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Dynamics on Thurston’s sphere of projective measured foliations

JoHN McCARTHY and ATHANASE PAPADOPOULOS

1. Introduction

In this paper, we study some general properties of actions of subgroups of the
mapping class group on Thurston’s sphere of projective measured foliations from
the point of view of dynamics. This work was strongly motivated by the work of
Howard Masur on the limit sets of the two handlebody groups described in [11].
We prove that many of the properties of the limit sets of these handlebody groups
are properties of limit sets for general subgroups. In particular, if the limit set is
not equal to the whole sphere, we prove the existence of a nonempty open set
where the group acts properly discontinuously and we describe a fundamental
domain for this action.

A special case of this study has already been extensively investigated. The
mapping class group of the once-punctured torus is simply SL(2, Z). The
Teichmiiller space of a once-punctured torus is well known to be hyperbolic
2-space. Moreover, Thurston’s sphere of foliations is the circle at infinity. Under
these identifications, the action of the mapping class group on Thurston’s sphere
is simply the usual action of SL(2, Z) by linear fractional transformations, (i.e.
the action of PSL(2, Z) in PSL(2, C)) [8].

Hence, one reason for making such a study is that the dynamics of the actions
of subgroups of the mapping class group on Thurston’s sphere ought to exhibit
many of the interesting phenomena of the actions of discrete subgroups of
PSL(2, C) on the 2-sphere. The theorems that we prove develop this line of
thought.

When one begins to think about the dynamics of the action of a subgroup of
the mapping class group, it appears that there may be several interesting subsets
of the sphere of projective measured foliations that could possibly play the role of
a limit set. For example, one could define the limit set to be the closure of the set
of accumulation points of orbits of elements of the sphere under the action of the
subgroup. As other possible definitions, we could choose the closure of the set of
elements which are fixed by an infinite subgroup or the closure of the set of
elements which are attracting points for single elements of the group. One may
also adopt a different point of view, consider the sphere as the boundary of
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134 JOHN McCARTHY AND ATHANASE PAPADOPOULOS

Teichmiiller space and define the limit set to be the closure of the set of
accumulation points of orbits of points in Teichmiiller space. There are obviously
many other possible definitions. All the sets defined above are related to one
another and the choice of a definition for the limit set may be a matter of deciding
which dynamical properties we want to capture.

One feature that makes this choice less obvious than in the case of subgroups
of PSL(2 C) acting on S? is the existence of ‘hybrid” elements in the mapping
class group, (e.g. reducible elements which have two pseudo-Anosov com-
ponents). Many possible definitions of a limit set seem to yield a theory involving
the ratios of the various expansion factors for the component maps. It turns out,
however, that if the subgroup has ‘“‘enough’ pseudo-Anosov elements, then one
can ignore the hybrid elements and obtain a reasonable theory in which the limit
set is the closure of the fixed points of pseudo-Anosov elements. In particular,
one has the fact that this set is the unique minimal closed set which is invariant
under the group, which, needless to say, is a desirable feature.

The groups with sufficiently many pseudo-Anosov elements, which belong to a
class of groups referred to as dynamically irreducible, are the main focus of our
study. The remaining groups, including the dynamically reducible groups, are
characterized in a manner following Thurston’s classification of mapping classes.
Among these groups, one finds the virtually abelian groups which correspond, in
some sense, to the elementary subgroups of PSL(2, C).

The outline of the paper is as follows. In section 2, we collect some
preliminary facts about the theory of measured foliations and mapping class
groups which we shall use frequently in the subsequent text.

In section 3, we give a rather broad definition of the concept of a limit set for
a group action.

In section 4, we define the notion of a dynamically irreducible group (action)
and give a characterization of dynamically irreducible subgroups of the mapping
class group.

In section 5, we develop some basic properties of nonelementary dynamically
irreducible subgroups and discuss some examples. In particular, we define a limit
set for such groups which has the minimality property discussed above.

In section, 6, we prove that if the limit set for a nonelementary dynamically
irreducible subgroup is not the entire sphere, then there is a region of
proper-discontinuity for the subgroup which, except for a set of measure zero, is
the complement of the limit set. In addition, we describe a fundamental domain
for the action of the group on this region of discontinuity. The section begins with
a discussion of a simple example, the cyclic group generated by a pseudo-Anosov
element. Although this example is well known and well understood, it serves as
motivations for the constructions in the general case. (Strictly speaking, this
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example is not dynamically irreducible). This section concludes with the
discussion of the general case.

In section 7, the theory developed in sections 5 and 6 is extended to
nonelementary dynamically reducible groups. As in the classification of elements
of the mapping class group, this theory is described in terms of the limit sets of
the “components” of the group. We show that outside the ““join of these limit
sets, except for a set of measure zero, the group acts properly discontinuously. In
particular, dynamically reducible groups always have a region of discontinuity.
Again, we describe a fundamental domain for the action on this region.

Finally, in section 8, we show how the dynamics of subgroups of the mapping
class group on the compactified Teichmiiller space can be derived from the
dynamics on the boundary.

We would like to thank the referee for valuable suggestions.

The first author wishes to acknowledge support from Université Louis Pasteur
(Strasbourg) during a visit to that university.

2. Preliminaries

Let S be a compact surface of negative Euler characteristic which is not a pair
of pants. Let I' be the mapping class group of S. Let MF be the space of
equivalence classes of measured foliations on S. We note that in this definition,
we do not consider the ‘““zero foliation” as a point in MF. The set R, of positive
real numbers acts on MF, and PMF denotes the quotient space. We refer the
reader to [1] for a general introduction to surface mapping class groups and to [5]
for an exposition of Thurston’s theory of measured foliations, measured foliation
space and the action of I on that space.

Let S denote the set of isotopy classes of unoriented, connected, homotopi-
cally nontrivial, simple closed curves on § which are not parallel to a boundary
component of S. The intersection function on S X 8, i(,), is defined by the rule:

i(a, B) = min {cardinality (a N b) where a € « and b € B}. 2.1)

This function is clearly symmetric and I'-invariant.

Considering S as a subset of MF, we can extend i to a symmetric, I'-invariant,
bihomogeneous function on the square of the orbit of S under scalar multiplica-
tion by positive reals, R X 8. This latter set is dense in MF and the function
extends (uniquely, of course) to a symmetric, I-invariant, bihomogeneous,
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continuous intersection function on MF X MF:
i:MFXMF—R,, (2.2)

where R, is the set of nonnegative reals.

The action of I" on MF (or PMF) is a faithful action provided that § is not a
closed surface of genus two, a torus with one hole, or a sphere with four holes. In
each case, the kernel of the action is a cyclic subgroup of order two. (These are
the only nontrivial maps of compact hyperbolic surfaces which preserve every
element of S). We shall say that the involution is hypergeometric.

If g is an element of I', and g fixes every simple closed curve in S, then
g is either the identity or the hypergeometric involution of a closed
surface of genus two, a torus with one hole or a sphere with four holes. (2.3)

Hence, for most purposes, we may speak as though the action of I on MF is
faithful. The same holds for PMF.

The elements of I' are classified into three types, finite order, pseudo-Anosov
and reducible. In discussing dynamical aspects of the action, the finite order
elements play a minor role. Indeed, if we wished, we could pass to a torsion free
subgroup of finite index in I" and restrict our study to subgroups of this torsion
free group [8]. In any case, the pseudo-Anosov elements and the infinite order
reducible elements are of primary concern to us.

We shall say that an element L of MF is a pseudo-Anosov foliation if there is
a pseudo-Anosov map, ¢, which fixes the projective class of L, [L]. In this case,
we see that:

¢(L)=t-L where t>0 and r#1. (2.4)

We shall follow the standard convention and denote L as L, if t>1 and L_ if
t < 1. Similarly, we denote ¢ as A if t > 1 and A™' if < 1. Hence, A is always taken
as a positive real greater than 1. We refer to L as an attracting foliation for ¢,
and to L_ as a repelling foliation for ¢. A pseudo-Anosov pair, |L|, is a pair of
the form {L,, L_}.

Let L be a pseudo-Anosov foliation. It is a well-known consequence of the
minimality of L, the unique ergodicity of L and properties of the intersection
function that the set defined by the equation i(L, .) =0 consists precisely of the
scalar multiples of L [13].

If L is a pseudo-Anosov foliation, then i(F, L) =0& [F] =[L]. (2.5)
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Let |L| be a pseudo-Anosov pair, {L,, L_}. It follows from (2.5) that the
“zero sets” of L, and L_ are disjoint. Hence, we can define a continuous,
homogeneous, nonzero function on MF, || ||, by the following rule:

| [I:MF—R,
F—max {i(F, L,), i(F, L_)}. (2.6)

We shall refer to any continuous, homogeneous, nonzero function on MF,
Il II, as a norm on MF. (We do not necessarily assume that the function is
defined, as in (2.5), via a pseudo-Anosov pair. This construction, however, is
quite useful).

Since PMF is compact, all norms are equivalent. A sequence of measured
foliations converges to zero or to infinity as the norms converge to zero or
infinity.

Given a norm on MF, || ||, we have the corresponding section from PMF to
MF:
s : PMF— MF
[F]— F/|IF|. 2.7)

Hence, we may regard PMF as a subset of MF, provided we observe that
these sections are not I'-equivariant. (Indeed, the action of I" on S illustrates that
there does not exist a I'-equivariant section).

From the compactness of PMF, and the bihomogeneity of i(,), we observe
that i is comparable to the norm in the following sense:

There exists a positive constant, C, such that i(F, G)=<C. ||F|| - ||G]||,
for each (F, G) in MF X MF. (2.8)

Another useful construction of a norm on MF is obtained from the theory of
pavings of MF ([7], [13]). One chooses finitely many train tracks which carry all
measured foliations. The norm of a foliation is then defined as the sum of the
weights of the foliation on the branches of a track in the collection which carries
the foliation. (That this collection can be chosen in such a way to insure that this
construction yields a well defined norm is not readily apparent. It is, however, a
consequence of the construction of pavings.) In this version of a norm, the norms
of simple closed curves are integral. Indeed, all the weights of a simple closed
curve are nonnegative integers. The finiteness of the paving makes it clear that S
is a discrete subset of MF which is bounded below.



138 JOHN McCARTHY AND ATHANASE PAPADOPOULOS

There exists a positive constant, C, such that ||«|| = C for every «in S. (2.9)
For each real number, M, {« €S| ||a|| = M} is a finite set. (2.10)

From the compactness of PMF and these observations, one obtains the
following useful fact:

For any infinite sequence of distinct simple closed curves, {«,}, there
exists a subsequence, {B,}, and a sequence of positive scalars, {r,},
such that: (2.11)

(a) r, - B.— F for some F in MF
(b) r,— 0.

Henceforth, we shall not bother to distinguish subsequences. They shall be
understood in context.

A coordinate system, A, is a finite family of simple closed curves in S such that
the coordinate functions, {i(«,.)| a €S}, parametrize MF. It follows from the
classification of measured foliations carried over in [5] that such families exist. Of
course, we may regard a coordinate system as a subset of MF. The I'-invariance
of i(,) implies that I" acts on coordinate systems. The next proposition shows that
this action has only finite stabilizers.

PROPOSITION 2.1. Let A be a coordinate system. The stabilizer of A in T,
I,, is a finite group.

Proof. There is, of course, a subgroup of finite index in I',, 2, which fixes
each element of A. It suffices to show that X'is finite. Suppose, therefore, that g is
an element of 2. Then:

i(a, g7'B)=i(ga, B)=i(a, B) foreach BeS, acA. (1)

By the definition of a coordinate system, it follows that g~' fixes every curve
in S, and hence, g fixes every curve in S. By (2.3), it follows that g is either the
identity or a hypergeometric involution. Hence, X' is of order at most two. This
completes the proof of proposition 2.1.

As an immediate consequence, we have:

If A and B are coordinate systems, then there are at most finitely
many maps taking A to B. (2.12)
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Now suppose that we are given an infinite sequence of distinct elements of
I', {g.}. Let A be a coordinate system. By (2.12), the collection of coordinate
systems, {g,(A)}, must be infinite. Hence, for some curve, a, in A, the collection
of curves, {g,(a)}, must also be infinite (though not necessarily distinct).
Therefore:

For any infinite sequence of distinct mapping classes, {g,}, there
exists a simple closed curve, «, such that {||g,(«)||} is unbounded. (2.13)

The discreteness of S implies that the orbit in MF of a simple closed curve, «,
under I' is discrete. Hence, these observations are not surprising. When one
considers the orbit of a pseudo-Anosov foliation in MF, one finds that the orbit
can have accumulation points (other than 0 or «). Nevertheless, one can obtain
similar statements, as we shall now see.

PROPOSITION 2.2 [12]. Let [L] be a pseudo-Anosov foliation in PMF. The
stabilizer of [L] in I, I}, is a virtually cyclic group.

PROPOSITION 2.3. Let L be a pseudo-Anosov foliation in MF. The
stabilizer of L in I', I}, is a finite group.

Proof. Let ¢ be a pseudo-Anosov mapping class which fixes the projective
class of L, [L]. This mapping class generates an infinite cyclic subgroup, gp(¢),
of I|,,. Moreover, X is a subgroup of I, which has trivial intersection with
gpr(¢). The statement follows, therefore, from Proposition 2.2.

Remark. Alternatively, one can observe from [5], exposé 9, §1V, that L, is a
torsion subgroup of I' and then employ the fact that I has a torsion free subgroup
of finite index.

COROLLARY 2.4. Let |L| be a pseudo-Anosov pair in MF. The stabilizer of
|[L| in I, I}, is a finite group.
Proof. Let |L|={L,, L_}. I};, has a subgroup of index at most 2 which fixes

L, (and L_). The statement follows from Proposition 2.3.

LEMMA 2.5. Let |L| be a pseudo-Anosov pair, {L,, L_} in MF. Let g be an
element of I'. Let t be a positive real. If g(L,)=t-L,, then g(L_)y=t""-L_. If
g(L,)=t-L_, theng(L_)=t"-L,.

Proof. Let ¢ be a pseudo-Anosov map fixing [L,] and [L_]. Let A be the
dilitation factor for ¢, A> 1.

¢(L)=A L, ¢(L_)y=A""-L_. (1)
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Suppose that g(L,)=¢- L,. Consider the pseudo-Anosov map g¢g~', which
we denote as .

Y(L,)=g¢pg '(L)=A-L,. (2)

This implies that ¢ and vy are both in the stabilizer of [L,]. By Proposition
2.2, we conclude that ¢ and 9 must have a common power. For some nonzero
integers, m and n, ¢” = y”". (Furthermore, by equations (1) and (2), and the fact
that A> 1, we know that m =n.)

Since the fixed point sets of ¢ and y are equal to the fixed point sets of ¢™
and 9", we conclude that ¢ and vy have thc same fixed points. On the other
hand, Fix (y) = Fix (g¢g ') = g(Fix (¢)). Hence, we conclude that g fixes [L_].

g(L.)=s-L_. 3)

To determine the value of s, we consider the intersection of L_ and L. which,
by (2.5), we know is nonzero:

0#i(L., L_)=i(gL_, gL,)=s.t.i.(L_, L,). @)

Hence, s - t=1 and gL_=t"'L_. A similar argument establishes the second
assertion.

Remark. In the second case, we conclude that g%(L,) = L,. Hence, the map,
g, must be of finite order. This does not, however, imply that # =1 (e.g. consider
the maps, g, and ¢g).

COROLLARY 2.6. Let |L| be a pseudo-Anosov pair, {L,, L_} in MF. Then
the stabilizers of L, and of L_ are contained in the stabilizer of |L| and the
stabilizers of [L ] and of [L_] are contained in the stabilizer of {[L.], [L_]}.

As an immediate consequence, we have:

If |K| and |L| are pseudo-Anosov pairs, then there are at most finitely
many maps taking |K| to |L|. (2.14)

We shall now establish the analog of (2.13).

LEMMA 2.7. Let |L| be a pseudo-Anosov pair, {L.,L_}. Let {g,} be an
infinite sequence of distinct mapping classes. Then for some € in {+, —}, the
sequence of real numbers, {||g,L.||}, is unbounded.
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Proof. Suppose that both sequences are bounded:

lg.L+l|=M for all n. (1)

By (2.13), we may find a simple closed curve, a, such that {||g,'(a)||} is
unbounded. By (2.11), we may choose a subsequence of {g,} and a sequence of
scalars, {r,}, such that:

r.g.'(«)—F in MF, ()
r,— 0. 3)

From (2.8), we conclude that:

i(rng;I(a)’ L:t) = rni(g;l(a/)’ Li) = rni(a’ gnL:t)
i(rugn (@), Ly) =1,C |la|l - IgaL+ll- 4)

Combining (1), (2), (3) and (4), we find that;
i(F, L,)=0. (5)

But this is impossible by (2.5). Hence, one of the two sequences must be
unbounded. This proves the lemma.

As should be apparent, the pseudo-Anosov foliations have some rather
striking properties. In studying the dynamics of subgroups of I' on PMF,
therefore, it is desirable to know whether the subgroup contains any pseudo-
Anosov elements. This turns out to depend primarily upon whether the group is
reducible or not.

Let 2 be a subgroup of I'. We say that X'is reducible if there is a nonempty
finite family of disjoint simple closed curves in S, A, which is preserved by X. We
refer to A as a reduction system for 2. If 2 has no reduction system, then X is, of
course, irreducible. There are examples of finite irreducible groups [6]. The
remaining irreducible groups are shown in [14] to contain pseudo-Anosov maps.
Indeed, we have the following equivalence.

LEMMA 2.8 [14]. Let X be a subgroup of I. X contains a pseudo-Anosov
element if and only if X is an infinite irreducible group.

We turn next to a discussion of limit sets for subgroups of I" acting on PMF.
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3. Limit sets

There does not seem to be a generally accepted definition of a limit set for the
action of a group on a topological space. In his article on limit sets for certain
handlebody groups, [11], Masur takes a limit set to be a minimal, closed invariant
set. From the point of view of the dynamics of the group on the limit set, this is
clearly a natural definition. However, when one is interested in the relationship of
the dynamics on the limit set to that on the entire space, it seems that one might
wish to adopt a broader perspective. Hence, for us, a limit set will be a less
restrictive notion.

Let 3 be a group acting continuously on a space, X. A point, x, in X is a limit
point of %, if there is an infinite sequence of distincts elements of 2, {g,}, and a
point, y, in X such that x is the limit of {g,(y)}. (We do not require that x be an
accumulation point of this sequence). The canonical limit set for X acting on X,
A(2), is the closure of the set of limit points for 2. A limit set for X, A, is a
closed invariant subset of A(ZX). (Observe that A(ZX) is a limit set for 2 and, of
course, every minimal, closed invariant set is a limit set). If 2 has a domain of
discontinuity on X, A, (or even a wandering set), then A(X) is necessarily in the
complement of A. As observed by Thurston ([16], ch. 8), it is a remarkable
occurrence when a group acts properly discontinuously on the complement of its
limit set. This occurs for nonelementary subgroups of PSL(2, C) acting on S2.
Except for a set of measure zero that we shall describe, we shall see that this is
also true for subgroups of I" acting on PMF.

4. Characterization of dynamically irreducible groups

A subgroup of I', %, is dynamically irreducible if it has a unique nonempty
minimal closed invariant set in PMF. Otherwise, of course, X' is dynamically
reducible.

A set of pseudo-Anosov maps is independent if no two maps in the set have
the same fixed point set in PMF. If the set is independent, then, by Lemma 2.5,
the fixed point sets are disjoint.

Let X be a subgroup of I'. Let A, be the set of pseudo-Anosov foliations for
pseudo-Anosov maps in 2. (Of course, A, may be empty). Let A be the closure
of A, We say that X is sufficiently large if ¥ has an independent pair of
pseudo-Anosov maps. If X is sufficiently large, then A has a rather simple
dynamical description, which we now give.

Recall that the action of a group on a topological space is said to be minimal if
the orbit of every point is dense.
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THEOREM 4.1. Let X be sufficiently large. A is the unique nonempty
2-invariant minimal closed subset of PMF.

Proof. By assumption, A, and, hence, A are nonempty. Likewise, by
definition, A is closed.

If L is a pseudo-Anosov foliation for a pseudo-Anosov map, ¢, in X and if g is
an element of %, then gL is a pseudo-Anosov foliation for the pseudo-Anosov
element, g¢g~'. Therefore, A, and, hence, A are Z-invariant.

To see minimality, let F and G be any two elements of A. We wish to prove
that in every neighborhood of F, there is a X-translate of G.

Let U be a neighborhood of F in PMF. Since F is in A, we may choose a
pseudo-Anosov foliation, F', in U which is an attracting foliation for a
pseudo-Anosov map, ¢, in 2. (F' may be equal to F). If G is not the repelling
fixed point of ¢, then ¢"(G) converges to F'. Therefore, in this situation, for n
large enough, ¢"(G) is in U.

Suppose now that G is the repelling fixed point of ¢. Since X is sufficiently
large, there exists a pseudo-Anosov mapping class, ¥, in 2, whose fixed point set
is disjoint from the fixed point set of ¢. Hence, ¢(G) # G. As before, ¢" o y(G)
is in U for n large enough.

This proves that the action of 2 on A is minimal. Moreover, it proves that any
nonempty 2-invariant closed subset of PMF must contain the fixed points of
pseudo-Anosov elements of 2. Therefore, any such set contains A. It follows that
A is the unique nonempty invariant minimal closed set for 2.

This proves the theorem.

The next statement follows immediately.

COROLLARY 4.2. If X is sufficiently large, then X is dynamically irreducible.

Let |L| be a pseudo-Anosov pair in MF. Let |[L]| be the corresponding pair in
PMF. If X is a subgroup of the stabilizer of |[L]| in I', I},,, we say that X is
pseudo-Anosov stabilizing. If, in addition, 2 contains an element which ex-
changes [L,] and [L_] we say that %'is of symmetric type. Otherwise, of course, ¥
is of asymmetric type.

Suppose that 2 contains a pseudo-Anosov map, ¢, with pseudo-Anosov pair
|L|] in MF. As we have previously observed, if g is an element of X, then |gL] is a
pseudo-Anosov pair for the pseudo-Anosov element, g¢g~', in Z. Hence, X is
either sufficiently large or pseudo-Anosov stabilizing.
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LLEMMA 4.3. Let X be infinite and pseudo-Anosov stabilizing. X is dynami-
cally irreducible if and only if X is of symmetric type.

Proof. Under the hypothesis, A= {[L.], [L_]}. If X if not of asymmetric
type, then {[L.]} and {[L_]} are distinct nonempty I-invariant minimal closed
subsets of PMF. In this situation, therefore, I' is dynamically reducible.

On the other hand, if %' is of symmetric type, then A is a nonempty
I-invariant minimal closed set. Moreover, any nonempty I'-invariant closed set
must contain either [L,] or [L_]. Therefore, it must contain both. As in the
sufficiently large situation, I" is dynamically irreducible.

Now suppose that X' does not contain a pseudo-Anosov mapping class. By
Lemma 2.8, 2 is either finite or reducible. As a rule, as we shall see, reducible
groups are dynamically reducible. There are, however, some exceptions which we
shall now discuss.

LEMMA 4.4. Let S be a torus with one hole or a sphere with four holes. If X is
an infinite reducible subgroup of I'(S), then X is dynamically irreducible.

Proof. Under the hypothesis, PMF is a circle, S ! Let A be a reduction
system for 2. Then A must be a simple closed curve, a, as in figure 1 or figure 2.

Figure 2
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The stabilizer of « in I', I, is virtually cyclic. Since, by assumption, ¥ is an
infinite subgroup of I,, X must contain a nontrivial power of D,, D,. On the
other hand, D, acts as a parabolic transformation of the circle with one fixed
point. Hence, the statement follows as in the proof of Lemma 4.3.

Now we consider the ‘“‘general case”. If A is a finite family of disjoint simple
closed curves in S, the barycenter of A, is the sum of the elements of A. In other
words, the barycenter of A is the enlargement of the partial foliation whose
support is a disjoint union of annuli about the components of A, foliated by
leaves parallel to the components, and each with height, or total transverse
measure, 1.

LEMMA 4.5. Suppose that S is not a torus with one hole or a sphere with four
holes. If X' is a reducible subgroup of I'(S), then X is dynamically reducible.

Proof. Suppose that there is a reduction system for X, A, with at least two
elements. Let Za be the orbit under 2 of an element of A, a. Then 2« and the
barycenter of A are two distinct nonempty ZX-invariant minimal closed sets.
Hence, 2'is dynamically reducible.

Suppose that 2 has no such reduction system. Then X must reduce along a
single simple closed curve, a. Then {a} is a nonempty 2-invariant minimal
closed set. We wish to exhibit another.

The surface obtained by cutting S along «, S,, has at most two components.
By the assumption on S, at least one of these components is not a pair of pants.
Hence, at least one component of S, supports a measured foliation [5]. Let P, be
the set of projective measured foliations on § which are obtained by enlargement
of measured foliations supported on components of S,. Clearly, P, is a nonempty
closed subset of PMF(S). By definition, « is not in P,. Moreover, P, is
X-invariant. Hence, P, must contain a nonempty 2X-invariant minimal closed
subset. Such a set provides the desired counterpart of {a}. Hence, X is
dynamically reducible.

We have discussed sufficiently large groups, groups with a single pseudo-
Anosov pair, and infinite reducible groups. All that remains is the case of a finite
group. But these are clearly dynamically reducible since every orbit provides a
nonempty X-invariant minimal closed set. Hence, the following characterization
of dynamically irreducible groups is an immediate consequence of the preceding
lemmas and discussion.

THEOREM 4.6. Let X be a subgroup of I'(S). X is dynamically irreducible if
and only if it is of one of the following types:
(1) X is sufficiently large.
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(2) 2 is infinite pseudo-Anosov stabilizing of symmetric type,

(3) 2 is infinite reducible and S is a torus with one hole or a sphere with four
holes.

On the other hand, X is dynamically reducible if and only if it is of one of the
following types:

(4) 2'is finite,

(5) 2 is pseudo-Anosov stabilizing of asymmetric type,

(6) 2 is infinite reducible and S is neither a torus with one hole nor a sphere
with four holes.

Remark. The types (2), (3), (4) and (5), are all virtually cyclic groups. They
belong to a slightly more general class, the virtually abelian groups. These latter
groups have a very simple dynamical behavior and are not of primary concern to
us. We shall refer to them as elementary groups.

5. Limit sets for sufficiently large groups; elementary properties and some
examples

In this section, X' denotes a sufficiently large subgroup of I'. Sufficiently large
groups are rather well-behaved under standard operations on subgroups. In
particular, we have the following elementary assertions.

PROPOSITION 5.1. Let 3, and X, be subgroups of I, such that X, is
contained in X,.
(1) If 2, is sufficiently large, then %, is sufficiently large.
(2) If X, is sufficiently large and X, is of finite index in X,, then X, is
sufficiently large.
(3) If 2, is sufficiently large and X\ is infinite and normal in %, then X, is also
sufficiently large.

Proof. The first two assertions are trivial. Therefore, let 2, be sufficiently
large and X, be infinite and normal in X,. First, we construct a pseudo-Anosov
element in X,.

Suppose that ¢ is a pseudo-Anosov map in X,. Let [L_] and [L.] be the fixed
points in PMF for ¢. If 2, is contained in the stabilizer of {[L_], [L.]}, then, by
the assumption that X, is infinite and by Proposition 2.2, it follows that X contains
a nontrivial power of ¢.

Therefore, we may assume that there is an element, f, in 2, which is not in
the stabilizer of {[L_],[L.]}. Let ¥ be the pseudo-Anosov map, fo¢f ' By
Lemma 2.5, ¢ and ¢ are independent. It follows from standard dynamical



Dynamics on Thurston’s sphere of projective measured foliations 147

arguments (cf. [3]) that ¢"y ™" is of pseudo-Anosov type for n sufficiently large.
On the other hand, ¢"y ™" is equal to (¢"f¢~")f ~', which is an element of Z,.
In any event, therefore, we may choose a pseudo-Anosov element, ¢, in X,.
Since 2, is sufficiently large, there is a pseudo-Anosov map, y, which is
independent from ¢. Then the maps, ¢ and y¢y ™', are independent pseudo-
Anosov maps in X,. Therefore, %, is sufficiently large.
This proves Proposition 5.1.

Remark. 1t is easy to construct examples of nontrivial normal subgroups of
sufficiently large groups which are not sufficiently large. The center of I'(S),
where S is a closed surface of genus two, is an obvious example. There are other
less obvious examples. We shall discuss such an example in the latter part of this
section.

In section 4, we associated to each sufficiently large group, 2, the following
two subsets of PMF:

A, is set of fixed points of pseudo-Anosov mapping classes in 2, (5.1)

A is the closure of A,. (5.2)

We shall say that A is the limit set of X'

Theorem 4.1 expresses an important property of the limit set, A. In fact, the
proof of that theorem shows that for any sufficiently large group, X, the
associated set A, has no isolated points. (This, of course, is not the case for
infinite pseudo-Anosov stabilizing groups). Therefore, A has no isolated points
and we have the following proposition.

PROPOSITION 5.2. A is a perfect set and is, therefore, uncountable.
Here are some other properties of the limit set.

PROPOSITION 5.3. A is either equal to PMF or has empty interior.

Proof. Suppose that A contains an open subset, U, of PMF. By Theorem 4.1,
for every F in A, there is an element, ¢, of 2 such that ¢(F) is in U. By the
S-invariance of A, ¢ '(U) is a subset of A. Since ¢ ~'(U) is also an open
neighborhood of F, F is in the interior of A. Therefore, A is open in PMF. Since
A is also closed, it must be equal to PMF.

PROPOSITION 5.4. If X, and X, are sufficiently large subgroups of I’ and ¥,
is of finite index in X,, then X, and X, have the same limit set.
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Proof. This follows easily from the fact that for any pseudo-Anosov element,
¢, in X5, there is a positive integer, n, such that ¢" is in X,.

PROPOSITION 5.5. If £, and 2, are sufficiently large subgroups of I' and X,
is a normal subgroup of %,, then X, and X, have the same limit set.

Proof. Let A, and A, denote respectively the limit sets of X, and X,.

If L is an element of PMF which is fixed by a pseudo-Anosov element, ¢, in
2, and if g is any mapping class in %,, then g(L) is a fixed point for the
pseudo-Anosov mapping class, g¢g~', which is in X,. Hence, the set of
pseudo-Anosov fixed points of 2, is invariant by X,. It follows that its closure,
A,, is invariant by 2,. Using Theorem 4.1, we see that A, is equal to A,.

We close this section with some examples of limit sets.

EXAMPLE. 1. The mapping class group acts minimally on PMF (cf. [5],
exposé 6, §11I). Therefore, by Theorem 4.1, its limit set is equal to the whole
space, PMF. Proposition 5.5 implies, then, that the limit set of the Torelli group
is also equal to PMF.

EXAMPLE. 2 (groups of Schottky type). These are examples of groups
where the limit set is a Cantor set. The construction is inspired from Klein’s
method for constructing free subgroups (cf. [13]). Some care should be taken if
we want to insure that every element in the group is of pseudo-Anosov type. As
in the case of Schottky groups, one needs, for each of the n generators, g;, a pair
of disjoint disks {D;", D;}, so that all of the 2n disks are disjoint and g; (resp.
gr') takes the exterior of D; (resp. D;) inside D; (resp. D;) by a contraction
(for a certain metric on PMF).

Both the techniques developed in [13] and [15] lead to such examples.

EXAMPLE. 3. We consider now the limit set of the group generated by the
Dehn twists along two simple closed curves that fill up the surface. This group is
studied in [5].

In this example, the limit set will be a Cantor set, which is naturally contained
in a geometric circle of PMF, the term geometric referring to the natural
projective piecewise-linear structure of that space.

Let a and b be two simple closed curves on S which are transverse and in
minimal intersection number position such that the complement of these two
curves in S is a union of cells (and annuli in the case where § has nontrivial
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boundary). Let n be the number of intersection points of a and b. (We assume
that n is larger than two. It is easy to see that this assumption always holds for
closed surfaces.)

In [5], chapter 11, there is a description of the elements of the group
generated by the Dehn twists, D, and D,. This group is shown to be realized by a
group of homeomorphisms of $ which act as linear maps with respect to the
singular flat metric defined on § by enlargement of the curves, a and b, to
transverse measured foliations.

Let P be the set of projective classes of measured foliations on S which are
defined by this singular flat structure as lines of constant slope. P is naturally
parameterized by the real projective line, RP', since we can see a foliation by
lines of constant slope on § as the image, on that surface, of the corresponding
foliation of the plane by the coordinate maps associated to the ‘“horizontal” or
“vertical” atlas of S associated to a and b (see [5]). Using train track coordinates,
one can easily see that there is a natural imbedding, j, of RP! in PMF as a
projective piecewise-linear subvariety.

The discussion in [5] also implies that this group, %, is sufficiently large. The
limit set of X is a Cantor set and is the image of the limit set in RP' of the group
G of linear fractional transformations generated by the matrices

) ()

X is isomorphic to G, and an element of 2'is pseudo-Anosov iff it corresponds
to a hyperbolic element in G.

Note also that if we choose a and b to be invariant under a finite order map,
then the group, X, will have a nontrivial center; Hence, we obtain nontrivial
examples of nontrivial normal subgroups of sufficiently large groups which are not
sufficiently large:

EXAMPLE. 4 (The handlebody groups). These are the two examples studied
by Howard Masur in [11]. The surface, S, is the boundary of a handlebody, and
the groups considered are the subgroups of the mapping class group of S which,
in one case, extend as homeomorphisms of the handlebody, and in the other case,
extend and induce the identity map on the fundamental group of the handlebody.
That these groups are sufficiently large can be seen from a construction of Fathi
and Laudenbach [4]. Masur defines the limit sets in a different way than we do,
but the two definitions coincide, as Masur shows in Theorem 1.2 of [11] that the
limit sets as he defines them, are also the unique minimal invariant sets for the
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action of the groups. In these examples, the limit set is a proper subset of PMF.
Unlike the previous examples, it is connected ([11], Theorem 1.2).

6. The domain of discontinuity of a sufficiently large subgroup of I

In this section, X denotes a sufficiently large subgroup of I', A, the set of
pseudo-Anosov foliations for 2', and A, its closure, the limit set.

It was proved by Masur, in his study of the limit set for the two handlebody
groups [11], that these groups do not act properly discontinuously on the whole
complement of their limit set, but that in each case there exists a nonempty open
invariant subset on which the group acts properly discontinuously. We wish to
describe a similar region for sufficiently large subgroups of I.

There is a set, Z(A), contained in PMF, naturally associated to A, which is, in
some sense, the completion of A with respect to the intersection function:

Z(A)={F | i(F, G) =0 for some G in A}. (6.1)

Note: The intersection function is defined on MF and not on PMF. Strictly
speaking, therefore, in the above definition we should refer to representatives of
F and G in MF as having zero intersection. In the subsequent discussion, we shall
frequently use this abuse of notation. The meaning, however, will be clear.

PROPOSITION 6.1. Z(A) is closed and X-invariant. If A is a proper subset
of PMF, then so is Z(A).

Proof. Let F be the limit of a subsequence, {F,}, of elements in Z(A). There
exists a sequence of elements, {G,}, in A, such that i(F,, G,) is zero. By
compactness of A, the sequence, {G,}, has a subsequence converging to a point,
G, in A. By taking limits, i(F, G) is zero and, hence, F is in Z(A). Therefore,
Z(A) is closed.

Let F be an element of Z(A) and G an element of Z(A) such that i(F, G) is
zero. For any G in X, we have the identity:

i(gF,’gG) =i(F, G)=0. (1)
Since gG is in A, gF is in Z(A). This shows that Z(A) is Z-invariant.

Obviously, there are no uniquely ergodic foliations in Z(A)\A. On the other
hand, the set of uniquely ergodic foliations has full measure in PMF (see [9], [10]
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or [16]). It follows that Z(A)\A has zero measure, and therefore empty interior.
Hence, if PMF\A is nonempty, so is PMF\Z(A).

The proof of Proposition 6.1 is now complete.

We denote the complement of Z(A) in PMF by A. The rest of this section is
devoted to the study of the action of ¥ on A.

For the rest of this section, we let |L| denote a pseudo-Anosov pair in MF,
{L,, L_}, for some pseudo-Anosov element of 2. We define a function on MF,
i(.,|L]), by the rule:

i(F, |L])=max {i(F, L_), i(F, L,)}. (6.2)
In addition, we associate to |L| the following subset of MF:

A,y = {F € MF such that for every element, g, in X,
i(F, |L|)=i(F, |gL])}. (6.3)

Note: A, is invariant by multiplication by positive reals and defines naturally
a subset of PMF. On the other hand, A, depends not on the projective classes of
L, and L_ but on L, and L_. For instance, if |L| is fixed projectively by a
pseudo-Anosov mapping class, ¢, in 2, then A, is not equal to A,,,. (This
assertion will follow from the subsequent discussion).

LEMMA 6.2. For any mapping class in X, f, we have (A1) = Ay,

Proof.

Fef(Au)e

fIFef(A) e

i(f'F, IL))<i(f"'F, |gLI)Vg € £ &
i(F, |fLl) <i(F, |fgL))Vg e Z&

i(F, |fL|)<i(F, |g'fL|) (where g’ =fgf "' can be any element of )&
FeApqg,.

This proves the lemma.
We have now the following result:

PROPOSITION 6.3. A,N A, =O.
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Proof. Suppose, for the sake of contradiction, that there is an element, F, in
A,., which is an attracting fixed point for the pseudo-Anosov mapping class, f, in
2. Then:

i(F, |L|) <i(F, |gL)) for all g in . (1)

In particular, we have the inequalities:

i(F, |L))=i(F, |f"L|) for all n in Z. (2)
But we also have the identity:

i(F, |f7"L|) = i(f"F, |L|) = A"i(F, |L|). 3)

Statements (2) and (3) imply that i(F, |L|) is zero, which is impossible.
We have an immediate corollary.

COROLLARY 6.4. A, is contained in PMF\U {A,,,, g€ X }.
The following propositions describe the relation of these sets to S.

PROPOSITION 6.5. For every element, «, in S, the following set of numbers
has a minimum:

{i(a, gL]), g€ X'}

Proof. Suppose the set has no minimum. Then there exists an infinite
sequence, {g,}, in 2 such that:

-+ <i(a, |g2L]) <i(a, |giL]) <i(a, |L]). (1)
This is equivalent to the condition;
-+ <i(gz'(a), L)) <i(gr (a), IL]) <i(a, |L)). (2)

In particular, g,,'(a) is not equal to g, '(«) unless m is equal to n. By (2.11),
we may write:

r.g.'(a)— F in MF (3)
r,— 0. (4)



Dynamics on Thurston’s sphere of projective measured foliations 153
It follows that:
i(r.g: (@), Ly)=r,i(g, ' (@), L)

<r,i(g,'(a), |L|)
=r,i(a, |L]). )

By taking limits, i(F, L.) is zero. By (2.5), this implies that [F] is equal to
[L.]- By the same argument, [F] is equal to [L_], which is a contradiction.

COROLLARY 6.6. S is contained in\ ) {A.,, g€ X }.

Since some Ay, is non-empty, and since (by Lemma 2.6) g7 '(A,.,) = 4,,,
we conclude:

COROLLARY 6.7. Every A, is non-empty.

Remark. We shall see later on that every set, A,,, has nonempty interior if
and only if A is not equal to PMF. (This will follow from Proposition 6.13).

PROPOSITION 6.8. For any element, f, of X that does not fix the pair, |L|, in
MF, the interiors of the sets, A, and Ay, are disjoint.

Proof. Suppose that U is a nonempty open set in MF contained in
ApNAg,, ie., for all Fe U, we have:

i(F, |L|)=<i(F, |gL|) foreveryginZX, (1)
i(F, |fL|)=<i(F, |gfL|) for every gin 2. (2)

In particular, we have, for every Fin U:

i(F, |fL|) = i(F, |fL]), 3)
i(F, |L)=i(F, |fL|). (4)

This implies equality on U:
i(F, |L|)=i(F, |fL|) for all Fin U. (5)

Now, by definition, i(F, |L|) is equal to the maximum of i(F, L.) and
i(F, L.).
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Since i(.,.) is continuous, there is a smaller open set, U’, on which the
equality in (5) holds with |L| replaced by one element of the pair {L,, L_} and
|fL| replaced by one of {fL., fL_}. On any open set, we can define a coordinate
system given by intersection with finitely many foliations, so this implies that
either:

L_=fL,, L,=fL_, L_=fL_ or L,=fL,. (6)

Using Lemma 2.5, we can see that this implies that f fixes the pair, {L,, L_},
as a pair in MF. This proves Proposition 6.8.

6.1. A fundamental domain for the action of a pseudo-Anosov map on PMF

The theorem that we prove next concerns the cyclic groups generated by
pseudo-Anosov elements, which are dynamically reducible groups and should
not, strictly speaking, appear in this section. However, this theorem illustrates the
usefulness of the definition of the set, A,;,, and the study of this elementary case
should give some motivation for the rest of the section.

Observe, that in this case:

A=Z(A)={L., L}. 6.4)

Note: From now on, we shall often consider the set, A ,,, as being a subset of
PMF, which means that we are taking its quotient by the action of the positive
reals.

THEOREM 6.9. Let ¢ be a pseudo-Anosov element of the mapping class
group and |L| be an associated pseudo-Anosov pair, {L., L_}. The set, A, is a
fundamental domain for the action of the cyclic group generated by ¢ on the space,
PMF. More precisely, the following properties hold:

(i) The union, over n'e€ Z, of the sets, $"(A,.,), is equal to PMF\{L,, L_}.
(ii) If n# m, then ¢"(A ) and ¢ (A,.)) have disjoint interiors.
(iii) For any integer, n, the set, ¢"(A,.,), contains 1 or 2 points from every orbit
(except for L, and L_), and the interior of this set contains at most one point
from every orbit.

The theorem will be proved using the following lemma:

LEMMA 6.10. A, ={F e PMF s.t. A" <i(F, L,)/i(F, L_)<A).

Proof of Theorem 6.9. For every n € Z, we have:

f(AL) = A ¢}
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By Lemma 6.10, we have:

Ay ={F ePMF s.t. A™' < i(F, A"L,)/i(F, A™"L_) < A}
={FePMFs.t. A\"®*D<(F, L,)/i(F, L_.)<A*""'}. (2)

The theorem follows easily from this characterization and Proposition 6.8.

Proof of Lemma 6.10. Consider the following two subsets of the sphere,
PMF:

D, = {F e PMF s.t. i(F, L) <i(F, L_)} (1)
D,={F e PMFs.t. i(F, L_)<i(F, L,)}. )

The lemma can be proved separately for points in D, and points in D,.
Suppose F is an element of D,. Then Fis in A, if and only if:

i(F, L_)=max {A"(F, L,), A""i(F, L_)} for every n € Z. (3)
This is equivalent to:

i(F, L_)<A"(F, L,) (4)
or

i(F, L)< A7"i(F, L_) for every n e Z.

These two inequalities are easily seen to be equivalent to the statement that:

i(F, L)< A"i(F, L) for every n=1. (5)
That is:
i(F, L_)y<Ai(F, L,). (6)

It follows that for every F in D, we have:
FeA,oA 'si(F, Ly)/i(F, L.)=A. (7

The same reasoning applies for elements F in D,.
This proves Lemma 6.10.
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6.2. Proper discontinuity on A

Theorem 6.16, that we shall prove below, shows that in the most general case,
the group, 2, acts properly discontinuously on A. Furthermore, Propositions 6.13
and 6.15 show that A, N A defines a fundamental region for the action of X on
A.

LEMMA 6.11. Let F be an element of A, and {g,} be an infinite sequence of
distinct mapping classes in X. Then the sequence of numbers, {i(F, |g,L))}, is
unbounded.

Proof. By Lemma 2.7, we know that at least one of the two sequences,
{llg.L+|l} and {lig,L-||}, is unbounded.

Suppose {||g.L ||} is unbounded (the other case is similar). Then there exists
a sequence, {7, }, of positive real numbers, such that:

r.g.L+,—> G in MF (1)
r,— 0. (2)

The projective class of G is in A.
We may write:

ri'i(F, r,g,Ly)=i(F, g,L.)=<Ii(F, |g,Ll). (3)

If the last term was bounded independently of n, then i(F, r,g, L) would have to
converge to zero. This would imply that i(F, G) is zero, which is a contradiction.

PROPOSITION 6.12. Suppose that A, contains a point in A. Then the set of
mapping classes, {g |A,., is contained in A}, is finite.

Proof. Suppose that {g,} is an infinite sequence of distinct mapping classes
with A, contained in A, ,,, and let F be an element of AN A, ;. Then, for every
n, we have:

i(F, |L])=i(F, |g,L|) =i(F, |L]). (1)
This implies that:
i(F, |L|) = i(F, g,LI). (2)

But this contradicts Lemma 6.11.
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PROPOSITION 6.13. For every F in A, there exists an element, g, in X such
that F is in Ay,

Proof. Suppose, on the contrary, that F is not in Ay, for any g in 2. Then
there exists an infinite sequence, {g,}, of distinct mapping classes such that:

.« - <i(F, |g,L|) <i(F, |g,L|) <i(F, |L|). (1

Therefore, the sequence, {i(F, |g,L|)}, is bounded, and this contradicts Lemma
6.11.

PROPOSITION 6.14. Let K be a compact set in A. Then the set of mapping
classes, {g € 2| KN A, # D}, is finite.

Proof. Suppose there exists an infinite sequence, {g,}, of distinct mapping
classes such that KN A, ,, is nonempty for every n.

Let F, be an element of KN A, ;.

i(Fy, |gaLl) <i(F,, |LI). (1)

By Lemma 2.7, we know that one of the sequences, {||g.L.|/} and {||g.L_]|},
is unbounded. Suppose the first one is unbounded. (The argument works for both
cases). Taking subsequences, we can write:

r.g,L.— G in MF (2)
=0 3)
F,— F in MF. (4)

It follows that:

i(F, G)=limi(F,, r,.g,L.)
< limr,i(F,, |g.L|)
<lim r,i(E,, |L|)
=0. (5)

This contradicts the fact that G is in A and Fis in A.

PROPOSITION 6.15. Let F be a point in A. Then the X-orbit of F intersects
A, only finitely many times.
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Proof. Suppose that g,(F) is in A, for infinitely many g,. Then:

i(g(F), ILI) <i(g.(F), |g.LI) = i(F, IL)). (1)

Therefore, i(F, |g,L|) is bounded independently of n.
This contradicts Lemma 6.11.

THEOREM 6.16. 2 acts properly discontinuously on A.

Proof. We show that for every compact subset, K, in A, there are only
finitely many mapping classes, g, in X such that the intersection, g(K) N K, is
nonempty.

By Proposition 6.14, there are only finitely many mapping classes, g, for
which the sets A, have nonempty intersection with K. Let D, ..., Dy be these
sets.

Suppose now that there is an infinite sequence, {f,}, of distinct mapping
classes such that for every n, the intersection, K Nf,(K), is nonempty. Then
f-Y(K)N K is nonempty for every n.

Let F, be an element of f,,'(K) N K. By Proposition 6.13, there is a mapping
class, g,, in 2, such that F, is in A, ,,. Since F, is in K, g, must be among the
finitely many maps described above. By assumption, f,(F,) is also in K. On the
other hand:

Jo(B) € fa(Ag,1) = Aot (1)
Hence, A, ., must be one of the sets D, ..., Dy.

By taking a subsequence, we find an infinite sequence of distinct mapping
classes, {f.g.}, with all the sets, A, ,,, being equal. This contradicts Proposition
6.12.

7. The action of an infinite reducible group

In this section, we consider the action on PMF of an infinite reducible group,
2. The class of infinite reducible groups includes all the nonelementary
dynamically reducible groups as well as all the infinite elementary groups except
for the pseudo-Anosov stabilizing groups. In extending the results of the previous
section to this class of groups, therefore, we shall have described the dynamics of
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all groups except the finite groups and the pseudo-Anosov stabilizing groups. The
dynamics of these latter groups, is, on the other hand, particularly simple.

Given a reduction system for 2, A, we may consider the action of X on the set
of components of the surface obtained by splitting S along A, S,. The kernel of
this action, 2,, by definition, preserves each component of S,. The restrictions of
2,4 to these components will be called the components of Z,. (2,4, of course, may
not be the direct product of its components). ’

It is easy to see that if A is a maximal reduction system for X, then the
components of X, are irreducible groups. By Lemma 2.8, it follows that each
component is either finite or contains a pseudo-Anosov mapping class. We shall
refer to these latter components as pseudo-Anosov components of X,. The
corresponding component of S, will be called a pseudo-Anosov component of S.
It is easy to see that the pseudo-Anosov components of S are well-defined
independently of the choice of maximal reduction system.

Let B be the set of boundary components of pseudo-Anosov components of S.
Of course, B may be empty, but it is a natural reduction system for X. Indeed, it
must be contained in any maximal reduction system for X (cf. [2]).

Let S, be the surface obtained from § by excising the pseudo-Anosov
components of §. It follows from standard arguments that the restriction of X; to
S;, 2, is a virtually abelian group. In fact, it is a finite extension of a (possibly
trivial) subgroup of D(T), where T is a reduction system for X; and D(T) is the
free abelian group generated by Dehn twists about the components of T.

Let T be a minimal reduction system for ;. T is then a canonical reduction
system for 2. The essential reduction system for %, Ay, is the union of B and T.
It is a canonical reduction system for X, since it is the unique minimal reduction
system for X such that each component of the associated stabilizer is either
pseudo-Anosov or finite.

From the assumption that 2'is infinite, it follows that Ay is nonempty.

7.1. Limit sets for infinite reducible groups

Let 2 be an infinite reducible group. Let A be the essential reduction system
for ¥, BUT, as described above.
Let S; be decomposed as follows:

SB=S|U"'USNUS, (7.1)
The restriction of 2 to §,, 2, is pseudo-Anosov fori=1,..., N. (7.2)

(Of course, if B is empty, N is zero).
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We associate the following sets to 2

A} is the set of projective measured foliations in PMF which are
obtained by enlargement of fixed points of pseudo-Anosov elements in

2, wherei=1,...,N. (7.3)
A' is the closure of Aj. (7.4)
A is the union of A, ..., AY and A. (7.5)

We shall refer to A as the limit set for 2. 1t is a limit set for X in the sense of
section 3. On the other hand, 2 may not act minimally on A (cf. Lemma 4.3). If
B is nonempty, for instance, then B and the union of A,,..., Ay form two
disjoint closed invariant sets.

The components of A are the nonempty 2-invariant minimal closed subsets
of A.

PROPOSITION 7.1. There are finitely many components of A. The set, A, is
the union of its components.

Proof. It is clear from the definition of A that A is also the limit set for Z,.
Certainly, the 2, components of A are contained in the X components of A.
Furthermore, (cf. Lemma 4.3), the X components of A are the X orbits of the X,
components of A. Hence, we can assume that 2'is equal to 2,.

Under this assumption, we can completely describe the components of A. If 2,
is pseudo-Anosov stabilizing of asymmetric type then A’ is a pseudo-Anosov pair
which splits into two components of A. Otherwise, by Lemma 4.3 and Theorem
4.1, A’ is a component of A. Finally, A splits up into the orbits of A under X,
each of which is a component of A. The proposition follows immediately.

Remark. 1t is not true, in general, that 2 has finitely many nonempty
invariant minimal closed sets. If, for example, 2 is a cyclic group generated by a
map with two pseudo-Anosov components of the same expansion factor, then
every point on the join of the corresponding attracting fixed points is such a set.
(This join is a segment, and, hence, uncountable). It appears, however, that the
failure of a finiteness statement is due solely to this *““join construction”.

7.2. The zero set and the domain of discontinuity

As for sufficiently large groups, we define the zero set of A, Z(A), as a
completion with respect to the intersection function:
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Z(A) is the set of projective classes of measured foliations which have
zero intersection with a foliation in A. (7.6)

Since A is a proper subset of PMF, the proof of Proposition 6.1 establishes the
following proposition.

PROPOSITION 7.2. Z(A) is a closed Z-invariant proper subset of PMF.

Remark. As in [13], we can also take the join of the sets A;, ..., Ay and the
components of A. This set need not be a limit set in the sense of section 3. It is,
on the other hand, a subset of Z(A).

We define A to be the complement of Z(A) in PMF. As in section 6, we shall
prove that A is a domain of discontinuity for .

A complete system for X, |C|, is a subset of MF which is the union of the
following subsets of MF:

L= {L, L'} a pseudo-Anosov pair for an element of X',
i=1,...,N. (7.7)

a*, a curve in S which has nontrivial intersection with «, associated to
every component « of A. (7.8)

We define a function on MF, i(., |C|), by the rule:

i(F, |C|)=max {i(F, L"), i(F, L), i(F, «*) where i=1, ..., N,
and e A}. (7.9)

Again, we associate to |C| the following subset of MF:

A,y = {F € MF such that for every element g in 2,

i(F, |Cl)=i(F, 1gC])}- (7.10)

We discuss generalizations of the basic properties of the sets, A, of the
previous section. We shall not provide proofs where the arguments carry over
directly.

LEMMA 7.3. For any mapping class, f, in X, we have f(A\c) = A s,

PROPOSITION 7.4. AbN A =D fori=1,...,N.
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COROLLARY 7.5. A} is contained in PMF\U {A ¢, g € 2}.

Remark. We shall see that every set, A, has nonempty interior. (This will
follow from Proposition 7.8).

We shall now discuss the proper discontinuity of 3 on A.

7.3. Proper discontinuity on A

As in section 6.2, we shall now prove that %' acts properly discontinuously on
A and A¢, provides a fundamental region for the action of 2 on A.
Index the components of S,:

SA=S1U"‘USP where N < P. (711)

By restricting 2, to S4, we obtain a reduction homomorphism, p, whose kernel
K is a subgroup of D(A):

1-K—>3,— 11,

..... ~I'(S;) (7.12)
K is contained in D(A). (7.13)

Moreover, by restriction to S;, we have projections onto the i-th component:
n:2,—IS) i=1,...,P. (7.14)
We define ||C|| by the rule:

ICl| = max {||F||, F € C}. (7.15)

LEMMA 7.6. Let {g,} be an infinite sequence of distinct mapping classes in X.
Then the sequence of numbers, {||g.C||}, is unbounded.

Proof. The stable subgroup of %2, 2, is of finite index in 2. Hence, there are
finitely many left cosets of £, in 2. Thus, we may assume that there is an

element, A, in X, such that the sequence, {g,}, is contained in the left coset,
hZ,.

g.=hh,, h,eZ,. (1)
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It follows that:
llg.Cl|=M. ||h,C|| for some positive constant, M. (2)

Hence, we can assume that {g,,} is contained in X,.

Suppose that {||g,C||} is bounded. By applying Lemma 2.7 to the pseudo-
Anosov components of S, we find that the corresponding sequences of restrictions
are finite:

{m:g,} is finite 1 =i<N. (3)

Hence, by a coset argument as before, we may assume that {g,} acts trivially on
the pseudo-Anosov components of S.

Since the restrictions to the remaining components of S, are finite, we may
assume, in addition, that {g,} is contained in the kernel, K. Thus, we may write
g. as a product of powers of Dehn twists about the components of A.

A={a’|,...,a’M} (4)
D; = the Dehn twist about «; (5)
g = DY) - DR, ®)

Since {g,} is infinite, we may assume that:
p(1, n)— L. (7)

Using a norm constructed from a paving of MF which is compatible with A, as
in [13], we easily see that:

llgnaill — . (8)

Hence, {||g.C||} is unbounded.
The following lemma is proved in the same manner as Lemma 6.11 by using
Lemma 7.6 instead of Lemma 2.7.

LEMMA 7.7. Let F be an element of A, and {g,} be an infinite sequence of
distinct mapping classes in 2. Then the sequence of numbers, {i(F,|g,C|)}, is
unbounded.

PROPOSITION 7.8. For every F in A, there exists an element, g, in X such
that F is in the set, A,
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PROPOSITION 7.9. The following set of mapping classes is finite: {g €
2 |A¢, is contained in A}

Proof. Since A is nonempty, the proof follows through as for Proposition
6.13.

PROPOSITION 7.10. Let K be a compact set in A. Then the following set of
mapping classes is finite: {g € £ | K N A, # D).

PROPOSITION 7.12. Let F be a point in A. Then the X-orbit of F intersects
A,c, only finitely many times.

THEOREM 7.17. X acts properly discontinuously on A.

8. A Remark on the dynamics on Teichmiiller space

In this section, we consider the space, PMF, as Thurston’s boundary at infinity
of T, the Teichmiiller space of the surface, (see [5], exposé 8). We recall that the
topology on the union TU PMF is defined by first imbedding the two spaces T
and MF into the space RS of functions on the set S of nontrivial homotopy classes
of simple closed curves, via the functions a— I(y, @) if yeT (where I(,)
denotes the length of the closed geodesic in the class «), and a—i(y, «) if
y € MF. The topology is then the induced topology on the projectivized space
PRS.

It is well-known that the mapping class group, I', acts properly discon-
tinuously on T. Therefore, a limit point for I acting on T U PMF is necessarily in
PMF. We shall not go into the details of the dynamics of the action of subgroups
of I'on T U PMF, but we wish to point out how one can relate such a study to the
study we have made of the dynamics of the action of I on PMF.

Let 2 be a subgroup of the mapping class group acting on PMF, and let A(X)
be the canonical limit set for this action, as defined in section 3.

Let ZA(Z) be the subset of PMF defined as:

{F | i(F, x) =0 for some point x in A(X)}. (8.1)

As described earlier, the set ZA(Z)\A(X) has zero measure in PMF. We prove
the following result on the dynamics of the group action on the compactified
space:

PROPOSITION 8.1. Let [F] in PMF be a limit point (in the sense of section 3)
for the group action of 2 on TUPMF. Then [F]is in ZA(Y).
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Proof. Suppose that {g,} is an infinite sequence of distinct mapping classes in
Y and y is a point in T U PMF such that g,(y) converges to [F] in the topology of
the functional space PRS. (cf. [5]).

If y is in PMF, the proposition is clear, since it follows immediately from
sections 6 and 7 that X acts properly discontinuously on PMF\ZA(ZX).

So we can assume that y is an element of T.

By [5], exposé 8, Corollaire 11.3, we can write:

r,.8,(y)— F in the space R%, (1)
r,— 0. )

We now use the “projection” q : T— MF, described in [5]. We shall follow the
notation of that section.

By [5], exposé 8, there is a neighborhood of F in T U PMF of the form VU W,
where V is a subset of T and W a subset of PMF, on which there is a projection

qg:V—>MF

satisfying
i(qv), a)=I(v, @) VaeS and veV (3)
r.g,—F in MF&r,y,—F in RS (4)

where we can assume y, € V and r,,— 0.

Since the elements, {g,}, are all distinct, we may choose, by (2.13), an
element, a, of S such that the sequence, {g,(«)}, is unbounded. Taking a
subsequence as usual, we can write:

S,,g,,(a’)"" G in MF’ (5)
s,— 0. (6)

Note that G, being the limit of a sequence, {g,(a)}, in PMF, is in A(Z).
Lety, =g,(y) and a,, = g,(«). We have the following identity:

1(y,, &) = 1(y, ). (7)

By using (3) and (7), we have the inequality:

i(r,g(y,), $u@,) = 0,8,1(y,, &) =1,8,1(y, ). (8)
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By taking limits and using (4), we conclude that i(F, G) is zero.
Therefore, Fis in ZA(Y).
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