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Dynamics on Thurston&apos;s sphère of projective measured foliations

John McCarthy and Athanase Papadopoulos

1. Introduction

In this paper, we study some gênerai properties of actions of subgroups of the
mapping class group on Thurston&apos;s sphère of projective measured foliations from
the point of view of dynamics. This work was strongly motivated by the work of
Howard Masur on the limit sets of the two handlebody groups described in [11].
We prove that many of the properties of the limit sets of thèse handlebody groups
are properties of limit sets for gênerai subgroups. In particular, if the limit set is

not equal to the whole sphère, we prove the existence of a nonempty open set
where the group acts properly discontinuously and we describe a fundamental
domain for this action.

A spécial case of this study has already been extensively investigated. The
mapping class group of the once-punctured torus is simply SL(2, Z). The
Teichmûller space of a once-punctured torus is well known to be hyperbolic
2-space. Moreover, Thurston&apos;s sphère of foliations is the circle at infinity. Under
thèse identifications, the action of the mapping class group on Thurston&apos;s sphère
is simply the usual action of SL{2, Z) by linear fractional transformations, (i.e.
the action of F5L(2, Z) in PSL{2, C)) [8].

Hence, one reason for making such a study is that the dynamics of the actions
of subgroups of the mapping class group on Thurston&apos;s sphère ought to exhibit

many of the interesting phenomena of the actions of discrète subgroups of
PSL(2, C) on the 2-sphere. The theorems that we prove develop this Une of
thought.

When one begins to think about the dynamics of the action of a subgroup of
the mapping class group, it appears that there may be several interesting subsets

of the sphère of projective measured foliations that could possibiy play the rôle of
a limit set. For example, one could define the limit set to be the closure of the set
of accumulation points of orbits of éléments of the sphère under the action of the

subgroup. As other possible définitions, we could choose the closure of the set of
éléments which are fixed by an infinité subgroup or the closure of the set of
éléments which are attracting points for single éléments of the group. One may
also adopt a différent point of view, consider the sphère as the boundary of
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134 JOHN McCARTHY AND ATHANASE PAPADOPOULOS

Teichmuller space and define the limit set to be the closure of the set of
accumulation points of orbits of points in Teichmuller space. There are obviously
many other possible définitions. AH the sets defined above are related to one
another and the choice of a définition for the iimit set may be a matter of deciding
which dynamical properties we want to capture.

One feature that makes this choice less obvious than in the case of subgroups
of PSL(2 C) acting on S2 is the existence of &quot;hybrid&quot; éléments in the mapping
class group, (e.g. reducible éléments which hâve two pseudo-Anosov com-
ponents). Many possible définitions of a limit set seem to yield a theory involving
the ratios of the various expansion factors for the component maps. It turns out,
however, that if the subgroup has &quot;enough&quot; pseudo-Anosov éléments, then one
can ignore the hybrid éléments and obtain a reasonable theory in which the limit
set is the closure of the fixed points of pseudo-Anosov éléments. In particular,
one has the fact that this set is the unique minimal closed set which is invariant
under the group, which, needless to say, is a désirable feature.

The groups with sufficiently many pseudo-Anosov éléments, which belong to a

class of groups referred to as dynamically irreducible, are the main focus of our
study. The remaining groups, including the dynamically reducible groups, are
characterized in a manner following Thurston&apos;s classification of mapping classes.

Among thèse groups, one finds the virtually abelian groups which correspond, in
some sensé, to the elementary subgroups of PSL(2, C).

The outline of the paper is as foliows. In section 2, we collect some

preliminary facts about the theory of measured foliations and mapping class

groups which we shall use frequently in the subséquent text.
In section 3, we give a rather broad définition of the concept of a limit set for

a group action.
In section 4, we define the notion of a dynamically irreducible group (action)

and give a characterization of dynamically irreducible subgroups of the mapping
class group.

In section 5, we develop some basic properties of nonelementary dynamically
irreducible subgroups and discuss some examples. In particular, we define a limit
set for such groups which has the minimality property discussed above.

In section, 6, we prove that if the limit set for a nonelementary dynamically
irreducible subgroup is not the entire sphère, then there is a région of
proper-discontinuity for the subgroup which, except for a set of measure zéro, is

the complément of the limit set. In addition, we describe a fundamental domain

for the action of the group on this région of discontinuity. The section begins with
a discussion of a simple example, the cyclic group generated by a pseudo-Anosov
élément. Although this example is well known and well understood, it serves as

motivations for the constructions in the gênerai case. (Strictly speaking, this
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example is not dynamically irreducible). This section concludes with the
discussion of the gênerai case.

In section 7, the theory developed in sections 5 and 6 is extended to
nonelementary dynamically reducible groups. As in the classification of éléments
of the mapping class group, this theory is described in terms of the limit sets of
the &quot;components&quot; of the group. We show that outside the &quot;join&quot; of thèse limit
sets, except for a set of measure zéro, the group acts properly discontinuously. In
particular, dynamically reducible groups always hâve a région of discontinuity.
Again, we describe a fundamental domain for the action on this région.

Finally, in section 8, we show how the dynamics of subgroups of the mapping
class group on the compactified Teichmiiller space can be derived from the

dynamics on the boundary.
We would like to thank the référée for valuable suggestions.
The first author wishes to acknowledge support from Université Louis Pasteur

(Strasbourg) during a visit to that university.

2. Préliminaires

Let 5 be a compact surface of négative Euler characteristic which is not a pair
of pants. Let F be the mapping class group of S. Let MF be the space of
équivalence classes of measured foliations on S. We note that in this définition,
we do not consider the &quot;zéro foliation&quot; as a point in MF. The set R+ of positive
real numbers acts on MF, and PMF dénotes the quotient space. We refer the
reader to [1] for a gênerai introduction to surface mapping class groups and to [5]
for an exposition of Thurston&apos;s theory of measured foliations, measured foliation
space and the action of F on that space.

Let S dénote the set of isotopy classes of unoriented, connected, homotopi-
cally nontrivial, simple closed curves on S which are not parallel to a boundary
component of S. The intersection function on S X S, /(,), is defined by the rule:

i(a, p) min {cardinality (a D b) where a e oc and b e p}. (2.1)

This function is clearly symmetric and F-invariant.
Considering S as a subset of MF, we can extend i to a symmetric, F-invariant,

bihomogeneous function on the square of the orbit of S under scalar multiplication

by positive reals, /?* X S. This latter set is dense in MF and the function
extends (uniquely, of course) to a symmetric, F-invariant, bihomogeneous,
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continuous intersection function on MF X MF:

/:MFxMF-*/?+, (2.2)

where R+ is the set of nonnegative reals.

The action of F on MF (or PMF) is a faithful action provided that S is not a

closed surface of genus two, a torus with one hole, or a sphère with four holes. In
each case, the kernel of the action is a cyclic subgroup of order two. (Thèse are
the only nontrivial maps of compact hyperbolic surfaces which préserve every
élément of S). We shall say that the involution is hypergeometric.

If g is an élément of F, and g fixes every simple closed curve in S, then

g is either the identity or the hypergeometric involution of a closed
surface of genus two, a torus with one hole or a sphère with four holes. (2.3)

Hence, for most purposes, we may speak as though the action of Ton MF is

faithful. The same holds for PMF.
The éléments of Tare classified into three types, finite order, pseudo-Anosov

and reducible. In discussing dynamical aspects of the action, the finite order
éléments play a minor rôle. Indeed, if we wished, we could pass to a torsion free
subgroup of finite index in F and restrict our study to subgroups of this torsion
free group [8]. In any case, the pseudo-Anosov éléments and the infinité order
reducible éléments are of primary concern to us.

We shall say that an élément L of MF is a pseudo-Anosov foliation if there is

a pseudo-Anosov map, &lt;/&gt;, which fixes the projective class of L, [L]. In this case,

we see that:

t&apos;L where f&gt;0 and f#l. (2.4)

We shall follow the standard convention and dénote L as L+ if t &gt; 1 and L_ if
t &lt; 1. Similarly, we dénote t as A if t &gt; 1 and A&quot;1 if / &lt; 1. Hence, A is aiways taken
as a positive real greater than 1. We refer to L+ as an attracting foliation for &lt;p,

and to L_ as a repelling foliation for (/&gt;. A pseudo-Anosov pair, \L\, is a pair of
the forai {L+, L_}.

Let L be a pseudo-Anosov foliation. It is a well-known conséquence of the

minimality of L, the unique ergodicity of L and properties of the intersection
function that the set defined by the équation i(L,.) 0 consists precisely of the
scalar multiples of L [13],

If L is a pseudo-Anosov foliation, then i(F, L) 0» [F] [L]. (2.5)
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Let \L\ be a pseudo-Anosov pair, {L+, L_} It follows from (2 5) that the
&quot;zéro sets&quot; of L+ and L_ are disjoint Hence, we can define a contmuous,
homogeneous, nonzero function on MF, || ||, by the following rule

F-* max {i(F, L+), i(F, L_)} (2 6)

We shall refer to any contmuous, homogeneous, nonzero function on MF,
|| ||, as a norm on MF (We do not necessanly assume that the function îs

defined, as in (2 5), via a pseudo-Anosov pair This construction, however, îs

quite useful)
Since PMF îs compact, ail norms are équivalent A séquence of measured

foliations converges to zéro or to înfimty as the norms converge to zéro or
mfinity

Given a norm on MF, || ||, we hâve the corresponding section from PMF to
MF

s PMF^MF
[F]-&gt;F/||F|| (2 7)

Hence, we may regard PMF as a subset of MF, provided we observe that
thèse sections are not T-equivanant (Indeed, the action of Ton S illustrâtes that
there does not exist a F-equivanant section)

From the compactness of PMF, and the bihomogeneity of /(,), we observe
that / îs comparable to the norm in the following sensé

There exists a positive constant, C, such that i(F, G)&lt;C \\F\\ \\G\\,
for each (F, G) in MF X MF (2 8)

Another useful construction of a norm on MF îs obtamed from the theory of
pavings of MF ([7], [13]) One chooses finitely many tram tracks which carry ail
measured foliations The norm of a foliation îs then defined as the sum of the

weights of the foliation on the branches of a track in the collection which carnes
the foliation (That this collection can be chosen in such a way to insure that this
construction yields a well defined norm îs not readily apparent It îs, however, a

conséquence of the construction of pavings In this version of a norm, the norms
of simple closed curves are intégral Indeed, ail the weights of a simple closed

curve are nonnegative mtegers The finiteness of the pavmg makes it clear that S

îs a discrète subset of MF which îs bounded below
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There exists a positive constant, C, such that ||ar|| &gt; C for every oc in S. (2.9)

For each real number, M, {or e S | ||or|| &lt; M} is a finite set. (2.10)

From the compactness of PMF and thèse observations, one obtains the

foliowing useful fact:

For any infinité séquence of distinct simple closed curves, {an}&gt; there
exists a subsequence, {pn}&gt; and a séquence of positive scalars, {r,,},
such that: (2.11)

(a) rn • pn-+F for some F in MF
(b) rn-»0.

Henceforth, we shall not bother to distinguish subsequences. They shall be

understood in context.
A coordinate system, Ay is a finite family of simple closed curves in S such that

the coordinate fonctions, {i(a, | are S}, parametrize MF. It foilows from the
classification of measured foliations carried over in [5] that such families exist. Of
course, we may regard a coordinate System as a subset of MF. The F-invariance
of «(&gt;) implies that Tacts on coordinate Systems. The next proposition shows that
this action has only finite stabilizers.

PROPOSITION 2.1. Let A be a coordinate System. The stabilizer of A in F,
FA, is a finite group.

Proof. There is, of course, a subgroup of finite index in FA, 2\ which fixes
each élément of A. It suffices to show that X is finite. Suppose, therefore, that g is

an élément of I. Then:

i(a,g~lp) i(g(x,P) i((x,P) for each /Se S, aeA. (1)

By the définition of a coordinate System, it foilows that g&quot;1 fixes every curve
in S, and hence, g fixes every curve in S. By (2.3), it foilows that g is either the
identity or a hypergeometric involution. Hence, E is of order at most two. This
complètes the proof of proposition 2.1.

As an immédiate conséquence, we hâve:

If A and B are coordinate Systems, then there are at most finitely
many maps taking A to B. (2.12)
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Now suppose that we are given an infinité séquence of distinct éléments of
F, {gn}. Let A be a coordinate System. By (2.12), the collection of coordinate
Systems, {gn(A)}t must be infinité. Hence, for some curve, a, in A, the collection
of curves, {gn(a)}&gt; must also be infinité (though not necessarily distinct).
Therefore:

For any infinité séquence of distinct mapping classes, {gn}&gt; there
exists a simple closed curve, oc&gt; such that {||g,,(ar)||} is unbounded. (2.13)

The discreteness of S implies that the orbit in MF of a simple closed curve, a,
under F is discrète. Hence, thèse observations are not surprising. When one
considers the orbit of a pseudo-Anosov foliation in MF, one finds that the orbit
can hâve accumulation points (other than 0 or q°). Nevertheless, one can obtain
similar statements, as we shall now see.

PROPOSITION 2.2 [12]. Let [L] be a pseudo-Anosov foliation in PMF. The

stabilizer of[L] in F, F[L\, is a virtually cyclic group.

PROPOSITION 2.3. Let L be a pseudo-Anosov foliation in MF. The

stabilizer of L in F, FuA, is a finite group.

Proof Let &lt;p be a pseudo-Anosov mapping class which fixes the projective
class of L, [L]. This mapping class générâtes an infinité cyclic subgroup, gp(4&gt;)&gt;

of /j^j. Moreover, 1 is a subgroup of JJ/,| which has trivial intersection with
gp(&lt;t&gt;). The statement follows, therefore, from Proposition 2.2.

Remark. Alternatively, one can observe from [5], exposé 9, §IV, that Lr is a

torsion subgroup of Tand then employ the fact that Thas a torsion free subgroup
of finite index.

COROLLARY 2.4. Let \L\ be a pseudo-Anosov pair in MF. The stabilizer of
\L\in F, r]L] is a finite group.

Proof. Let \L\ {L+, L_}. FlLl has a subgroup of index at most 2 which fixes

L+ (and L_). The statement follows from Proposition 2.3.

LEMMA 2.5. Let \L\ be a pseudo-Anosov pair, {L+, L_} in MF. Let g be an
élément of F. Let t be a positive real. If g(L+) / • L+, then g(LJ) t~{ • L_. If
g(L+) t-L., then g(L.) r &apos;

• L+.

Proof Let 0 be a pseudo-Anosov map fixing [L+] and [LJ\. Let À be the

dilitation factor for 0, A &gt; 1.

&lt;P(L+) A • L+ 0(L_) A1 • L_. (1)
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Suppose that g(L+) t - L+. Consider the pseudo-Anosov map g&lt;t&gt;g~l, which
we dénote as xp.

%t&gt;(L+) g&lt;t&gt;g-\L+) kL+. (2)

This implies that &lt;f&gt; and xp are both in the stabilizer of [L+]. By Proposition
2.2, we conclude that # and ty must hâve a common power. For some nonzero
integers, m and n, (pm \pn. (Furthermore, by équations (1) and (2), and the fact
that À&gt; 1, we know that m n.)

Since the fixed point sets of &lt;j&gt; and ty are equal to the fixed point sets of &lt;pm

and tpn, we conclude that &lt;f&gt; and xp hâve the same fixed points. On the other
hand, Fix (\j&gt;) Fix (g&lt;t&gt;g~l) g(Fix (0)). Hence, we conclude that g fixes [L_].

g(L.) s-L-. (3)

To détermine the value of s, we consider the intersection of L_ and L+ which,
by (2.5), we know is nonzero:

0#i(L+, L.) i(gL-,gL+)=s.U. (L_, L+). (4)

Hence, s - f 1 and gL_ t~lL-. A similar argument establishes the second
assertion.

Remark. In the second case, we conclude that g2(L+) L+. Hence, the map,
g, must be of finite order. This does not, however, imply that t 1 (e.g. consider
the maps, g, and &lt;f)g).

COROLLARY 2.6. Let \L\ be a pseudo-Anosov pair, {L+, L_} in MF.
/Ae stabilizers of L+ and of L_ are contained in the stabilizer of \L\ and the

stabilizers of [L+] and of [L_] are contained in the stabilizer of {[L+], [L_]}.

As an immédiate conséquence, we hâve:

If \K\ and \L\ are pseudo-Anosov pairs, then there are at most finitely
many maps taking \K\ to \L\. (2.14)

We shall now establish the analog of (2.13).

LEMMA 2.7. Let \L\ be a pseudo-Anosov pair, {L+, L_}. Let {gn} be an
infinité séquence of distinct mapping classes. Then for some e in {+,—}, the

séquence ofreal numbers, {lignai!}, &amp; unbounded.
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Proof. Suppose that both séquences are bounded:

||fc,L±||&lt;Af for ail n. (1)

By (2.13), we may find a simple closed curve, ocy such that {llg^cOII} is
unbounded. By (2.11), we may choose a subsequence of {gn} and a séquence of
scalars, {rn}y such that:

rng-\a)-*F in MF, (2)

rn^0. (3)

From (2.8), we conclude that:

i(rngnl(&lt;x), L±) rj(g-l(a), L±) rni{ay gnL±)

i(rng-\a),L±)^rnC \\a\\ • \\gnL±\\. (4)

Combining (1), (2), (3) and (4), we find that;

/(F, L±) 0. (5)

But this is impossible by (2.5). Hence, one of the two séquences must be
unbounded. This proves the lemma.

As should be apparent, the pseudo-Anosov foliations hâve some rather
striking properties. In studying the dynamics of subgroups of F on PMF,
therefore, it is désirable to know whether the subgroup contains any pseudo-
Anosov éléments. This turns out to dépend primarily upon whether the group is

reducible or not.
Let I be a subgroup of F. We say that Z is reducible if there is a nonempty

finite family of disjoint simple closed curves in S, A, which is preserved by 21. We
refer to A as a réduction System for 2\ If I has no réduction System, then £ is, of
course, irreducible. There are examples of finite irreducible groups [6]. The
remaining irreducible groups are shown in [14] to contain pseudo-Anosov maps.
Indeed, we hâve the following équivalence.

LEMMA 2.8 [14]. Let 2 be a subgroup of F. Z contains a pseudo-Anosov
élément if and only if E is an infinité irreducible group.

We turn next to a discussion of limit sets for subgroups of F acting on PMF.
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3. Limit sets

There does not seem to be a generally accepted définition of a limit set for the
action of a group on a topological space. In his article on limit sets for certain
handlebody groups, [11], Masur takes a limit set to be a minimal, closed invariant
set. From the point of view of the dynamics of the group on the limit set, this is

clearly a natural définition. However, when one is interested in the relationship of
the dynamics on the limit set to that on the entire space, it seems that one might
wish to adopt a broader perspective. Hence, for us, a limit set will be a less

restrictive notion.
Let I be a group acting continuously on a space, X. A point, jc, in A&quot; is a limit

point of 2, if there is an infinité séquence of distincts éléments of 2\ {gn}, and a

point, yy in X such that x is the limit of {gn(y)}. (We do not require that x be an
accumulation point of this séquence). The canonical limit set for 2 acting on Xy

A(Z), is the closure of the set of limit points for E. A limit set for Z, A, is a

closed invariant subset of A(Z&apos;). (Observe that A(2) is a limit set for 2* and, of
course, every minimal, closed invariant set is a limit set). If 2 has a domain of
discontinuity on X, A, (or even a wandering set), then A{2) is necessarily in the
complément of A. As observed by Thurston ([16], ch. 8), it is a remarkable
occurrence when a group acts properly discontinuously on the complément of its

limit set. This occurs for nonelementary subgroups of PSL{2&gt; C) acting on S2.

Except for a set of measure zéro that we shall describe, we shall see that this is

also true for subgroups of F acting on PMF.

4. Characterization of dynamically irreducible groups

A subgroup of F, Z1, is dynamically irreducible if it has a unique nonempty
minimal closed invariant set in PMF. Otherwise, of course, E is dynamically
reducible.

A set of pseudo-Anosov maps is independent if no two maps in the set hâve

the same fixed point set in PMF. If the set is independent, then, by Lemma 2.5,
the fixed point sets are disjoint.

Let S be a subgroup of F. Let Ao be the set of pseudo-Anosov foliations for
pseudo-Anosov maps in S. (Of course, A&gt; rnay be empty). Let A be the closure
of Aq. We say that S is sufficiently large if 2* has an independent pair of
pseudo-Anosov maps. If Z1 is sufficiently large, then A has a rather simple
dynamical description, which we now give.

Recall that the action of a group on a topological space is said to be minimal if
the orbit of every point is dense.
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THEOREM 4 1 Let S be sufficiently large A is the unique nonempty
l&apos;invariant minimal closed subset of PMF

Proof By assumption, A&lt;) and, hence, A are nonempty Likewise, by
définition, A is closed

If L is a pseudo-Anosov foliation for a pseudo-Anosov map, 0, in Xand if g is

an élément of S, then gL is a pseudo-Anosov foliation for the pseudo-Anosov
élément, g&lt;f)g~l Therefore, A&gt; ar|d, hence, A are Z-invanant

To see minimahty, let F and G be any two éléments of A We wish to prove
that in every neighborhood of F, there is a -T-translate of G

Let [/ be a neighborhood of F in PMF Since F is in A, we may choose a

pseudo-Anosov foliation, F&apos;&gt; in U which is an attracting foliation for a

pseudo-Anosov map, 0, in E {F&apos; may be equal to F) If G is not the repelhng
fixed point of 0, then &lt;t&gt;n(G) converges to F&apos; Therefore, in this situation, for n
large enough, &lt;t&gt;n{G) is in U

Suppose now that G is the repelhng fixed point of 0 Since I is sufficiently
large, there exists a pseudo-Anosov mappmg class, xp, m 2\ whose fixed point set

is disjoint from the fixed point set of (f&gt; Hence, ip(G) ^C As before, (pn °ty(G)
is in U for n large enough

This proves that the action of 2 on A is minimal Moreover, ît proves that any
nonempty ^-invariant closed subset of PMF must contain the fixed points of
pseudo-Anosov éléments of I Therefore, any such set contams A It follows that
A is the unique nonempty invariant minimal closed set for Z

This proves the theorem

The next statement follows îmmediately

COROLLARY 4 2 //1 is sufficiently large, then Z is dynamwally irreducible

Let \L\ be a pseudo-Anosov pair in MF Let \[L]\ be the corresponding pair in
PMF If I is a subgroup of the stabihzer of |[L]| in F, Fl{n]&gt; we say that I is

pseudo-Anosov stabihzing If, in addition, I contains an élément which
exchanges [L+] and [L_] we say that Z is of symmetnc type Otherwise, of course, I
is of asymmetnc type

Suppose that I contains a pseudo-Anosov map, 0, with pseudo-Anosov pair
\L\ in MF As we hâve previously observed, if g is an élément of 2\ then \gL\ is a

pseudo-Anosov pair for the pseudo-Anosov élément, g&lt;t&gt;g~\ m I Hence, I is

either sufficiently large or pseudo-Anosov stabihzing
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LEMMA 4.3. Let Z be infinité and pseudo-Anosov stabilizing. Z is dynanti-
cally irreducible if and only if Z is of symmetric type.

Proof. Under the hypothesis, A={[L+], [L_]}. If Z if not of asymmetric
type, then {[L+]} and {[L_]} are distinct nonempty T-invariant minimal closed
subsets of PMF. In this situation, therefore, Fis dynamically reducible.

On the other hand, if Z is of symmetric type, then A is a nonempty
T-invariant minimal closed set. Moreover, any nonempty F-invariant closed set

must contain either [L+] or [L_]. Therefore, it must contain both. As in the

sufficiently large situation, Fis dynamically irreducible.
Now suppose that Z does not contain a pseudo-Anosov mapping class. By

Lemma 2.8, 2 is either finite or reducible. As a rule, as we shall see, reducible

groups are dynamically reducible. There are, however, some exceptions which we
shall now discuss.

LEMMA 4.4. Let S be a torus with one hole or a sphère with four holes. If 2 is

an infinité reducible subgroup of F(S), then Z is dynamically irreducible.

Proof. Under the hypothesis, PMF is a circle, S1. Let A be a réduction
System for Z. Then A must be a simple closed curve, oc, as in figure 1 or figure 2.

Figure 1

Figure 2
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The stabihzer of oc in F, Fa, îs virtually cychc Since, by assumption, I is an
infinité subgroup of Fay 2 must contain a nontnvial power of Da, Dna On the
other hand, Da acts as a parabohc transformation of the circle with one fixed

point Hence, the statement follows as m the proof of Lemma 4 3

Now we consider the &quot;gênerai case&quot; If A îs a finite family of disjoint simple
closed curves in S, the barycenter of A&gt; îs the sum of the éléments of A In other
words, the barycenter of A îs the enlargement of the partial foliation whose

support is a disjoint union of annuh about the components of A, fohated by
leaves parallel to the components, and each with height, or total transverse

measure, 1

LEMMA 4 5 Suppose that S is not a torus with one hole or a sphère with four
holes If 2 is a reducible subgroup of F{S), then I is dynamically reducible

Proof Suppose that there is a réduction System for 21, A, with at least two
éléments Let Xoc be the orbit under 2&quot; of an élément of A&gt; oc Then la and the

barycenter of A are two distinct nonempty ^-invariant minimal closed sets

Hence, I is dynamically reducible

Suppose that Z has no such réduction System Then S must reduce along a

single simple closed curve, a Then {a} is a nonempty ^-invariant minimal
closed set We wish to exhibit another

The surface obtained by cutting S along a, Sa, has at most two components
By the assumption on S, at least one of thèse components is not a pair of pants
Hence, at least one component of Sa supports a measured foliation [5] Let Pa be

the set of projective measured foliations on S which are obtained by enlargement
of measured foliations supported on components of Sa Clearly, Pa is a nonempty
closed subset of PMF(S) By définition, a is not in Pa Moreover, Pa is

^-invariant Hence, Pa must contain a nonempty ^-invariant minimal closed

subset Such a set provides the desired counterpart of {a} Hence, I is

dynamically reducible

We hâve discussed suffîciently large groups, groups with a single pseudo-
Anosov pair, and infinité reducible groups AH that remains is the case of a finite

group But thèse are clearly dynamically reducible since every orbit provides a

nonempty 2*-invariant minimal closed set Hence, the followmg charactenzation
of dynamically irreducible groups is an immédiate conséquence of the precedmg
lemmas and discussion

THEOREM 4 6 Let I be a subgroup of F(S) I is dynamically irreducible if
and only if it is of one of the followmg types

(1) I is suffîciently large
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(2) 2 is infinité pseudo-Anosov stabilizing of symmetric type,
(3) 2 is infinité reducible and S is a torus with one hole or a sphère with four

holes.

On the other hand, 2 is dynamically reducible if and only if it is of one of the

following types:
(4) Sisfinite,
(5) 2 is pseudo-Anosov stabilizing of asymmetric type,
(6) 2 is infinité reducible and S is neither a torus with one hole nor a sphère

with four holes.

Remark. The types (2), (3), (4) and (5), are ail virtually cyclic groups. They
belong to a slightly more gênerai class, the virtually abeiian groups. Thèse latter
groups hâve a very simple dynamical behavior and are not of primary concern to
us. We shall refer to them as elementary groups.

5. Limit sets for sufficiently large groups; elementary properties and some

examples

In this section, 2 dénotes a sufficiently large subgroup of F. Sufficiently large

groups are rather well-behaved under standard opérations on subgroups. In
particular, we hâve the following elementary assertions.

PROPOSITION 5.1. Let 2X and 22 be subgroups of T, such that 2X is

contained in 22.

(1) // 2X is sufficiently large, then 22 is sufficiently large.

(2) // 22 is sufficiently large and 2X is of finite index in 22, then 2X is

sufficiently large.

(3) // 22 is sufficiently large and 2X is infinité and normal in 22f then 2X is also

sufficiently large.

Proof The first two assertions are trivial. Therefore, let 22 be sufficiently
large and 2X be infinité and normal in 22. First, we construct a pseudo-Anosov
élément in 2V

Suppose that &lt;j&gt; is a pseudo-Anosov map in 22. Let [L_] and [L+] be the fixed

points in PMF for 0. If 2l is contained in the stabilizer of {[L_], [L+]}, then, by
the assumption that 2X is infinité and by Proposition 2.2, it follows that 2 contains

a nontrivial power of 0.
Therefore, we may assume that there is an élément, /, in 2X which is not in

the stabilizer of {[L_], [L+]}. Let ty be the pseudo-Anosov map, f&lt;pf~l. By
Lemma 2.5, &lt;f&gt; and tp are independent. It follows from standard dynamical
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arguments (cf [3]) that 0&quot;t//~&quot; is of pseudo-Anosov type for n sufficiently large
On the other hand, 4&gt;nyj~n is equal to (&lt;t&gt;nf&lt;t&gt;~n)f~l, which is an élément of 2,

In any event, therefore, we may choose a pseudo-Anosov élément, 0, m 2,
Since 22 1S sufficiently large, there is a pseudo-Anosov map, yy which is

independent from &lt;t&gt; Then the maps, 4&gt; and t/j^i/;&quot;1, are independent pseudo-
Anosov maps in 2^ Therefore, 2*, is sufficiently large

This proves Proposition 5 1

Remark It is easy to construct examples of nontnvial normal subgroups of
sufficiently large groups which are not sufficiently large The center of T(5),
where S is a closed surface of genus two, is an obvious example There are other
less obvious examples We shall discuss such an example in the latter part of this
section

In section 4, we associated to each sufficiently large group, 2, the following
two subsets of PMF

^ is set of fixed points of pseudo-Anosov mapping classes in 2, (5 1)

A is the closure of Ao (5 2)

We shall say that A is the hmit set of 2
Theorem 4 1 expresses an important property of the hmit set, A In fact, the

proof of that theorem shows that for any sufficiently large group, 2, the
associated set A&lt;&gt; has no isolated points (This, of course, is not the case for
infinité pseudo-Anosov stabihzing groups) Therefore, A has no isolated points
and we hâve the following proposition

PROPOSITION 5 2 Aïs a perfect set and isy therefore, uncountable

Hère are some other properties of the hmit set

PROPOSITION 5 3 A is either equal to PMF or has empty intenor

Proof Suppose that A contams an open subset, U, of PMF By Theorem 4 1,

for every F in A, there is an élément, (/&gt;, of 2 such that &lt;f&gt;(F) is in U By the
2-invanance of A, &lt;t&gt;~\U) is a subset of A Since &lt;/&gt;~l(U) is also an open
neighborhood of F, F is in the mtenor of A Therefore, A is open in PMF Since

A is also closed, it must be equal to PMF

PROPOSITION 5 4 If Ix and I2 are sufficiently large subgroups of T and Zx

is offimte index in E2&gt; then Zx and E2 hâve the same hmit set
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Proof. This follows easily from the fact that for any pseudo-Anosov élément,
&lt;p, in Z2j there is a positive integer, n, such that &lt;t&gt;&quot; is in Z{.

PROPOSITION 5.5. // Ix and S2 are sufficiently large subgroups of F and I{
is a normal subgroup of £2, ^en 2\ and Z2 hâve the same limit set.

Proof. Let Ai and A2 dénote respectively the limit sets of Z, and Z2.
If L is an élément of PMF which is fixed by a pseudo-Anosov élément, 0, in

2*1, and if g is any mapping class in E2, then g{L) is a fixed point for the
pseudo-Anosov mapping class, g&lt;t&gt;g~\ which is in 21,. Hence, the set of
pseudo-Anosov fixed points of Ex is invariant by E2. It follows that its closure,
Au is invariant by Z2. Using Theorem 4.1, we see that A, is equal to A2.

We close this section with some examples of limit sets.

EXAMPLE. 1. The mapping class group acts minimally on PMF (cf. [5],
exposé 6, §111). Therefore, by Theorem 4.1, its limit set is equal to the whole

space, PMF. Proposition 5.5 implies, then, that the limit set of the Torelli group
is also equal to PMF.

EXAMPLE. 2 (groups of Schottky type). Thèse are examples of groups
where the limit set is a Cantor set. The construction is inspired from Klein&apos;s

method for constructing free subgroups (cf. [13]). Some care should be taken if
we want to insure that every élément in the group is of pseudo-Anosov type. As
in the case of Schottky groups, one needs, for each of the n generators, glt a pair
of disjoint disks {D,+, D~}&gt; so that ail of the 2n disks are disjoint and g, (resp.
g~l) takes the exterior of D* (resp. D~) inside D~ (resp. D,+) by a contraction
(for a certain metric on PMF).

Both the techniques developed in [13] and [15] lead to such examples.

EXAMPLE. 3. We consider now the limit set of the group generated by the
Dehn twists along two simple closed curves that fill up the surface. This group is

studied in [5].

In this example, the limit set will be a Cantor set, which is naturally contained
in a géométrie circle of PMF, the term géométrie referring to the natural
projective pieeewise-linear structure of that space.

Let a and b be two simple closed curves on S which are transverse and in
minimal intersection number position such that the complément of thèse two
curves in S is a union of cells (and annuli in the case where S has nontrivial
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boundary). Let n be the number of intersection points of a and b. (We assume
that n is larger than two. It is easy to see that this assumption always holds for
closed surfaces.)

In [5], chapter 11, there is a description of the éléments of the group
generated by the Dehn twists, Da and Db. This group is shown to be realized by a

group of homeomorphisms of S which act as linear maps with respect to the

singular flat metric defined on S by enlargement of the curves, a and b, to
transverse measured foliations.

Let P be the set of projective classes of measured foliations on S which are
defined by this singular flat structure as Unes of constant slope. P is naturally
parameterized by the real projective Une, RPl, since we can see a foliation by
Unes of constant slope on S as the image, on that surface, of the corresponding
foliation of the plane by the coordinate maps associated to the &quot;horizontal&quot; or
&quot;vertical&quot; atlas of S associated to a and b (see [5]). Using train track coordinates,
one can easily see that there is a natural imbedding, j, of RPl in PMF as a

projective piecewise-linear subvariety.
The discussion in [5] also implies that this group, 2&quot;, is sufficiently large. The

limit set of I is a Cantor set and is the image of the limit set in RPl of the group
G of linear fractional transformations generated by the matrices

i n - c y
S is isomorphic to G, and an élément of I is pseudo-Anosov iff it corresponds

to a hyperbolic élément in G.

Note also that if we choose a and b to be invariant under a finite order map,
then the group, 2\ will hâve a nontrivial center; Hence, we obtain nontrivial
examples of nontrivial normal subgroups of sufficiently large groups which are not
sufficiently large:

EXAMPLE. 4 (The handlebody groups). Thèse are the two examples studied

by Howard Masur in [11]. The surface, 5, is the boundary of a handlebody, and
the groups considered are the subgroups of the mapping class group of S which,
in one case, extend as homeomorphisms of the handlebody, and in the other case,
extend and induce the identity map on the fundamental group of the handlebody.
That thèse groups are sufficiently large can be seen from a construction of Fathi
and Laudenbach [4]. Masur defines the limit sets in a différent way than we do,
but the two définitions coincide, as Masur shows in Theorem 1.2 of [11] that the
limit sets as he defines them, are also the unique minimal invariant sets for the



150 JOHN McCARTHY AND ATHANASE PAPADOPOULOS

action of the groups. In thèse examples, the limit set is a proper subset of PMF.
Unlike the previous examples, it is connectée ([11], Theorem 1.2).

6. The domain of discontinuity of a sufficiently large subgroup of F

In this section, £ dénotes a sufficiently large subgroup of F, A&lt;) the set of
pseudo-Anosov foliations for X, and A, its closure, the limit set.

It was proved by Masur, in his study of the limit set for the two handlebody
groups [11], that thèse groups do not act properly discontinuously on the whole
complément of their limit set, but that in each case there exists a nonempty open
invariant subset on which the group acts properly discontinuously. We wish to
describe a similar région for sufficiently large subgroups of F.

There is a set, Z(A)f contained in PMF, naturally associated to A, which is, in
some sensé, the completion of A with respect to the intersection function:

Z(A) {F | /(F, G) 0 for some G in A}. (6.1)

Note: The intersection function is defined on MF and not on PMF. Strictly
speaking, therefore, in the above définition we should refer to représentatives of
F and G in MF as having zéro intersection. In the subséquent discussion, we shall

frequently use this abuse of notation. The meaning, however, will be clear.

PROPOSITION 6.1. Z(A) is closed and Z-invariant. If A is a proper subset

of PMF, then so is Z{A).

Proof. Let F be the limit of a subsequence, {Fn}, of éléments in Z(A). There
exists a séquence of éléments, {Gn}&gt; in A, such that i(Fn, Gn) is zéro. By
compactness of A, the séquence, {Gn}, has a subsequence converging to a point,
G, in A. By taking limits, /(F, G) is zéro and, hence, F is in Z(A). Therefore,
Z(A) is closed.

Let F be an élément of Z(A) and G an élément of Z(A) such that î(F, G) is

zéro. For any G in 2, we hâve the identity:

i(gF/gG)-i(F,G) 0. (1)

Since gG is in A, gF is in Z{A). This shows that Z(A) is X-invariant.
Obviously, there are no uniquely ergodic foliations in Z(A)\A. On the other

hand, the set of uniquely ergodic foliations has full measure in PMF (see [9], [10]
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or [16]). It follows that Z(A)\A has zéro measure, and therefore empty interior.
Hence, if PMF\A is nonempty, so is PMF\Z(A).

The proof of Proposition 6.1 is now complète.
We dénote the complément of Z(A) in PMF by A. The rest of this section is

devoted to the study of the action of £ on A.
For the rest of this section, we let \L\ dénote a pseudo-Anosov pair in MF,

{L+, L_}, for some pseudo-Anosov élément of I. We define a function on MF,
i(. |L|), by the rule:

i(F, \L\) max {/(F, L_), i(F, L+)}. (6.2)

In addition, we associate to \L\ the following subset of MF:

A*-i {F e MF sucn tnat ^or every élément, g, in 2\
i(F,|L|)&lt;i(F,|gL|)}. (6.3)

Note: 4,L, is invariant by multiplication by positive reals and defines naturally
a subset of PMF. On the other hand, AUA dépends not on the projective classes of
L+ and L_ but on L+ and L_. For instance, if \L\ is fixed projectively by a

pseudo-Anosov mapping class, 0, in 2\ then AUA is not equal to Al4&gt;L]. (This
assertion will follow from the subséquent discussion).

LEMMA 6.2. For any mapping class in Z, /, we hâve f(Al/A) AylA.

Proof.

Fef(AlflA)&lt;*

i(F, |/L|)&lt;i(F, \g&apos;fL\) (where g&apos; =fgf~l can be any élément of

This proves the lemma.
We hâve now the following resuit:

PROPOSITION 6.3. A, H A]/A 0.
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Proof. Suppose, for the sake of contradiction, that there is an élément, F, in
4,L, which is an attracting fixed point for the pseudo-Anosov mapping class, /, in

I. Then:

i(F,\L\)*i(F,\gL\) for ail g in Z. (1)

In particular, we hâve the inequalities:

/(F, \L\) 2£ /(F, \f~nL\) for ail n in Z. (2)

But we also hâve the identity:

i(F, |/-&quot;L|) /(/&quot;F, \L\) À&quot;Î(F, |L|). (3)

Statements (2) and (3) imply that j(F, |L|) is zéro, which is impossible.
We hâve an immédiate corollary.

COROLLARY 6.4. Ao is contained in PMF\ U {A]gL]y gel}.
The following propositions describe the relation of thèse sets to S.

PROPOSITION 6.5. For every élément, a, in S, the following set of numbers
has a minimum:

{i(a,\gL\),geZ}.
Proof. Suppose the set has no minimum. Then there exists an infinité

séquence, {#„}, in 2&quot;such that:

• • • &lt; /(*, |g2L|) &lt; i(ar, |g, L\) &lt; i(a, \L\). (1)

This is équivalent to the condition;

(a), \L\)&lt;i(gTl(a), \L\)&lt;i(a, \L\). (2)

In particular, g^,\a) is not equal to g^\a) unless m is equal to n. By (2.11),
we may write:

rngn\a)-^F in MF (3)

r.-O. (4)
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It follows that

(5)

By takmg hmits, i(F, L+) îs zéro By (2 5), this imphes that [F] îs equal to
[L+J By the same argument, [F] îs equal to [L_], which îs a contradiction

COROLLARY 66 Sw contained in U {A]gL \,geZ}

Since some AlgLl îs non-empty, and since (by Lemma 2 6) g~l(AlgL{) AlL],
we conclude

COROLLARY 6 7 Every A]L] is non-empty

Remark We shall see later on that every set, 4,L|, has nonempty mtenor if
and only if A is not equal to PMF (This will follow from Proposition 6 13)

PROPOSITION 6 8 For any élément, /, of I that does notfix the pair, \L\, in
MF, the intenors of the sets, AïL] and A]fLl are disjoint

Proof Suppose that (/ is a nonempty open set in MF contained in
AlLl H AlfLl, i e for ail F e U, we hâve

i{Fy \L\) &lt; i{F, \gL\) for every g m I, (1)

i(Ff \fL\) &lt; i(F, \gfL\) for every g ml (2)

In particular, we hâve, for every F m U

i(F,\fL\)^i(F,\fL\), (3)

(4)

This imphes equahty on U

i(F,|L|) i(F,|/L|) for ail Fini/ (5)

Now, by définition, i(F, \L\) is equal to the maximum of i(F, L+) and
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Since i(. is continuous, there is a smaller open set, V, on which the
equality in (5) holds with \L\ replacée! by one élément of the pair {L+, L_} and
|/L| replaced by one of {/L+,/L_}. On any open set, we can define a coordinate
System given by intersection with finitely many foliations, so this implies that
either:

L.=fL+, L+=fL.., L.=fL. or L+=fL+. (6)

Using Lemma 2.5, we can see that this implies that/fixes the pair, {L+, L_},
as a pair in MF. This proves Proposition 6.8.

6.1. A fondamental domain for the action of a pseudo-Anosov map on PMF

The theorem that we prove next concerns the cyclic groups generated by
pseudo-Anosov éléments, which are dynamically reducible groups and should

not, strictly speaking, appear in this section. However, this theorem illustrâtes the
usefulness of the définition of the set, A]Ll, and the study of this elementary case
should give some motivation for the rest of the section.

Observe, that in this case:

A Z(A) {L+,L-}. (6.4)

Note: From now on, we shall often consider the set, AlLl, as being a subset of
PMF, which means that we are taking its quotient by the action of the positive
reals.

THEOREM 6.9. Let &lt;j&gt; be a pseudo-Anosov élément of the mapping class

group and \L\ be an associated pseudo-Anosov pair, {L+, L_}. The set, A]L], is a

fondamental domain for the action ofthe cyclic group generated by 0 on the space,
PMF. More precisely, the following properties hold:
(i) The union, over neZ, of the sets, &lt;t&gt;n(A^), is equal to PMF\{L+, L_}.
(ii) Ifn&amp;m, then &lt;f&gt;n(AlL{) and (f&gt;m(A\Ll) hâve disjoint interiors.

(iii) For any integer, nf the set, &lt;j)n(AlLi)f contains 1 or 2 points from every orbit
(except for L+ and LJ), and the interior of this set contains at most one point
from every orbit.

The theorem will be proved using the following lemma:

LEMMA 6.10. AlLl {F e PMF s.t. A&quot;1 &lt; i(F, L+)/i(F, L_) &lt; A}.

Proofof Theorem 6.9. For every n e Z, we hâve:

Am. (1)
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By Lemma 6 10, we hâve

AlfnLl {F e PMF s t A&quot;1 &lt;/(F, k&quot;L+)/i(F, A &quot;L_)&lt;A}

{FePMFst A-(2/I+1)&lt;((F, L+)/i(F, L_)&lt;X2n~{} (2)

The theorem follows easily from this charactenzation and Proposition 6 8

Proof of Lemma 6 10 Consider the following two subsets of the sphère,
PMF

A {F e PMF s t i(F, L+) &lt; i(F, L_)} (1)

D2={Fe PMF s t i(F, L_) &lt;K^ ^+)} (2)

The lemma can be proved separately for points in Dx and points m D2

Suppose F îs an élément of D, Then F îs in Au, if and only if

*(/% L_) &lt; max {A&quot;i(F, L+), A-^CF, L_)} for every neZ (3)

This îs équivalent to

i{F,L-)^kni(F,L+) (4)

or

i(F, L_)&lt;A&quot;wi(F, L_) for every neZ

Thèse two mequahties are easily seen to be équivalent to the statement that

t(F, L_) &lt; À&quot;i(F, L+) for every « &gt; 1 (5)

That îs

KF, L_)&lt;Az(F, L+) (6)

It follows that for every F in D, we hâve

FeA]L]*&gt;X-l^i(F, L+)/i{F, L_)&lt;A (7)

The same reasonmg apphes for éléments F in D2

This proves Lemma 6 10
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6.2, Proper discontinuity on A

Theorem 6 16, that we shali prove below, shows that in the most gênerai case,
the group, X, acts properly discontmuously on A Furthermore, Propositions 6 13

and 6 15 show that 4,L, H A defines a fundamental région for the action of I on
A

LEMMA 6 11 Let F be an élément of A, and {gn} be an infinité séquence of
distinct mapping classes in 2 Then the séquence of numbers, {i(F, \gnL\)}, is
unbounded

Proof By Lemma 2 7, we know that at least one of the two séquences,
{||&amp;,L+||} and {||fc,L_||}, is unbounded

Suppose {||gnL+||} is unbounded (the other case is similar) Then there exists
a séquence, {rn}&gt; of positive real numbers, such that

rngnL+-*G m MF (1)

rn-»0 (2)

The projective class of G is m A
We may wnte

r~li(Ff rngnL+) i(F, gnL+) * i(F, \g,,L\) (3)

If the last term was bounded independently of n, then i(F, rngtlL+) would hâve to
converge to zéro This would imply that /(/% G) is zéro, which is a contradiction

PROPOSITION 6 12 Suppose that A{1, contains a point in A Then the set of
mapping classes, {g \A{I, is contained in A[Ki,}, is finite

Proof Suppose that {gn} is an infinité séquence of distinct mapping classes

with A[t | contained in A[h /,, and let F be an élément of A n Au, Then, for every
n, we hâve

(1)

This imphes that

i(F,\L\) i(F9\gnL\) (2)

But this contradicts Lemma 6 11
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PROPOSITION 6 13 For every F in A, there exists an élément, g, m I such
that F is in AlgL]

Proof Suppose, on the contrary, that F is not in AlgLl for any g in 2 Then
there exists an infinité séquence, {gn}, of distinct mapping classes such that

• ¦&lt;i(F,|g2L|)&lt;i(F,|g1L|)&lt;i(F,|L|) (1)

Therefore, the séquence, {i(F, \gnL\)}, is bounded, and this contradicts Lemma
6 11

PROPOSITION 6 14 Let K be a compact set in A Then the set of mapping
classesy {g e 2 | K C\ AlgL{ =£ 0}, is finite

Proof Suppose there exists an infinité séquence, {gn}, of distinct mapping
classes such that K H A]gnL] is nonempty for every n

Let Fn be an élément of K D AlgnL]

(1)

By Lemma 2 7, we know that one of the séquences, {||gwL+||} and {||gnL_||},
is unbounded Suppose the first one is unbounded (The argument works for both
cases) Taking subsequences, we can wnte

rngnL+-^&gt;G in MF (2)

r*-+0 (3)

Fn^F m MF (4)

It follows that

i(F9G) hmi{Fn9rngnL+)

&lt;hmrni(FWf |gnL|)

0 (5)

This contradicts the fact that G is in A and F is m A

PROPOSITION 6 15 Let F be a point in A Then the I-orbit of F intersects

A]t | only finitely many times
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Proof. Suppose that gn(F) is in AlLl for infinitely many gn. Then:

i(gn(F), \L\) ^ i(gn(F), \gnL\) W \L\). (1)

Therefore, i(F, |gnL|) is bounded independently of n.
This contradicts Lemma 6.11.

THEOREM 6.16. 2 acts properly discontinuously on A.

Proof. We show that for every compact subset, K, in A, there are only
finitely many mapping classes, g, in I such that the intersection, g(K) H Ky is

nonempty.

By Proposition 6.14, there are only finitely many mapping classes, g, for
which the sets À,gL, hâve nonempty intersection with K. Let D,, DN be thèse

sets.

Suppose now that there is an infinité séquence, {/„}, of distinct mapping
classes such that for every ny the intersection, K(lfn(K), is nonempty. Then

fnl(K)H K is nonempty for every n.

Let Fn be an élément of f~l(K) H K. By Proposition 6.13, there is a mapping
class, gnf in 2\ such that Fn is in A\gnL]. Since Fn is in K, gn must be among the

finitely many maps described above. By assumption, fn(Fn) is also in K. On the
other hand:

L\) — ^\fngnL\&apos; VU

Hence, AlfngnLl must be one of the sets Du DN.

By taking a subsequence, we find an infinité séquence of distinct mapping
classes, {/ngn}&gt; with ail the sets, AsfngnL]i being equal. This contradicts Proposition
6.12.

7. The action of an infinité reducible group

In this section, we consider the action on PMF of an infinité reducible group,
2. The class of infinité reducible groups includes ail the nonelementary
dynamically reducible groups as well as ail the infinité elementary groups except
for the pseudo-Anosov stabilizing groups. In extending the results of the previous
section to this class of groups, therefore, we shall hâve described the dynamics of
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ail groups except the finite groups and the pseudo-Anosov stabihzing groups The
dynamics of thèse latter groups, îs, on the other hand, particularly simple

Given a réduction System for 2, A, we may consider the action of 2on the set

of components of the surface obtained by splitting S along A, SA The kernel of
this action, ZA, by définition, préserves each component of 5^ The restrictions of
2A to thèse components will be called the components of ZA (2^, of course, may
not be the direct product of îts components)

It îs easy to see that if A îs a maximal réduction System for 2, then the

components of ZA are irreducible groups By Lemma 2 8, it follows that each

component îs either finite or contams a pseudo-Anosov mapping class We shall
refer to thèse latter components as pseudo-Anosov components of ZA The
corresponding component of SA will be called a pseudo-Anosov component of S

It îs easy to see that the pseudo-Anosov components of S are well-defined
mdependently of the choice of maximal réduction System

Let B be the set of boundary components of pseudo-Anosov components of S

Of course, B may be empty, but it îs a natural réduction System for 2 Indeed, it
must be contained in any maximal réduction System for 2 (cf [2])

Let St be the surface obtained from S by excising the pseudo-Anosov
components of S It follows from standard arguments that the restriction of 2# to
S,, 2,, is a virtually abelian group In fact, it îs a finite extension of a (possibly
trivial) subgroup of D(T)&gt; where T is a réduction System for 2# and D(T) is the
free abelian group generated by Dehn twists about the components of T

Let T be a minimal réduction System for ZB T is then a canonical réduction
System for 2# The essential réduction system for 2, A±, is the union of B and T
It is a canonical réduction System for 2, since it is the unique minimal réduction
System for 2 such that each component of the associated stabihzer is either
pseudo-Anosov or finite

From the assumption that 2 is infinité, it follows that A± is nonempty

7 1 Limit sets for infinité reducible groups

Let 2 be an infinité reducible group Let A be the essential réduction System
for 2&quot;, BUT, as descnbed above

Let SB be decomposed as follows

(7 1)

The restriction of Zfi to S,, In is pseudo-Anosov for / 1, N (7 2)

(Of course, if B is empty, N is zéro)
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We associate the following sets to Z:

AJ) is the set of projective measured foliations in PMF which are
obtained by enlargement of fixed points of pseudo-Anosov éléments in

Zn wherei l, N. (7.3)

A&apos; is the closure of AJ,. (7.4)

A is the union of A1,. AN and A. (7.5)

We shall refer to A as the limit set for Z. It is a limit set for Z in the sensé of
section 3. On the other hand, Zmay not act minimally on A (cf. Lemma 4.3). If
B is nonempty, for instance, then B and the union of Ax,. AN form two
disjoint closed invariant sets.

The components of A are the nonempty X-invariant minimal closed subsets

of A.

PROPOSITION 7.1. There are finitely many components of A. The setf A, is

the union of its components.

Proof. It is clear from the définition of A that A is also the limit set for ZA.

Certainly, the ZA components of A are contained in the Z components of A.
Furthermore, (cf. Lemma 4.3), the Z components of A are the Zorbits of the ZA

components of A. Hence, we can assume that Z is equal to ZA.

Under this assumption, we can completely describe the components of A. If Z,
is pseudo-Anosov stabilizing of asymmetric type then A&apos; is a pseudo-Anosov pair
which splits into two components of A. Otherwise, by Lemma 4.3 and Theorem
4.1, A1 is a component of A. Finally, A splits up into the orbits of A under Z,
each of which is a component of A. The proposition follows immediately.

Remark. It is not true, in gênerai, that Z has finitely many nonempty
invariant minimal closed sets. If, for example, Z is a cyclic group generated by a

map with two pseudo-Anosov components of the same expansion factor, then

every point on the join of the corresponding attracting fixed points is such a set.

(This join is a segment, and, hence, uncountable). It appears, however, that the

failure of a finiteness statement is due solely to this &quot;join construction&quot;.

7.2. The zéro set and the domain of discontinuity

As for sufficiently large groups, we define the zéro set of A, Z(A), as a

completion with respect to the intersection function:
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Z(A) is the set of projective classes of measured foliations which hâve

zéro intersection with a foliation in A. (7.6)

Since A is a proper subset of PMF, the proof of Proposition 6.1 establishes the

following proposition.

PROPOSITION 7.2. Z(A) is a closed I-invariant proper subset o/PMF.

Remark. As in [13], we can also take the join of the sets Au AN and the

components of A. This set need not be a limit set in the sensé of section 3. It is,

on the other hand, a subset of Z{A).

We define A to be the complément of Z(A) in PMF. As in section 6, we shall

prove that A is a domain of discontinuity for S.
A complète system for 27, |C|, is a subset of MF which is the union of the

following subsets of MF:

\L&apos;\ {L&apos;+, L1-} a pseudo-Anosov pair for an élément of 2&quot;,

i l, ...,M (7.7)

a*y a curve in S which has nontrivial intersection with oc&gt; associated to

every component oc of A. (7.8)

We define a function on MF, i(. |C|), by the rule:

i(F, |C|) max {/(F, L&apos;_), i(F, L&apos;+), î(F, a*) where i 1, N,
and a e A}. (7.9)

Again, we associate to \C\ the following subset of MF:

A,c, {F e MF such that for every élément g in 2&quot;,

i(F,\C\)*i{F,\gC\)}. (7.10)

We discuss generalizations of the basic properties of the sets, A)L|, of the

previous section. We shall not provide proofs where the arguments carry over
directly.

LEMMA 7.3. For any mapping class, /, in Z, we hâve /(AjC|) Al/C|.

PROPOSITION 7.4. A^ n A|C, 0fori l,...,N.
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COROLLARY 7.5. A&apos;&gt; is contained in PMF\ U {AlgCv g e I}.
Remark. We shall see that every set, A{C\, has nonempty interior. (This will

follow from Proposition 7.8).

We shall now discuss the proper discontinuity of 21 on A.

7.3. Proper discontinuity on A

As in section 6.2, we shall now prove that 2&quot; acts properly discontinuously on
A and AlC\ provides a fundamental région for the action of I on A.

Index the components of SA :

SA SlU- &quot;USP whereAf&lt;P. (7.11)

By restricting ZA to SA, we obtain a réduction homomorphism, p, whose kernel
AT is a subgroup of D{A):

(7.12)

K is contained in D{A). (7.13)

Moreover, by restriction to 5,, we hâve projections onto the i-th component:

nî:2A-»r(St) / 1,...,F. (7.14)

We define ||C|| by the rule:

max{||F||,FeC}. (7.15)

LEMMA 7.6. Let {gn} be an infinité séquence of distinct mapping classes in E.

Then the séquence of numbersy {\\gnC\\}&gt; is unbounded.

Proof. The stable subgroup of I, EA, is of finite index in 2. Hence, there are

finitely many left cosets of SA in S. Thus, we may assume that there is an

élément, h, in I, such that the séquence, {gw}, is contained in the left coset,

(1)
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It follows that:

||gnC|| &gt;Af. II^CH for some positive constant, M. (2)

Hence, we can assume that {gn} is contained in ZA.
Suppose that {||gwC||} is bounded. By applying Lemma 2.7 to the pseudo-

Anosov components of S, we find that the corresponding séquences of restrictions
are finite:

{jt,gn} isfinite 1&lt;/&lt;M (3)

Hence, by a coset argument as before, we may assume that {gn} acts trivially on
the pseudo-Anosov components of S.

Since the restrictions to the remaining components of SA are finite, we may
assume, in addition, that {gn} is contained in the kernel, K. Thus, we may write

gn as a product of powers of Dehn twists about the components of A.

i4 {&lt;*,, &lt;xM} (4)

D, the Dehn twist about a, (5)

gn D?l-n)--&apos;DÛ«-n\ (6)

Since {gn} is infinité, we may assume that:

/&gt;(l,/l)-&gt;±oo. (7)

Using a norm constructed from a paving of MF which is compatible with A, as

in [13], we easily see that:

ligner ||-». (8)

Hence, {||gnC||} is unbounded.
The following lemma is proved in the same manner as Lemma 6.11 by using

Lemma 7.6 instead of Lemma 2.7.

LEMMA 7.7. Let F be an élément of A&gt; and {gn} be an infinité séquence of
distinct mapping classes in 2. Then the séquence of numbers, {i(F, \gnC\)}, is

unbounded.

PROPOSITION 7.8. For every F in A, there exists an élément, g, in I such

that F is in the set, A]gC\-
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PROPOSITION 7.9. The following set of mapping classes is finite: {g e
Z \A{C{ is contained in A^lA).

Proof. Since A is nonempty, the proof follows through as for Proposition
6.13.

PROPOSITION 7.10. Let K be a compact set in A. Then the following set of
mapping classes is finite: {g e Z \ K H A]gC] =£ 0}.

PROPOSITION 7.12. Let F be a point in A. Then the Z-orbit of F intersects

An only finitely many times.

THEOREM 7.17. Z acts properly discontinuously on A.

8. A Remark on the dynamics on Teichmùller space

In this section, we consider the space, PMF, as Thurston&apos;s boundary at infinity
of T, the Teichmùller space of the surface, (see [5], exposé 8). We recall that the

topology on the union T U PMF is defined by first imbedding the two spaces T
and MF into the space R+ of functions on the set S of nontrivial homotopy classes

of simple closed curves, via the functions a-*I(y, a) if y ei (where /(,)
dénotes the length of the closed géodésie in the class a), and a-^i(y, a) if
y e MF. The topology is then the induced topology on the projectivized space
PR*.

It is well-known that the mapping class group, F, acts properly
discontinuously on T. Therefore, a limit point for Facting on TU PMF is necessarily in

PMF. We shall not go into the détails of the dynamics of the action of subgroups
of Ton T U PMF, but we wish to point out how one can relate such a study to the

study we hâve made of the dynamics of the action of F on PMF.
Let Z be a subgroup of the mapping class group acting on PMF, and let A(Z)

be the canonical limit set for this action, as defined in section 3.

Let ZA(Z) be the subset of PMF defined as:

{F | /(F, x) 0 for some point x in A(Z)}. (8.1)

As described earlier, the set ZA(Z)\A(Z) has zéro measure in PMF. We prove
the following resuit on the dynamics of the group action on the compactified
space:

PROPOSITION 8.1. Let [F] in PMF be a limit point (in the sensé of section 3)

for the group action of Z on TU PMF. Then [F] is in ZA(Z).
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Proof Suppose that {gn} îs an infinité séquence of distinct mapping classes in
2* and y îs a point in T U PMF such that gn(y) converges to [F] in the topology of
the functional space PR+ (cf [5])

If y îs in PMF, the proposition îs clear, smce ît follows immediately from
sections 6 and 7 that I acts properly discontmuously on PMF\ZA(2&quot;)

So we can assume that y îs an élément of T
By [5], exposé 8, Corollaire II 3, we can wnte

rngn(y)~+F in the space R^, (1)

rn-&gt;0 (2)

We now use the &quot;projection&quot; q T—»MF, descnbed in [5] We shall follow the

notation of that section

By [5], exposé 8, there îs a neighborhood of F m T U PMF of the form VUW,
where V îs a subset of T and W a subset of PMF, on which there îs a projection

q V-+MF

satisfying

i(q(v), a)&lt;l(v, a) VaeS and veV (3)

rnqn-*F m MFOrj^F inRs+ (4)

where we can assume yneV and rn —» 0

Since the éléments, {gn}, are ail distinct, we may choose, by (2 13), an
élément, a, of S such that the séquence, {gn{a)}y îs unbounded Taking a

subsequence as usual, we can wnte

sngn(*)-+G in MF, (5)

sn-+0 (6)

Note that G, bemg the hmit of a séquence, {gn(a)}&gt; m PMF, îs in A{2)
Let yn =gn(y) and &lt;xn -gn{oc) We hâve the following îdentity

l{yn,*n) Hy,a) (7)

By using (3) and (7), we hâve the înequahty

i(rnq{yn), snan)^rnsnl(yn, an) rnsnl(y, a) (8)
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By taking limits and using (4), we conclude that i(F, G) îs zéro.
Therefore, F îs in ZA(I).
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