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Sous-groupes maximaux de groupes classiques associés à certaines
C*-aIgèbres

Sylvie Griener-Guillod

Résumé Dans cet article, nous étudions la maximalité de certains sous-groupes de l&apos;ensemble

des éléments inversibles (ou unitaires) d&apos;une C*-algèbre ou d&apos;un facteur

Introduction

E. B. Dynkin est l&apos;un des initiateurs de la description des sous-groupes
maximaux des groupes classiques comme GLn(C) et Un(C) ([Dy]).

Soient A une C*-algèbre avec unité, G GL(A)() (resp. U U(A)()) la

composante connexe neutre du groupe formé des éléments inversibles (resp.
unitaires) de A. Nous nous intéressons à montrer la maximalité de sous-groupes
paraboliques et de certains autres sous-groupes de G et de U.

On dit que deux projecteurs p et q de A sont équivalents lorsqu&apos;il existe

v, w eA avec p vw, q wv, v — pvq et w qwp. Cette relation d&apos;équivalence

est notée p ~ q (sa négation p fq).
Plus précisément, soient p et q deux projecteurs non nuls de A de somme 1.

Pour tout x 6 A nous avons x =pxp 4- pxq + qxp + qxq (l&apos;écriture a été introduite

par C. S. Peirce en 1870) que nous noterons l 2) avec xx pxp, x2-pxq&gt;
\x~&gt;, x^J

x3 qxp, x4 qxq.
Dans le chapitre 1 nous étudions d&apos;abord des sous-groupes paraboliques de G

et démontrons:

THÉORÈME 1.1. Soient A une C*-algèbre simple avec unité et p&gt; q deux

projecteurs non nuls de A, de somme 1. Alors G&apos; {x e G; qxp 0, qx~lp 0}
est un sous-groupe maximal dans G.

Rappelons qu&apos;une C*-algèbre avec unité est simple si elle ne possède pas
d&apos;idéal bilatère non trivial.

Soit apq l&apos;automorphisme intérieur de A défini par: apq(x)-JxJ~l pour tout
x e A, où / est l&apos;involution p — q.
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Considérons les sous-groupes formés des points fixes de apq:

G«={xeG;ap&gt;q(x) x},
ua=Ganu.

Désignons par NG(Ga) (resp. Nu(Ua)) le normalisateur de Ga dans G (resp. de

Ua dans U). Nous démontrons alors:

THÉORÈME 1.2. Soient A une C*-algèbre simple avec unitéy p et q deux

projecteurs équivalents de A de somme 1. Alors Ga est d&apos;indice 2 dans NG(Ga) et

NG(G&quot;) est un sous-groupe maximal dans G.

Par contre lorsque les projecteurs p et q sont non équivalents, NG(Ga) Ga
(Prop. 1.1) est contenu dans le groupe parabolique G&apos; du théorème 1.1 et n&apos;est

donc pas un sous-groupe maximal de G. Les théorèmes 1.1 et 1.2 auront une
généralisation au cas où l&apos;algèbre A n&apos;est plus simple.

Dans le chapitre 2 nous nous intéressons à la maximalité du groupe unitaire
des points fixes par l&apos;automorphisme ocpq dans U.

Rappelons que si A est un facteur de type Ix, tous les automorphismes a
involutifs (i.e. a2 1) de A sont conjugués à des automorphismes de la forme

aP,q ([H]» lemme 5).
Quelle est la position du groupe des points fixes par un automorphisme

involutif (modulo les opérateurs compacts) dans le groupe unitaire d&apos;un facteur
de type 4?

Si K désigne l&apos;idéal bilatère maximal de A et U%= {x e U; ap&gt;q{x)-xe K},
les théorèmes suivants donnent en particulier une réponse à cette question:

THÉORÈMES 2.1 et 2.2. Soient A un facteur, p et q deux projecteurs non
nuls de somme 1.

5/ p~q:U% est d&apos;indice 2 dans Nu(U%) et Nu(U%) est un sous-groupe
maximal du groupe unitaire U de A.

Si p j-q\ Nu(Ua) Ua est un sous-groupe maximal dans U.

Le chapitre 3 est consacré à l&apos;étude de la position du groupe unitaire dans le

groupe des éléments inversibles d&apos;un facteur.
En définissant: G(U + K) {jc e G; x u + k avec ueUetkeK}, nous

obtenons alors le résultat suivant:

THÉORÈME 3.1. Soit A un facteur, alors NG(G(U + K)) C*G(U + K) est

un sous-groupe maximal dans G.
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Dans l&apos;appendice nous donnons de nouvelles preuves de la simplicité de

certains groupes.
Je remercie les personnes qui m&apos;ont permis de mener à bien ce travail, A.

Robert, R. Bader, P. de la Harpe.
Ce travail a été réalisé en partie grâce au soutien du Fonds national suisse de

la recherche scientifique (requête n° 2.717-0.85).

Chapitre 1. Quelques sous-groupes maximaux du groupe des inversibles d&apos;une

C*-algèbre

1.1. Lemmes préliminaires
Nous désignons par (Sx, 52,. le sous-groupe d&apos;un groupe G engendré par

les parties S1} S^,.. de G. Si p est un projecteur d&apos;une algèbre A&gt; la réduite de A
par p est l&apos;algèbre pAp notée Ap.

LEMME 1.1. Soient A une C*-algèbre avec unité, p et q deux projecteurs non
nuls de somme 1. Posons

Gj {x e G;x - 1 eqAp}, G2={xeG;x-l epAq},

G3={xe G;qxp ^pxq 0},

alors (Gu G2, G3&gt; G.

Preuve, Soit z eG avec \\z — 1|| &lt;|; on a

1 q/\Q 24

qui appartient à (Glf G2, G3). Le groupe G étant connexe nous obtenons la

conclusion cherchée.

LEMME 1.2. Soient B un anneau simple avec unité, p et q deux idempotents

non nuls de B, alors qBp est non nul et simple comme Bq ® BpPP-module à gauche

(BpPP dénote l&apos;anneau opposé).

Remarques. (1) Si B est une C*-algèbre simple alors Bp l&apos;est aussi.

(2) Si B est une C*-algèbre simple alors qBp est simple comme GL(Bq)° ®
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GL(BpPP)°-module à gauche (car tout élément de Bq est somme de deux éléments
de GL(Bq)°).

Preuve. Soit / l&apos;idéal engendré par p, comme B est simple nous avons / B.
Il existe donc an bl (i 1, N) appartenant à B tels que 1 E£Li a,pbt donc
0 i=- q Efli qa,pbr II existe alors i e {1, N] tel que qatp =£ 0, d&apos;où qBp ¥* 0.

Montrons que qBp est simple: Soient Y un Bq ® #£pp-sous module non nul de

g#/? et y e 7, y non nul. Comme B est simple, l&apos;idéal bilatère engendré par y est

égal à B. Donc pour tout x eB, il existe des éléments an j3, (i 1,. fc)

appartenant à B tels que x Ef=i #j&gt;j6r En particulier si xeqBp, en posant
f e Bq et è, /?j3,p e Bp, on a jc qxp Ef=i alybl e Y donc Y qBp.

LEMME 1.3. Soient A une C*-algèbre avec unité, afbeA et fceIR*. Si
aub 0 pour tout u e U avec \\u — 1|| &lt; k alors azb 0 pour tout z eA. Si de plus
A est simple ou A est un facteur alors: a 0 ou b 0.

Preuve. Il existe ô &gt;0 suffisamment petit tel que, pour tout x =x* eA avec
||jc||&lt;ô, on ait w -â + (l-x2)l/2e(/ et ||M-l||&lt;Jk. On a donc axb

2i)(*)6 0

Tout élément de A étant somme de deux éléments autoadjoints de A nous
avons azb 0, pour tout z eA. Si A est simple le lemme 8.1 de [H-S,2] nous
donne a 0 ou b 0. Si A est un facteur: Supposons a i=- 0 et b =é 0. Il existe r et
se A tels que aa*r et 56 *è soient des projecteurs non nuls. Soient deux

projecteurs e et/non nuls équivalents tels que e^aa*r,f^sb*b. Il existe donc

vfweA avec e - uw,/ wv, v evfy w =fwe. Soit x a*rvsb* on a axb —

aa*rvsb*b v =£0 ce qui contredit l&apos;hypothèse du lemme.

1.2. Maximalité de G&apos;

THÉORÈME 1.1. Soient A une C*-algèbre simple avec unité et p, q deux

projecteurs non nuls de A, de somme 1. Alors Gr {x e G; qxp 0, qx~lp 0}
est un sous-groupe maximal dans G.

Preuve. Soit geG-Gf et montrons que {G&apos;,g) G\ on peut supposer
qgp¥&quot;0 (sinon on considère g&quot;1)- Comme pour tout r e R*, (l/r)g e (G&apos;, g),

nous pouvons supposer de plus que g
2

avec \\gt\\ &lt; 1 pour / 1, 2, 3, 4.
\g3 ^4/

Soit JV= {y eqAp; l+ye (G&apos;, g)}. L&apos;égalité:

0\/g! g2\//?+gi g2\/gl &amp;

&lt;?Ag3 g4A 0 q)\g&apos;3 g&apos;
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(t
t x

implique g^eAf, avec g3=É0. N a les propriétés
£3 gJ

suivantes:

(a) N±NczN.
(b) Pour tout x e N pour tout a e GL(AP)° on a jca e N car:

a&quot;1 0\/p 0\/n 0\_/p 0la~x 0\/p 0\/a 0\/p 0\
\ 0 çA* &lt;?Ao q) \xa ql

De même bxeN pour tout xeNetbe GL{Aqf. N est donc un
GL(i4pPP)°-sous module à gauche non nul de #4/?, donc A^ qAp par la remarque
(2) suivant le lemme 1.2. Par suite tout élément x e G avec x-leqAp
appartient à (G&apos;,g). Comme les groupes GlfG2,G^ définis au lemme 1.1

appartiennent à (G&apos;, g) nous obtenons G (G&apos;, g).

1.3. Étude des normalisateurs

LEMME 1.4. Soient A une C*-algèbre avec unité, p et q deux projecteurs non
nuls de somme 1. On a les équivalences suivantes:

(a) p-q;
(b) il existe un élément x inversible dans qAp + pAq.

Preuve, (a)^(b). Il existe v,weA tels que p vw et q — wv avec v-
pvq, w qwp; alors x v + w convient.

(b)=^&gt;(a). Soit 2) un élément inversible dans qAp -f pAq et d&apos;inverse

\x^ 0 /

C, 2
j. Alors x2x&apos;3 p et xf^x2 — q&gt; donc p et q sont équivalents.

3 V &apos;

Dans la proposition suivante, étant donnés deux projecteurs p et q de somme 1

dans la C*-algèbre A, on note:

Ga={xe G;pxq 0; qxp 0}; U° (/ H G&quot;,

TG&quot; {x e G;/?xp 0;qxq 0}; 7(T =UC\ TGa.

S&apos;il existe une isométrie partielle Epq de projecteur initial q et de projecteur final

p, on peut aussi écrire TGa w )Ga.
VE^p 0 /

PROPOSITION 1.1. Soit A une C*-algèbre simple avec unité ou un facteur et

soient p, q deux projecteurs non nuls de A de somme 1. Alors:
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(b) Si p~q, alors TGa=( M)Gff comme ci-dessus; Si piq, alors
TGa &lt;p. qp

U

(c) NG(NG(Ga)) NG(G&quot;)\ NviNuiU&quot;)) Nu(Ua).

Preuve, (a) Soit g (gl g2) e NG(Ga) et posons g&quot;1 (g) gl\ Pour tout
V£i &amp;*&apos; Vga g4/

« e t/(i4p)° et d e f/(i4^)° on a g(a ± d)g~l e G&quot;, donc g,ag[, g4dg&apos;3, gxag&apos;2y g2dg\
sont tous nuls. Le lemme 1.3 nous donne deux possibilités pour g:

- Soit g2 0 et g3 0; c&apos;est-à-dire g eGa.

- Soit gj 0 et g4 0; c&apos;est-à-dire g e TGay
donc NG(Ga)czGaUTGa. L&apos;inclusion inverse étant triviale on a l&apos;égalité. La
démonstration est identique pour Nu{U&quot;) NG(Ga) H U.

(b) Résulte du lemme 1.4.

(c) Se déduit du lemme 1.5 ci-dessous.

LEMME 1.5. Soient A une C*-algèbre simple avec unité ou un facteur, p et q
deux projecteurs non nuls de A de somme 1. Soient geG et ôeU avec
0&lt;ô&lt; l/||g|| ||g-!||. Si g(a + d)g~{ e NG(Ga) pour tout a e U(AP)° et d e U(Aqf
tels que ||û-p||&lt;ô, \\d-q\\&lt;ôf alors g e NG(Ga).

Preuve. Soit geG avec g(a + d)g~l e NG(Ga) GaUTGa (Prop 1.1) pour
tout a et d comme dans l&apos;énoncé. Alors g(a + d)g~l appartient à la composante

connexe de 1 dans NG(Ga) c&apos;est-à-dire g(a + d)g~x eGa. On a donc
[ +g4dg^ 0 et giag2 + g2^g4~0 P°ur tout a et d comme dans l&apos;énoncé

V* g&apos;Jr8
&apos;# g*

II existe e&gt;0 tel que pour tout (pe[-e, +e] on ait \\ael&lt;p -p\\ &lt; ô. Nous

avons donc

ce qui implique:

Comme dans la démonstration de la proposition 1.1 on déduit que g e Ga, ou que

geTGa. Le lemme 1.4 et la proposition 1.1 nous permettent de conclure.
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Remarque. Nous pouvons remplacer dans l&apos;énoncé du lemme 1.5 G par U et
G* par Ua.

1.4. Maximalité de NG(G a) lorsque p ~ q

THÉORÈME 1.2. Soient A une C*-algèbre simple avec unité, p et q deux
projecteurs équivalents de A de somme 1. Alors Ga est d&apos;indice 2 dans NG(Ga) et

NG(Ga) est un sous-groupe maximal dans G.

Preuve. La première affirmation résulte de la proposition 1.1. Soit g 6 G -
NG(Ga) (non vide par le lemme 1.2). Pour tout 0&lt; ô &lt; l/\\g\\ \\g~l\\, il existe par
le lemme 1.5 deux unitaires a e U(AP)°, d e U(Aq)° avec \\a -p\\ &lt; ô, \\d - q\\ &lt;

ô tels que g =g(a + d)g&apos;1 e (NG(Ga), g) - NG(Ga). Si (pgp);1 désigne l&apos;inverse

de pgp dans pApf l&apos;élément g((pgp)~l + (qgq)~l)=p + pgq(qgq)~qx +
&lt;lgp(pgp)vl + # appartient à (NG(Ga), g) — NG(Ga). En prenant ô suffisamment

petit, on peut donc supposer a priori que g est un élément de la forme

(P 8l) avec \\g - 1|| petit. Soit N {y eqAp tel que 1 +y e (NG(G&quot;)&gt; g)}.

1) Montrons que N est non nul.
1er cas. Si g2 0; alors g3 e N et g3 * 0 (car g &lt;£ NG(Ga)).
2ème cas. Si g3 0; p et q étant des projecteurs équivalents, il existe v, w e A

tels que p vwt q — wv, v =pvq, w qwp. Comme

/O v\/p g2\/0 lA / p 0\
\w 0A0 q )\w 0/ \w2h&gt; #/&apos;wg2w

appartient à (NG(Ga), g) alors 0# wg2w € N (carg $ NG(Ga)).
3eme cas. Si g2 ^ 0 et g3 ^ 0; alors

0 \/p g2\2 (x 0(P g2\(-ÏP 0 \/

où jc -\(p + g2g3) + 2g2(&lt;7 + g^^&apos;^3 est inversible dans Ap

z-q- g3g2 est inversible dans Aqy

y -èg3(/&gt; + g2g3) + 2(? + g3g2)&quot;1g3 ^ 0,

(sinon {q + g3g2)g3(p + g2ga) 4g4 et donc g3 0).
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On a alors

ce qui implique yx~l e N où yx~l =£ 0.

2) Montrons que TV qAp.
De même que dans la démonstration du théorème 1.1, N est un GL(Aq)°®

GL(ApPP)°-sous module à gauche de qAp et par le point 1) N est non nul. La

remarque (2) suivant le lemme 1.2 nous permet de conclure N qAp.
Les projecteurs p et q étant équivalents nous voyons donc que les trois

groupes Gu G2, G3 définis au lemme 1.1 appartiennent à (NG(Ga)yg) et donc
G (NG(G«)yg).

1.5. Une généralisation aux C*-algèbres non simples
Soient A une C*-algèbre avec unité, K un idéal bilatère de A tel que A/K soit

une C*-algèbre simple non nulle, n\A-+ A/K la projection canonique (jt(1)
1), p et q deux projecteurs de A-K de somme 1. Soient

G&apos;K {x e G; qxp e Ky qx~lp e K}y

G£ {.* e G;pxq e Ky qxp eK}; U% G%HU.

L&apos;exemple type est celui où A est un facteur de type Ix, K l&apos;idéal des opérateurs
compacts, A/K l&apos;algèbre de Calkin, et où les projecteurs p, q sont de rang infini.

Remarque. On a pAq &lt;£ K (lemme 1.2).

LEMME 1.6. Avec les notations ci-dessus:

Preuve. Tout x e GL(jt(A))° suffisamment proche de 1 a une décomposition
polaire de la forme eyes où y&gt; s e Jt(A) avec y* -y, s* s. Soient r, t e A tels

que r* -r, t* ty n(r) yy Jt(t) s, alors x Jt(erel) e jï(GL(A)°). L&apos;inclusion

inverse est facile. La preuve vaut pour U.

PROPOSITION 1.2. Soient Ay Ky k comme ci-dessus. Si H est un sous-
groupe de GL(A)° contenant {x e GL(A)°; x - 1 e K} tel que jt(H) soit un
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sous-groupe maximal dans GL{tz{A))&quot; alors H est un sous-groupe maximal dans

GL{Af.

Preuve. Il y a une correspondance bijective entre les sous-groupes de

GL{jz{A)f et ceux de GL(A)° contenant le noyau de n\GL{Af^&gt;GL(ji{A)f
([Bo], Alg IV, Livre II, Ch. 1, §6, n° 13, Th. 6).

GÉNÉRALISATION 1.1. Soient A et K comme ci-dessus, p et q deux

projecteurs de A de somme 1 et n&apos;appartenant pas à K. Alors G&apos;K est un

sous-groupe maximal dans G.

Preuve. Résulte du théorème 1.1 appliqué à jz(A), du lemme 1.6 et de la

proposition 1.2.

GÉNÉRALISATION 1.2. Soient A, K, n comme ci-dessus, p et q deux

projecteurs de A de somme 1 tels que Ji(p) ~ Jï(q). Alors G% est d&apos;indice 2 dans

NG(G%) et NG(G%) est un sous-groupe maximal dans G.

Preuve. Résulte de la proposition 1.1 et du théorème 1.2 appliqués à jz{A),
ainsi que du lemme 1.6 et de la proposition 1.2.

Chapitre 2. Quelques sous-groupes maximaux du groupe unitaire d&apos;un facteur

Notations
Soient A une C*-algèbre avec unité, p et q deux projecteurs non nuls de A de

somme 1.

- Si p est équivalent à q dans A alors il existe un élément dans pAq que nous
notons Epq (Eqp)* tel que p Epq(Epq)* et q (Epq)*Epq (pour l&apos;existence

d&apos;un tel élément: [Go] Prop. 19.1, p. 147).

-p &lt;q signifie que p est équivalent dans A à un sous-projecteur de q.

- G(p) GL(Apf et U(p) U(Apf.
- U(p) x U{q) {xeU(p + qy,x u + v,u6 U(p), v e

2.1. Lemmes préliminaires
Dans ce paragraphe A est une C*-algèbre avec unité, p et q deux projecteurs

non nuls, Ua {x e U\ qxp 0, pxq 0}.

LEMME 2.1. Soient p et q deux projecteurs de A de somme 1, x

(x x \2
e U avec X\ e G(p), x4 e G(q). Alors il existe deux unitaires u e U(p),

x3 x4/
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v e U(q) tels que:

u* 0\/x, x2\/p 0\ /(p-xW2 -jc3*

xJ
tu* 0\/x, x2\/p 0\ /(p-x
\0 q)\x, xJ\0 v*) \ x,

appartienne au groupe engendré par Ua et x.

NOTATION. Si p + q 1, y e qAp avec \\y\\ &lt; 1 nous désignons par V(y) où
parfois Vpq{y) l&apos;unitaire:

(p-y*y)m -y*((p-y*y)m -y*
\ y {q-yy*)mr

Preuve. L&apos;élément x étant unitaire on a x*xx =p — x*x^ et comme x{ est
inversible il existe u e U(p) tel que x{ u(x*x{)m u(p -x*x3)1&apos;2. De même il
existe v e U(q) tel que x4 v(q - jcJjc2)1/2. L&apos;égalité q x^x* + x4xt =x3x* +
v(q — x%x2)v* implique x*x2 v*x^x*v. La relation x%xl + x^x^ 0 nous donne
(en pensant au développement en série entière):

X2= ~~\X\ X3X4,

-u(p -x*3x,yll2x*Mq ~ (xïv)*(x*,v)y&lt;2,

-u(p -xUd~U2(P ~ (xïv)(xïv)*y&lt;2 x*,v -ux*,v,

et

On a alors:

/u* O\/jc,U vJ\/aj JC2W/? U \ /yp—X^X-i,) ~Xt, \
0 ^Ax3 JC4AO u*/ \ x^ (q -x^x*)ï/2/&apos;

LEMME 2.2. Soient p et q des projecteurs de A de somme 1, alors

Prewue. Soit â 4- / |ff a(p - ««?) où a K(£,p(l/V2)).

1) Soit jc un élément autoadjoint de Ap de norme strictement inférieure à 1
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alors u (p - x2)112 + ixe U(p) et

Eqpx

appartient à (Ua, o).
2) Soit y eAp avec \\y\\ &lt; 1/V2, alors

où

car

\\b\\&lt;l,

c \{{p-y*y)m + iy- iy* - (p -yy*)m).

Le lemme 2.1 donne l&apos;existence de deux unitaires u eApy v eAq tels que

/u* 0\/ a cEpq \/P °) v(£ b)

Comme b est autoadjoint le point 1) implique V(Eqpb)e (Ua, a) et donc

V(Eqpy) e {Uay o). Le lemme 2.1 montre alors que tout élément unitaire
suffisamment proche de l&apos;identité appartient à (Ua,o). Le groupe U étant

connexe nous avons la conclusion (Ua, o) U.

LEMME 2.3. Soient p et q des projecteurs équivalents de A de somme 1.

Soient e un sous-projecteur non nul de p (e e A) et c un élément inversible dans Ae

tel que \\c\\ &lt; \, alors:

Preuve. Soit c ux la décomposition polaire de c, où u e U(Ae) et x
(c*c)V2eAe avec ||*||&lt;£ On a:



Sous-groupes maximaux de groupes classiques 59

qui appartient à (Ua, V(Eqpc)). Soit meN tel que v sin(;r/4m) et ve&lt;

4x(p-x2)m. Alors a \{x);\p-x2)-m[{Ax\p-x2)-v2e)m + ive]+p-e est

un unitaire de Ap. On a:

E a*E ^(/v EÎEtqpa Epq/ \EqPY EqpoEpq

où

à -i((p-x2)ma(p-x2y/2 + xa*x) e G(p),

y -i(xa(p - x2)m -(p- x2)ma*x) sin -^e e Ae.
4m

Le lemme 2.1 montre que V(£^ sin (jr/4rn)e) e {Ua, V{Eqpc)) et donc

LEMME 2.4. Soient p&gt; q\ q&quot; trois projecteurs non nuls de A, orthogonaux et

de somme 1 tels que p~q&apos; et soit H U(p) x U(q&apos; 4- q&quot;), U(p + q1) x U(q&quot;))f

alors H=U.

Preuve. Soit q q&apos; + q&quot;- Grâce au lemme 2.1 et à la connexité de U il suffit
de montrer que V(z) appartient à //, ceci pour tout z eqAp où ||z|| est petit.
Soient x qfzp, y=q&quot;zp, t y(p -x*x)pl/2 et X, Y, W comme suit (dans la

décomposition p + q1 4- q&quot; 1):

r(p-x*x)m -x* 0

x (q&apos;-xx*)m 0 \eH,
0 0 q&quot;

0

0 Epq. 0

W=\ Eq.p 0 Ole//.
0 0 q&quot;,
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Donc

\WYW*X=\ x * * Je//,

et dans la décomposition p + q 1:

Y
/

* *
z */

est un élément de H qui est proche de 1 si ||z|| est petit. Grâce au lemme 2.1 nous

pouvons conclure que V(z) appartient à H.

2.2. Sous-groupes maximaux de groupe unitaire d&apos;un facteur
Dans ce paragraphe, M désigne un facteur (à prédual séparable), U le groupe

unitaire de M (U est connexe, [Ru] Th. 12.37), p et q deux projecteurs non nuls

de M de somme 1.

DÉFINITIONS.
1. Si M est un facteur infini semi-fini muni d&apos;une trace r normale semi-finie

fidèle, soient:

F {jc e M; il existe une projecteur E e M tel

que t(E) &lt; oo et x ExE},

F est l&apos;idéal des éléments de rang fini dans M

fo si M est un facteur de type /„, llx où ///
K s adhérence normique de F si M est un facteur

^ de type L où IL

K est l&apos;idéal bilatère maximal formé des éléments compacts de M. L&apos;algèbre M/K
est simple.

2. Si g e M, Sp (g) désigne le spectre de g et Spe (g) désigne le spectre essentiel

de g, c&apos;est-à-dire le spectre de la projection de g dans l&apos;algèbre de Calkin M/K.
3. U&quot;={xeU;pxq 0,qxp 0},

U%={xe U;pxq e K, qxp e K},
Nu(Uk) te normalisateur de U% dans U.
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2.2.1. Etude de normalisateur de U%

PROPOSITION 2.1. Soient M un facteur, p en q deux projecteurs non nuls de

M, équivalents et de somme 1, alors

Nu(UaK)=U%UTU%,

où

TU% {xe U\ pxp g /C, qxq e K}.

Preuve. C&apos;est en fait un corollaire de la proposition 1.1.

2.2.2. Maximalité de Nv{UaK) lorsque p ~ q

LEMME 2.5. Soient M un facteur et e un projecteur de M tel que e ^ 1 et

e $ K. Alors il existe N e N et des projecteurs e, non nuls orthogonaux équivalents
de M (i 0, 1, N) tels que 1 - e{) Efli e, avec e() ^ e, e{) $ K et 1 — e{) $ K.

Preuve. (1) Si M est de type /„ ou llx muni d&apos;une trace r normale finie fidèle
normalisée: II existe m e N (m n si M est de type /„) et un sous-projecteur e() de

e tel que r(e0) r(l)/m &lt; r(e). Nous avons r(l - e0) (m — l)(r(l)/m) donc
1 — e() est la somme de m — 1 projecteurs orthogonaux e, de trace r(l)/m donc

équivalents àe()(iV m-l).
(2) Si M est de type L ou IL\ Le projecteur e est la somme de deux

projecteurs équivalents orthogonaux e{) et e(&apos;} où e()y e&apos;{)$ K ([Di] Ch. III, §1, n° 2,

Cor. 3). Nous avons e&apos;{) ^ 1 — e{) donc 1 - e{) $ K et 1 - e0 est alors un projecteur
équivalent à e()y car tous deux de trace infinie ([Di] Ch. III, §8, n° 6, Cor. 5).

(3) Si M est de type ///: On peut choisir eo e et comme 1 — e{)=l — e=£0

nous avons donc 1 — e() ~ e() (N 1).

LEMME 2.6. Soient p et q deux projecteurs équivalents de somme 1 d&apos;un

facteur M, et e un sous-projecteur non nul de p vérifiant e Ç K, alors

{Ua,V{Eqp{\N2)e)) U.

Preuve. Si e=p; le lemme 2.2 permet de conclure. Si ei^p; soient N et

e,,, eu eN comme au lemme 2.5 (appliqué à Mp). Le lemme 2.2 appliqué à

Me+EweEM implique:

^ &lt;?)) U(e + EqpeEpq) x U(p - e) x £/(£„„(/&gt; - e)Epq).
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Nous avons alors:

Soient E()J (Ej0)* des isométries partielles de M reliant e{) et ejy et

N

EOJ + Ej0 + 2

qui appartient à Ua (j 1, N). Alors

appartient aussi à (U&quot;, V(Eqp(l/\/2)e)). Grâce au lemme 2.2 nous obtenons la
conclusion cherchée.

LEMME 2.7. Soit M un facteur et z z* e M — K avec \\z\\ &lt; 1. Alors il existe

un projecteur e e M — K tel que ze (1 — z2)1/2 soit un élément inversible dans Me.

Preuve. Soient z JsP(2) A dE(X) la décomposition spectrale de z et A&apos; la plus
grande valeur spectrale (essentielle si M est de type L ou IIX) en module de z.
Soient e&gt;0 tel que 0&lt; |A&apos; - e\ &lt; |A&apos;| &lt; |A&apos; + e\ &lt; 1 et e E{[X&apos; - e, X&apos; + e}).
L&apos;élément ze (1 - z2)172 JV_e.v+e, A(l - A2)1/2 d£(A) est inversible dans Me.

LEMME 2.8. Soient M un facteury p et q deux projecteurs de M équivalents de

somme 1, z z* e Mp avec z $ K et \\z\\ &lt; i alors Ua, V(Eqpz)) U.

Preuve. Soient e comme au lemme 2.7 et / 1 — 2e e Ua. Le produit
JV{Eqpz)rl[V{Eqpz)Yl s&apos;écrit:

/ a bEpq \
\Eanc EaodEDJ&apos;

où a et d sont inversibles dans Mp car ||z|| &lt;^ et c -2ze(l - z2)I/2 est aussi

inversible dans Me. Par le lemme 2.1 on a V(Eqpc) e (Ua, V(Eqpz)) et les

lemmes 2.3 et 2.6 nous permettent de conclure.

LEMME 2.9. Soient M un facteur, p et q deux projecteurs équivalents de M de
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somme 1. 5/ x e Mp vérifie x $ K et \\x\\ &lt; i, il existe z e Mp avec z z* £ K et

\\z\\ &lt; h tel que V{Eqpz) e (Nu(U%)9 V(Eqpx)).

Preuve. Soient 7 Epq- Eqp, L Epq + £&lt;,p et

Z, K(E^)/K(£,pjc)/*, Z2 iV(Eqpx)LV(Eqpx)L* (J, L e Na(U%)).

Nous avons: ||Z, - 1|| &lt;2 \\V(Eqpx) - 1|| &lt; 1 car ||jc||&lt;i de même ||Z2-1||&lt;1.
Alors:

qZxp £^((p - jcjc*)1/2jc* 4-jc(p - xx*)l/2) Eqpzu

qZ2p Eqp(-i(p -xx*)l/2x* + â(p -xx*)l/2) £wz2»

où zy z* € Mp avec ||zy|| &lt;
3 (/ 1» 2). Nous ne pouvons avoir z, et z2 dans K

sinon Zî - iz2 2x(p -jcjc*)1/26 K ce qui implique x e K. Il existe donc Ze

{Nv{U&lt;xK)iV{Eqpx)) (Z est soit Z, soit Z2) de la forme
*

J avec

Le lemme 2.1 nous permet de conclure V{Eqpz) e (Nu(U%)f V(Eqpx)).

THÉORÈME 2.1. Soient M un facteur, p et q deux projecteurs de M,
équivalents de somme 1. Alors U% est d&apos;indice 2 dans Nu(U%) et Nu(U%) est un

sous-groupe maximal du groupe unitaire U de M.

Preuve. La proposition 1.1 donne la première affirmation. Soient geU —

Nu(U%) et n la projection canonique M-+M/K (n(A) est alors une C*-algèbre
simple et U(jv(A))0 jt(U(A)) par le lemme 1.6). Le lemme 1.5 appliqué à jï(A)
montre l&apos;existence de a e U(p) et d e U(q) avec \\a -p|| &lt; i et \\d - q\\ &lt; | tels

que x g(a + d)g~l € (NV(U%)9 g) - NV(U%).
/x x \

Alors x est un élément de la forme f 2j où ||jc — 1||&lt;6&gt; et on peut

supposer de plus que x3$ K (sinon on considère jc*). Le lemme 2.1 donne alors

V(x3) e(Ua,x). Comme x3 $ K et ||jc3|| &lt; è nous pouvons appliquer successivement

les lemmes 2.9 et 2.8, d&apos;où (Nu(U%)9 V(x3)) U.

2.2.3. Maximalité de Ua lorsque p j* q

LEMME 2.10. Soient M un facteur fini et ceM&gt; alors il existe un unitaire
u eM tel que eu soit un élément autoadjoint.
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Preuve. Soit c v\c\ la décomposition polaire de c où v, \c\eM. Les

projecteurs finis v*v et vv* étant équivalents, il existe une isométrie partielle
weM telle que w*w 1 - v*vt ww* l-vv* ([Di], Ch. III, §2, n° 3, Prop. 6).
Soit l&apos;unitaire u v* + w* e M alors cw w*c*.

LEMME 2.11. Soient M un facteur semi-fini continu (resp. discret) muni
d&apos;une trace r normale semi-finie fidèle (resp. avec la trace des projecteurs
minimaux valant 1), un projecteur q non nul de M, un opérateur positif P de Mq
tel que P=^q.

Soit d un nombre réel (resp. entier) tel que 0&lt;d^r(q), alors il existe un

sous-projecteur q&apos; de q, commutant à P tel que r(qf) d et q&apos;Pq&apos;

Preuve. Soient (q}),=\ n des projecteurs orthogonaux équivalents de somme

q, commutant à P tels que r(qj)^d (n pouvant être infini). Si q&apos;Pq&apos; q&apos; pour
tout projecteur q&apos; commutant à P avec r(q&apos;) d alors qPq=q pour tout
projecteur q commutant à P avec r(q) ^d. On a donc qfq, q, (V/ 1, n)
ce qui implique qPq q contrairement à l&apos;hypothèse.

THÉORÈME 2.2. Soient M un facteur, p et q deux projecteurs non nuls de

My non équivalents et de somme 1. Alors NlJ(lJoc) Ua est un sous-groupe
maximal du groupe unitaire U.

Preuve. L&apos;égalité Nfj(Ua)= Ua résulte de la Proposition 1.1. Comme p-\- q
nous supposerons par exemple p &lt; q. Soit g e U - U&quot;. On montre comme dans la

preuve du théorème 2.1 qu&apos;il existe y qyp e M avec 0&lt;|[y||&lt;| et V(y) e

(Ua,g). L&apos;opérateur (q — yy*)l/2 étant positif (^=q) il existe un sous-projecteur
qf de qy équivalent à p, commutant à (q -yy*)l/2 tel que q&apos;(q -yy*)l/2 qf
(lemme 2.11). Soient q&apos;f q-q\yx =q&apos;yp, y2 q&quot;yp

di=q&apos;(q-yy*)l/2q&apos;, d2 q&quot;(q -yy*y2q&quot;.

L&apos;élément V(y) dans la décomposition p + q&apos; + q&quot; 1 a la forme:

yi
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Les conditions d&apos;unitanté de V(y) donnent

Remarquons que _y, #0 car d^q&apos; Soit J p + q&apos; - q&quot; e Ua Grâce aux conditions

d&apos;unitanté, nous avons

P~2y*y, ~2{p -y*yx)my* 0

V{y)JV{y)J* \ 2yl(p-yïyiy&lt;2 q&apos;-2y{y\ 0

0 0 q&quot;

* * 0\
1 Eqpc * 0

0 0 q&quot;J

avec \\V(y)JV(y)J*-l\\^2\\V(y)-l\\&lt;l et c Epq2y,(p -.
0, ||c||&lt;i Soit ueU(Mp) tel que 2 cm soit un élément autoadjoint de Mp
(lemme 2 10) Nous avons alors

/ • • 0\
V(y)JV(y)J*(u + q&apos; + q&quot;) \ Eqpz * 0\e(Ua,g),

\ 0 0 q&quot;)

et grâce au lemme 2 1

où 2 2* eMp,z#0, ||z||&lt;^ Par le lemme 2 8 on a (Ua, Z) =&gt; U(p + q&apos;)x

U(q&quot;) Donc t/(/? + q&apos;) x £/(&lt;?&quot;) et (/(p) x (/(&lt;?&apos; + ^&quot;) sont des sous-groupes de
&lt; Ua, g), Us engendrent U (lemme 2 4), et Ua, g) U

Chapitre 3. Position du groupe unitaire dans le groupe des inversibles d&apos;un

facteur

Nous reprenons les mêmes notations qu&apos;au chapitre 2
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3.1. Etude du normalisateur de U dans G
Soient A une C*-algèbre avec unité, K un idéal bilatère de A tel que A/K soit

une C*-algèbre simple non nulle, jï:A-+A/K la projection canonique. Nous
notons:

G(U + K) {xeG;x u + k avec u e U, k e K} U • G{\ + K).

Remarque. Si K 0 on a G(l + K) 1 et G(U + K) U.

LEMME 3.1. Avec les notations ci-dessus:

NG(G(U + K)) C*G{U + K).

Preuve. Soit g e NG(G(U + K)). Alors pour tout wel/ona gug~l e G(U +
K), c&apos;est-à-dire gug~lg~l*u*g* — 1 e K et donc g*gu — ug*g e K. Comme tout
élément de A est une combinaison linéaire de 4 unitaires, n(g*g) appartient au

centre de jt(A) donc à C (car jï(A) est une C*-algèbre simple avec unité). Nous
obtenons donc geC*G(U + K).

3.2. Lemmes préliminaires

LEMME 3.2. Soit T un espace compact et GL(2, T) (resp. (7(2, T)) le groupe
des fonctions continues de T dans GL2(C) (resp. U2(C)). Soit F e GL(2, T) de la

forme: F(t) /y\-i) avec /W&gt; ^ Pour tout te^- Alors pour tout

H e GL(2, T) de la forme /,/ \-i tel Que h^ ^ 1 Pour tout teT&gt; on a

He{U(2,T),F).
(0

Preuve. Soient F et H comme dans l&apos;énoncé. Par compacité de T il existe
n e N tel que h(t) &lt;f(t)4n pour tout / € T. Posons

h(t)m - h{tym
m

(0 est une fonction continue sur T), et soient:

)s 0(0 -sin 0(0 \
nd(t) cos 0(f)/

_ / cos2 0(0 + /(04&quot; sin2 0(0 sin 0(0 cos 6{t)\f(t)2&quot; -f{t)~2n]
~ Isin 0(0 cos 0(O[/(O2&quot; ~/(0&quot;2&quot;] cos2 0(0 +/(0~4&quot; sin2 0(0
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L&apos;élément S appartient à (U(2, T), F), S(t) est positif de déterminant 1 pour
tout t e T et trace 5(0 2 + sin2 d(t)(f(t)2n -fit)&apos;2&quot;)2 h{t) + h{ty\ L&apos;élément

S(t) a donc h(t) et /KO&apos;1 pour valeurs propres. Soient

2cosfl(Q
~ ~

h{t)m + h(tym
[a(t) 2 arcsinjc(r).

Si

vsin a(t) cos a(t) /

alors V e (7(2, T) et on vérifie par un calcul simple mais fastidieux l&apos;égalité

(h(t) 0

\ 0

qui donne la condition cherchée.

LEMME 3.3. Soient A une C*-algèbre avec unité, des projecteurs P\,p2fp^
orthogonaux de A de somme 1 tels que P\^p2¥=0. Si a est un opérateur positif de

APx avec Sp (a) c ]1, +oo[ alors pour tout y ^ 1, on a:

(Sp (a) désigne le spectre de a. Nous notons EX2- E2l une isométrie partielle
reliant px et p2).

Preuve. La C*-algèbre avec unité engendrée par a peut être identifiée à

l&apos;espace C(T) des fonctions continues sur le spectre T de a. Soit cp l&apos;isomorphisme

de GL2(C(T)) sur une sous-algèbre de G(pl +p2) défini par:

x v \
cp : )*-+x+ yEx2 + E\2z + E\2wEX2.

Grâce au lemme 3.2, si H(t) _,) pour tout teT et
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He (U(2, T), &lt;p~\a + E*X2aEl2)) donc

(T r°&gt;K ?*&gt;•(&apos;

d&apos;où la conclusion cherchée.

LEMME 3.4. Soient A une C*-algèbre avec unité, des projecteurs P\,p2, p-&gt;&gt;

orthogonaux de A de somme 1, tels que pl~p2^z0 et soit y &gt; 1. Alors pour tout

xyx~xy~x

EÏ2x~lEl2 et

J

appartiennent à

tYP\
u,r=&apos;\

Preuve. Soit b e G(px) positif inversible. Identifions la C*-algèbre avec unité
engendrée par b à l&apos;espace des fonctions continues sur T. En appliquant le lemme
3.2 à

où cp est défini comme dans le lemme 3.3 nous obtenons:

et donc

e(u,r).
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Pour tout x eG(pi), soit x ub sa décomposition polaire (b \x\) alors

&apos;b

appartient à (U, F) et donc pour tout x, y e G(/?j):

&apos;xyx-Yl \ (x \(y
p2

1 1 EÎ2x-lEX2 II EÎ2y-lEn
pj \ pJ\ P^

({yxyx
x I E*X2yxEX2

\ P^

appartient aussi à ((/, F).

3.3. Maximalité de NG(G(U + K)) dans le groupe des inversibles d&apos;un facteur
Dans ce paragraphe M désigne un facteur (à prédual séparable). Nous

désignons par K l&apos;idéal bilatère maximal de M défini au paragraphe 2.2 dont nous
reprenons les notations.

LEMME 3.5. Soit M un facteur de type /x, // ou III. Pour tout geG —

NG(G(U + K)), il existe un système d&apos;unités matricielles {ElJ}lJ=l23 et un
opérateur positif a e MEu avec Sp (a) c ]1, +oo[ tels que

e(NG(G(U

Preuve. Soit g eG — NG(G(U + K)) et g ux sa décomposition polaire
(x |g|). Le lemme 3.1 implique x&lt;£C*G(l + /O. On a (NG(G(U + K)), g)
(NG(G(U + K))f x). Le spectre (resp. le spectre essentiel si M est de type L ou
IL) de x contient deux points À et fi avec 0 &lt; À &lt; ju. Soit E(. la mesure spectrale
associée à la décomposition de x $Sp(x) * dE(t). Si e &gt; 0 vérifie À + £ &lt; fi - ey

alors les projecteurs £([A - e, A + s]) et £([]U - £, ]U + e]) sont orthogonaux.
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Considérons les cas suivants:

(a) Le facteur M est de type /», IL ou ///. Le projecteur £([A - e, A 4- e])
étant infini ([Ka], Prop. 3.8), il est la somme de deux projecteurs £,, et F
orthogonaux, équivalents et commutant à x. Soient

E22 £([ju - e, \i + e]) et £33 1 - Exx - E22.

{£n}l=1 2,3 forment une partition de l&apos;unité de M que Ton complète en un système
d&apos;unités matricielles (s.u.m.) {£,y},,y=i,2,3- Alors x xx + jc2 + jc3 où xt
£„*£„ (/ 1, 2, 3),

Sp (jc,) c [A - f, A + e] H Sp (jc),

Soit l&apos;unitaire V Eï2 + E2i + E33, alors 5 V^ArF~1X~1 est un opérateur
inversible de (NG{G(U -h K))f x) de la forme

où b Eux2E2lxl leMEu.

Soit b wa la décomposition polaire de b {a \b\). Alors

&apos;b

E33/

appartient à (NG(G(U + K)), x) et

ll«~1||&lt;lkillll^2-1||^^l£&lt;l donc Sp(fl)c]l,+oo[.

(b) Le facteur M est de type //i, muni d&apos;une trace normale finie fidèle
normalisée r. Il existe keN, k&gt;\ et un sous-projecteur Eu (resp. £22) de

E([k - e, A + e]) (resp. de £([!U - e, jU + f])) commutant à * et de trace l/3k
([Di], Ch. III, §2, Prop. 14). Soient E33 un sous-projecteur de 1 -En-E22 de
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trace l/3k, commutant à x et £12 (£21)* une isométrie partielle reliant Eu et

£22. Soient F 1 - Eu - £22- £-n et x =Xi+ x2 + x3 + y où x EuxEu(i
1, 2, 3), y FjcF. En construisant les éléments V El2 + £2i 4- £31 + F et B

VxV~lx~\ comme au point a) nous obtenons un élément de la forme

&apos;a

E2la~lEl
appartenant à (NG(U), x),

et où Sp(a)cz]l, +»[. Comme t(F) 3{k - 1)1/3k, on peut décomposer F en
somme de 3(k — 1) projecteurs orthogonaux, commutant à x et de trace l/3k. En
effectuant un produit de k — 1 conjugués (par des unitaires) de h nous obtenons
la conclusion cherchée.

LEMME 3.6. Soit M un facteur, a/ors tout opérateur inversible de M est un
multiple scalaire d&apos;un produit fini de commutateurs multiplicatifs.

Preuve. Si M est de type L, IL ou ///, voir [Ha], Prob. 192, si M est de type
Hx voir [F-H], Prop. 2.5 et si M est de type /„ il est bien connu que le groupe
dérivé de GLn(C) est SLn(C). ([Ar], Ch. IV, Th. 4.7.).

THÉORÈME 3.1. Soit M un facteur, alors NG(G(U + K)) C*G(U + K) est

un sous-groupe maximal dans G.

Preuve. Si M est un facteur de type /„, la démonstration est faite dans [No].
Supposons donc que M est un facteur L, II ou ///. Soit g eG — NG(G(U + K)),
alors les lemmes 3.5 et 3.3 donnent l&apos;existence d&apos;un s.u.m. {El}}l]==Y&lt;2&gt;3 tel que

appartient à (NG(G(U + K)), g) pour tout y&gt;l. Nous allons montrer que
(NG(G(U + K)), F) =G. Soit aeG et a-vB sa décomposition polaire où

v eU, B (a*a)l/2. Il existe un s.u.m. {ÉlJ}lJ=h2,3 tel que
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avec bj ÉJJBËIJ pour j 1, 2, 3 et des isométries partielles VJ telles que
UjU* EJJf U*Ur- Ëjj pour j 1, 2, 3. Soit l&apos;unitaire (/=(/, + t/2+(/, alors
(/£(/* a la forme

dans le s.u.m. {ElJ}lJ=l 2,v Grâce au lemme 3.6 il existe Àei* tel que bx kb\
où b\ eMEu est un produit fini de commutateurs multiplicatifs. Donc

\ \(kxnExx
22

UA1&quot; E

appartient à (NG(G(U + K)), F) (lemme 3.4). Comme £,,, E22 et £31 sont des

projecteurs équivalents,

appartiennent à (NG(G(U + K)), F). Nous avons la conclusion cherchée car B et
donc aussi a sont des éléments de (NG(G(U + K)), F).

Appendice

Nous allons déduire du théorème 1.1 de nouvelles preuves de la simplicité de

certains groupes. Considérons à titre d&apos;exemple un facteur A de type /// (à

prédual séparable) et le groupe G des éléments inversibles de A. Le résultat

suivant est essentiellement dû à Kaplansky ([Kap]).

COROLLAIRE. Avec les notations ci-dessus le groupe G/C* est simple.

Preuve. Soient p et q deux projecteurs équivalents de somme 1, soient G&apos;
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comme au théorème 1.1 et W {x e G;x - 1 epAq} qui est un sous-groupe
normal abélien de G&apos;.

(1) La réunion des conjugués de W engendre G: cela résulte par exemple
d&apos;identités classiques avec matrices élémentaires ([Mi]) et de la perfection de G

([H-S, 1]).
(2) L&apos;intersection des conjugués de G&apos; dans G est réduite à C*: On voit

facilement qu&apos;un élément de DxegxG&apos;x&apos;1 ne peut être que de la forme

1 avec a e G(AP)&gt; d e G(Ag). Pour tout ceqAp nous devons donc avoir

(p 0\(a 0\(p 0\
le q)\o d)\c q)

d EqpaEpq (où Eqp (Epq)* est une isométrie partielle reliant p et q) et a

commute alors à tous les éléments de Api donc est scalaire.
Le corollaire résulte alors de la maximalité de G&apos; dans G par un argument

général &quot;bien connu&quot; ([Bo], Groupes et Alg. de Lie, Chap. IV, §2, Ex. 28).
Nous obtenons de la même manière des résultats analogues sur la simplicité

lorsque A est un facteur d&apos;un autre type.
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