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A linearity theorem for group actions on spheres with
applications to homotopy representations

STEFAN BAUER

Abstract. Let G be a finite group and X an equivariant Z/|G|-homology sphere. By Smith-theory the
fixed point set X*! for a p-subgroup H is a Z/p-homology sphere of dimension d(H).

THEOREM. There exists a virtual representation V — W € RO(G) such that d(H) = dim V¥ -
dim W holds for any subgroup H of G of prime power order.

This applies to describing the Grothendieck group 2(G) of dimension functions of homotopy
representations for compact Lie groups G in algebraic terms.

Let G be a finite group and T < Q denote a subring which is contained in the
local ring Z,, for any prime divisor p of the order |G| of G. If X is a finitistic
G-space, which is a T-homology sphere, then the fixed point set X is a
Z ,-homology sphere of dimension d(H) for any p-subgroup H of G.

The purpose of this paper is to give a proof and an application of the following

THEOREM. There exists a virtual representation V — W € RO(G) such that
d(H) = dim V¥ — dim W* holds for any subgroup H of G of prime power order.

In particular d can be characterized by the combinatorial congruences in (1.1).
Related linearity theorems are known for special cases: Homotopy repre-
sentations of finite nilpotent groups do have stably linear dimension functions
[tD1]. The theorem above is known for p-groups [Do—Ha].

Taking into account tom Dieck’s analysis of group actions on homotopy
spheres (compare [tD4] and [tDS5]), the linearity theorem also gives sufficient
conditions for the existence of group actions on homotopy spheres. An
application to homotopy representations will be discussed in the second part.

Let ? denote the open family of subgroups (i.e. 2 is a union of conjugacy
classes, such that for any K € & all subgroups of K are also contained in %) of
prime power order and %' the subfamily of cyclic ones.

(1.1) DEFINITION. Let 25(G) denote the group of functions f:P—1Z,
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constant on conjugacy classes, which satisfy the following relations: For every
triple H<IK<IM of subgroups of G with K/H =Z/p and H a p-group,
(1) f(H)=f(K)mod 2, if pisodd or if M/H=17Z/4
+(2) f(H)=f(K) mod 4, if M/H = quaternion group
Q) f(H)+p-f(M)=X f(K)), if M/[H=1Z/p X Z/p. Here of course the sum
is over all K; with H<K;<|M and K;/H=1Z/p
y(4) f(H)=f(K)mod q"™/, if M/K=1Z/q’, acting on K/H with kernel of
prime power order q".

(1.2) PROPOSITION. If d:P— Z denotes the dimension function of a
finitistic G-space X which is a T-homology sphere, then d € 95(G).

Proof. (1) holds by Smith-theory; for (2) compare [tD1] or [Do-Ha]. (3) is
the Borel formula and (4) follows from a spectral sequence argument (the proof is
almost verbatim the same as the proof of [tD2; 4.1], dealing the case g =2). For
the reader’s convenience 1 will recall it here. It may be assumed H = 1. Look at
cohomology with Z/p-coefficients of the Borel-fibration

(X, X*)—> (EM X x X, EM X x X¥)— BK.

By Smith theory it may be assumed d(1) =m >n =d(K). Fix generators
z € Coker (H"(X)— H"(X*)) and u € H™(X) to obtain from the exact sequence
H~Y(X%) 2 HI(X, X¥)5 H/(X) generators yeH" (X, XX) and wve
H™(X, X*) such that 6z =y and (w =u. The spectral sequence of the Borel
fibration has as E,-term E4 = H'(BK) ® H'(X, X*). The transgression d: E9™—
EZ~mm*1 gives a relation d(1 ®?) =AQ®y for a unique element 0#Ae¢
H™ " (BK). g

Consider the following map of relative fibrations:

X, x5 -5 (X, X5

1 l

EM X« (X, XX) =% EM x (X, X¥)

l l

Q

BK —= BK

Here [, denotes left translation by an element g € M of order g*. L, is given by
(e, x)~>(eg!, gx) and a, is the induced map on BK; it is induced by the
automorphism of K, given by conjugation by g. The induced map of spectral
sequences gives a relation A @ (degly) -y =d(1®(degl)-u)=d(L;(1Qu))=
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L}d1Q®u)=L;(A®y)=a;AQI}y=a}A® (deglX)y. Therefore ajA=¢-A
with & = (deg,)(deg [X)”

For a generator t € H*(BK) the element A takes the form a - t“" "2, The
action of g on H*(BK) is by multiplication with y € Z/} such that y¥ =1 iff
(k — 1) divides r. From ajA=y"""?2.4=¢A one obtains that g% divides
(m—-n). B

(1.3) THEOREM. The dimension homomorphism RO(G)— 2,(G) is
surjective for any finite group G.

Proof. For an open subfamily & of ? let 24(G) denote the functions in
95(G), restricted to &%. Note that restriction 2,(G)— 9,(G) is injective.
Hence it suffices to show that RO(G)— %5(G) is surjective for any open
subfamily & of ?’. I will do this inductively. Let ¥’ o> % be adjacent families, i.e.
F'\% is a conjugacy class (H), H being a cyclic p-group. Suppose RO(G)—
P4(G) is surjective and let f € ker (2,(G)— D5(G)). I will show that for any
prime g there exists a virtual representation V, € ker (RO(G)— %5(G)) with
dim VY = n, - f(H) such that n, divides |G| and is prime to q. As the g.c.d. of the
n, is 1, a linear combination V of the V, will satisfy dim V" = f(H), thus showing
RO(G)— 24(G) is surjective.

So let’s fix a prime g and choose K such that K/H is a g-Sylow subgroup of
NH/H.

First case. q = p. Note that K is a p-group. Hence by [tD1] or [Do-Ha] there
exists V, € RO(K) with dim V. =f(L) for L<K. Setting V, =ind{ V,, one has
dim V) =n, - f(L) for Le ', where n, = |NH : K| is prime to p.

Second case. q #p. Note that K is a split extension by the Zassenhaus
theorem. The homomorphism p : K— Aut H, induced by conjugation, has cyclic
image. Let K'<K be the preimage of {£1}<AutH. I will construct Ue
RO(K") with dim U* =0 for L <K', L € %, and dim U" =2,

Note that ker p = K" is nilpotent. Let W be an irreducible representation of H
with |H:ker W|=p and let R denote the trivial representation. These H-
representations can be viewed as K"-representations with the g-Sylow subgroup
K7 acting trivially. In case K"=K’, set U=2R—-W (resp. U=2R-2W, if
p =2). Otherwise take W = 2R — W and note that W has complex structure, thus
so does ind%. W. But all representations of the dihedral group K'/K% are of real
type (here K denotes the 2-Sylow subgroup of K"). Hence there is U € RO(K')
with C ® g U = indX. W. Now for U = ind%. U one has dim U- =0 for L € ¥ and
dim U" =2-|NH:K'|=2-|NH:K|-|K:K'|=2n,|K:K'|. Hence the virtual
representation (f(H)/2|K:K'|)- Ucanserve as V,. B
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Note that 2,(G) is a Mackey-functor, with induction map ifj: @x(H)—
P5(G) defined by i§f(K)=1Y f(gKg~'N H), where the sum is over double
cosets KgH € K\G/H (compare [tD-Pe; 9]). In the sense of Serre [Se; 12] I have
just proved a “Brauer”-like statement:

(1.4) COROLLARY. The induction map D) Dp(H)— Dp(G) s
surjective, where the sum is taken over all I'g-elementary subgroups H of G.

From this view G-spheres behave like real representations.

2. Applications to homotopy representations

A homotopy representation of a compact Lie group G is a G — CW-complex X
of finite orbit type such that the fixed point sets X* are homotopy equivalent to
spheres $7/"! of the same topological dimension. The function d on the set of
subgroups of G is called dimension function. An addition law (up to G-homotopy
equivalence) is defined by taking the join, with Grothendieck group V(G). A
thorough discussion of homotopy representations can be found in [tD-Pe].

Let ¥(G) denote the set of conjugacy classes of closed subgroups of G,
topologized via the Hausdorff-metric (compare [tD6], 5.6). Let C(G) denote the
group of functions f:W(G)— Z. Associating to a homotopy representation its
dimension function gives a group homomorphism d:V(G)— C(G). There are a
couple of partial results on the image of d. The linearity theorem applies to give a
complete description of the image of d in terms of dimension functions of linear
representations as well as in combinatorial terms. The following definition
introduces the candidate %(G) for this image, which will turn out to be the right
guess.

(2.1) DEFINITION. The group %(G) of dimension functions of G consists
of all continuous functions f : ¥(G)— Z subject to the following conditions: For
any finite subquotient K/H of G there exists an element V — W € RO(K/H) such
that for L with H]JL <K,

(i) if L/H is a p-group, then f(L) = dim V* — dim W*

(ii) if the p-Sylow subgroup (L/H), is normal in L/H with quotient a 2-group,

then f(L)=dim V* — dim W" mod 2.

Remarks. -The continuity condition corresponds to the finite orbit type
condition in the definition of homotopy representations, compare [Ba;
(2.4)].

— For a homotopy representation X the fixed point set X" is a K/H-
equivariant sphere. The existence of V — W € RO(K/H) satisfying (i) is a
consequence of the main theorem.
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— The relations in (ii) are a consequence of an Artin relation (mod 2), as
given in [Do]. The Euler characteristic of X“ is determined by the
dimensions dim X for M <L and M/H a p-group, if L is as in (ii). The
Lefschetz fixed point theorem gives a tight connection between this Artin
relation and the orientation behaviour of group actions on homotopy
spheres, compare [tD2, (1.6), (4.1) and the following remarks].

— There also is a description of 2(G) in terms of combinatorial relations. As
to (i) these are stated in (1.1). The relation corresponding to (ii) is stated in
[Do].

Here are some conditions that, together, are sufficient for a function
d:W(G)— Z to be the dimension function of a homotopy representation:

(2.2) (a) de 2(G) withd(H)=0for H<G
(b) For any subgroup H < G there is a unique maximal formal isotropy
group H > H such that d(H) = d(H).
(c) The set Iso (d) of formal isotropy groups is closed under intersec-
tion, i.e. if K, H € Iso (d), then H N K € Iso (d).
(d) If K> H then d(H) = d(K) + dim (G/K)" — dim WK
(e) There exists a G-complex A with
(i) Iso (d) oIso (A) o (S, US,), where
S, ={H elso (d) | d(H) <dim WH + 2} and
S, = {H € Iso (d) | there exists K € Iso (d), K = H such that
d(H) =d(K) + dim (G/K)"}
(i) f K<H<G and Kelso(A), then A" is a WH-homotopy
representation.

(2.3) THEOREM. If the conditions (2.2) are satisfied, then there exists a
homotopy representation X with dimension function d and Iso (X) < Iso (d).

Proof. By [Ba; 5.7] one only has to prove it for finite G. To do so, it suffices
to show that for each H <G there is a WH-representation sphere Y, with
dim YX¥'" = d(K) for any p-group K/H in WH (compare [tD2; 1.7]). By [tD1;
3.6], Y need only exist stably, i.e. there is an element V — W € RO(WH) with
dim V¥ — dim WX = d(K) for any p-group K/H in WH. But this is true by the
definition of @(G). Note that the orientation behaviour of X* is determined by
(2.1)(ii) (compare also [Ba; 5.4]). W

Remark. All conditions in (2.2) are necessary ones, except condition (c)
(compare [Ba] and [La]). The latter paper gives an example (2.14) in which
condition (c) does not hold.
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Stably the picture is more pleasant: Combining with results in [tD-Pe] and
[tD3], one gets the structure theorem:

(2.4) THEOREM. There exists an exact sequence
0—> Pic (A(G))— V(G) 5 9(G)—0.
Here Pic (A(G)) denotes the Picard group of the Burnside ring A(G).

Proof. The kernel v(G) of d was computed in [tD-Pe] for the finite group
case and in [tD3] for the compact Lie case: For an appropriate G-map f: X—Y
between two homotopy representations with the same dimension function the
collection of degrees (deg f*') defines an element in Pic (A(G)). This results in an
isomorphism v(G) = Pic (A(G)). By the remarks following the definition of %(G)
the homomorphism d maps into 9(G). Given a dimension function d € 2(G), all
of the conditions (2.2) can be satisfied by adding the dimension function of an
appropriate real representation, compare [Ba, (2.4)]. This proves surjectivity. W
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