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Imbeddings and homology cobordisms of lens spaces

SyLvaiN CappeLL' and DANIEL RUBERMAN!

In this paper we consider the existence of smooth or PL imbeddings of
manifolds in Euclidean space with codimension one. The manifolds we treat are
made from lens spaces (or homotopy lens spaces) by removing a disc or by taking
a connected sum. (It is easy to see [R2] that a homotopy lens space must be
punctured in order to imbed in Euclidean space of one higher dimension.) The
results of [GL, R2] show that this problem reduces to the problem of finding a
homology cobordism (i.e. one with the homology of a product) between two
homotopy lens spaces. It is shown in [R2] that for (linear) lens spaces L with
n,(L) of prime power order, the existence of such a homology cobordism implies
the existence of an s-cobordism, and hence that a lens space L imbeds punctured
if and only if L admits an automorphism satisfying certain conditions. It is
straightforward to explicitly describe all such lens spaces. Further, the connected
sum of two such lens spaces imbeds if and only if they are diffeomorphic. Hence
in both problems, the homology cobordism may be taken to be a product.

The present paper will demonstrate that the situation changes when the order
of m,(L) is divisible by more than one prime and when L is allowed to be a
homotopy lens space. The invariants used in [R2] as obstructions to imbedding
were equivariant signatures associated to coverings of prime-power degree; in the
general case considered here they do not characterise a homotopy lens space,
even up to h-cobordism. Nevertheless, we show that in dimensions greater than
three, the signature invariants used in [R2] do determine a homotopy lens space
up to homology cobordism within its normal cobordism class. Hence only a small
portion of the invariants used in [W1] to classify homotopy lens spaces comes into
play; in particular Reidemeister torsion plays no role. This classification up to
homology cobordism leads to necessary and sufficient conditions for punctured
imbeddings and imbeddings of connected sums.

The fact that only the invariants associated to prime-power coverings come
into play has an analog in other parts of topology, most notably in the theory of
transformation groups. In that context, Smith theory [B1] provides restrictions on
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76 SYLVAIN CAPPELL AND DANIEL RUBERMAN

the homology of fixed-point sets of actions of finite groups. These homological
restrictions often turn out to be (with some additional conditions) sufficient to
construct actions with specified fixed-point set [J, W2]. So, as in Jones’ converse
to Smith theory [J], only prime-power restrictions arise.

1. Definitions and notation

The quotient of 7! by a [PL] free action of a cyclic group will be called a
homotopy lens space; if the action is the restriction of a representation L is simply
a lens space. For each L, fix a generator g of &,(L) and an orientation of L. Let
y:m,(L)— Z, be a homomorphism taking g to 1; this gives an action of Z, on L.
Some multiple (say s) of this action bounds a free action of Z, on some manifold
W?k; examining the Z, action on H,(W) gives the multisignature p, [W1]. We
follow [W1] in regarding p,(L) as an element of the ring Q[x]/X where
>=Y40x', and x is a generator of Hom (Z,, S'). We can thus view p,(L) as a
function from m,(L)— {e}, or as a polynomial Y-/ o,x' well-defined up to
addition of multiples of 2. The numbers o, are 1/s times the eigenspace signatures
of the action of Z, on H,(W). If m,(L) = Z, then p,(L) is denoted p(L) in [W1].

If d|n and the homomorphism vy factors through the obvious surjection
Z,—Z,, then the invariants p, and p, are related by a formula due to
Hirzebruch: If n = md and p,, is written as L3, o, X, then according to [H], p,
will be given as m Y¢{Z) Ox.x% For M a closed manifold, M, will denote the
punctured manifold M-(open ball).

1.1. DEFINITION. Suppose M and M’ are oriented manifolds. A homology
cobordism from M to M’ is an oriented cobordism (W;M, M') with
H,(W;M)=H,(W,M")=0.

The obstructions to homology cobordism and imbeddings which we discuss are
equally valid in the three-dimensional case and in high dimensions. However our
positive results are valid (so far as we know) only in dimensions greater than
three, so that all lens spaces considered from now on will have dimension =5. We
have phrased our results in terms of PL manifolds and imbeddings; we will
indicate at appropriate places the modifications necessary for the smooth case.

2. Homology cobordisms and imbeddings

2.1. LEMMA. If (W?, L, L’) is a homology cobordism between the homo-
topy lens space L and L', there is a retraction r : W — L whose restriction to L' is a
homotopy equivalence.
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Proof. View L as the (2k —1)-skeleton of K(Z,, 1). Using the fact that
H,(W, L)=0, it is easy to extend the inclusion of L in K(Z,, 1) to a map of W to
K(Z,, 1). But W = L U cells of dimension =< 2k — 1 so this map compresses (rel L)
into the (2k — 1)-skeleton of K(Z,, 1), i.e. into L. Since r is a retraction, it
induces a surjection on homology, so that the restriction of  to L’ is a surjection
on homology and hence on m, as well. Since the lens spaces have the same
homology groups, r, is an isomorphism, so r must be a homotopy equivalence.

2.2. PROPOSITION. Suppose L, L' are (2k — 1)-dimensional oriented ho-
motopy lens spaces.

1. If L# — L' imbeds in §**, then there is a homology cobordism (W; L, L").

2. If L, imbeds in S** then there is a homology cobordism from L to itself such
that the induced homotopy equivalence r:L— L satisfies r,(g) = g“, where a is a
unit in (L) = Z, satisfying the conditions:

a*=1(modn), (@-1,n)=1 for j<k. (*)

3. If there is a homology cobordism as in (2) with fundamental group Z,, then
L, imbeds in S*.

4. If L, imbeds in S** and there is a homology cobordism from L to L' with
fundamental group Z,, then L# — L' (and hence L() imbeds in S*.

Proof. (1) and (2) are shown in [R2, theorem 6]; W is essentially a component
of §** — (L# — L") or of $* — L, X I. Suppose we have (W; L, L) as in (2). Glue
L to itself via the identity map, resulting in a homology S'x S$*~! by a
Mayer—Vietoris calculation. (The point is that the conditions (*) describe the
induced map on the homology of L.) Surgery on an imbedded circle hitting L
transversally in one point produces a homotopy $%, hence a PL sphere with L,
imbedded in it. Finally let (W; L, L') be a homology cobordism with (W)
cyclic. Remove an arc from L to L', and glue two copies along L, to get a
homology cobordism from L, to itself. If now L, is imbedded in S, split open
5% along L, and insert this new homology cobordism. The result is again $** now
with L# — L’ imbedded.

From (2) we get an easy restriction on what lens spaces could conceivably
imbed in S*.

2.3. COROLLARY. If L, imbeds in S** and m,(L)=1Z, then p >k for all
prime factors p of n. In particular if 2| n then L, does not imbed in S**.

Proof. The above conditions are clearly necessary for there to be an element
of order exactly k in Z;.
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Proposition 2.2 reduces the imbedding problem to the question of finding a
homology cobordism whose induced retraction acts in a given way on m,(L). It is
not hard to find obstructions to homology cobordism of homotopy lens spaces;
because we are primarily interested in the application to the imbedding problem
we restrict to the case when 7, is of odd order. By Corollary 2.3 this does not lose
any generality.

2.4. PROPOSITION. Suppose (W;L, L") is a homology cobordism with
r:L'— L the induced homotopy equivalence.

1. r is normally cobordant [B2] to id, .

2. For all prime powers d dividing the order of m (L), p(L")(x) = pa(L)(x").

Proof. The first part is shown in ([CS], p. 307); the point is that a homology
equivalence between two spaces induces a bijection between their sets of stable
bundles, hence the stable normal bundle of L X I comes from a bundle on W. So
W itself provides the normal cobordism. Part (2) is shown in [R2] and depends on
a Smith-theory argument of Gilmer [G1].

Our main theorem is the converse of this proposition.

2.5. THEOREM. Suppose k >2,r:L— L' is a homotopy equivalence, and
that

1. ris (PL) normally cobordant to id, .

2. For all prime powers d dividing n, p,(L")(x) = pa(L)(x").
Then there is a PL homology cobordism W from L to L' whose induced homotopy
equivalence is r, and with nt,(W)=1,.

As an immediate consequence of Theorem 2.5 and Proposition 2.4 we get
necessary and sufficient conditions for L, $* and for L# — L’ = $*. For the
rest of this section we assume that k > 2.

2.6. THEOREM. Let L, L' be homotopy lens spaces with n,=1Z,.

1. Loc S* if and only if there is an a€Z, such that a*=1 (modn),
(@’ — 1, n) = 1(j < k) for which the following hold:

(@) p(L)(x") = p(L)(x) (mod Z).

(b) p(L)(x™) = pa(L)(x) for all prime-powers d dividing n.

2. If LocS?*, then L#—L' < S* if and only if there is an orientation
preserving homotopy equivalence r:L— L' with:

(@) p(L)(x*)=p(L")(x) (mod Z).

(®) pa(L)(x*) = pa(L")(x) for all prime-powers d dividing n.
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Proof. This follows directly from parts 3 and 4 of Proposition 2.2 and the
above theorem.

To prove Theorem 2.5, we use the homology surgery of Cappell-Shaneson
[CS]. Suppose f: W — L x I is a normal map such that W =L'UL,f|L" =r,
and f | L=id,. Then an element o(f) € I'W(Z[Z,]— Z) is defined which is the
obstruction to doing surgery on W to make f into a homology equivalence. The
obstruction group is not even finitely generated; what makes o(f) computable is
the fact that f | W is a homotopy equivalence. This implies that o(f) is in the
image of the natural map from L% (Z[Z,]). So to prove Theorem 2.5 we need to
compute (enough of) I'5(Z[Z,]— Z) to detect the image of L%(Z[Z,]). For the
computation of I'5, we use the work of J. Smith [S2] which interprets I'%, as the
L-group of a certain localization of Z[Z,]. (Smith’s work holds in more
generality; in the case stated below, the result is due to Capell and Shaneson
(unpublished). See [V] for related results.)

2.7. DEFINITION. Let €:Z[Z,]—Z be the augmentation, and set S =
{y | e(y) =1} =1+ ker (€). Define the localized ring A=S"'Z[Z,].

2.8. THEOREM [S2]. I'Y(Z[Z,]— Z) = L%(A). The map L5(Z[Z,])—
IMW(Z[Z,]— Z)— L5(A) is induced by the localization map s:Z[Z,]— A.

The computation of L% (A) reduces, via the Ranicki-Rothenberg sequence
[R1]

— HY(Z,; k()(A))""’ L5 (A)— L5 (A)—

to understanding L5,(A), Ky(A), and the maps from L5,(Z[Z,]) and K(Z[Z,]).
We summarise the computations in:

2.9. THEOREM. 1. For all n,K,(A) = 0. In particular, L7,(A) = L%(A).
2. If x € L5(Z[Z,]) has ps(x) =0 for all prime-powers d dividing n, and has
Arf (x) =0 if k is odd, or signature (x) =0 if k is even, then s.(x) =0 in L5, (A).

We will prove this in the next section, but first we deduce Theorem 2.5 from
it.

Proof of Theorem 2.5. Let f:W — L X I be a normal cobordism of the given
homotopy equivalence r to id,. Since r (and id;) is a homotopy equivalence,
there is an obstruction o(f) € L% (Z[Z,]) to doing surgery on W (rel ) to make it
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into an h-cobordism; we would like to know that s,(o(f)) € L4 (A) is trivial.
Note that in the PL case we can kill the simply connected surgery obstruction
(the signature of Arf invariant, depending on the dimension) by taking the
connected sum with a standard surgery problem. This is the only part of the
argument where the PL case differs from the smooth one. The localization map
Z[Z,]— A induces a map between Ranicki—Rothenberg sequences:

— H'(Z,; Ky(Z[Z,))). — L4%(Z[Z,) — L5«(Z[Z,])) —

l l

Hl(zz; Kn(/\)) - Lgk(A) — L5 (A)

By assumption, p,(o(f)) =0 for all prime-powers d, so by 2.9(2) s.(o(f)) =0
in L5 (A). Since Ky(A) is trivial, L%(A) -is isomorphic to L%(A). Hence
s+(0(f)) =0 and the theory of [CS] provides a homology cobordism from L’ to
L.

2.10. COROLLARY. If L' is homology-cobordant to L*~' there is a
(k — 1)-connected homology cobordism from L' to L.

Proof. 1If L' is homology cobordant to L the prime-power multisignatures p,
are all equal. The homology cobordism provided by Theorem 2.5 can be taken to
be (k — 1)-connected, by performing preliminary low-dimensional surgeries.

3. Algebraic computations

The idea behind our computation is that (roughly speaking) the ring Z[Z,]
splits up as a product of rings according to the various factors of n. Upon passing
to the localized ring A, the rings associated to composite factors of n become
trivial, while those associated to prime-powers remain. The tools which are used
in carrying out this idea are the Mayer—Vietoris sequences in K- and L-theory
due to Milnor [M2] and Ranicki [Ri] respectively. We remind the reader that a
diagram of rings

R, — R,

L]

R; — R,
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is cartesian if the associated sequence of the additive groups
0—->R,—»R,®R;—>R,—0

is exact.

By definition the multiplicative set which we invert to obtain A is §=
1+ker(e€)=1+ (T —1)Z[Z,]. Any other ring we will localize will be a quotient
of Z[Z,], and the multiplicative set will be simply the image of S. It is a standard
exercise [A] to show that the localizations of the rings in a cartesian square still
form a cartesian square.

NOTATION. We will denote the d™ cyclotomic polynomial by @,, so that
Mg, P(T)=T"—-1. If 6, is a primitive d™-root of unity, then Z(&,)=
Z[T, T7')/®,T). We call d composite if d is divisible by more than one prime.

Finally, we will write n as a product n =[] d, where the d’s are powers of distinct
primes.

The key algebraic facts which distinguish prime-powers from composite
numbers is the following well-known lemma (cf. [L]) and its corollary, which

shows how (for n composite) a large portion of Z[Z,] gets killed upon
localization.

1 (d composite)

3.1. LEMMA. @,(1 ={
a(1) p (d=p’, p a prime).

3.2. COROLLARY. Let R=Z[T, T~'|/I where I is an ideal containing an

element of the form f(T)=11 ®,T) where all of the d’s are composite. Let
S =1+ (T —1)R; then S™'R is trivial.

Proof. f(1)=11 ®,(1)=1 by the lemma, hence (T —1)|(f(T)-1), i.e.
f(T)eS. But f(T)el, so 0eS. This forces S™'R to be trivial [A].

The first step is to split up the ring Z[Z,] into pieces corresponding to the
factorization of T" —1 into a product of cyclotomic factors, where we group
separately the polynomials corresponding to composite and prime-power factors
of n. The result is summarized in the following lemma, whose proof we omit.
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3.3. LEMMA. Let @, be the polynomial

[T o.

rin
r composite

If d denotes the power of a prime d in n, then there is a cartesian square:
Z[Z,] — Z[T, T/ P.omp

l l

n,zjz,) — I,z

The map from Z[Z,] to [1 Z[Z,] is given by the obvious projections, and the map
from [1Z[Z,] to [1 Z is given by the product of the augmentations.

Hence to localize Z[Z,], we must determine the localization of each piece in
the above cartesian square. According to Lemma 3.2, the ‘composite piece’
becomes zero when we invert the elements in S, so it suffices to understand what
happens to the ring Z[Z,].

3.4. LEMMA. For d a power of the prime p, there is a cartesian square
S7'Z[Z,] — Z

Lo

Z,)z2,) — Z,,

Proof. First we need to construct the left-hand vertical map; the horizontal
maps are given by augmentations and the map Z— Z,, is the obvious inclusion.
To construct the map S™'Z[Z,]— Z,)[Z,], we need to show that if g € Z[Z,] has
€(g) =0, then 1 + g is invertible in Z,)[Z,]. (Here € denotes the augmentation.)
To see this, note first that a polynomial in Z[Z,] is invertible in Z,,[Z,] if and
only if it is invertible in Z,[Z,]. But it is easy to verify that if e(g)=0, then
g*=0(mod p), so that 1+g is invertible (modp). Hence we can define the
desired map as f/g—f - g~ .

To prove that the square is cartesian, we must verify that any h € Z,,\[Z,]
with integral augmentation €(h) may be written as a quotient f/g for f, g € Z[Z,]
with €(g)=1. We may write such an kA in the form Y (a;/m)x’, where
Y a;,=0(modm), and m and p are relatively prime. Choose an integer u with
d - u=1(mod m), then working modulo integral terms:

1 d-1

(-—z a,xi>(u§x’+1—d'u)5u'E(h)ez-

m i=o

Since €(L¢=) x') = d, the second term has € = 1, and so the proof of the lemma is
completed.
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Putting together Lemmas 3.2 and 3.4, we obtain the desired splitting of the
localized ring A:
3.5. LEMMA. There is a cartesian square:
A — Z

np Z(p)[zd] > Hp Z(p)
We are now able to verify the first part of Theorem 2.9.

Proof of 2.9(1). According to Milnor [M2], the square in Lemma 3.5 yields an
exact sequence in (reduced) K-theory:

K(Z) Ko(Z)

- &b - K,([pl Z(,,,)-> K(A)—» & - k“(I,,I Z(,,)).

Kl(npz(p)lzdl) kn(r[pz(p)IZd])

Since Z,, is a local ring, K,(Z))=units of Z,, and so the

map K,(Il, Z(,\[Z.])— K.(Il, Z,,)) is a surjection. Therefore it suffices to show
that K()(Z(p)[zd]) = ().

But Z,)[Z,] fits into its Rim diagram [M2]

Z,\Z,) — Z,,(L)

l l

Z(p) Z/)

Both Z,, and Z,,({,) are local rings (for the latter, see e.g. [S1]), and so have
vanishing K,-groups. K,(Z,,) evidently surjects onto K,(Z,), so the Mayer-
Vietoris sequence shows the vanishing of K((Z,[(Z,]) as well.

The second part of 2.9 follows in a similar manner.

Proof of 2.9(2). Since all the K,-groups vanish, the square in Lemma 3.5

ylelds a Mayer—Vietoris sequence [R1,8§6.3.1] in L”-theory (remember that
0= ®p L’2,k+l(z(p))):

0 — L5(A) —— L5(Z) ® © L5(Z,)Z]) — ? L5(Z ) — 0
I

l !

OEB@/),,
L3(Z[Z,]) — L5(Z) ® © L5(ZIZ,)).
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The bottom square commutes, where o represents the simply-connected surgery
obstruction, either signature or Arf-invariant. Hence if an element x € L5,(Z[Z,,])
has all the signatures p,(x) =0 and o(x) =0, it will go to zero in L5 (A).

4. Computations and applications

The criteria of Theorem 2.6 for existence of homology cobordisms lead to new
examples of imbeddings of punctured lens spaces.

EXAMPLE. Let L*~! be a lens space with an imbedding of L, in $*, for
example one of the fibered imbeddings constructed in [R2]. Let x € L5(Z[Z,])
with multisignature p(x) =4(x +(—=1)*x"), and let L’ be the homotopy lens
space obtained as the boundary of a normal cobordism from L whose surgery
obstruction is the element x [W1]. p(L') = p(L) + p(x), and it follows that L’
cannot be h-cobordant to L. Likewise, p (L") = ps(L) + p4(x), and we compute:

4.1. LEMMA. p,(x)=0 forall d|n, d #n.

Proof. In general, from [H], we have that if p(x) = ¥7=) a,x’, then p,(x) =
m Y228 axmx’ (m = n/d). In our case, then, p,(x) is evidently 0 for all d # n.

4.2. THEOREM. There is a homotopy lens space L' for which L/, imbeds in
S but does not imbed as the fiber of a fibered knot.

Proof. Take L in the example above to be L(n;1,c,..., c*"), where ¢
satisfies the condition (*) of [R2], and where n is composite. Perform the
construction indicated to get the homotopy lens space L'. By construction, L' is
normally cobordant to L, so by the calculation above and Theorem 2.5, L' is
homology cobordant to L and hence it too imbeds in $**. However it cannot
imbed punctured in a fibered manner. For let f:L'— L’ be the monodromy of
the fibration; it induces a homotopy equivalence g from L to itself whose mapping
torus is a homology S' x §?*~!. But it is easy to see that this implies that g, must
be multiplication by ¢’ for some j < k. Since f is a homeomorphism,

p(L)(D) = (L) (1)
PLI(X) + () = PL)(EA(0) +84(x)
=p(L)(x) +f4x)
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since g is in fact realized by a homeomorphism. Therefore, x = f,(x), which is
clearly not so.

Similar examples presumably arise from 2-torsion elements of L5 (Z[Z,]).
Such elements abound, e.g. the torsion subgroup of L%,(Z[Z,s]) has an extra Z,
coming from K, [KM]. To get examples of lens spaces which do not imbed
punctured in this way we need such elements which are not invariant under
appropriate automorphisms of ;.

Our criteria for homology cobordism and imbeddings, while complete in
principle, have two unfortunate aspects. One concerns our original motivation for
this work — the imbedding question for linear lens spaces. The homotopy lens
space constructed in Theorem 4.2 is not a linear lens space, and it is not clear how
to carry out such a construction to get a linear lens space. In fact, extensive
computer calculations done on the CYBER computer at Courant have found that
for lens linear spaces of dimension 5 or 7, and n = product of =4 primes from the
list 7,13, 19, 31 (respectively 5, 13, 17, 37), L, = S° (=S®, respectively) if and only
if L, imbeds fibered, and that the connected sum of two such lens spaces imbeds
if and only if the two are diffeomorphic. On the other hand there are examples
[GL] of non-diffeomorphic 3-dimensional lens spaces which satisfy the criteria for
L# L' to imbed in S* However, recent work of Fintushel-Stern [FS] on
Yang-Mills theory indicates that L is smoothly homology cobordant to L' if and
only if L = L'. (This has been extended to more general 3-manifolds [M1, R3].) It
is not clear whether or not our theorem extends to give topological imbeddings,
because homology surgery does not work in general in dimension 4 [CG], even
topologically.

The other aspect is that the criteria for homology cobordism are not
completely independent. It is known [W1] that the class of p(L) modZ is a
normal cobordism invariant, and it is easy to verify that the same is true for all
the p,(L). So the condition that p (L) = ps(L") for d = p" already places some
restriction on the normal cobordism class of L’. In fact in low dimensions, the
condition about normal cobordism in Theorem 2.5 is superfluous.

4.3. THEOREM. If r:L'— L is homotopy equivalence of 5-dimensional
homotopy lens spaces, and p,(L)(x") = pa(L')(x) for all prime-powers d dividing
n, then r is normally cobordant to id, .

Proof. We follow the determination of normal cobordism classes of maps into
L as given in [W1]. By the computation on p. 208, there are n normal cobordism
classes in [L°,G/PL] for each homotopy type. Hence it suffices to find, for each
lens space L n homotopy lens spaces L}, with L; = L;, but with p,(L,) — p4(L,))
not integral for some prime-power d dividing n.
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CLAIM. (See below for proof.) Let L* be a 3-dimensional lens space, and
0=j=n. Then there is a 5-dimensional homotopy lens space L, with p(L,)=

p(Z LY+ 4i(x +x~ H(1+x)/(1/x).

(L, is constructed as a sort of suspension of L.)
Using the formula of Hirzebruch [H], we compute that for n = md,

pulLy) = pulLi) = 16(m/m)(j =) 3, Iz

If j #i (mod n), then we can choose a prime p with (j —i, p) =1, and let d = the
largest power of p dividing n. It then follows from the above formula that
pa(L;) — pa(L;) is not integral. Therefore, {p,} determines the normal invariant.

Proof of claim. Let x; be a hermitian form with multisignature p(x;) =
4j(x + x~"), and let (W?, L;, L) be a normal cobordism which realizes x;. (L, will
be Z[Z,]-homology equivalent to L.) If L, were S*/Z,,, we could suspend the Z,
action on S° to get a Z,, action on S° with p as desired. It is unlikely that L, is S°,
(in fact it can’t be for n =3 by [R4]), but we can still ‘suspend’ the action as
follows:

Let E— L; be the D*bundle with Euler class Poincare dual to the generator
of m,(L;) corresponding to a fixed generator of x,(L). Note that 8E =S' X L; is
Z[Z,]-homology equivalent to S' X §°. We would like to make 3E the boundary
of a homotopy circle; the only obstruction to doing this is the u-invariant of L,.
But since n is odd, we can arrange that u(L;) be zero by connected summing L,
with a homology sphere; this evidently doesn’t affect the p-invariant. Hence
9E = 3V°>, where V = S

Let L}=E U V; it follows that L’ is a homotopy lens space. By crossing the
whole construction with CP?, one can show that the p-invariant of Lf is exactly
that of a suspension, or in other words

p(L}) = p(L)(1 +x)/(1+x77)
which is equivalent to the claimed formula.

Remark. The proof just given can be used instead of the argument given on
pp- 213-214 of [W1] to construct all normal cobordism classes of 5-dimensional
homotopy lens spaces.

A final question raised by these investigations is whether a knot constructed as
the boundary of an imbedded punctured homotopy lens space is determined by its
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complement. Recall that there are at most two knots with a given complement,
and that these differ by a ‘Gluck twist’ around the knot [G2, K]. All linear lens
spaces admit S'-actions with codimension-two fixed point sets. This implies that a
knot which has a punctured lens space for a Seifert surface is determined by its
complement. For one can concentrate the Gluck twist to be non-trivial on
KxIcKxS' where K=38L, and K xIcLyx1I=v(Ly), and use the circle
action on L, to extend the twist.

In fact the same is true if the Seifert surface is just a punctured homotopy lens
space. To see this, note that if L is a homotopy lens space, there is a linear lens
space L' and a homotopy equivalence f:L— L’'. Conjugating the self-
diffeomorphism of L, X I just described by the homotopy equivalence f, we
obtain a self-homotopy inverse F on L, X I which extends the Gluck twist on
dL, X 1. It 1s easy to see that F will be in fact a simple homotopy equivalence, and
that we can arrange that F be the identity on L, X dI. If now L, is a Seifert
surface for a knot, F extends by the identity to give a simple homotopy
equivalence of the knot complement to itself which extends the Gluck twist on
the boundary of the tubular neighborhood of the knot. The surgery argument in
[C] now shows that this simple homotopy equivalence may be replaced by a PL
homeomorphism, so that the knot is determined by its complement.
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