Rigidity of convex domains in manifolds with nonnegative Ricci and sectional curvature.

Autor(en): Schroeder, Viktor / Strake, Martin
Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 64 (1989)

PDF erstellt am: \quad 30.04.2024
Persistenter Link: https://doi.org/10.5169/seals-48939

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Rigidity of convex domains in manifolds with nonnegative Ricci and sectional curvature

Viktor Schroeder and Martin Strake

1. Introduction

This paper is motivated by rigidity results of Gromov [BGS, §5] which were generalized in [SZ]. One of these results is the following rigidity theorem for convex domains in manifolds of nonnegative sectional curvature $K \geq 0$ [SZ, Theorem 5]:

Let X be a complete manifold with $K \geq 0, B$ a compact strictly convex region in X and U a neighborhood of ∂B. If the metric in $U \backslash B$ is locally symmetric of rank ≥ 3, then the metric is also locally symmetric in B.

A similar rigidity result cannot be expected in the category of manifolds with nonnegative Ricci-curvature Ric ≥ 0 since a symmetric space of non-compact type has positive Ricci-curvature and a small local modification of the metric is possible within this category.

If however the metric in $U \backslash B$ is assumed to be flat, then the above result implies that the metric is flat in B and one can generalize this to the case Ric ≥ 0 :

THEOREM 1. Let M be a compact Riemannian manifold with convex boundary and nonnegative Ricci-curvature. Assume that the sectional curvature is identically zero in some neighborhood U of ∂M and that one of the following conditions holds:
a) ∂M is simply connected
b) $\operatorname{dim} \partial M$ is even and ∂M is strictly convex in some point $p \in \partial M$

Then M is flat.
We remark here that the proof of Theorem 1 is quite different from the proofs in [SZ] where the rigidity part of the Rauch comparison theorems is used in an essential way. This tool can obviously not work for Ric ≥ 0. Instead we use more global arguments. An easy argument shows that M can be isometrically embedded into a manifold N such that $N \backslash M$ is the complement of a compact set in euclidean space. The Bishop-Gromov inequality then implies that N (and hence also M) is flat. If one uses instead the solution of the positive mass
conjecture, then the argument shows that Theorem 1 holds also for nonnegative scalar curvature.

Thus the condition that the metric is flat in a whole neighborhood of ∂M is very strong. One might expect that, for $\mathrm{Ric} \geq 0$, it suffices to assume that the sectional curvature vanishes only on the boundary. We can prove this in the special case of a metric ball:

THEOREM 2. Let M be a Riemannian manifold of dimension $n \geq 3$ and let $B=B_{r}\left(p_{0}\right)$ a convex metric ball embedded by the exponential map $\exp _{p_{0}}$ with boundary $H=\partial B$. Assume that the Ricci-curvature is nonnegative on B and that
a) $K(\sigma)=0$ for all 2-planes with footpoint on H which are tangent to H, if n is odd.
b) H is strictly convex and $K(\sigma)=0$ for all 2-planes with footpoint on H, if n is even.
Then B is flat.
In the proof of this result we use ideas from [GW]. We finally prove the rigidity of a product $M=M_{1} \times M_{2}$ with noncompact factors and $K \geq 0$ under a compact modification of the metric which preserves $K \geq 0$.

THEOREM 3. Let M_{1}, M_{2} be complete noncompact Riemannian manifolds with sectional curvature $K \geq 0$. Let $\Omega \subset M:=M_{1} \times M_{2}$ be the complement of a compact subset. If $\phi: \Omega \rightarrow \bar{M}$ is an isometric embedding, where \bar{M} is a complete manifold with $K \geq 0$ and $\operatorname{dim} \bar{M}=\operatorname{dim} M$ then ϕ extends in a unique way to an isometry $\bar{\phi}: M \rightarrow \bar{M}$.

This result was stated (without proof) by Gromov [BGS, p. 75] but we think that the proof is not at all trivial. Note that one cannot expect such a result for Ric ≥ 0 : If M_{1}, M_{2} are noncompact with $K>0$, then the products has Ric >0 and one can deform the metric locally. The examples of [SY] show that Ric >0 allows even surgery constructions starting from products. However there is a rigidity result for Ric ≥ 0 if M contains a line, i.e. splits as $M^{\prime} \times \mathbb{R}$ by the CheegerGromoll splitting theorem [CG]. Let \bar{M} be a manifold which coincides with M outside of a compact set. It is not difficult to show that also \bar{M} contains a line and splits as $\bar{M}^{\prime} \times \mathbb{R}$. From this one concludes that M is isometric to \bar{M}.

In section 4 we give an example of a manifold $M=M_{1} \times M_{2}$ with compact factor M_{1} and a manifold \bar{M} which is isometric to M outside of compact sets but which is not diffeomorphic to M.

We would like to thank J. Eschenburg, Min-Oo, M. Müter and W. Ziller for helpful discussions.

2. Rigidity for nonnegative Ricci-curvature

The proof of Theorem 1 is based on the following observation:
LEMMA 1. Let M^{n} be a compact Riemannian manifold with convex boundary and assume that M is flat in some neighborhood U of ∂M. Then there exists an isometric embedding $f: M \rightarrow N^{n}$, where N is a complete open manifold which is flat outside of $f(M)$. If in addition ∂M is simply connected then $N \backslash f(M)$ is isometric to $\mathbb{R}^{n} \backslash C$, where C is a compact subset of \mathbb{R}^{n}.

Remark. If the Ricci-curvature is nonnegative on M and M is not flat then N has only one end. This is easily seen by the splitting theorem of CheegerGromoll, comp. [CG].

Proof of Lemma 1. For $\varepsilon>0$ let $U_{\varepsilon}:=\{p \in M \mid$ dist $(p, \partial M) \leq \varepsilon\}$. Then for ε small enough U_{ε} is a subset of U and can be identified with $\partial M \times[-\varepsilon, 0]$, where (p, t) corresponds to $\exp t \eta_{p}$ and η_{p} denotes the outer normal field along ∂M. Consider the universal covering $S \rightarrow \partial M$ and the group Γ of decktransformations. Then $U_{\varepsilon} \cong \partial M \times[-\varepsilon, 0]$ is diffeomorphic to $(S \times[-\varepsilon, 0]) / \Gamma$, where Γ operates trivially on the second factor. The product $S \times[-\varepsilon, 0]$ carries a flat metric induced from the metric on $U_{\varepsilon} \cong \partial M \times[-\varepsilon, 0]$. As $S \times[-\varepsilon, 0]$ is simply connected, there is an isometric immersion $D_{0}: S \times[-\varepsilon, 0] \rightarrow \mathbb{R}^{n}$ (developing map, comp. [Th]). Define $\xi \stackrel{\text { def }}{=}\left(D_{0}\right)_{*} \partial / \partial t$, then ξ is the outer unit normal vector field along D_{0}. As the immersion D_{0} is convex, we can extend D_{0} to an immersion $D: S \times[-\varepsilon, \infty)$ by

$$
D(p, t)=D_{0}(p, 0)+t \xi(p, 0)
$$

and the pull back metric on $S \times[-\varepsilon, \infty)$ is flat and agrees on $S \times[-\varepsilon, 0]$ with the given metric. Clearly Γ operates isometrically and U_{ε} can be considered as a subset of $N_{0}:=(S \times[-\varepsilon, \infty) / \Gamma)$. Under this identification M is a subset of $N:=\left(M \backslash U_{\varepsilon}\right) \cup N_{0}$.

Now assume that ∂M is simply connected. Then $U_{\varepsilon} \cong \partial M \times[-\varepsilon, 0]$ is also simply connected and we can consider the isometric immersion $D_{0}: \partial M \times$ $[-\varepsilon, 0] \rightarrow \mathbb{R}^{n}$. As ∂M is compact and convex and since $\operatorname{dim} \partial M>1, D_{0}$ is an embedding by the theorem of Sackstedter [S]. If $B \subset \mathbb{R}^{n}$ denotes the bounded components of $\mathbb{R}^{n} \backslash D_{0}(\partial M \times\{-\varepsilon\})$ then we can define $N:=M \cup_{D_{0}}\left(\mathbb{R}^{n} \backslash B\right)$.

Proof of Theorem 1. a) By Lemma 1 we may assume that M is a subset of the manifold N, where $N \backslash M$ is isometric to $\mathbb{R}^{n} \backslash C$. As C is compact the limit
$\liminf _{t \rightarrow \infty} v_{p}(t) / t^{n}$ is equal to $\liminf _{t \rightarrow \infty} v_{0}(t) / t^{n}$, where $v_{p}(t)$ resp. $v_{0}(t)$ denotes the volume of a ball of radius t with center p in N resp. center 0 in the euclidean space \mathbb{R}^{n}. Now the condition Ric ≥ 0 on N implies that N is isometric to \mathbb{R}^{n} by the rigidity part of the Bishop-Gromov inequality [G].
b) As ∂M is strictly convex in some point $p \in \partial M$ (i.e. the Weingarten-map with respect to the outer unit normal is strictly positive definte at p) and as M is flat in some neighborhood of ∂M we may assume without loss of generality that ∂M is strictly convex everywhere. (This can be shown by iterating a standard convolution process for the distance function ρ of the boundary ∂M. This method leads to a strictly convex C^{∞}-function $\bar{\rho}$ which is arbitrarily close to ρ, comp. [ES]. Note that by the remark above, we can assume that ∂M has only one component.) Consider the orientation covering $\bar{M} \rightarrow M$. Then \bar{M} satisfies the same conditions as M and in particular the intrinsic curvature of $\partial \bar{M}$ is strictly positive by the Gauss-equation. Furthermore $\partial \bar{M}$ is orientable and evendimensional. Therefore $\partial \bar{M}$ is simply connected by the Lemma of Synge [CE]. Thus a) implies that \bar{M} (and therefore M) is flat.

Proof of Theorem. 2. The proof is subdivided into two steps. Let L resp. L_{0} be the Weingarten map of H resp. $S_{r}(0)$ with respect to the outer unit normal vector, where $S_{r}(0)$ denotes the standard euclidean sphere of radius r.
(i) First we will show that Ric ≥ 0 on B implies

$$
\begin{equation*}
A \stackrel{\text { def }}{=} \int_{H} \operatorname{det} L d V \leq \int_{S_{r}(0)} \operatorname{det} L_{0} d V_{0}=\operatorname{vol}\left(S_{1}(0)\right) \tag{1}
\end{equation*}
$$

Furthermore $A=\operatorname{vol}\left(S_{1}(0)\right)$ is only possible if $B_{r}(p)$ is isometric to $B_{r}\left(0_{p}\right) \subset$ $T_{p} M=\mathbb{R}^{n}$.

As Ric ≥ 0 on B the Gromov-Bishop inequality [G] gives (compare B with the euclidean ball $\left.B_{r}(0)\right)$:

$$
\begin{equation*}
\operatorname{vol}(H) \leq \operatorname{vol}\left(S_{r}(0)\right) \tag{2}
\end{equation*}
$$

The equality holds if and only if B is isometric to $B_{r}(0)$.
A similar comparison argument shows:

$$
\operatorname{trace}(L) \leq \operatorname{trace}\left(L_{0}\right)
$$

The arithmetic-geometric mean inequality gives

$$
0 \leq \operatorname{det}(L)^{1 / m} \leq \frac{1}{m} \operatorname{trace}(L) \leq \frac{1}{m} \operatorname{trace}\left(L_{0}\right)=\operatorname{det}\left(L_{0}\right)^{1 / m}=r^{-1}
$$

and therefore

$$
\int_{H} \operatorname{det} L d V \leq \int_{H} r^{-m} d V=r \operatorname{vol}\left(S_{r}(0)\right)=\operatorname{vol}\left(S_{1}(0)\right)
$$

where equality holds iff B is isometric to an euclidean ball, compare (2).
(ii) Now we want to show that condition a) resp. b) of Theorem 3 implies:

$$
\int_{H} \operatorname{det} L d V=\operatorname{vol}\left(S_{1}(0)\right)
$$

Then by (1) we have $K \equiv 0$ on B.
α) Assume that n is odd. As $K(\sigma)=0$ for all 2-planes σ tangent to H the Gauss equation implies $\operatorname{det} L=G$, where G is the Gauss-Bonnet integrand of the even dimensional orientable hypersurface H. Therefore:

$$
\int_{H} \operatorname{det} L d V=\int_{H} G d V=\frac{\chi(H)}{2} \operatorname{vol}\left(S_{1}(0)\right)=\operatorname{vol}\left(S_{1}(0)\right)
$$

β) Assume that n is even. As H is simply connected ($\operatorname{dim} H \geq 2$) the curvature condition $K(\sigma)=0$ for all 2-planes with footpoint in H implies the existence of a parellel orthonormal trivialisation E_{1}, \ldots, E_{n} of the bundle $\left.T M\right|_{H}$. Let N denote the outer unit normal field of H. Define a Gauss-map $\phi: H \rightarrow S_{1}(0)$ by

$$
\phi(p)=\sum_{k=1}^{n}\left\langle N(p), E_{k}\right\rangle e_{k}
$$

where e_{1}, \ldots, e_{n} denotes the standard orthonormal basis of \mathbb{R}^{n}. Then

$$
\phi_{*} x=\sum_{k=1}^{n}\left\langle L x, E_{k}\right\rangle e_{k}
$$

and

$$
\phi^{*} d V_{0}=(\operatorname{det} L) d V
$$

Therefore

$$
\int_{H} \operatorname{det} L d V=\operatorname{deg}(\phi) \int_{S_{1}(0)} d V_{0}=\operatorname{deg}(\phi) \operatorname{vol}\left(S_{1}(0)\right)
$$

As L is positive definite the differential ϕ_{*} is nonsingular and therefore ϕ is a local diffeomorphism and hence a covering map. $S_{1}(0)$ is simply connected hence
ϕ is an (orientation-preserving) diffeomorphism and therefore $\operatorname{deg}(\phi)=+1$, which completes the proof.

Remark. 1) If n is even, $n \geq 3$ and H is convex (but not necessarily strictly convex) then $\operatorname{deg}(\phi)=0$ implies that the tangent bundle $T H \cong T S_{1}(0)$ is trivial and therefore $\operatorname{dim} H=n-1 \in\{3,7\}$ (comp. [GW, Lemma 9]). Hence Theorem 2 part b) remains true if H is only convex and $n \geq 3, n \neq 4,8$.
2) In the case that $\operatorname{dim} M=3$ and that the sectional curvature K is nonnegative, one can prove a version for arbitrary convex sets (comp. [SS] Theorem 2):

Let M be a compact Riemannian manifold of dimension 3 and with nonnegative sectional curvature. Assume that the boundary ∂M is strictly convex and that $K(\sigma)=0$ for all 2-planes σ which are tangent to ∂M. Then M is flat.

3. Rigidity of products

For the proof of Theorem 3 we recall some facts from the structure theory of a complete open manifold M with nonnegative sectional curvature (see [CG], [CE] ch. 8):

If C is a compact totally convex subset in M with nonempty boundary ∂C, then also the sets

$$
C^{t}=\{p \in C \mid d(p, \partial C) \geq t\}
$$

are totally convex. Let $C^{\max }=C^{a}$ where $a=\sup \left\{t \geq 0 \mid C^{t} \neq \varnothing\right\}$. Then $\operatorname{dim} C^{\max }<\operatorname{dim} C$. By the basic construction of [CG] there exists an exhaustion of M by compact totally convex subsets $C_{t}, t \geq 0$ such that $C_{t}=C_{t+s}^{s}$ and $C_{0}=C_{t}^{\max }$ for all $t, s>0$. In particular $\operatorname{dim} C_{0}<\operatorname{dim} C_{t}=\operatorname{dim} M$ for all $t>0$. If $C(1) \stackrel{\text { def }}{=} C_{0}$ has nontrivial boundary, then let $C(2) \stackrel{\text { def }}{=} C(1)^{\max }$. We obtain a sequence $C_{0}=C(1) \supset \cdots \supset C(k)=\Sigma$, where k is the smallest integer such that $C(k)$ is wouthout boundary. $\Sigma=C(k)$ is called a soul of M.

In the theorem we investigate a product $M=M_{1} \times M_{2}$. For the factors M_{i}, $i=1,2$, we have the exhaustions $C_{i, 1}$ and the chain $C_{i}(1) \supset \cdots \supset C_{i}\left(k_{i}\right)=\Sigma_{i}$, where Σ_{i} is the soul of M_{i}.

We also recall the following construction of Sharafudtinov [Sh], see also [Y]: Let C be a compact totally convex subset in M with nonempty boundary ∂C. Then there exists a strong deformation retract $\psi_{t}: C \rightarrow C^{t}$ which is distance nonincreasing. Thus there exists also a contraction map $\psi_{t}: C_{t} \rightarrow C(1)$ and finally a contraction $\psi: C \rightarrow \Sigma$.

For the proof of the theorem the following notation is useful: Let $D \subset M$ and $\bar{D} \subset \bar{M}$ be subsets. We say that $\phi(D)$ and \bar{D} coincide outside of a compact set and we write $\phi(D) \stackrel{c}{=} \bar{D}$, if there are compact sets $K \subset M$ and $\bar{K} \subset \bar{M}$ such that $\left.\phi\right|_{D \backslash K}: D \backslash K \rightarrow \bar{M}$ is an isometry from $D \backslash K$ onto $\bar{D} \backslash \bar{K}$. Note that we can use this notation even when D is not completely contained in Ω.

We prove first that $\phi(M) \stackrel{c}{=} \bar{M}$, i.e. that $Q \stackrel{\text { def }}{=} \bar{M} \backslash \phi(\Omega)$ is compact. Therefore we can assume that $\Omega=M \backslash C_{a}$ for a suitable $a>0$. Since C_{a} is totally convex and $\operatorname{dim} M=\operatorname{dim} \bar{M}$ also Q is totally convex because every geodesic which enters $\phi(\Omega)$ cannot leave $\phi(\Omega)$. If Q is noncompact then there exists a sequence $q_{i} \in Q$ with $d\left(q_{i}, \partial Q\right) \rightarrow \infty$. Furthermore there are $p_{i} \in \phi(\Omega)$ with $d\left(p_{i}, \partial Q\right) \rightarrow \infty$. Then a sequence of minimizing geodesics from q_{i} to p_{i} has an accumulation line which intersects ∂Q. By Toponogov's splitting theorem \bar{M} splits as $\bar{M}^{\prime} \times \mathbb{R}$. We can assume that $(x, 0) \in \partial Q$ for a point $x \in \bar{M}^{\prime}$ and $(x, t) \in \phi(\Omega)$ for $t>0$ and $(x, t) \in Q$ for $t \leqslant 0$.

Let y be a point in \bar{M}^{\prime}. For $t_{0}>0$ large enough, $\left(y, t_{0}\right) \in \phi(\Omega)$ and $\left(y,-t_{0}\right) \in Q$. Thus the line $\{y\} \times \mathbb{R}$ intersects ∂Q. Since ∂Q is compact, the distance $d(x, y)$ is universally bounded and \bar{M}^{\prime} is compact. But this is impossible since M is a product of two noncompact factors. The contradiction shows that Q is compact and $\phi(M) \stackrel{c}{c} \bar{M}$.

For the rest of the proof we will assume (without loss of generality) that Ω is the complement of $C_{1, a} \times C_{2, a}$ in $M=M_{1} \times M_{2}$ for a suitable positive constant a. We consider the cylinder $Z:=C_{1, a} \times M_{2}$ in M. Let $\bar{Z} \stackrel{\text { def }}{=} \bar{M} \backslash \phi(M \backslash Z)$. We claim that \bar{Z} is a totally convex subset of \bar{M}. Note that the complement of Z in M is isometric to the complement of \bar{Z} in \bar{M}. Since Z is totally convex, every geodesic leaving Z cannot return. Thus the same is true for \bar{Z} and hence \bar{Z} is also totally convex.

We claim that $\bar{Z}^{\max }=\bar{Z}^{a}$ and $\bar{Z}^{\max } \stackrel{c}{=} \phi\left(Z^{a}\right)=\phi\left(C_{1}(1) \times M_{2}\right)$. Since $\bar{M} \stackrel{c}{=} \phi(M)$ it is clear that $\bar{Z} \stackrel{c}{\varrho} \phi(Z)$ and $\bar{Z}^{t} \stackrel{c}{=} \phi\left(Z^{t}\right)$. It follows that $\operatorname{dim} \bar{Z}^{a}<$ $\operatorname{dim} \bar{Z}$ and hence $\bar{Z}^{\text {max }}=\bar{Z}^{a}$ and $\bar{Z}^{a} \stackrel{c}{=} \phi\left(Z^{a}\right)$. Thus we have proved that $\bar{Z}(1) \stackrel{c}{c} \phi(Z(1))$. In the same way we obtain $\bar{Z}(2) \stackrel{c}{=} \phi(Z(2))$ and finally $\bar{Z}\left(k_{1}\right) \stackrel{c}{=} \phi\left(Z\left(k_{1}\right)\right)=\phi\left(\Sigma_{1} \times M_{2}\right)$. For the proof of Theorem 3 the following result is essential

LEMMA 2. $S \stackrel{\text { def }}{=} \bar{Z}\left(k_{1}\right)$ is complete without boundary and isometric to the product $\Sigma_{1} \times M_{2}$.

Proof of Lemma 2. The proof consists of three steps:

1. We show that S is complete without boundary.
2. Through every point $x \in S$ there exists a totally geodesic submanifold isometric to M_{2}.
3. We show that if $M_{2}(x)$ and $M_{2}(y)$ are two of these submanifolds of S, then there exists a totally geodesic and isometric immersion $G:[0, r] \times M_{2} \rightarrow S$ such that $G\left(0, M_{2}\right)=M_{2}(x)$ and $G\left(r, M_{2}\right)=M_{2}(y)$. From this fact we derive the product structure.
4. Let us assume to the contrary that $\partial S \neq \varnothing$. Then ∂S lies in a compact set since S coincides with $\phi\left(\Sigma_{1} \times M_{2}\right)$ outside of a compact set. For t sufficiently large, the set $S^{t}=\{p \in S \mid d(p, \partial S) \geq t\}$ is contained in the set where S coincides with the product $\phi\left(\Sigma_{1} \times M_{2}\right)$ and we can define the projection $\pi: S^{t} \rightarrow M_{2}$. Let $\psi: \bar{Z} \rightarrow S$ and $\psi_{t}: S \rightarrow S^{t}$ be Sharafudtinov retractions. It is easy to check that the construction of the maps ψ, ψ_{t} (compare [Y]) also works in our context where \bar{Z} is not compact. Note that outside of a compact set ψ coincides with the product map $\psi^{1} \times$ id, where $\psi^{1}: C_{1, a} \rightarrow \Sigma_{1}$ is a Sharafudtinov retraction in M_{1}. Choose $x_{1} \in \partial C_{1, a}$ and let $i: M_{2} \rightarrow\left\{x_{1}\right\} \times M_{2}$ be an isometric embedding of M_{2} into ∂Z. Then $\alpha=\pi \circ \psi_{t} \circ \psi \circ \phi \circ i$ is a map from M_{2} onto a proper subset of M_{2} which coincides with the identity outside of a compact set. Such a map is impossible for topological reasons.

It follows that $S=\bar{Z}\left(k_{1}\right)$ is the soul of the cylinder \bar{Z} and $S \stackrel{c}{=} \phi\left(\Sigma_{1} \times M^{2}\right)$.
2. We prove that though every point $x \in S$ there exists a totally geodesic submanifold isometric to M_{2}.

Consider a point $\phi\left(x_{1}, x_{2}\right) \in S$, where $x_{1} \in \Sigma_{1}$ and $x_{2} \in M_{2}$, i.e. a point outside of the compact set. Let $\gamma:[0, \infty) \rightarrow M_{1}$ be a unit speed ray with $\gamma(0)=x_{1}$. It follows from the basic construction in [CG] that $\gamma(t) \in \partial C_{1, t}$ for $t \geq 0$. We consider the geodesic $\bar{\gamma}(s)=\phi\left(\gamma(s), x_{2}\right)$ in \bar{M}. Since $\bar{Z}^{\text {max }}=\bar{Z}^{a}$ it follows that $d\left(\phi\left(x_{1}, x_{2}\right), \partial \bar{Z}\right) \geq a$. Since $\phi\left(\gamma(a), x_{2}\right) \in \partial \bar{Z}$, this geodesic is minimizing up to $\partial \bar{Z}$ and since the constant a can be choosen arbitrarily large, $\bar{\gamma}$ is a ray in \bar{M}. Let $\bar{c}: \mathbb{R} \rightarrow S$ be a geodesic in S with $\bar{c}(0)=\varphi\left(x_{1}, x_{2}\right)$. Let $W(t)$ be the parallel vectorfield along $\bar{c}(t)$ with $W(0)=\bar{\gamma}$. It follows from [CG] Theorem 1.10 that

$$
\begin{equation*}
H(s, t) \stackrel{\text { def }}{=} \exp _{\bar{c}(t)} s W(t) \tag{3}
\end{equation*}
$$

is a totally geodesic isometric immersion of the flat halfplane $[0, \infty) \times \mathbb{R}$ into \bar{M}. Let $c: \mathbb{R} \rightarrow M_{2}$ be a geodesic with $c(0)=x_{2}$ and let $\bar{c}: \mathbb{R} \rightarrow S$ be the geodesic such that $\bar{c}(t)=\phi\left(x_{1}, c(t)\right)$ for $|t|$ small, then one checks easily that

$$
\begin{equation*}
H(s, t) \stackrel{c}{=} \phi(\gamma(s), c(t)) \tag{4}
\end{equation*}
$$

For $b>0$ we consider the manifold $\gamma(b) \times M_{2} \subseteq M$. For b sufficiently large, $\gamma(b) \times M_{2}$ is completely contained in Ω. Let $Y \stackrel{\text { def }}{=} \phi\left(\gamma(b) \times M_{2}\right) \subseteq \bar{M}$. Note that
$(-\dot{\gamma}(b), 0)$ defines a globally parallel vectorfield V on Y. By construction we obtain for x_{2} outside of a compact subset of M_{2} that

$$
\exp b V\left(\phi\left(\gamma(b), x_{2}\right)=\phi\left(\gamma(0), x_{2}\right) \in S\right.
$$

We claim that the map $\theta(y)=\exp _{y} b V(y)$ is a totally geodesic isometric embedding of Y into S. Let therefore $c: \mathbb{R} \rightarrow M_{2}$ be any geodesic of M_{2} which does not stay in a compact subset. We obtain the flat halfspace $H(s, t)$ as in (4) which contains the geodesic $t \mapsto \phi(\gamma(b), c(t))$ in Y. It follows that the map θ is an isometry along the geodesic $\phi(\gamma(b), c(t))$. By the structure theory of M_{2} it is clear that only a zero-set of geodesics stays in a compact set. Thus θ is an isometry. More generally, it follows from Rauch's comparison theorem that the map

$$
\begin{aligned}
& D:[0, b] \times Y \rightarrow \bar{M} \\
& (s, y) \mapsto \exp _{y} s V(y)
\end{aligned}
$$

is a totally geodesic isometric embedding. Since $D\left(b, M_{2}\right)$ is contained in S outside of a compact set and S is totally geodesic, it follows that $D\left(b, M_{2}\right) \subseteq S$.

Because $S \stackrel{c}{=} \phi\left(\Sigma_{1} \times M_{2}\right)$ there exists a compact set K_{2} in M_{2} such that S is isometric to $\Sigma_{1} \times \Omega_{2}$ outside of a compact set, where Ω_{2} is the complement of K_{2}. We just have proved, that every fiber $\left\{x_{1}\right\} \times \Omega_{2}$ is a subset of a complete totally geodesic submanifold isometric to M_{2}. We denote this submanifold with $M_{2}\left(x_{1}\right)$. Let x be an arbitrary point in S, then consider a ray $c:[0, \infty) \rightarrow S$ starting in x. This ray is finally contained in $\Sigma_{1} \times \Omega_{2}$ and since Σ_{1} is compact, it is contained in a fiber $\left\{x_{1}\right\} \times \Omega_{2}$. Thus $x \in M_{2}\left(x_{1}\right)$ and every point of S is contained in $M_{2}\left(x_{1}\right)$ for a suitable x_{1}.
3. Let $x_{1}, y_{1} \in \Sigma_{1}$ and $\alpha:[0, r] \rightarrow \Sigma_{1}$ a minimal geodesic between them where $r=d\left(x_{1}, y_{1}\right)$. We claim: There exists a totally geodesic and isometric embedding $G:[0, r] \times M_{2} \rightarrow S$ such that $G\left(0, M_{2}\right)=M_{2}\left(x_{1}\right)$ and $G\left(r, M_{2}\right)=M_{2}\left(y_{1}\right)$.

Before we prove this claim, we show that this implies S isometric to $\Sigma_{1} \times M_{2}$. First the above claim shows that the manifolds $M_{2}\left(x_{1}\right)$ define a foliation of S and hence also an integrable distribution. If c is any geodesic in S, then c is contained in the image of an isometric embedding G as above. It follows that the distribution is invariant under parallel translation and hence S is a product by the de Rham splitting theorem. Since $S \stackrel{c}{=} \phi\left(\Sigma_{1} \times M_{2}\right)$ it is clear that S is isometric to $\Sigma_{1} \times M_{2}$.

To prove the claim, we consider $M_{2}\left(x_{1}\right) \stackrel{c}{=} \phi\left(\left\{x_{1}\right\} \times M_{2}\right), M_{2}\left(y_{1}\right) \stackrel{c}{=} \phi\left(\left\{y_{1}\right\} \times M_{2}\right)$ and canonical isometries $\phi_{x}: M_{2} \rightarrow M_{2}\left(x_{1}\right), \phi_{y}: M_{2} \rightarrow M_{2}\left(y_{1}\right)$. We first assume that
the distance $r=d\left(x_{1}, y_{1}\right)$ is small enough, such that for every $z \in M_{2}$ there exists a unique minimal geodesic from $\phi_{x}(z)$ to $\phi_{y}(z)$. Since S is a product outside of a compact set this is possible for small $r \geq 0$. Let $\pi: M_{2}\left(x_{1}\right) \rightarrow M_{2}\left(y_{1}\right)$ be the projection which maps $\phi_{x}(z)$ onto $\phi_{y}(z)$. Let $c: \mathbb{R} \rightarrow M_{2}$ be a geodesic which does not stay in a compact set and let c_{x} and c_{y} be the geodesics in $M_{2}\left(x_{1}\right)$ and $M_{2}\left(y_{1}\right)$ such that $c_{x}(t) \stackrel{c}{=} \phi\left(\left\{x_{1}\right\} \times c(t)\right)$ and $c_{y}(t) \stackrel{c}{=} \phi\left(\left\{y_{1}\right\} \times c(t)\right)$. We can assume that $c(0) \in \Omega_{2}$, i.e. near to $0, c_{x}(t)$ and $c_{y}(t)$ bound a flat totally geodesic strip.

We want to show that $c_{x}[0, \infty)$ and $c_{y}[0, \infty)$ bound a totally geodesic flat strip. The set of all t such that $c_{x}[0, t]$ and $c_{y}[0, t]$ bound a flat strip isometric to $[0, t] \times[0, r]$ is clearly closed. To prove that the set is open we assume that $c_{x}\left[0, t_{0}\right]$ and $c_{y}\left[0, t_{0}\right]$ bound a flat strip and let $t_{1} \geq t_{0}$ with $t_{1}-t_{0}$ small. It follows from Rauch's comparison theorem [CE, pg. 29], that $r_{1} \stackrel{\text { def }}{=} d\left(c_{x}\left(t_{1}\right), c_{y}\left(t_{1}\right)\right) \leq r$ and that equality implies that also $c_{x}\left[0, t_{1}\right]$ and $c_{y}\left[0, t_{1}\right]$ bound flat strip. Thus it remains to show that $r_{1} \geq r$.

Therefore choose a ray $\gamma:[0, \infty) \rightarrow M_{1}$ with $\gamma(0)=x_{1} \in \Sigma_{1}$ and consider the ray $\bar{\gamma}(s)=\phi(\gamma(s), c(0))$ in \bar{M}. In S we have the piecewise geodesic formed by the three pieces $c_{x}\left[0, t_{1}\right], \beta\left[0, r_{1}\right], c_{y}\left[0, t_{1}\right]$, where $\beta:\left[0, r_{1}\right] \rightarrow S$ is the minimal geodesic from $c_{x}\left(t_{1}\right)$ to $c_{y}\left(t_{1}\right)$. Let $w \stackrel{\text { def }}{=} \dot{\gamma}(0)$ and W be the parallel vectorfield along the piecewise geodesic, i.e we parellel translate w from $c_{x}(0)$ along c_{x} to $c_{x}\left(t_{1}\right)$, from there along β to $c_{y}\left(t_{1}\right)$ and then back along c_{y} to $c_{y}(0)$.

As in (3) we thus obtain three totally geodesic immersions

$$
\begin{aligned}
& F^{1}(s, t)=\exp _{c_{x}(t)} s W\left(c_{x}(t)\right) \\
& F^{2}(s, t)=\exp _{\beta(t)} s W(\beta(t)) \\
& F^{3}(s, t)=\exp _{c_{y}(t)} s W\left(c_{y}(t)\right)
\end{aligned}
$$

where F^{1} and F^{2} is defined on $[0, \infty) \times\left[0, t_{1}\right]$ and F^{3} on $[0, \infty) \times\left[0, r_{1}\right]$.
By (4) $F^{1}(s, t) \stackrel{c}{=} \phi(\gamma(s), c(t))$ and in the same way $F^{3}(s, t) \stackrel{c}{c} \phi\left(\gamma^{*}(s), c(t)\right)$, where γ^{*} is the M_{1} component of the ray $\phi^{-1} \circ \bar{\gamma}^{*}$ where $\bar{\gamma}^{*}(s)=F^{3}(s, 0)$.

Choose $b>0$ sufficiently large such that $F^{i}(b, t) \in \phi(\Omega)$ for all i and t. Then

$$
\begin{aligned}
r_{1} & =d\left(c_{x}\left(t_{1}\right), c_{y}\left(t_{2}\right)\right) \\
& =d\left(F^{2}(0,0), F^{2}\left(0, r_{1}\right)\right. \\
& =d\left(F^{2}(b, 0), F^{2}\left(b, r_{1}\right)\right) \\
& =d\left(\phi\left(\gamma(b), c\left(t_{1}\right)\right), \phi\left(\gamma^{*}(b), c\left(t_{1}\right)\right)\right)
\end{aligned}
$$

where b is arbitrary. For b sufficiently large

$$
d\left(\phi\left(\gamma(b), c\left(t_{1}\right)\right), \phi\left(\gamma^{*}(b), c\left(t_{1}\right)\right)\right)=d\left(\gamma(b), \gamma^{*}(b)\right)
$$

Now γ and γ^{*} are rays in M_{1} with $\gamma(b), \gamma^{*}(b) \in \partial C_{1, b}$ for all b. It is then a consequence of the first variation formula, that $d\left(\gamma(t), \gamma^{*}(t)\right.$) is monotone increasing. Thus

$$
d\left(\gamma(b), \gamma^{*}(b)\right) \geq d\left(\gamma(0), \gamma^{*}(0)\right)=r
$$

It follows that $c_{x}[0, \infty)$ and $c_{y}[0, \infty)$ bound a flat strip and with the same argument $c_{x}(\mathbb{R})$ and $c_{y}(\mathbb{R})$ bound a flat strip. Since the geodesics which leave every compact set are dense, this argument shows that $d(\pi(z), z)=r$ for all $z \in M_{2}\left(x_{1}\right)$. In particular $M_{2}\left(x_{1}\right)$ and $M_{2}\left(y_{1}\right)$ have no common points. Since by assumption for every point $z \in M_{2}\left(x_{1}\right)$ there is a unique minimal geodesic to the corresponding point in $M_{2}\left(y_{1}\right)$, there exists a unit vectorfield W on $M_{2}\left(x_{1}\right)$ such that $\pi(z)=$ $\exp _{z} r W(z)$. The flat strip argument from above shows that along every geodesic \bar{c} in $M_{2}\left(x_{1}\right)$ which does not stay in a compact subset W is a parallel normal vectorfield. It follows from the denseness of these geodesics that W is a parallel normal unit vectorfield.

Since $\pi(z)=\exp _{z} r W(z)$ is an isometry, it follows from Rauch's theorem that the map

$$
[0, r] \times M_{2}\left(x_{1}\right) \rightarrow S, \quad(s, z) \mapsto \exp _{z} s W(z)
$$

is a totally geodesic isometric immersion. Since it is an embedding outside of a compact set one checks easily that it is an embedding.

We have assumed that r is sufficiently small. In the general case let $x_{1}, y_{1} \in \Sigma_{1}$ be arbitrary and α a minimal geodesic joining them. Let $\bar{\alpha}$ be the minimal geodesic $\bar{\alpha}(s)=\phi\left(\alpha(s), x_{2}\right)$ between $\phi\left(x_{1}, x_{2}\right)$ and $\phi\left(y_{1}, x_{2}\right)$ where $x_{2} \in \Omega_{2}$. The above argument shows that $\dot{\alpha}(0)$ extends to a globally parallel vectorfield on $M_{2}\left(x_{1}\right)$. One checks easily that

$$
(s, z) \mapsto \exp _{z} s W(z)
$$

is an isometric embedding also in this case. Thus we have proved the lemma.
We are now able to complete the proof of Theorem 3. Let $\bar{c}: \mathbb{R} \rightarrow \bar{M}$ be any geodesic with $\bar{c}(0) \in \bar{M} \backslash \bar{Z}$. We claim that there exists a totally geodesic isometric immersion $G: \mathbb{R} \times M_{2} \rightarrow \bar{M}$ such that \bar{c} is contained in the image of G.

Since $\bar{c}(0) \in \phi(\Omega)$ there exists a point $x_{1} \in M_{1}$ such that $\bar{c}(0) \in Y \stackrel{\text { def }}{=} \phi\left(\left\{x_{1}\right\} \times\right.$ $\left.M_{2}\right)$. We can assume that $\dot{c}(0)$ is not tangent to Y. Let w^{\prime} be the normal component of \dot{c} and $w \stackrel{\text { def }}{=} w^{\prime} /\left\|w^{\prime}\right\|$. Then w extends to a globally parallel unit
normal vectorfield on Y. We consider the map

$$
\begin{aligned}
& G: \mathbb{R} \times Y \rightarrow \bar{M} \\
& G(s, y) \stackrel{\text { def }}{=} \exp _{y} s W(y)
\end{aligned}
$$

By Rauchs theorem, the map $G_{s}=G(s,$.$) from Y$ to \bar{M} is distance nonincreasing for small $s \geq 0$ and the rigidity part of this theorem states that if G_{s} is isometric for $s \geq 0$, then $\left.G\right|_{\{0, s] \times Y}$ is an isometric immersion.

Thus we have to show that G_{s} is an isometry. Let therefore $i: M_{2} \rightarrow\left\{x_{1}\right\} \times M_{2}$ the embedding, $\pi: S \rightarrow M_{2}$ the distance nonincreasing projection onto the M_{2}-factor of $S \cong \Sigma_{1} \times M_{2}$, let $\psi: \bar{Z} \rightarrow S$ be the Sharafudtinov-retraction as in the proof of Lemma 3.

We can assume that $G_{s}(Y) \subset \bar{Z}$ since G_{s} is clearly an isometry as long as the image lies in $\bar{M} \backslash \bar{Z}$. Then we have the distance nonincreasing map $\pi \circ \psi^{\circ} G_{s}{ }^{\circ} \phi \circ$ $i: M_{2} \rightarrow M_{2}$ which is the identity outside of a compact set. Such a map has to be an isometry (compare Lemma 1, 2 in [Sh]). It follows that G_{s} is an isometry.

Since the set of geodesics which leave \bar{Z} is dense, one checks easily that through every point of \bar{M} there is a totally geodesic submanifold isometric to M_{2} and that the distribution defined by the tangent spaces of these manifolds is invariant under parallel translation (compare the proof of the splitting $S=$ $\Sigma_{1} \times M_{2}$ in the proof of Lemma 2). It follows from the de Rham decomposition that \bar{M} splits a factor M_{2} and since $\bar{M} \stackrel{\subseteq}{=} \phi\left(M_{1} \times M_{2}\right)$ it is clear that \bar{M} is isometric to $M_{1} \times M_{2}$. Obviously ϕ extends in a unique way to an isometry $\bar{\phi}: M \rightarrow \bar{M}$.

4. Flexibility of products with nonnegative curvature

Let $M=M_{1} \times M_{2}$ be an open product manifold with sectional curvature $K \geq 0$ where the factor M_{1} is compact. We ask how flexible is this product with respect to modifications of the metric within compact sets which preserve $K \geq 0$.

If M_{2} has $K>0$ (or at least $K>0$ at one point), then one can deforme the metric on M_{2} in a compact set. In this case the soul of M is isometric to $M_{1} \times\{p\}$ and the factor M_{1} survives in the new metric.

Consider now a manifold M_{2} which is diffeomorphic to \mathbb{R}^{k+1} and $M_{2} \backslash C_{2}$ is isometric to $\left(S^{k}, g_{E}\right) \times[0, \infty)$ for a compact subset C_{2} of M_{2}, where g_{E} is the standard metric on the sphere. It is easy to construct rotational symmetric metrics
of this type. Choose $M_{1}=\left(S^{k}, g_{E}\right)$ then $M=M_{1} \times M_{2}$ is isometric to $S^{k} \times S^{k} \times$ $[0, \infty)$ outside of a compact set C where C is isometric to $S^{k} \times C_{2}$. Note that we can glue $S^{k} \times C_{2}$ in different ways onto the boundary of $S^{k} \times S^{k} \times[0, \infty)$ and thus one cannot see from the structure of $M \backslash C$ which S^{k} factor survives in a manifold \bar{M} which is isometric to M outside of a compact set.

One can even not see the topological structure of the manifold by looking only to the complement of a compact set. Consider therefore $M_{2}^{*}=\left(S^{3}, g_{1}\right) \times$ $\left(\mathbb{R}^{2}, g_{2}\right) / S^{1}$, where we choose some left-invariant metric g_{1} on S^{3} and a rotational symmetric metric g_{2} on \mathbb{R}^{2}. S^{1} operates diagonally on the product, where it rotates the Hopf-circles on S^{3} and acts by rotations on $\left(\mathbb{R}^{2}, g_{2}\right)$.

We choose g_{2} such that $\left(\mathbb{R}^{2}, g_{2}\right)$ is isometric to $S_{a}^{1} \times[0, \infty)$, outside of a compact set, where S_{a}^{1} is a circle of radius a. Then, outside of a compact set, M_{2}^{*} is isometric to $\left(S^{3}, g_{3}\right) \times[0, \infty)$, where g_{3} is also a left-invariant metric on S^{3}. If we choose g_{1} suitable then M_{2}^{*} is isometric to $\left(S^{3}, g_{E}\right) \times[0, \infty)$ outside of a compact set. Let $M_{1}=\left(S^{3}, g_{E}\right)$. Then the product $M=M_{1} \times M_{2}$ (for $k=3$) is isometric to $\bar{M}=M_{1} \times M_{2}^{*}$ outside of compact sets, but M and \bar{M} have different topology. In particular their souls are not isometric, sos!

REFERENCES

[BGS] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of nonpositive curvature, Birkhäuser, Basel-Boston 1985.
[CE] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North Holland, Amsterdam, 1975.
[CG] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Annals of Math. 96 (1972), 413-443.
[ES] J. Eschenburg and V. Schroeder, Riemannian manifolds with flat ends to appear in Math. Zeitschrift.
[G] M. Gromov, Curvature, diameter and Betti numbers, Comm. Math. Helv. 56 (1981) 179-195.
[GW] R. Greene and H. Wu, Gap theorems for noncompact Riemannian manifolds, Duke Math. J. 49 (1982), 731-756.
[S] R. Sacksteder, On hypersurfaces with nonnegative sectional curvature, American J. of Math. 82 (1960) 609-630.
[Sh] V. A. Sharafudtinov, Convex sets in a manifold of nonnegative curvature, Math. Notes of the Ac. of Sc. of the USSR (Mat. Zametki) 26 (1979) 556-560.
[SS] V. Schroeder and M. Strake, Local rigidity of symmetric spaces of nonpositive curvature, preprint Universität Münster.
[SZ] V. Schroeder and W. Ziller, Local rigidity of symmetric spaces, preprint Univ. of Pennsylvania 1987.
[SY] J. P. Sha and D. G. Yang, Examples of manifolds of positive Ricci curvature, preprint Univ. of Pennsylvania 1987.
[Th] W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Princeton University 1978.
[Y] J. W. Yim, Distance nonincreasing retraction on a complete open manifold of nonnegative sectional curvature, preprint Univ. of Pennsylvania 1987.

Math. Institut der Universität
Einsteinstr. 62
4400 Münster, Federal Republic of Germany

Department of Mathematics SUNY
Stony Brook, NY, USA

Received August 3, 1987

