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Sous-groupes maximaux de groupes classiques associés a certaines
C*-algébres

SyLVIE GRIENER-GUILLOD

Résumé. Dans cet article, nous étudions la maximalité de certains sous-groupes de I’ensemble
des éléments inversibles (ou unitaires) d’une C*-algébre ou d’un facteur.

Introduction

E. B. Dynkin est 'un des initiateurs de la description des sous-groupes
maximaux des groupes classiques comme GL,(C) et U,(C) ([Dy)).

Soient A une C*-algébre avec unité, G =GL(A)" (resp. U=U(A)") la
composante connexe neutre du groupe formé des éléments inversibles (resp.
unitaires) de A. Nous nous intéressons @ montrer la maximalité de sous-groupes
paraboliques et de certains autres sous-groupes de G et de U.

On dit que deux projecteurs p et g de A sont équivalents lorsqu’il existe
v, w € A avec p =vw, q = wu, U =puq et w = qwp. Cette relation d’équivalence
est notée p ~ q (sa négation p + q).

Plus précisément, soient p et g deux projecteurs non nuls de A de somme 1.
Pour tout x € A nous avons x = pxp + pxq + qxp + gxq (l'écriture a été introduite

X, X2

par C. S. Peirce en 1870) que nous noterons ( ) avec x; = pxp, x, = pxq,

X3 X4
X3 = qxp, X4 = qxq.

Dans le chapitre 1 nous étudions d’abord des sous-groupes paraboliques de G
et démontrons:

THEOREME 1.1. Soient A une C*-algébre simple avec unité et p, q deux
projecteurs non nuls de A, de somme 1. Alors G’ ={x e G;qxp =0, gx~'p =0}
est un sous-groupe maximal dans G.

Rappelons qu’une C*-algeébre avec unité est simple si elle ne posséde pas
d’idéal bilatére non trivial.

Soit &, , 'automorphisme intérieur de A défini par: «, ,(x) =JxJ ~! pour tout
x € A, ou J est 'involution p —q.

48



Sous-groupes maximaux de groupes classiques 49
Considérons les sous-groupes formés des points fixes de a;, ,:

G*={xeG;a,,(x)=x},
Uu*=G*NUu.

Désignons par Ng(G®) (resp. Ny(U®)) le normalisateur de G* dans G (resp. de
U* dans U). Nous démontrons alors:

THEOREME 1.2. Soient A une C*-algébre simple avec unité, p et q deux
projecteurs équivalents de A de somme 1. Alors G est d’indice 2 dans Ng(G®) et
Ng(G®) est un sous-groupe maximal dans G.

Par contre lorsque les projecteurs p et g sont non équivalents, No(G*) = G*
(Prop. 1.1) est contenu dans le groupe parabolique G’ du théoréme 1.1 et n’est
donc pas un sous-groupe maximal de G. Les théoremes 1.1 et 1.2 auront une
généralisation au cas ou I’algebre A n’est plus simple.

Dans le chapitre 2 nous nous intéressons a la maximalité du groupe unitaire
des points fixes par 'automorphisme «, , dans U.

Rappelons que si A est un facteur de type L., tous les automorphismes «
involutifs (i.e. a*=1) de A sont conjugués a des automorphismes de la forme
@, , ([H], lemme 5).

Quelle est la position du groupe des points fixes par un automorphisme
involutif (modulo les opérateurs compacts) dans le groupe unitaire d’un facteur
de type L.?

Si K désigne 1'idéal bilatere maximal de A et Ux={x e U; @, ,(x) —x € K},
les théorémes suivants donnent en particulier une réponse a cette question:

THEOREMES 2.1 et 2.2. Soient A un facteur, p et q deux projecteurs non
nuls de somme 1.

Si p~q:Ux est d’indice 2 dans Ny(Uk) et Ny(Uk) est un sous-groupe
maximal du groupe unitaire U de A.

Sip+q:Ny,(U*) = U* est un sous-groupe maximal dans U.

Le chapitre 3 est consacré a I’étude de la position du groupe unitaire dans le
groupe des éléments inversibles d'un facteur.

En définissant: G(U+ K)={xe G;x=u+k avecu e Uetk € K}, nous ob-
tenons alors le résultat suivant:

THEOREME 3.1. Soit A un facteur, alors Ng(G(U + K)) = C*G(U + K) est
un sous-groupe maximal dans G.
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Dans I'appendice nous donnons de nouvelles preuves de la simplicité de
certains groupes.

Je remercie les personnes qui m’ont permis de mener a bien ce travail, A.
Robert, R. Bader, P. de la Harpe.

Ce travail a été réalisé en partie grace au soutien du Fonds national suisse de
la recherche scientifique (requéte n°® 2.717-0.85).

Chapitre 1. Quelques sous-groupes maximaux du groupe des inversibles d’'une
C*-algébre

1.1. Lemmes préliminaires

Nous désignons par (S;, S, . . .) le sous-groupe d’un groupe G engendré par
les parties S,, S,, . . . de G. Si p est un projecteur d’une algebre A, la réduite de A
par p est I'algébre pAp notée A,,.

LEMME 1.1. Soient A une C*-algébre avec unité, p et q deux projecteurs non
nuls de somme 1. Posons

G ={xeG;x—1eqAp}, G,={xeG;x—1€pAq},
G;={x € G; qxp = pxq =0},

alors <G1, Gz, G3> = (.

Preuve. Soit z € G avec ||z —1||<%;0ona

z & p  0\/z 0 p zi'z
= 2t G )@ 7))
Zy 24 2327 q/\O  z4— 2327 2,/ \0 q

qui appartient 2 (G,, G,, G;). Le groupe G étant connexe nous obtenons la
conclusion cherchée.

LEMME 1.2. Soient B un anneau simple avec unité, p et q deux idempotents
non nuls de B, alors qBp est non nul et simple comme B, ® B,PP-module a gauche
(BpPP dénote I’anneau opposé).

Remarques. (1) Si B est une C*-algebre simple alors B, I’est aussi.
(2) Si B est une C*-algebre simple alors gBp est simple comme GL(B,)’®
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GL(BgPP)’-module a gauche (car tout élément de B, est somme de deux éléments
de GL(B,)°).

Preuve. Soit I I'idéal engendré par p, comme B est simple nous avons I = B.
Il existe donc a;, b; (i=1, ..., N) appartenant a B tels que 1= Y,V a,pb; donc
0#q =X, qapb, 1l existe alors i € {1, ..., N} tel que ga;p #0, d’ou gBp #0.
Montrons que gBp est simple: Soient Y un B, ® B;PP-sous module non nul de
qBp et y € Y, y non nul. Comme B est simple, I'idéal bilatére engendré par y est
égal a B. Donc pour tout x € B, il existe des éléments «a;, B; (i=1,..., k)
appartenant & B tels que x = L%, a;yB;. En particulier si x € gBp, en posant
a;,=qa,qeB,etb,=pBpeB, onax=qxp=Y~, ayb,eY donc Y =¢qBp.

LEMME 1.3. Soient A une C*-algebre avec unité, a,beA et ke R%. Si
aub = 0 pour tout u € U avec |\u — 1|| <k alors azb =0 pour tout z € A. Si de plus
A est simple ou A est un facteur alors: a =0 ou b =0.

Preuve. 11 existe 6 >0 suffisamment petit tel que, pour tout x =x* € A avec
Ix|| <8, on ait u=—ix+(1—-x*)"€U et |lu—1||<k. On a donc axb=
a(1/2i)(u* —u)b =0.

Tout élément de A étant somme de deux éléments autoadjoints de A nous
avons azb =0, pour tout z € A. Si A est simple le lemme 8.1 de [H-S, 2] nous
donne a =0 ou b =0. Si A est un facteur: Supposons a #0 et b #0. Il existe r et
seA tels que aa*r et sb*b soient des projecteurs non nuls. Soient deux
projecteurs e et f non nuls équivalents tels que e <aa*r, f <sb*b. 1l existe donc
v, weA avec e=uw, f =wu, v =euf, w =fwe. Soit x =a*rusb* on a axb =
aa*rusb*b = v # 0 ce qui contredit I’hypothése du lemme.

1.2. Maximalité de G'

THEOREME 1.1. Soient A une C*-algébre simple avec unité et p, q deux
projecteurs non nuls de A, de somme 1. Alors G'={x € G;qxp =0, gx"'p =0}
est un sous-groupe maximal dans G.

Preuve. Soit ge G — G' et montrons que (G’, g) =G, on peut supposer
qgp #0 (sinon on considére g~'). Comme pour tout re R3, (1/r)g e {(G’, g),

81 82

nous pouvons supposer de plus que g = (g > avec ||g:|| <1pouri=1,2, 3, 4.

3 &a

Soit N={y eqAp;1+ye (G, g)}. Légalité:

((p+g1)“1 0)(g1 gz)(p+g1 gz)(gi gé)=<p 0)
0 q/\gs g\ 0  q/\gs 8 \8& 4
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&1 g?), implique gs;eN, avec g;#0. N a les propriétés

ou "1=( ,
8 83 &a

suivantes:

(a) N+t NcN.
(b) Pour tout x € N pour tout a € GL(A,)" on a xa € N car:

(o DG G D= o)
0 qg/\x q/\0 ¢ xa q/

De méme bx € N pour tout x € N et b€ GL(A,)". N est donc un GL(A,)’ ®
GL(AgPP)°-sous module a gauche non nul de gAp, donc N = gAp par la remarque
(2) suivant le lemme 1.2. Par suite tout élément x € G avec x —1eqAp

appartient a (G’', g). Comme les groupes G,, G,, G; définis au lemme 1.1
appartiennent 2 (G', g) nous obtenons G = (G', g).

1.3. Etude des normalisateurs

LEMME 1.4. Soient A une C*-algébre avec unité, p et q deux projecteurs non
nuls de somme 1. On a les équivalences suivantes:

(a) p~q;
(b) il existe un élément x inversible dans qAp + pAq.

Preuve. (a)=>(b). Il existe v, we A tels que p=vw et g =wv avec v =
pvq, w = qwp; alors x = v + w convient.

0
(b)=>(a). Soit (x T)Z) un élément inversible dans gAp + pAq et d’inverse
3

0 é 1 ’ z .

o) Alors x,x3 = p et x3x, = q, donc p et g sont équivalents.
X3

Dans la proposition suivante, étant donnés deux projecteurs p et g de somme 1

dans la C*-algebre A, on note:

G ={xeG;pxq=0;qxp=0}; U*=UNG*,
TG*={xeG;pxp=0;qxq =0}; TU*=UNTG*

S’il existe une isométrie partielle E,, de projecteur initial g et de projecteur final

0 E
p, on peut aussi écrire TG * = ( E 6’ ">G ®

ar

PROPOSITION 1.1. Soit A une C*-algébre simple avec unité ou un facteur et
soient p, q deux projecteurs non nuls de A de somme 1. Alors:
(@) Ns(G*)=G*UTG*Ny(U*)=U"UTU"
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(b) Si p~gq, alors TG*= (EO Evq
TG* = ¢. w0

() N(N(G ) = Ni(G®); Nu(Ny(U®) = Ny(U?).

)G" comme ci-dessus; Si p +q, alors

Preuve. (a) Soit g = (il gz) € Ng(G*®) et posons g~ ' = (g, gz>. Pour tout
3 4

!

g3 &4
acU(A,) etdeU(A,)" on ag(atd)g ' e€G* donc g;ag;, g.dg}, g,ag5, g.dg.
sont tous nuls. Le lemme 1.3 nous donne deux possibilités pour g:

— Soit g, =0 et g;=0; c’est-a-dire ge G~

- Soit g, =0 et g,=0; c’est-a-dire g e TG *,
donc Ng(G*)c G*UTG® L’inclusion inverse étant triviale on a I'égalité. La
démonstration est identique pour Ny(U®*) = Ns(G*) N U.

(b) Résulte du lemme 1.4.

(c) Se déduit du lemme 1.5 ci-dessous.

LEMME 1.5. Soient A une C*-algebre simple avec unité ou un facteur, p et q
deux projecteurs non nuls de A de somme 1. Soient ge G et 6 e R avec
0<8<1/|igll llg~"ll- Si g(a +d)g~" € No(G*®) pour tout a € U(A,)’ et d € U(A,)"
tels que |la —p|| <9, ||d — q|| <6, alors g € N;(G?).

Preuve. Soit g € G avec g(a+d)g~' e Nog(G*)=G*UTG* (Prop 1.1) pour
tout a et d comme dans I'énoncé. Alors g(a +d)g~' appartient a la compo-
sante connexe de 1 dans Ng(G®) c'est-a-dire g(a+d)g”'e G* On a donc
gag: + g.dgi=0 et g,ag; +g.dg,=0 pour tout a et d comme dans I’énoncé

(g-1 _ (gi gé))
g3 &a

Il existe € >0 tel que pour tout @ € [—¢, +¢€] on ait ||ae'? — p|| < 6. Nous
avons donc

giae*'¥g| + g,dg;=0,
gi1ae*"g; + g,dg, =0,

ce qui implique:

g3ag;=0’ g4d83=0,
gi1ag,=0, g.dgs=0.

Comme dans la démonstration de la proposition 1.1 on déduit que g € G%, ou que
g € TG Le lemme 1.4 et la proposition 1.1 nous permettent de conclure.
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Remarque. Nous pouvons remplacer dans ’énoncé du lemme 1.5 G par U et
G par U™

1.4. Maximalité de N;(G ) lorsque p ~ q

THEOREME 1.2. Soient A une C *-algébre simple avec unité, p et q deux
projecteurs équivalents de A de somme 1. Alors G* est d’indice 2 dans N5(G*) et
Ng(G?*) est un sous-groupe maximal dans G.

Preuve. La premiere affirmation résulte de la proposition 1.1. Soit ge G —
Ng(G*) (non vide par le lemme 1.2). Pour tout 0< 8 < 1/||g|| |lg~"|l, il existe par
le lemme 1.5 deux unitaires a € U(A,)°, d € U(A,)° avec [la —p|| < §, ||[d —q| <
dtels que g =g(a+d)g™' € (Nc(G®), g) — No(G*). Si (pgp)," désigne l'inverse
de pgp dans pAp, Ulélément g((pép),' +(989);")=p +pgq(agq);' +
q8p(pgp), ' + q appartient 2 (N5(G“), g) — No(G*). En prenant § suffisamment
petit, on peut donc supposer a priori que g est un élément de la forme

(é) ng) avec [|g — 1|| petit. Soit N = {y € gAp tel que 1 +y € (Ns(G*), 8) }.
3

1) Montrons que N est non nul.

1°" cas. Si g,=0; alors g;€ N et g;# 0 (car g ¢ No(G%)).

2°m cas. Si g;=0; p et q étant des projecteurs équivalents, il existe v, w € A
tels que p = vw, g = wv, v =puq, w = gwp. Comme

G 06 Do o)~ (g o)

appartient 3 (Ng(G %), g) alors 0# wg,w € N (car g ¢ No(G*)).
3%m cas. Si g, #0 et g3 #0; alors

(P gz)(—%p 0 )(p gz)2=(x 0)
gy q/\ 0 (q+g8)""/\g:s ¢ y 2/
oll x = —4(p + g.83) + 282(q + g382) " 'g5 est inversible dans A,

z =q — g38> est inversible dans A,

y=—383(p + 8285) + 2(q + 8382) " '8: #0,
(sinon (q + 8382)83(p + 8283) = 484 et donc g5 =0).
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On a alors

GO0 D)=l o)emae e,

ce qui implique yx~'e N ou yx~'#0.

2) Montrons que N = gAp.

De méme que dans la démonstration du théoréme 1.1, N est un GL(A,)’ ®
GL(APP)’-sous module a gauche de gAp et par le point 1) N est non nul. La
remarque (2) suivant le lemme 1.2 nous permet de conclure N = qAp.

Les projecteurs p et g étant équivalents nous voyons donc que les trois
groupes G,, G,, G, définis au lemme 1.1 appartiennent a (N;(G?), g) et donc
G= <NG(Ga)’ g>

1.5. Une généralisation aux C*-algebres non simples

Soient A une C*-algebre avec unité, K un idéal bilatere de A tel que A/K soit
une C*-algebre simple non nulle, 7:A— A/K la projection canonique ((1) =
1), p et g deux projecteurs de A-K de somme 1. Soient

Gx={xeG;qxpeK,qx 'peK},
Gi={xeG;pxqeKk, qxp € K}; k=GxNU.

L’exemple type est celui ou A est un facteur de type L., K I'idéal des opérateurs
compacts, A/K I’algebre de Calkin, et ou les projecteurs p, g sont de rang infini.

Remarque. On a pAq ¢ K (lemme 1.2).
LEMME 1.6. Avec les notations ci-dessus:

GL(7(A))" = n(GL(A)°);
U(w(A4))° = n(U(A)").

Preuve. Tout x € GL((A))° suffisamment proche de 1 a une décomposition
polaire de la forme e’¢’ ou y, s € 1(A) avec y* = —y, s*=s. Soient r,t € A tels
que r*=—r, t*=t, a(r)=y, n(t) =s, alors x = w(ee’) € 1(GL(A)"). Linclusion
inverse est facile. La preuve vaut pour U.

PROPOSITION 1.2. Soient A, K, © comme ci-dessus. Si H est un sous-
groupe de GL(A)° contenant {x e GL(A)’;x — 1€ K} tel que n(H) soit un
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sous-groupe maximal dans GL(7t(A))" alors H est un sous-groupe maximal dans
GL(A)".

Preuve. 11 y a une correspondance bijective entre les sous-groupes de
GL(t(A))" et ceux de GL(A)" contenant le noyau de 7:GL(A)"— GL(7t(A))"
([Bo], Alg 1V, Livre II, Ch. 1, §6, n° 13, Th. 6).

GENERALISATION 1.1. Soient A et K comme ci-dessus, p et q deux
projecteurs de A de somme 1 et n’appartenant pas a K. Alors G est un
sous-groupe maximal dans G.

Preuve. Résulte du théoreme 1.1 appliqué a 7(A), du lemme 1.6 et de la
proposition 1.2.

GENERALISATION 1.2. Soient A, K, m comme ci-dessus, p et q deux
projecteurs de A de somme 1 tels que n(p) ~ n(q). Alors G¥ est d’indice 2 dans
Ng(G¥) et Ng(G¥) est un sous-groupe maximal dans G.

Preuve. Résulte de la proposition 1.1 et du théoréme 1.2 appliqués a w(A),
ainsi que du lemme 1.6 et de la proposition 1.2.

Chapitre 2. Quelques sous-groupes maximaux du groupe unitaire d’un facteur

Notations
Soient A une C*-algebre avec unité, p et g deux projecteurs non nuls de A de
somme 1.

— Si p est équivalent & g dans A alors il existe un élément dans pAq que nous
notons E,, = (E,,)* tel que p = E, (E,,)* et ¢ = (E,,)*E,, (pour I'existence
d’un tel élément: [Go] Prop. 19.1, p. 147).

— p <gq signifie que p est équivalent dans A a un sous-projecteur de q.

- G(p)=GL(A,)" et U(p) = U(4,)"

—U(p)xU(g)={xeU(p+q);x=u+v,uecl(p),veU(g)}

2.1. Lemmes préliminaires
Dans ce paragraphe A est une C*-algébre avec unité, p et g deux projecteurs
non nuls, U%= {x € U; gxp =0, pxq = 0}.

LEMME 2.1. Soient p et q deux projecteurs de A de somme 1, x=

<;61 ;Cz) € U avec x, € G(p), x,€ G(q). Alors il existe deux unitaires u € U(p),
3 X4
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v e U(q) tels que:

(u* 0>(x1 xz)(p 0 > _ <(p — x3x3)""? —x3 )
0 gq/\x3 x4/\0 v* X3 (g —x3xH)'"?/)’
appartienne au groupe engendré par U et x.

NOTATION. Sip+q =1, y e qAp avec ||y|| <1 nous désignons par V(y) ou
parfois V,,(y) I'unitaire:

((p _j})*y)l/Z (q m_;;**)”2>'

Preuve. L’élément x étant unitaire on a x{x, =p —x3x; €t comme x, est
inversible il existe u € U(p) tel que x, =u(xix,)"* =u(p — x3x;)"">. De méme il
existe ve U(q) tel que x,=v(g —x3x,)"% L'égalité g =x3x5 + x4xf = x3x3 +
v(g — x3x,)v* implique x>x, = v*x;x3v. La relation x3x, + xjx; =0 nous donne
(en pensant au développement en série entiére):

Xy =—(x7")*x3x,,
= —u(p —x3x3)” "x3vu(g — (x3v)*(xiv))"?,
= —u(p —x3x3)""(p — (FFV)(¥3v)")"?  xjv=—uxiy,
et
Xa=v(q = x3x2)"" = v(g — v*x3x3v)"? = (q — x3x}) 0.
On a alors:

(u* 0)<x1 xz)(P 0)_<(P—x;x3)”2 —x3 )
0 qg/\x3 x4/\0 v* - X3 (‘I‘x.%x.:)”z'

LEMME 2.2. Soient p et q des projecteurs de A de somme 1, alors
(U% V(E,(1/V2))) = U.

o 1 /p IE ) N
Preuve. Soit ¢ = v (Eq,, —zpc;) = o(p — iq) ou 0 = V(E,,(1/V2)).
1) Soit x un élément autoadjoint de A, de norme strictement inférieure a 1
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alorsu=(p—-x3)"+ixe U(p) et

_ 0 (p — xH)? —xE
a‘(“ )a=( Pa )=VE x),
0 Eqpu*qu Eqpx Eqp(P __x2)1/2qu ( qp )

appartient a (U%, o).
2) Soit y € A, avec |ly|| <1/V2, alors

a cE
~V E ~—1 ( pPq )’
? ( qp)’)U Eqpb Eqpa*qu
ou
o 1
a=3(p—y*y)?+iy+iy*+(p—yy*)")eG(p) car |y| <73’
b=3((p—y*y)"*—iy+iy*—(p—yy")"®=>b*  [b||<],
c=3(p—y*y)"?+iy—iy*—(p —yy")".

Le lemme 2.1 donne P’existence de deux unitaires u € A,, v € A, tels que

u* 0\( a cE,, )(p 0 )
= V(E,b).
<0 q)<Eqpb E,a*E,,/\0 v* (Eqpb)

Comme b est autoadjoint le point 1) implique V(E,b)e (U® o) et donc
V(E,y)e(U% o). Le lemme 2.1 montre alors que tout élément unitaire
suffisamment proche de I'identité appartient 3 (U o). Le groupe U étant
connexe nous avons la conclusion (U*¢, o) = U.

LEMME 2.3. Soient p et q des projecteurs équivalents de A de somme 1.
Soient e un sous-projecteur non nul de p (e € A) et ¢ un élément inversible dans A,
tel que ||c|| <5, alors:

V(Eqp—\-/l—ie) e (U%, V(E,c)).

Preuve. Soit ¢ =ux la décomposition polaire de ¢, ot ueU(A,) et x =
(c*c)"? e A, avec'||x|| <35. On a:

p 0 ) | (p 0 >=
<0 E,(u*+p—e)E, V(Earc) 0 E,(u+p-e)E, V(Ea),
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~

qui appartient a (U® V(E,.)). Soit meN tel que v=sin(x/4m) et ve<
4x(p — x*)"2. Alors a =3(x)7'(p — x*) V[ (4x*(p — x*) — v?e)"* + ive] + p — e est
un unitaire de A,. On a:

a 0 ) _ o BE
V(E, x)] '= ( P4 ),
0 E_a*E [ ar*)] E,y E,|0%*E,,

Pq

~iV(Eq,,x)(

6 =—i((p —x*)"a(p —x*)"" + xa*x) e G(p),

2)1/2

=—i(xa(p —x»)"? = (p —x»)"a*x) = sin—e € A,.
4m

Le lemme 2.1 montre que V(E,, sin (x/4m)e) e (U®, V(E,,c)) et donc
1 1 m N
V(Eqp-\—/a e) = V<Eq,, sin e)] e (U V(E,¢)).

LEMME 2.4. Soient p, q', q" trois projecteurs non nuls de A, orthogonaux et
de somme 1 tels que p ~q' et soit H= (U(p) x U(q' +q"), U(p +q') x U(q")),
alors H=U.

Preuve. Soit g =q' + q". Gréace au lemme 2.1 et a la connexité de U il suffit
de montrer que V(z) appartient a H, ceci pour tout z € gAp ou ||z|| est petit.
Soient x =q'zp, y =q"zp, t=y(p —x*x), "> et X, Y, W comme suit (dans la
décomposition p +q' +q"=1):

(p _x*x)llz —x* 0
X= X (@' —xx*)'"? 0 |eH,
0 0 q"
D 0 0
Y=(0 E, (p—t*)"E,, —E,t* |€H,
0 tE g (q" —u*)"?
0 E, O
w=|E,, 0 0 |eH
0 0 gq"
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Donc
%k * L3
WYW*X = * * e H,
%k L 3

X
y
et dans la décomposition p + g = 1:

* %
WYW*X=( ),

y4 *

est un élément de H qui est proche de 1 si ||z|| est petit. Grace au lemme 2.1 nous
pouvons conclure que V(z) appartient a H.

2.2. Sous-groupes maximaux de groupe unitaire d’un facteur

Dans ce paragraphe, M désigne un facteur (a prédual séparable), U le groupe
unitaire de M (U est connexe, [Ru] Th. 12.37), p et g deux projecteurs non nuls
de M de somme 1.

DEFINITIONS.

1. Si M est un facteur infini semi-fini muni d’une trace T normale semi-finie
fidele, soient:

F = {x € M; il existe une projecteur E € M tel
que T(E) <wetx = ExE},

F est I'idéal des éléments de rang fini dans M

0 si M est un facteur de type 1, 11, ou Il
K =4 adhérence normique de F si M est un facteur
de type L. ou 11

K est I'idéal bilatere maximal formé des éléments compacts de M. L’algébre M/K
est simple.
2. Sige M, Sp (g) désigne le spectre de g et Sp, (g) désigne le spectre essentiel
de g, c’est-a-dire le spectre de la projection de g dans I'algebre de Calkin M/K.
3. U*={xeU;pxq=0, qxp =0},
Ux={xeU;pxqekK, qxp e K},
Ny(U%) le normalisateur de U§ dans U.
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2.2.1. Etude de normalisateur de U%

PROPOSITION 2.1. Soient M un facteur, p en q deux projecteurs non nuls de
M, équivalents et de somme 1, alors

Ny(Uk) = U U TUE,

TUx={xeU;pxpeK, qxq € K}.
Preuve. C’est en fait un corollaire de la proposition 1.1.

2.2.2. Maximalité de N,(Uk) lorsque p ~ q

LEMME 2.5. Soient M un facteur et e un projecteur de M tel que e #1 et
e ¢ K. Alors il existe N € N et des projecteurs e, non nuls orthogonaux équivalents
de M (i=0,1,...,N)tels que 1 —e,=Y e, avece,<e,e ¢ Ket1—e,¢ K.

Preuve. (1) Si M est de type I, ou I/, muni d’une trace T normale finie fide¢le
normalisée: Il existe m € N (m = n si M est de type 1,) et un sous-projecteur e, de
e tel que t(ey) = 1(1)/m < 1(e). Nous avons t(l—ey) = (m—1)(tr(1)/m) donc
1 —e, est la somme de m — 1 projecteurs orthogonaux e, de trace t(1)/m donc
équivalents a ey (N=m —1).

(2) Si M est de type L. ou [IL.: Le projecteur e est la somme de deux
projecteurs équivalents orthogonaux e, et e, ou ey, e, ¢ K ([Di] Ch. III, §1, n’ 2,
Cor. 3). Nous avons e, <1—¢, donc 1 —e, ¢ K et 1 —¢, est alors un projecteur
équivalent a e, car tous deux de trace infinie ([Di] Ch. III, §8, n® 6, Cor. 95).

(3) Si M est de type I1I: On peut choisir ¢,=e¢ et comme 1 —¢e,=1—e#0
nous avons donc 1 —e,~¢, (N =1).

LEMME 2.6. Soient p et q deux projecteurs équivalents de somme 1 d’un
facteur M, et e un sous-projecteur non nul de p vérifiant e ¢ K, alors

(U* V(E,(1/V2)e)) = U.
Preuve. Si e =p; le lemme 2.2 permet de conclure. Si e # p; soient N et

€, €1, . . . , ey comme au lemme 2.5 (appliqué a M,). Le lemme 2.2 appliqué a
M., g, .k, implique:

<U", V(Eq,, Vlie» >U(e+ E,eE,,) X U(p —e) X U(E,,(p — e)E,,).
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Nous avons alors:
1 o 1
V(Eqp 2 eo) € <U ; V(Eq,,-{/—z- e)>.
Soient E,; = (E;p)* des isométries partielles de M reliant e, et ¢;, et

W, =Ey+E;+ 2 E,+ Eq,,(EO, + Ejy+ 2 E,,)

1#] l*j

pq>

qui appartient a U*(j=1, ..., N). Alors

{Ewrgge (o g W e (50 ).

appartient aussi a (U7, V(Eqp(l/\/Z)e)). Grace au lemme 2.2 nous obtenons la
conclusion cherchée.

LEMME 2.7. Soit M un facteur et z =z* € M — K avec ||z|| < 1. Alors il existe
un projecteur e € M — K tel que ze (1 — z%)'? soit un élément inversible dans M,.

Preuve. Soient z = [g,(,) A dE(A) la décomposition spectrale de z et A’ la plus
grande valeur spectrale (essentielle si M est de type L. ou II.) en module de z.
Soient £€>0 tel que O0<|A' —¢|<|A|<|A' +¢€|<1 et e=E([A' — ¢ A"+ €]).
L’élément ze (1 —z%)"? = [, _c 24 A(1 — 422 dE(A) est inversible dans M.,.

LEMME 2.8. Soient M un facteur, p et q deux projecteurs de M équivalents de
somme 1, z =2* € M, avec z ¢ K et ||z|| <3, alors (U V(E,_,z)) = U.

Preuve. Soient e comme au lemme 2.7 et J=1-2eeU" Le produit
JV(E,,z)] " '[V(E,z)]" sécrit:

( a bE,, )
Eqpc EquEPq ’

ol a et d sont inversibles dans M, car ||z]| <} et ¢ = —2ze(1 -z est aussi
inversible dans M,. Par le lemme 2.1 on a V(E,c)e(U® V(E,z)) et les
lemmes 2.3 et 2.6 nous permettent de conclure.

2)1/2

LEMME 2.9. Soient M un facteur, p et q deux projecteurs équivalents de M de
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somme 1. Si x € M, vérifie x ¢ K et ||x||<g, il existe ze€M, avec z=z*¢K et
llz|| <3 tel que V(E_,z) € (Ny(U%), V(E x)).

Preuve. SoientJ=E, —FE,,,L=E,, +E,, et
Z,=V(E x)JV(E,x)]*, Z,=iV(E,,x)LV(E,x)L* (J, LeNy(Ug)).

Nous avons: ||Z; —1|| <2 ||V(E,,x) — 1]| <1 car ||x|| <3, de méme ||Z, - 1]| < 1.
Alors:

qZ\p = E_,((p — xx*)"x* + x(p —xx*)"?) = E,, 2,
qZ,p = E_,(—i(p —xx*)"*x* + ix(p —xx*)'?) = E_,2,,

ou z;=z €M, avec ||z||<3(j=1,2). Nous ne pouvons avoir z, et z, dans K
sinon z, —iz, =2x(p —xx*)"?* e K ce qui implique x € K. Il existe donc Ze€

(Ny(U%), V(E,,x)) (Z est soit Z, soit Z,) de la forme (E*z :) avec
qr

1Z-1|<1,z=z*¢K et |z]| < 3.
Le lemme 2.1 nous permet de conclure V(E,_,z) € (Ny(U%), V(E,X)).

THEOREME 2.1. Soient M un facteur, p et q deux projecteurs de M,
équivalents de somme 1. Alors Uk est d’indice 2 dans Ny(Ug) et Ny(Uk) est un
sous-groupe maximal du groupe unitaire U de M.

Preuve. La proposition 1.1 donne la premiére affirmation. Soient ge U —
Ny(U%) et & la projection canonique M — M/K (t(A) est alors une C*-algebre
simple et U((A))° = x(U(A)) par le lemme 1.6). Le lemme 1.5 appliqué a 7(A)
montre I’existence de a € U(p) et d e U(q) avec |la ~p|| <3 et ||d —q|| <+ tels
que x =g(a +d)g™" € (Nu(Ug), g) — Nu(U%).

X

Alors x est un élément de la forme ( :
X3 X4

supposer de plus que x; ¢ K (sinon on considére x*). Le lemme 2.1 donne alors
V(x;) e (U% x). Comme x5 ¢ K et ||x3]| <& nous pouvons appliquer successive-

ment les lemmes 2.9 et 2.8, d’ou (N, (U%), V(x3)) = U.

x
2) ol |jx —1|| <¢, et on peut

2.2.3. Maximalité de U lorsque p + q

LEMME 2.10. Soient M un facteur fini et c € M, alors il existe un unitaire
u € M tel que cu soit un élément autoadjoint.
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Preuve. Soit ¢ =v|c| la décomposition polaire de ¢ ou v, |c|e M. Les
projecteurs finis v*v et vv* étant équivalents, il existe une isométrie partielle
w € M telle que w*w =1—v*v, ww*=1—vv* ([Di], Ch. III, §2, n® 3, Prop. 6).
Soit I'unitaire u =v* + w* e M alors cu = u*c*.

LEMME 2.11. Soient M un facteur semi-fini continu (resp. discret) muni
d’une trace v normale semi-finie fidéle (resp. avec la trace des projecteurs
minimaux valant 1), un projecteur q non nul de M, un opérateur positif P de M,
tel que P #q.

Soit d un nombre réel (resp. entier) tel que 0<d < 1t(q), alors il existe un
sous-projecteur q' de q, commutant a P tel que 1(q')=d et q'Pq’ #q'.

Preuve. Soient (q,),-..., des projecteurs orthogonaux équivalents de somme
q, commutant a P tels que t(q;) <d (n pouvant étre infini). Si ¢'Pq’ = q' pour
tout projecteur g’ commutant a P avec 1(q’')=d alors gPG =g pour tout
projecteur § commutant a P avec 7(4)<d. On adonc q;Pq;=q,(Vj=1,...,n)
ce qui implique qPq = q contrairement a ’hypothése.

THEOREME 2.2. Soient M un facteur, p et q deux projecteurs non nuls de
M, non équivalents et de somme 1. Alors Ny(U%)=U" est un sous-groupe
maximal du groupe unitaire U.

Preuve. L’égalité Ny(U®) = U* résulte de la Proposition 1.1. Comme p +¢q
nous supposerons par exemple p <gq. Soit g e U — U“. On montre comme dans la
preuve du théorgme 2.1 qu’'il existe y =qyp e M avec 0<|y|]| <% et V(y)e
(U% g). L'opérateur (g — yy*)"? étant positif (#q) il existe un sous-projecteur
q' de g, équivalent a p, commutant a (q — yy*)"* tel que q'(q —yy*)"* q' #q’
(lemme 2.11). Soient ¢"=q —q', y,=q'yp, .= q"yp

di=q'(q—yy*)"q', d.=q"(q—yy*)"q"
L’élément V(y) dans la décomposition p + q’' +¢" =1 a la forme:
(P=yin—-yiw)'"? -yt -y3
V(y)= Y1 d, 0
Y2 0 d,
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Les conditions d’unitarité de V(y) donnent:
di=(q' —yy)'"?

d=(q" - y.y3)"?,
y2yi =0.

Remarquons que y, #0 car d,#q'. Soit J=p 4+ q' —q" € U®. Gréce aux condi-
tions d’unitarité, nous avons:

P —2yiy “2(P_YTY1)1/2YT 0
VyWV(y)*={ 2n(p —yiy)"” q' =2y} 0
0 0 q"
% * 0
={E,,c * 0]
0 0 g

avec  |[V(y)JV()*—1I<2[[V(y)-1I<1 et c=E, 2n(p-yin)’+
0, |lc]l <3. Soit ue U(M,) tel que z=cu soit un élément autoadjoint de M,
(lemme 2.10). Nous avons alors:

* * ()
ViOWV(y*(u+q' +q")=| E;pz * 0 |e(U%g),
0 0 q"
et grace au lemme 2.1:
(p — 22)1/2 —Zqu' 0
Z=\ E,z E,(p-2)"E,, 0 |e(U%g),
O 0 qH

ol z=z*eM,, z+#0, ||z|| <3i. Par le lemme 2.8 on a: (U*, Z)>U(p +q') X
U(g"). Donc U(p +q')x U(q") et U(p) X U(q' + q") sont des sous-groupes de
(U*% g); ils engendrent U (lemme 2.4), et (U%, g) = U.

Chapitre 3. Position du groupe unitaire dans le groupe des inversibles d’un
facteur

Nous reprenons les mémes notations qu’au chapitre 2.
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3.1. Etude du normalisateur de U dans G

Soient A une C*-algebre avec unité, K un idéal bilatere de A tel que A/K soit
une C*-algebre simple non nulle, 7:4— A/K la projection canonique. Nous
notons:

G(1+K)={xeG;x—1eK},
GU+K)={xeG;x=u+kavecue U, keK}=U-G(1+K).

Remarque. Si K=0ona G(1+K)=1et G(U+K)=U.
LEMME 3.1. Avec les notations ci-dessus:
Ns(G(U + K))=C*G(U + K).

Preuve. Soit g € Ng(G(U + K)). Alors pour tout u€ U on a gug~'e G(U +
K), c’est-a-dire gug~'g '*u*g*—1€K et donc g*gu —ug*g € K. Comme tout
élément de A est une combinaison linéaire de 4 unitaires, 7(g*g) appartient au
centre de m(A) donc a C (car 7(A) est une C*-algebre simple avec unité). Nous
obtenons donc g € C*G(U + K).

3.2. Lemmes préliminaires

LEMME 3.2. Soit T un espace compact et GL(2, T) (resp. U2, T)) le groupe
des fonctions continues de T dans GL,(C) (resp. U,(C)). Soit Fe GL(2, T) de la

forme: F(t) = (fg) £

HeGL(2, T) de la forme (
He(UQ, T), F).

) avec f(t)>1 pour tout teT. Alors pour tout

h@e) 0

0 h(t)") tel que h(t)=1 pour tout te T, on a

Preuve. Soient F et H comme dans I’énoncé. Par compacité de T il existe
n €N tel que A(t) <f(¢)* pour tout t € T. Posons

h(t)l/Z _ h(t)—l/z
fo* =fe™"’

(6 est une fonction continue sur T), et soient:
B (cos 0(t) -—sin 9(1‘))
°O 7 \sin 0(r) cos 6(r) /’
S(t) = F(t)'RglpF () "F(1) "R F(1)",

_ ( cos® 6(t) + f(£)* sin® 6(¢) sin B(1) cos O(1)[f (1)*" _f(t)_z,,]>
~ \sin 8(¢) cos O f ()" —f(£)™>"]  cos? O(t) +f(1) " sin’ O(r) /'

0(t) = arc sin
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L’élement S appartient a (U(2, T), F), S(t) est positif de déterminant 1 pour
tout 1 € T et trace S(t) =2 +sin” 8()(f(£)*" — f(£)"*")* = h(t) + h(¢)~". L’élément
S(t) a donc h(t) et h(t)~' pour valeurs propres. Soient

__2cos o(t)
h(t)I/Z 3 h(t)——l/z ’

a(t) = 4 arc sin x(¢).

x(t) =

Si

cos a(t) —sin a(t))
sina(t) cosa(t) /’

V()= (

alors V € U(2, T) et on vérifie par un calcul simple mais fastidieux I'égalité

(h(t) 0

) h(t)-l) —VOSOV(),

qui donne la condition cherchée.

LEMME 3.3. Soient A une C*-algebre avec unité, des projecteurs p,, p,, p;
orthogonaux de A de somme 1 tels que p, ~ p, #0. Si a est un opérateur positif de
A, avec Sp (a) c |1, +[ alors pour tout y =1, on a:

YP1 a
= Y-IPZ e\ U, ETza_lElz
P3 P3

(Sp (a) désigne le spectre de a. Nous notons E,= E3, une isométrie partielle
reliant p, et p,).

Preuve. La C*-algébre avec unité engendrée par a peut étre identifiée a
I’espace C(T') des fonctions continues sur le spectre T de a. Soit ¢ 'isomorphisme
de GL,(C(T)) sur une sous-algebre de G(p, + p,) défini par:

(p:()zc i}>'——>x +yE,+ Efz + ELWE,.

y

Grace au lemme 3.2, si H(t)==(0

_1) pour tout teT et y=1 alors
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He(UR, T), p '(a+ E}aE,;)) donc

_ e(U(p,+ p,), . ,
( 0 vy le P1+p2) 124 lElZ

d’ou la conclusion cherchée.

LEMME 3.4. Soient A une C*-algébre avec unité, des projecteurs p,, p,, ps
orthogonaux de A de somme 1, tels que p, ~p,# 0 et soit y> 1. Alors pour tout
X, y € G(p1)7

x xyx 'y~

Esz-]Elz et P2
Ps Ps

appartiennent a

YD1
U’ r= Y_IPZ

P3

Preuve. Soit b € G(p,) positif inversible. Identifions la C*-algébre avec unité

engendrée par b a I’espace des fonctions continues sur 7. En appliquant le lemme
32a

y 0 (b 0
F=(y ) o =07 )
oy © Y \o Enp'E,

ou @ est défini comme dans le lemme 3.3 nous obtenons:

U(p, +pJ), :
(0 1~:;'°21f’15,2)E (P1+p2) 0 y'p,

et donc

b
ELbT'E, e (U, I).
P3
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Pour tout x € G(p,), soit x = ub sa décomposition polaire (b = |x|) alors

X u b
ELx"'Ey; = D> ELDTE,
P3 P3 P3

P
X ELu*E,, ,

P3

appartient a (U, I') et donc pour tout x, y € G(p,):

xyx~'y~! x y
P2 Etx"'Ey, ELy 'Ep,
Ps Ps Ps
(yx)~"
X ELyxE ’

P3

Il

appartient aussi a (U, I').

3.3. Maximalité de N;(G(U + K)) dans le groupe des inversibles d’un facteur

Dans ce paragraphe M désigne un facteur (a2 prédual séparable). Nous
désignons par K I'idéal bilatére maximal de M défini au paragraphe 2.2 dont nous
reprenons les notations.

LEMME 3.5. Soit M un facteur de type L., 1l ou IIl. Pour tout g € G —
NG(G(U +K)), il existe un systtme d’unités matricielles {E,}, —,,3 et un
opérateur positif a € My avec Sp (a) < |1, +[ tels que

a
ETza_lElz €<NG(G(U+K))»8>-
E;

Preuve. Soit g€ G — Ns(G(U + K)) et g=ux sa décomposition polaire
(x =|gl). Le lemme 3.1 implique x ¢ C*G(1+ K). On a (Ng(G(U +K)), g) =
(Ng(G(U + K)), x). Le spectre (resp. le spectre essentiel si M est de type L. ou
11,) de x contient deux points A et u avec 0 <A < pu. Soit E(.) la mesure spectrale
associée a la décomposition de x = [, )t dE(t). Si € >0 vérifie A+e<pu-—g¢,
alors les projecteurs E([A — ¢, A + €]) et E([u — &, u + €]) sont orthogonaux.
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Considérons les cas suivants:

(a) Le facteur M est de type L., IL. ou IIl. Le projecteur E([A — €, A + €])
étant infini ([Ka], Prop. 3.8), il est la somme de deux projecteurs E,; et F
orthogonaux, équivalents et commutant a x. Soient

E22=E([ﬂ“‘8,‘u+8]) et E33=1—E|1_E22.

{E;i}i=1.23 forment une partition de I'unité de M que I’on compléte en un systéme
d’unités matricielles (s.u.m.) {E;}; ;.3 Alors x=x,+x,+x; ou x;=
EiiXEii (l = 1) 2) 3))

Sp(x))c[A—¢€ A+ €]NSp(x),
Sp (x2) =[u— & p+€]NSp (x).

Soit l'unitaire V =FE;,+ E, + E3;, alors B=VXV~™'X"' est un opérateur
inversible de (Ng(G(U + K)), x) de la forme

b
E2|b-1E12 ou b =E|2X2E21xr1€ME“.
Es

Soit b = wa la décomposition polaire de b (a = |b|). Alors
a w* b

EZIa—lEIZ = E; EZlb—1E12
E; Es; Es;

appartient 3 (Ng(G(U + K)), x) et
-1 -1 A+ e
la™ Il <llxull lxz "l < =<1 donc Sp(a)=]1, +[.

(b) Le facteur M est de type II;, muni d’'une trace normale finie fidele
normalisée 7. Il existe k€N, k>1 et un sous-projecteur E,; (resp. E,;) de
E([A—¢ A+ ¢€]) (resp. de E([u— €, u + €])) commutant a x et de trace 1/3k
([Di], Ch. III, §2, Prop. 14). Soient E;; un sous-projecteur de 1 — E,, — E,, de
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trace 1/3k, commutant a x et E,, = (E,,)* une isométrie partielle reliant E,; et
E,. Soient F=1—FE, —E,,—E;; et x=x,+x,+x3+y ou x=E;xE; (i=
1,2, 3), y=FxF. En construisant les éléments V=E ,+ E, + Es;+ F et B=
VxV~'x~!, comme au point a) nous obtenons un élément de la forme

E,a™'E
h= Al Ei E appartenant 2 (Ng(U), x),
33

F

et ou Sp (a)c]1, +o[. Comme t(F)=3(k —1)1/3k, on peut décomposer F en
somme de 3(k — 1) projecteurs orthogonaux, commutant a x et de trace 1/3k. En
effectuant un produit de kK — 1 conjugués (par des unitaires) de # nous obtenons
la conclusion cherchée.

LEMME 3.6. Soit M un facteur, alors tout opérateur inversible de M est un
multiple scalaire d’un produit fini de commutateurs multiplicatifs.

Preuve. Si M est de type L., Il. ou III, voir [Ha], Prob. 192, si M est de type
11, voir [F-H], Prop. 2.5 et si M est de type I, il est bien connu que le groupe
dérivé de GL,(C) est SL,(C). ([Ar], Ch. IV, Th. 4.7.).

THEOREME 3.1. Soit M un facteur, alors No(G(U + K)) = C*G(U + K) est
un sous-groupe maximal dans G.

Preuve. Si M est un facteur de type I,, la démonstration est faite dans [No].
Supposons donc que M est un facteur L., II ou I1l. Soit g € G — Ng(G(U + K)),
alors les lemmes 3.5 et 3.3 donnent I'existence d’un s.u.m. {E;}, ;- » 3 tel que

vE
r= Y_lEzz )
Es;

appartient 3 (Ng(G(U +K)), g) pour tout y>1. Nous allons montrer que
(Ng(G(U+K)), T)=G. Soit aeG et a=vB sa décomposition polaire ou
veU, B=(a*a)" . 1l existe un s.u.m. {E;}, -, tel que



72 SYLVIE GRIENER-GUILLOD

avec b;=E;BE; pour j=1,2,3 et des isométries partielles U, telles que
UU!=E;, U/U~=E, pour j=1,2,3. Soit I'unitaire U= U, + U, + U; alors
UBU™ a la forme

b,
b, ,
bs

dans le s.u.m. {E,}; _, 3 Grice au lemme 3.6 il existe A € R* tel que b, = Ab;
ou b, € M, est un produit fini de commutateurs multiplicatifs. Donc

b, b AE,,
E; =A% E;; A~"PE,
Es; Ess Es;
ABE,
X E, ;
A"1BE.,

appartient 3 (N;(G(U + K)), I') (lemme 3.4). Comme E,,, E,, et E4; sont des
projecteurs équivalents,

E,, E, b,
b2 et Ezz et dOﬂC b2
Es; b, b,

appartiennent 3 (Ng(G(U + K)), I'). Nous avons la conclusion cherchée car B et
donc aussi a sont des éléments de (N;(G(U + K)), I').

Appendice
Nous allons déduire du théoréme 1.1 de nouvelles preuves de la simplicité de
certains groupes. Considérons a titre d’exemple un facteur A de type /Il (a

prédual séparable) et le groupe G des éléments inversibles de A. Le résultat
suivant est essentiellement di a Kaplansky ([Kap]).

COROLLAIRE. Avec les notations ci-dessus le groupe G/C* est simple.

Preuve. Soient p et g deux projecteurs équivalents de somme 1, soient G’
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comme au théoreme 1.1 et W={xeG;x—1€epAq} qui est un sous-groupe
normal abélien de G'.

(1) La réunion des conjugués de W engendre G: cela résulte par exemple
d’identités classiques avec matrices élémentaires ([Mi]) et de la perfection de G
([H—'S’ 1])

(2) L’intersection des conjugués de G' dans G est réduite a C*: On voit
facilement qu’'un élément de (),.cxG'x~' ne peut étre que de la forme

a 0
(0 d) avec ae G(A,), de G(A,). Pour tout c € gAp nous devons donc avoir

p O)(a 0)(1) 0)“ , o
G
(c J\o d\c 4 € G' ce qui implique

d=FE,aE,, (ou E,, =(E,,)* est une isométrie partielle reliant p et q) et a
commute alors a tous les éléments de A,, donc est scalaire.
Le corollaire résulte alors de la maximalité de G’ dans G par un argument
général “‘bien connu” ([Bo], Groupes et Alg. de Lie, Chap. IV, §2, Ex. 28).
Nous obtenons de la méme maniere des résultats analogues sur la simplicité
lorsque A est un facteur d’un autre type.
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