construction we
obtain for x, outside of a compact subset of M, that

exp bV (¢(y(b), x2) = ¢(v(0), x2) €S

We claim that the map O6(y)=exp, bV (y) is a totally geodesic isometric
embedding of Y into S. Let therefore c:R— M, be any geodesic of M, which
does not stay in a compact subset. We obtain the flat halfspace H(s, ¢) as in (4)
which contains the geodesic ¢ ¢(y(b), c(¢)) in Y. It follows that the map 6 is an
isometry along the geodesic ¢(y(b), c(t)). By the structure theory of M, it is clear
that only a zero-set of geodesics stays in a compact set. Thus 0 is an isometry.
More generally, it follows from Rauch’s comparison theorem that the map

D:[0,b]xXY—>M
(s, y)—exp, sV(y)

is a totally geodesic isometric embedding. Since D(b, M,) is contained in §
outside of a compact set and S is totally geodesic, it follows that D(b, M,) = S.

Because S = ¢(X, X M,) there exists a compact set K, in M, such that § is
isometric to 2 X £, outside of a compact set, where €2, is the complement of K.
We just have proved, that every fiber {x,} X £, is a subset of a complete totally
geodesic submanifold isometric to M,. We denote this submanifold with M,(x,).
Let x be an arbitrary point in S, then consider a ray c:[0, ©)— § starting in x.
This ray is finally contained in X X £, and since %, is compact, it is contained in
a fiber {x;} X €,. Thus x € M,(x,) and every point of § is contained in M,(x,) for
a suitable x;.

3. Let x;, y,€ 2, and «:[0, r]— %, a minimal geodesic between them where
r=d(x,, y;). We claim: There exists a totally geodesic and isometric embedding
G :[0, r] X My— S such that G(0, M,) = M,(x,) and G(r, M,) = M,(y,).

Before we prove this claim, we show that this implies S isometric to 2| X M,.
First the above claim shows that the manifolds M,(x,) define a foliation of S and
hence also an integrable distribution. If ¢ is any geodesic in S, then c is contained
in the image of an isometric embedding G as above. It follows that the
distribution is invariant under parallel translation and hence S is a product by the
de Rham splitting theorem. Since S = ¢(2, X M,) it is clear that S is isometric to
I XM,.

To prove the claim, we consider M,(x,) = ¢({x,} X M,), Mr(y,) = ¢({ ¥} X M,)
and canonical isometries ¢, : M,— M,(x,), ¢,: My— M,(y,). We first assume that
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the distance r = d(x,, y;) is small enough, such that for every z € M, there exists a
unique minimal geodesic from ¢,(z) to ¢,(z). Since § is a product outside of a
compact set this is possible for small r=0. Let m:M,(x,)— M,(y,) be the
projection which maps ¢,(z) onto ¢,(z). Let c:R— M, be a geodesic which does
not stay in a compact set and let ¢, and c, be the geodesics in M,(x;) and M,(y,)
such that c,(¢) = ¢({x,} X c(t)) and c¢,(¢) = ¢({y,} X c(¢)). We can assume that
c(0) e ,, i.e. near to 0, c,(¢) and c,(¢t) bound a flat totally geodesic strip.

We want to show that c,[0, ) and ¢,/ [0, ) bound a totally geodesic flat strip.
The set of all ¢ such that c,[0, f] and ¢,[0, t] bound a flat strip isometric to
[0, ¢] X [0, r] is clearly closed. To prove that the set is open we assume that
[0, t) and ¢, [0, t;] bound a flat strip and let ¢, = ¢, with ¢, — ¢, small. It follows

from Rauch’s comparison theorem [CE, pg. 29], that r, dgd(cx(tl), ¢,(t;)) =r and
that equality implies that also c,[0, ¢;] and ¢,[0, #;] bound flat strip. Thus it
remains to show that r, =r.

Therefore choose a ray y:[0, ©)— M, with y(0) = x, € X, and consider the ray
7(s) = ¢(y(s), c(0)) in M. In S we have the piecewise geodesic formed by the
three pieces c,[0, t;], B[O, r], ¢,[0, ], where B:[0,r]—S is the minimal

geodesic from c,(#;) to c,(¢;). Let w = ¥(0) and W be the pafallel vectorfield
along the piecewise geodesic, i.e we parellel translate w from c,(0) along c, to
c.(t;), from there along B to c,(¢;) and then back along c, to ¢,(0).

As in (3) we thus obtain three totally geodesic immersions

F'(s, t) = exp ) sW(c,(1))
F*(s, t) = expp SW(B(t))
F3(s, t) = exp,y SW(c, (1))
where F! and F? is defined on [0, ©) X [0, ¢,] and F> on [0, ») X [0, r,].
By (4) F'(s, t) = ¢(y(s), c(t)) and in the same way F>(s, t) = ¢(y*(s), c(t)),
where y* is the M, component of the ray ¢ ~'o #* where 7*(s) = F(s, 0).
Choose b > 0 sufficiently large such that F'(b, t) € ¢(£) for all i and ¢. Then
n= d(Cx(tl)’ Cy(tZ))
= d(F*(0, 0), F*(0, )
= d(Fz(b; O)) Fz(b» rl))
= d(p((b), (), H(r*(B), ()

where b is arbitrary. For b sufficiently large

d(¢(v(b), c(t1)), ¢(v*(b), c(11))) = d(y(b), y*(b))
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Now y and y* are rays in M, with y(b), y*(b) € 3C,, for all b. It is then a
consequence of the first variation formula, that d(y(¢), y*(¢t)) is monotone
increasing. Thus

d(y(b), v*(b)) = d(¥(0), y*(0)) =r

It follows that ¢, [0, =) and ¢, [0, =) bound a flat strip and with the same argument
¢.(R) and ¢, (R) bound a flat strip. Since the geodesics which leave every compact
set are dense, this argument shows that d(n(z), z) =r for all z € My(x,). In
particular M,(x,) and M,(y,) have no common points. Since by assumption for
every point z € M,(x,) there is a unique minimal geodesic to the corresponding
point in M,(y,;), there exists a unit vectorfield W on M,(x,) such that 7(z) =
exp, rW(z). The flat strip argument from above shows that along every geodesic ¢
in M,(x,) which does not stay in a compact subset W is a parallel normal
vectorfield. It follows from the denseness of these geodesics that W is a parallel
normal unit vectorfield.

Since (z) = exp, rW(z) is an isometry, it follows from Rauch’s theorem that
the map

[0, r] X My(x,)— S, (s, z)—>exp, sW(z2)

is a totally geodesic isometric immersion. Since it is an embedding outside of a
compact set one checks easily that it is an embedding.

We have assumed that r is sufficiently small. In the general case let x,, y, € 2,
be arbitrary and o a minimal geodesic joining them. Let & be the minimal
geodesic a(s) = ¢(a(s), x,) between ¢(x,, x,) and ¢(y,, x,) where x, € €,. The
above argument shows that a(0) extends to a globally parallel vectorfield on
My(x,). One checks easily that

(s, z)—exp, sW(z)
is an isometric embedding also in this case. Thus we have proved the lemma. O

We are now able to complete the proof of Theorem 3. Let ¢é:R — M be any
geodesic with ¢(0) e M\ Z. We claim that there exists a totally geodesic isometric
immersion G :R X M,— M such that ¢ is contained in the image of G.

Since ¢(0) € ¢(£2) there exists a point x, € M, such that ¢(0) e y = ¢({x,} x
M,). We can assume that ¢(0) is not tangent to Y. Let w’' be the normal

N def , ; .
component of ¢ and w = w'/ |lw'l]. Then w extends to a globally parallel unit
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normal vectorfield on Y. We consider the map

G:RxXY—>M

def
G(s, y) = exp, sW(y)

By Rauchs theorem, the map G, = G(s, .) from Y to M is distance nonincreasing
for small s =0 and the rigidity part of this theorem states that if G, is isometric for
s =0, then G|jg 5y is an isometric immersion.

Thus we have to show that G; is an isometry. Let therefore i: M,— {x,} X M,
the embedding, m#:$S— M, the distance nonincreasing projection onto the
M,factor of S=3, X M,, let y:Z—> S be the Sharafudtinov-retraction as in the
proof of Lemma 3.

We can assume that G,(Y) c Z since G, is clearly an isometry as long as the
image lies in M\ Z. Then we have the distance nonincreasing map woy oG, o ¢ o
i : M,— M, which is the identity outside of a compact set. Such a map has to be an
isometry (compare Lemma 1, 2 in [Sh]). It follows that G; is an isometry.

Since the set of geodesics which leave Z is dense, one checks easily that
through every point of M there is a totally geodesic submanifold isometric to M,
and that the distribution defined by the tangent spaces of these manifolds is
invariant under parallel translation (compare the proof of the splitting S =
2, X M, in the proof of Lemma 2). It follows from the de Rham decomposition
that M splits a factor M, and since M < ¢(M, X M,) it is clear that M is isometric
to M, X M,. Obviously ¢ extends in a unique way to an isometry ¢ :M— M. [

4. Flexibility of products with nonnegative curvature

Let M = M, X M, be an open product manifold with sectional curvature K =0
where the factor M, is compact. We ask how flexible is this product with respect
to modifications of the metric within compact sets which preserve K = 0.

If M, has K >0 (or at least K >0 at one point), then one can deforme the
metric on M, in a compact set. In this case the soul of M is isometric to M, X {p}
and the factor M, survives in the new metric.

Consider now a manifold M, which is diffeomorphic to R**' and M,\C; is
isometric to (S*, gz) X [0, ®) for a compact subset C, of M,, where g, is the
standard metric on the sphere. It is easy to construct rotational symmetric metrics
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of this type. Choose M, =(S%, gz) then M = M, X M, is isometric to $* x §* x
[0, ©) outside of a compact set C where C is isometric to $* X C,. Note that we
can glue S* x C, in different ways onto the boundary of $* x §* x [0, «) and thus
one cannot see from the structure of M\ C which S* factor survives in a manifold
M which is isometric to M outside of a compact set.

One can even not see the topological structure of the manifold by looking
only to the complement of a compact set. Consider therefore M3 = (S?, g,) X
(R?, g,)/S", where we choose some left-invariant metric g, on S° and a rotational
symmetric metric g, on R §' operates diagonally on the product, where it
rotates the Hopf-circles on S* and acts by rotations on (R?, g,).

We choose g, such that (R? g,) is isometric to S, X [0, ®), outside of a
compact set, where S, is a circle of radius a. Then, outside of a compact set, M>
is isometric to (S>, g3) X [0, ©), where g3 is also a left-invariant metric on S°. If
we choose g, suitable then Mj is isometric to (S°, gg) X [0, ®) outside of a
compact set. Let M, = (S gg). Then the product M =M, X M, (for k =3) is
isometric to M = M, X M3 outside of compact sets, but M and M have different
topology. In particular their souls are not isometric, sos!
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