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The vanishing of Steenrod squares on //-spaces

James P. Lin(1)

§0. Introduction

The structure of the mod 2 cohomology of an //-space as a module over the
Steenrod algebra îs the topic of this paper We assume throughout that the mod 2

homology îs an associative ring. Under thèse hypothèses we prove the followmg
theorem:

THEOREM A Let X be a simply connected finite H-space. Then for r &gt; 0,
Â:&gt;0

a*QHr+2^k-i ç_ Sq2rH*(QX)

and

In the pnmitively generated case, Theorem A was proved by Thomas [10] by
using techniques which involve the projective plane In the pnmitiveiy generated
case ît îs not necessary to suspend to the loop space, the pnmary information îs

true in H*(X).
Smce the appearance of Thomas&apos; theorems for pnmitively generated //-

spaces, topologists hâve wondered what the appropnate generahzations should be

for //-spaces that do not admit primitive mod 2 Hopf structures Usmg Thomas&apos;

results, one îs able to show that the Lie groups £6, E1 and EH could not admit
pnmitively generated mod 2 cohomology rings since they ail hâve nine dimen-
sional generators that do not lie in the image of Sq2. It îs shown in the proof hère
that in fact the suspension of a nine dimensional generator must lie in the image
of Sq2. Thus, Thomas&apos; results hold when one suspends to the loop space of a
finite //-space. One cannot always desuspend back because there are transpotence

éléments which are not suspensions
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22 JAMES P LIN

The proof is based on two inductive arguments. In this paper we assume the
following inductive hypothesis ^(r): For rf &lt;r

and

We prove that ^(r) implies

This paper can therefore be considered the sister paper to [7]. The inductive
hypothesis of this paper is ^(r). The end resuit of this paper is 5^(r), and 5^(r) is

the inductive hypothesis of the paper [7].

9&gt;{r):9(r) and Sq2rQH2r+2r+lk&apos;1 (X) 0.

In [7], we show that Sf(r) implies ^(r + 1). The results of thèse two papers
together yield £f(r) and 3P(r) for ail r. This paper proves the inductive hypothesis
for [7] and [7] proves the inductive hypothesis for this paper.

Theorem A shows many Steenrod opérations take indécomposables to
decomposables. Browder [1] first showed that the Bockstein maps even indécomposables

to decomposables. This implied a one connected finite //-space is two
connected. It was then shown using techniques similar to thèse hère that a three
connected finite //-space is 6 connected and a seven connected finite //-space is

fourteen connected [4,6]. In a subséquent paper we will prove a finite //-space
has first nonvanishing homotopy group in degrees one, three, seven, or fifteen
m-

The proof of 0&gt;(r) dépends on a thorough understanding of the interplay
between the cohomology of the //-space and the cohomology of the loop space.
Use of the Eilenberg Moore spectral séquence, together with the fact that the

loop space has no homology two torsion allows us to conclude that the module of
cohomology primitives consists of transpotence and suspension éléments only.
We then apply a theorem of Lin and Williams [9] which restricts the indeter-
minacy of a secondary cohomology opération in the cohomology of the loop
space. This restriction on the indeterminacy has the effect of limiting our
considération only to the action of the Steenrod algebra on suspension and

transpotence éléments. Information about suspension éléments can be pulled
back to the original //-space, since the suspension map is a monomorphism on
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odd dimensional indécomposables. The action of the Steenrod algebra on
transpotence éléments is shown to be dépendent on the degree of the Steenrod
opération and the degree of the Steenrod opération; in particular, for the

opérations we will be considering, they will often map transpotence éléments into
suspension éléments.

Throughout the paper we will use the foliowing conventions. The symbol X
will be reserved for a one connected //-space with the foliowing properties:

(1) H*(X\ Z2) is an associative ring.
(2) For r&apos; &lt;r the module

is a finite dimensional vector space.
(3)

Thèse hypothèses hold for ail finite one connected //-spaces that satisfy condition
1, and ail known finite //-spaces admit an //-structure that satisfies condition 1.

We will use the following simplified notation

//* //*(*; Z2) //* //*(*; Z2)

If there are no coefficients, it will be understood that the coefficients are Z2.

In section 3 it will be useful to let

P* PH*{QX).

In chapter one a universal example is constructed. Roughly speaking, a

Postnikov space E is constructed which has an élément v e H*(E) with
Àv u&lt;8)u. The construction is designed to reflect information obtained from
inductive hypothesis ^(r). The reader is encouraged to read the proof of [6]
which is an excellent model to motivate the more gênerai construction given hère
in chaper one.

In chapter two we show that it may not in gênerai be possible to lift our
//-space X to E. However, a resuit of Lin and Williams [9] allows us to map QX
to QE by an //-map /. The élément o*v e PH*(QE) has nonzero c-obstruction

c(o*v) o*u &lt;g&gt; o*u. lixe Q2&apos;*2^-1 and /*(a*w) &lt;j*jc, then

c(f(o*v)) o*x ® o*x
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It is shown that c(f)*(o*v) must &quot;cancel&quot; a*x &lt;8&gt; o*x. In our situation c(/)* will
involve primary opérations.

In chapter three, we show that our judicious choice of Steenrod factorizations
forces o*x to lie in the image of Sq2\ This complètes the proof of Theorem A
given the hypothèses of 3&gt;{r). Note that ^(1) was proved in [5]. Therefore by the

process described above, we obtain 5^(1). 5^(1) implies ^(2) which implies 6^(2)
and so on.

The author would like to thank the mathematics departments at MIT and at
the University of Neuchatel, Switzerland where the bulk of the ideas were first
formulated.

§1. Construction of the Universel Example

Consider the foliowing hypothesis 3&gt;{r): For r&apos; &lt;r

and

THEOREM 1.1.(r). Assuming 9&gt;{r), thenforr&gt;l,

and

The proof of Theorem 1.1 (r) will occupy the next couple of chapters. In
chapter 1 we build the universai example. In chapter 2 we prove there is a lifting.
In chapter 3 the c-invariant is used to prove Theorem l.l(r).

The proof is modeled on the proof that a*Q8k+3 ŒimSq4. The reader is

encouraged to become familiar with the techniques of that proof [6].
We now build the second stage of the universal example E. Consider the

following commutative diagram of maps and spaces for r &gt; 1.

/C(Z2, 2r+2k + 1)

— &gt; BBË()

K(Z2,2r+2k+2)
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Hère BBEn, BBËa are the fibres of BBwn, BBw{) respectively.

fo(&apos;y&apos;*+2) Sq2&apos;^kSq2&apos;k- ¦ -Sq2kSqkik+2

*o(*2~*+2) Sq2&quot;&apos;kSqrk ¦ ¦ -Sq2ki2k+2

BBh*{i2k+2) Sqkik+2.

By induction on r, it is easy to show that for 2 ^ i ^ r

Sq2&apos;[Sqr*&apos;kSq2&apos;k ¦ ¦ -Sq2k]i2k+2 0. (1.1)

Also

Sq2rSql[Sq2&quot;&apos;k---Sq2k)i2k+2 0 (1.2)

Sq2[Sq2&quot;&apos;k- ¦ -Sq2k]i2k+2 (Sq2&apos;k¦ ¦ ¦ Sq2ki2k+2)2. (1.3)

Looping the above diagram, we get

K(I2,2r+zk)

BE() SL BÈU

h h
K(Z2, k + l) •• K{Z2, 2k + 1)

K(I2, 2r+2k + 1)

Equations (1.1) and (1.2) imply there are suspension éléments fit), e H*(BËn) for
2 &lt; i &lt; r and for i 0 where Bj^{Bv,) Sq2&apos;i2&apos;*2k for 2 s / &lt; r and

Equation (1.3) implies there is an élément BvxeH*(BÉ{)) with Bj^Bv^)^
Sq2i2r+2k and

û1 Sqrk • • •S42*/2*+1 ® Sq2rk • • -5^2^2,+1. (1.4)

Now since r &gt; 1, &amp;Ë0 ^ A&quot;(Z2, 2A: - 1) x AT(Z2, 2r+2&amp; - 2) as //-spaces. Letting
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v, o*(Bvt)f then for 1 &lt; i &lt; r

o*(v0) tto*2*-i

where or, e

If the at are nontrivial, we can change Bvt by Bpofaiu+i) so that

for 1 &lt; i &lt; r

o*(v0) 1 &lt;8&gt; Sq2rSqli2r+2k_2.

Then since

r-l
Sq2Sqr 2 Sq2+~2Sq21 4- Sq2~xSq2Sqx

it follows that

r-l
2 S^2&quot;1-2&apos;*}, + Sg^ùo e ker a* PI PH*(Ë{)).
1=1

But a*:Ô//odd(£0)-^F//even(OË0) is monic. Hence

r-l
1 1

Therefore

r-la*[5 Sq2&apos;+&apos;-2&apos;Bv, + Sq2&apos;&apos;lBv(] 0.

Since a*:QH*&apos;{BË^)-^PH4l~l(Ë0) is also monic équation (1.4) implies

is primitive decomposable and in
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It follows that there is a primary opération a of odd degree such that

r-l

Now define Bvt (Bh)*(Bvt). Then équation (1.5) implies

*+i)]2- (1.6)
1

aSqkik+i is a cup product square, therefore the right hand side of (1.6) is at
least a fourth power.

We hâve the following theorem.

THEOREM 1.2. There exist éléments cj*(Bu,) vte H*(E0) which satisfy

(1) Er«i Sq2r+l~2&apos;Bvl + S^^Bvq « /owr /oW decomposable,

(2) Err/S^&apos;-^ + Sç^Vo^O.

Further, suppose k 27 vw/zere / w odd and f/tere w a gênerator xt e Hl(X) with

height 2r+2+l. Then there is a map /0:X-&gt; Eo with o*ft{vr) Sq2rq&gt;Y^{xi).

Proof. (1) and (2) follow from (1.6).

Note that (?r+2+&apos;(*/) is realized by a map into the following two stage System
Ê

1

K(Z2, k)

K(Z2, 2r+2k)

*o(iy«*) (i/)y+2+1. Define /•(/,) =x,. We hâve

QÊ{) - K(I2, / - 1) x A:(Z2, 2r+2/t - 2)

and
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But there exist maps fi0:Êo~*Eo and

flfà(l ® i2r+2k +2) i2r+2k_2 6 H%QÊ0).

Let f0 ^o/0. It follows that

&lt;x*/0*(t/r) ûf5(1 &lt;g&gt; Sq2&apos;i2r+2k_2)

Sq2r&lt;pr+2+l(xi) Q.E.D.

The universal example £ will be a loop space with an élément v e H*(E) with
Âv w ® w. If £ is an //-space, let P2£ dénote the projective plane of E. Recall
there is an exact triangle with the property that if i(y) u then X{u &lt;8&gt; m) y2, [2].

//*(P2£) —&apos;-+ ///*(£)

///*(£) ® ///*(£)

We will show there is such an élément y e H*(P2E). The following proposition
is a conséquence of the Adem relations and calculations of binomial coefficients.

PROPOSITION 1.3.

(a) Let 6r Sqr+lk + Sq2r+lk-2rlSq2r~\ Then

(b) Ler i &lt; r - 2. T/zen on éléments of degree 2l + 2r-1 +

Sq2r+lk+2&apos;-*Sq2rk+2r~l 2 Sq2r+lk+2&apos;-2!Sqrk+2&quot;l-*+2f

(c) Ler f &lt; r - 2. On éléments of degree 2l 4- 2r+1A:
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Proof. (b) and (c) follow by direct application of the Adem relations and

Computing binomial coefficients. For (a) note that

r-2
Sqz^* K= 2j Sq Sq + Sq Sq

and

&apos;&apos;S2&quot;Sq2&apos;&apos;Sq2&quot; 2 Sq2&apos;-2tSq2&apos;. Q.E.D.
1=0

We now define spaces BK&gt; BK{) and a map Bw : BK-* BK{). The fibre of Bw
will be #£ and E will be the desired universal example. Let

r-2
ir+1BK BE() x K(Z2,2r + 2r+lk) x f] ^(Z2, 2&apos;

r-2
2r + 2r+2Â:) x fi K(Z2, 2l -h X + 2r+1

r-l
2&apos; + 2r+2x fi ^(Z2, 2&apos; + 2r+2k) x /C(Z2,1 4- X 4- 2r+2A:)

/ 1

FI

Define Bw:BK-*BK() by

(Biv)*(i2.+2~2*) Bu, - Sq2r+lkh+2^k 1 &lt; / &lt; r - 1
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Bw)*{ii+r+2r*2k) Bv0

(Bw)*(i2,k+r+2i) Sq2&apos;~l-2&apos;+2&apos;i

We hâve a diagram

Ko

1&quot;

BE

h

Consider the élément z e H*(BK0) defined by

Z - ô^ /2&apos;+2^2^ + 2j

r-1

r-2
^Ç/,2&apos;-2^ Çv,2r+1*+2r-2&apos;\

-*+2&apos;+2&lt;) (1.7)

LEMMA 1.4. Modulo three fold decomposables,

Proof. It is a lengthy but simple calculation. We hâve, using the formulas for

(Bw)*[Sq2ri2r+2r+2k] Sq2rdri2&apos;+2^k - V&apos;St;r

[r-2
-,

V /Ç^2^I^o^2f-2« ç_2r+lik+2r-2&apos;\;
2^ V^? ^9 + ^&lt;7 )^2&apos;+2r+2-+l/t

i=0 J
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r-2

r-2
&quot;%P / n 2r+*kc* 21 — 2&apos;

i r&gt; 1r+*k+7r — ?l\

By Proposition 1.3(a) the sum of thèse two terms is

r-2

By Proposition 1.3(b) the last term in the above sum is cancelled by

Now consider

2 Sq2&apos;*&apos;-2XBv, - Sq2&apos;+&apos;kh+2^k) + Sq2&apos;-lBv0

1 1

Sq2Bvr -f four fold decomposables

r-l
+ 2 S&lt;72r+1-2&apos;S42&apos;+1**&apos;2.+r+i* by Theorem 1.2.

By Proposition 1.3(c) the last term in the above sum is cancelled by

Therefore (Bw)*(z) (*V+2&apos;+1*:)2 + f°ur f°ld decomposables. Q.E.D.
Looping fîw we hâve a diagram

E

1&apos;
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PROPOSITION 1.5. There exists an élément v e H*(E) with Âv u®uand
j*(v) (a*)2(z), u =p*(ir+2r*k-i)&gt; Therefore o*(v) e H*(QE) has

C((7*V) (7*U&lt;8&gt; O*U.

Proof. By Lemma 1.4 (Bp)*(i2r+2r+]k) e H*(BE) has the property that
(Bp)*(i2r+T+lk)2 is four fold decomposable. Since P2E c BE, let j be the image of
(Bp)*(i2&apos;+2&apos;+*k) in H*(P2E). Then since H*(P2E) has no 3-fold products, &gt;;2 0.

Further H*(P2E)-+ H*(E) maps ^ to a primitive u =p*(ir+2r+\k_l). It follows
that there exists a t; eH*(E) with the desired properties. Q.E.D.

§2. Construction of a lifting

As the reader may hâve surmised, the space E was constructed to facilitate the

lifting of a map X —&gt; K to E. Such a lifting, however, does not obviously exist

because we do not know that 8,x =fo{vr). At best, we know that 6rx -fo(vr) is

odd decomposable. Since geven 0, we can conclude 8rx-fo(vr) is three fold
decomposable.

Our strategy will be to prove that there is a map f :X-+ K such that im (wf)*
is three fold decomposable. Recall that H*(P2QX) has ail three fold products
trivial. Therefore, there is a commutative diagram

This will be the goal of this chapter.
It will be convenient to recall the définition of w

W*(&apos;V+2&apos;+**-l) 0rÏ2&apos;+2&apos;+&gt;*-l ~ Vr (2.1)

W*(&apos;2&apos;+2&apos;+2&apos;+1*-l) Sq *V+2&apos;+1/t-l ~ S&lt;1
+

Î2&apos;+2&quot;&apos;+2&apos;k-l (2.2)

w*(W«*-i) f, ~ V+l*i2.+2&quot;&gt;*-i for l&lt;;&lt;r-l (2.3)

w*(i2&apos;+r^k) v0 (2.4)
2&apos;x2i2&apos;

(2.5)

k^ (2.6)

(2.7)
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Let x 6 Q2+2r+ k~x hâve représentative x. By downward induction on k, we

may assume that for k&apos; &gt; k

G*Q2&apos;+i&apos;+*k -i £ Sq2rPH2+lk ~\QX).

Then a*(6rx) — Sq2y for some y e PHT lk~2{QX). If y is a transpotence élément,
Theorem 1.2 implies there is a lift ^}: .Y-* £0 such that o*[f^{vr)] 5^r2y. If y is

a suspension élément, then choose fo:X-* K(Z2, 2r+2k — 1) -^-» £(). In either
case

But (7*:eodd-^F//even(^^) is monic. Therefore Orx-fS(vr) is odd detom-
posable and therefore three fold decomposable. This defines f:X—&gt;K into the
factors K(Z29 T + 2r+xk - l)xE{).

Now 0&gt;{r) implies

Sq2x S#2&apos; l+2r/cJc2&apos;+2r
&apos;-^2^-1 + three fold decomposables.

Hence, let

/*(*2&apos;+2&apos; l+2rk-l) =X2&gt;+2r x+2rk-\-

Similarly,

fo(vo) Sq2r+ifcx2&apos;+2r+ik-i &quot;+¦ three fold decomposables.

Solet

Since 0even O, fo(v{)) is decomposable. In the construction for E{), ËQ,

fo(vo) =f*(h*(v0)). Applying the Cartan formula [4] to ÂfS(h*(v0)) yields

Â/o(fc*(i&gt;o)) ^ ?W* ® if * + iï* ® §#* + im S^2^1

{/o(Â*(©o))} e P2r+2r+2k{H*HÏH*) 0.

Therefore/o(^o) is three fold decomposable.
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To complète the proof that im (h&gt;/)* is three fold decomposable we need the
following lemma.

LEMMA 2.1. Let i&lt;rf / &gt; 0. Then if 2l appears in the dyadic expansion of n
then

Proof. Write

n 2&apos;i + 2&apos;2 + • • • + 21-1 + 21 + 2I+!m

for m&gt;0, 0&lt;/1&lt;î2&lt; • * • &lt;is-\-

Then modulo doubletons of degree ^ 21

A simple argument shows ail doubletons of degree less than or equal to 2&apos;

annihilate Q*+*+xt-\ Now SqTSqv*XmQ*+**Xl-l Q by ^(r). Hence
59nô2+2-/-i 0 QED

Lemma 2.1 implies

1+2/-2&apos;v
*2&apos; + 2r+1 +2r*-l

and S^2r~2&apos;+2/x2&apos;+2&apos;+^-i are three fold decomposable. We hâve shown

THEOREM 2.2. There is a map f:X-+K such that im(w/)* is three fold
decomposable.

§3. Analysis of indeterminacy

By Theorem 2.2, there is a lifting

P2QX &gt; X -y* K &gt; Ko

Looping the entire diagram and using the fact that QX is an //-retract of QP2QX
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we hâve a diagram

Q2K{)

h
QE

QK -^QK &gt; QK0

where / is an //-lifting.
Since QE0^ K(Z2, k - 1) x K(Z2y2r+2k - 2) and H*(QX) is even dimen-

sional, Qf has no c-obstruction.
It will be useful to use abbreviated notation hère to identify certain

submodules of H*(QX).

DEFINITION 3.1. Let P dénote the submodule PH*(QX). Let F2 ç H*(QX)
be the submodule generated by primitives, two fold products of suspensions and
divided squares of suspensions. Let D œH*(QX) be the submodule of decom-
posables of H*(QX).

A theorem of Lin and Williams [9] shows if {a,} are the Steenrod opérations
appearing in the expansion for z, équation (1.7), then

F2 + F2 &lt;g&gt; F). (3.

Since H*(QX) is bicommutative and even dimensional we hâve

Primitives and indécomposables in degrees congruent to two mod four
are isomorphic. (3.2)

If y2(u) is a divided square of a primitive u and Sqlu 0, then
Sq2ly2(u) is a primitive plus a decomposable. (3.3)

By [5],

P4&apos; £P2&apos;, hence Sq2 maps primitives to decomposables. (3.4)

Let A p2&apos; + 2~&gt;*-2( g p2&apos;+2&apos;*-2
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LEMMA3.1. (a) //dega, 0mod4, then

at{P ® F2 + F2 ® F) H (A ® A) c a,(P ® F)

(b) // deg at 2 mod 4, f/ien

is a sum of terms of the form

where au j8x e sd(2) and deg oct 0 mod 4 and deg /?, 2 mod 4.

Proo/. By (3.2) ^4 consists of indécomposables. Now if oc e si(2), x e P and
ocx e A, then by (3.4) deg oc 0 mod 4 and deg x s 2 mod 4. Therefore, if
a,(P ® F2) fl (^4 ® A) is nontrivial it consists of sums of terms of the form ccx ® j8y

where degree /J 0mod4 in case (a). Then yeF2 and degy 2mod4. Since

there are no divided squares in this degree, y must be a primitive. Hence

at(P ® F2) n (X ® ;4) c at(P

Similarly

af(F2 ® P) fl (&gt;1 ® yi) c fl,

This proves (a).
Now in case (b) if deg at 2 mod 4 then

consists of terms of the form ccxx ® ^ty where deg a^ 0 mod 4 and

deg &amp; s 2 mod 4. Similarly ^(Fj ® P) H (.4 ® .4) is spanned by terms of the form
fi2z ® a2w where deg or2 s 0 mod 4 and deg j82 2 mod 4. This proves the
lemma. Q.E.D.

Now équation (1.7) implies the a, hère the following form:

Sq2&apos; (3.5)

Sq2&apos;+lkSq2&apos;-2&gt; + Sq2^k+2&apos;-2&apos; i^r-2 (3.6)



Sq**&apos;-* + Sq2

Sq2&apos;&quot;kSqT-2&apos;+

2^k+2&apos;-2&gt;
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(3.7)

(3.8)

(3.9)

It will be useful to use the associativity of //* at certain points in the argument
although one suspects that there are proofs where the associativity of //* is not
needed. Let R {x e H* \ Âx e §//* &lt;8&gt; H*}. Then recall the exact séquence [8]

ltfollows that if&gt;,, r2 e R°dà and r, — r2 is decomposable, then in fact

r, r2. (3.10)

We will use this repeatedly.

LEMMA 3.2. Lef y e sé(2) hâve degree 2J + 2J+im m &gt; 0. 77ie« (/y &lt; i

Proof. Let y e PH2&apos;+2&apos;+l~2(QX). We may assume y is not a suspension. Then
y &lt;P2&apos;(^2/+i) f°r some generator jc2/+i of height 2&apos;. Then y cornes from a map
into the bundle Ê which is the fibre of w : K(Z2,2/ + 1)-^ K(Z2,2/+1/ 4- 2&apos;)

But then yi2&apos;+1/+2 e ker w* so there is a î) e H*(E) with

y*(û) y(/2*+i/+2,_1)

+ 1/-f 2&apos;- 1)

i

i
Q

If/*p*(i2/+1) jt2/+1 then û may be chosen so that a*/*(û) yy. Q.E.D.

LEMMA 3.3. Let ô be a doubleton of degrees 2l for i &lt; r. Then for / &gt; 0

&quot;&quot;

i o.
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Proof. Let ô a0Sq2&apos;aiSq2&apos;a2 where deg oc} 0mod2l+1. Then if z e

PH*(QX) and

ôz e o*Q2r+2r+ll-\

degree oc2z 2l+1m — 2 for some m &gt;0. We will show Sq2a2z is a suspension. If
a2z is not a suspension, then oc2z &lt;p2j(xi) for some / &gt;i + 1. But then Lemma
3.1 implies Sq2a2z is a suspension. We hâve then

alSq2&apos;a2zeo*Q2&apos;+2&apos;+ïn-1 for some n&gt;0.

By 0&gt;(r), Sq2&apos;a2Sq2&apos;a2z 0. Hence ôz 0. Q.E.D.

PROPOSITION 3.4. o*Q2r+2&apos;+1*~1 H Sq2&apos; xPHr x+2rk~2{QX) 0.

/. Let x e Q2r+2r+]k~l and suppose a*jc Sqr ly for some primitive y. By
^(r) y cannot be a suspension. So j e (py-ifeit+i). We may assume x4k+leR
since H * has a Borel décomposition with generators in R [5].

Therefore ^(r) implies x4k+ï &amp;72*jc2*+i for some x2k+x e R. Hence

Applying Sq2&apos;~\ we get

So *2*+i has height either 2r~&apos; or 2r. We will show that either case is impossible.

Case 1. X2*+i has height T. Consider the following commutative diagram

E, » E2

I 1

K(Z2,2k + \) -^U K(Z2,4k + l)

i b
2r+[k + 2r) —rr&gt; K(Z2, 2r+lk + 21&quot;1)

S2
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where

This proves &lt;p2r(x2k+x)~ SqT V2&apos;-J(*4*+i) o*x. But a transpotence is not a

suspension so we hâve a contradiction.

Case 2. x2k+ï has height 2r~\ Consider the diagram

K(Z2,2k

Then this implies

But then

o*x Sqr~lq)2r-i(x4k+l)

where ô is a doubleton of degree ^ 22&quot;2.

By Lemma 3.3 this implies o*x 0 which is a contradiction since a* : (?odd

is monic. Q.E.D.

LEMMA 3.5. Suppose Sqmx2i+\ 0 and x2/+i w a generator of height 21.

a suspension.
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Proof. Let wx : K(Z2, 2/ + l)-&gt; *T(Z2, 2/ + m + 1) be defined by wf(/2/+m+1)
Sqmi2l+X. Let ^ be the fibre of wx. Define w2:Ex-»K(Z2,2+xl + 2t) by
^2(^2&apos;+1/+2&apos;) -PÎOVn)2&apos;- Let E2 be fibre vv2. Then there is a lift

and QE2 - QEX x K(Z2,2l+ll + 21 - 2)

fif|[l ® 5?2&apos;^2,+1/+21_2] a*/2*(u2) 5^2&apos;-(p

where /|(i/2) Sq2lmi2^i+2&apos;-\- QE.D.

PROPOSITION 3.6. Let n 2J + 2J&gt; + 2&apos;1+lm /or 5ome m &gt; 0

j&lt;jx&lt;i&lt;ry /&gt;0.

T/ien PH*+*+1&apos;-2(QX) H SqnPH*(QX) 0.

Proo/. S&lt;jfrt Sq2JSq2nSq2&apos;l+&apos;m + ô where ô is a doubleton of degree less than
21. By Lemma 3.3, if the intersection is nonempty, there is a primitive y of degree

1/-2 with SqvSqVly*Q.

Claim: SqVly is a suspension.

If y is not a suspension, then y (p^iz) where degz 2h~J + 2JX~J+lu — 1

where w &gt; 0. We may assume z eR, so Sq2H~Jz 0 by 0&gt;(r). Hence by Lemma
3.5, Sq2ny is a suspension. Now the claim implies 0 =£ Sq2&apos;Sq2ny e

Sqvo*Q2l-2f+2l+H-\ But 9{r) implies Sq^Q*-21***11-1 0. Q.E.D.

Suppose w has dyadic expansion

2&apos;1 + 2/2 + • • -2h ix &lt;i2&lt; - • • &lt;4.

We define the dyadic length of u to be s.
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Now consider the indeterminacy described in équations (3.5) to (3.9).

LEMMA 3.7.

Sq2\PH*(QX) ® PH*{QX)) H {A® A)

c Sq2&apos;PH*(QX) &lt;g&gt; PH*(QX) + PH*(QX) ® SqrPH*(QX).

Proof. By Proposition 3.3 ,4 D 5^2r lPH*(QX) 0. If

* ® Sq2r-a)(PH*(QX) &lt;8&gt; PH*(QX)) H {A® A)

is nontrivial, then since or^2r~1, by Proposition 3.6, acannot hâve dyadic length
greater than one. Hence a is either zéro or T. Q.E.D.

LEMMA 3.8.

Sq2r+lk(PH*(QX) ® PH*{QX)) H (A® A)

ç SqrkPH*(QX) ® Sq2kPH*(QX).

Proof. If

2r/ H

is nontrivial, then for degree reasons 0^ a&lt;2r. But if ar^=0, either 2rk + or or
2rk-a has the form 2y+ 2yi + 2/l + 1m for y&lt;/,&lt;r. By Proposition 3.6, ar

0 Q.E.D.

PROPOSITION 3.9.

(B&lt;8&gt;B)D Sq2r~2\PH\QX) ® PH*(QX))

c Sq2&apos; lPH*(QX) ® 5^2r 2PH*(QX)

+ Sq2r2PH*(QX)®Sq2r lPH*(QX)

ifi r-2. Ifi&lt;r-2 the intersection is trivial.

Proof. If [S&lt;7MlP//*(fîZ)®5^&quot;2P//*(^Z)]n(5®^) is nontrivial and w,+
w2 2r-2&apos;, then by Proposition 3.6, both m, and w2 must hâve dyadic length
1. Q.E.D.
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PROPOSITION 3.10.

(B ® B) n Sq2&apos;-2&apos;+2&apos;k(PH*(QX) &lt;g&gt;

S Sq2&quot;&apos;PH*(QX) &lt;8&gt; Sq2&quot;2PH*(QX)

+ Sq2&quot;2PH*(QX) &lt;8&gt; Sqr&apos;PH*(QX)

if / r -2. lfl&lt;r — 2the intersection is trivial.

Proof. Again as in Proposition 3.9, if u^ + u2 2r — 21 + 2rk, by Proposition
3.6,

m2 a2 + 272

where ara + a2-2r-2&apos;. Hence ax must be either Sq2&quot;&apos; or Sq2&apos;2 and a2 is the
other. Sç&quot;1 SqaSq2&apos;1&apos; + ô where ô is a doubleton of degree less than
2r. Q.E.D.

THEOREM 3.11.

(a) (A &lt;8&gt; A) n (S^&apos;^2&apos;-2&apos;)^//*^*) &lt;8&gt; PH*(QX))

S Sq2&apos;PH*(QX) &lt;8&gt; PH*(QX) + PH*(QX) &lt;g&gt; SqrPH*(QX).

(b) (&gt;l ®/4) n (^2&apos;+&apos;*592&apos;-2&apos;+2r*)(P//*(i2A&apos;) (g) P//*(fîAr))

S Sq2&apos;PH*(QX) &lt;E&gt; PH*(QX) + PH*{QX) &lt;g&gt; Sq2&apos;PH*(QX).

Proof. By Propositions 3.9 and 3.10 éléments of the intersection belong to

Sq2&apos;kSq2&quot;PH*(QX) &lt;g&gt; PH*(QX) + twist.

But

Sqz&apos;xSq2&apos;k Sq2&apos;kSq2r&apos; + [Sqr~&apos;, Sq^Sq2&apos;*-&quot;

plus a doubleton of degree less than 2r. Hence by Proposition 3.4

Sq2&apos;kSq2&quot;&apos;PH*{QX) H A a, Sq2&apos;PH*(QX). Q.E.D.
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PROPOSITION 3.12.

(a) For i&lt;r-2,(A®A)n Sq2r+i/c+2r-2&apos;(PH*(QX) ® PH*(QX)) 0.

(b) For i &lt; r - 1, (i4 ® 4) H Sq2r+l-2(PH*(QX) &lt;g&gt; PH*(QX)) 0.

Proof. Again Propositions 3.6 and 3.4 imply the intersections are trivial
unless i r-2 for (a) and i r-l for (b). Then Sq2r^k+2r~2&apos; must split as
Sq2&apos;k+2&quot;1 ® Sq2&apos;k+2&apos;~2 + twist. But Proposition 3.4, and Lemma 3.3 imply this is

trivial.
In (b) it must split as

Again Proposition 3.4 implies the intersection is trivial. Q.E.D.

COROLLARY 3.13. // o*x&lt;8&gt;o*x lies in the indeterminacy of degrees

congruent to zéro mod 4 in équations (3.5) to (3.9), then o*x e im Sq*2.

Proof. By Lemma 3.7 if o*x ® o*x e im Sq2\P ® P) we hâve a*jc e im Sq2&apos;.

By Theorem 3.11(a) if a*x ® a*jc e Sq2r+lkSq2r~2l(P ® P) then a*jc e Im 5qr2r. By
Proposition 3.12,

&lt;j*jt ® (J*x « Sq2r+lk+2r-2\P ® P)

and

By Theorem 3.11(b) if a*jc ® o*x e Sq2r+lkSq2r~2&apos;+2rk(P ® P) then a*jc 6 im Sq2\

Equation (3.9) is the same indeterminacy as in équation (3.6). Hence ail the

indeterminacy of degree congruent to zéro mod four yields o*x e

im Sq2\ Q.E.D.
It remains to check the indeterminacy of degrees congruent to two mod four.

From équations (3.5) to (3.9) such indeterminacy has the form

5^2r+!^2r-2 + 5^2r+1^2r~2. (3.12)

Sq2r+X~2. (3.13)
l (3.14)
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For excess reasons,

o*x ® a*x $ (Sq2r+lk+2r~2)(P ® F2 + F2 ® F).

Similarly by Lemma 3.8 and Lemma 3.1 (a) if

a** ® a*x e Sq2r+lkSq2r~2+2rk(P® F2 + F2 &lt;8&gt; F)

then

(# ® B) n Vr-2+2r*(P (g) f2 + f2 ® P) # o.

But this is also impossible for excess reasons. Finally, consider the indeterminacy
Sq2r+îkSq2&apos;-2 and Sqr+1-2.

LEMMA 3.14.

(a) A fl Sq% 0.

(b) B H Sq6F2 0.

Proof. Since SqlH*(QX) 0, S?6F2 Sq2Sq4F2. For (a), by équation (3.4), if
S#6F2 0^4^=0 then Sq2Sq4y2(y) is nontrivial for some y with degree y 2r~l +
2rA:-4. By (3.4) y z2. Therefore, since S&lt;?2(z2) 0, it follows that Sq4y2(y) is

primitive plus a decomposable by (3.3). We conclude Sq2Sq4y2(y) is decom-

posable. An analogous argument proves (b). Q.E.D.

PROPOSITION 3.15. Ifr 3 and

o*x ® &lt;j*jc e (Sql6kSq6 + Sq14)(P®F2 + F2®P)

then o*x e im Sqs.

Proof. If a*jc®a*^e5(?16^6(F®F2 + F2(8)F) then by Lemma 3.8 and

Proposition 3.6

o*x ® cj*jc e (V* ® Sqsk)Sq6(P ®F2 + F2&lt;8&gt; F).

Since Sç2P is decomposable we hâve

o*x ® a*Jt e (S&lt;?8* ® S&lt;?8/C)(F ® Sq6F2 4 2
F2

® Sq8k)(Sq6F2 ® F
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It follows that

By équation (3.11) and Proposition 3.4, if

F16*+6 H SqHkSq4P c im Sq«.

By Lemma 3.14

SqHkSq6F2nPl6k+6 0.

We conclude a*x e im SqH. Q.E.D.

Now suppose r &gt; 3 and

o*x ® &lt;x*x e (S&lt;?2&apos;+1* V&quot;2)(F ® F2 + F2 ® F).

By Lemma 3.8

(&lt;j*x ® a*jc) e (Sqrk (8) Sq2rk)Sq2r~\P ® F2 +F2® F).

Hence

(£ ® iB) H Sq2r~2(P ® F2 + F2 ® F) # 0.

By Proposition 3.6,

(B ® J5) D Sq2&apos;~2(P &lt;8&gt; F2 + F2 ® F)

ç (F ® Sq2&apos;-2F2) f (Sqr-2F2 ® F)

+ 5 VF ® Sq2r~2&apos;-2F2 + Sqr-2&apos;-2

1=2

But Sq2&apos;-2F2 s S^6F2 and if t &gt; 2

S92r-2&apos;-2F2£S96F2

therefore by Lemma 3.14, we hâve

(fl ® B) n Sq2&apos;-\P ®F2 + F2®P)



46 JAMES P LIN

But now B DSqr~6F2 is spanned by éléments of the form Sq2~6y2(o*x2r-^+3)-
Now since r&gt;3, x2r-ik+3 is annihilated by ail Steenrod opérations of degree
congruent to four mod 8 since Sq4QHsl+3{X) 0. Therefore

It follows that

e Sq\P + decomposables) by équation (3.3)

€ decomposables by équation (3.4).

Therefore

This proves

PROPOSITION 3.16.

a*x ® o*x &lt;t Sq2r+lkSq2r~2(P &lt;8&gt;F2 + F2® P).

Now suppose

a*x ® o*x e Sq2r+x~2{P ®F2 + F2® P).

Again by Proposition 3.6,

(A®A)C\ Sq2r+l~2(P (8) F2 + F2 ® P)

c (F ® 5^2r+1&quot;2F2) + (Sq2r+]~2F2 ® P)

+ É
1=2

(Sq2&apos;+1~6F2

by Lemma 3.14.

by an argument analogous to the proof in Proposition 3.16.



The vanishing of Steenrod squares on //-spaces 47

It follows that

PROPOSITION 3.17. &lt;j*jc ® o*x $ Sq2r+1~2(P &lt;g&gt; F2 + F2 &lt;g&gt; P).

We can now prove

THEOREM l.l(r). o*QH2r+2&apos;^k-\X)ç:Sq2rPH*{QX) and

Proof. By the previous theorems, we conclude

o*x ® a*jc e 5çrF ® P + F

Therefore ct*jc e Sq2P. Now since Sq2Sq2r îs a doubleton of degree less than 2r,

Sq2o*x cr*(5^2jc) 0. But a* is a monomorphism on odd indécomposables.
Therefore Sq2x is decomposable. Q.E.D.
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