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The vanishing of Steenrod squares on H-spaces

James P. Lin®V

§0. Introduction

The structure of the mod 2 cohomology of an H-space as a module over the
Steenrod algebra is the topic of this paper. We assume throughout that the mod 2

homology is an associative ring. Under these hypotheses we prove the following
theorem:

THEOREM A. Let X be a simply connected finite H-space. Then for r =0,
k>0

O*QH2'+2'+'k-l c SqZ'H*(QX)
and

SqZ’QHZ’-{-Z’”k—l(X) == {J,

In the primitively generated case, Theorem A was proved by Thomas [10] by
using techniques which involve the projective plane. In the primitively generated
case it is not necessary to suspend to the loop space; the primary information is
true in H*(X).

Since the appearance of Thomas’ theorems for primitively generated H-
spaces, topologists have wondered what the appropriate generalizations should be
for H-spaces that do not admit primitive mod 2 Hopf structures. Using Thomas’
results, one is able to show that the Lie groups E., E,; and Eg could not admit
primitively generated mod 2 cohomology rings since they all have nine dimen-
sional generators that do not lie in the image of Sq°. It is shown in the proof here
that in fact the suspension of a nine dimensional generator must lie in the image
of Sq° Thus, Thomas’ results hold when one suspends to the loop space of a
finite H-space. One cannot always desuspend back because there are transpo-
tence elements which are not suspensions.

! Partially supported by the National Science Foundation.
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22 JAMES P. LIN

The proof is based on two inductive arguments. In this paper we assume the
following inductive hypothesis ?(r): For r' <r

QHZ"«&-Z"*‘I—I(X) = SqZ"IQHZ"+2"1— l(X)
and

SqZ"QHZ"-PZ"”I—l(X) =0.
We prove that 2(r) implies
SqZ’QH2'+2’*'k—-l(X) =0,

This paper can therefore be considered the sister paper to [7]. The inductive
hypothesis of this paper is ?(r). The end result of this paper is ¥(r), and F(r) is
the inductive hypothesis of the paper [7].

P(r):P(r) and Sqg¥QHZ**"'*~1(X)=0.

In [7], we show that #(r) implies ?(r + 1). The results of these two papers
together yield ¥(r) and %P(r) for all r. This paper proves the inductive hypothesis
for [7] and [7] proves the inductive hypothesis for this paper.

Theorem A shows many Steenrod operations take indecomposables to
decomposables. Browder [1] first showed that the Bockstein maps even indecom-
posables to decomposables. This implied a one connected finite H-space is two
connected. It was then shown using techniques similar to these here that a three
connected finite H-space is 6 connected and a seven connected finite H-space is
fourteen connected [4, 6]. In a subsequent paper we will prove a finite H-space
has first nonvanishing homotopy group in degrees one, three, seven, or fifteen
[7].

The proof of P(r) depends on a thorough understanding of the interplay
between the cohomology of the H-space and the cohomology of the loop space.
Use of the Eilenberg Moore spectral sequence, together with the fact that the
loop space has no homology two torsion allows us to conclude that the module of
cohomology primitives consists of transpotence and suspension elements only.
We then apply a theorem of Lin and Williams [9] which restricts the indeter-
minacy of a secondary cohomology operation in the cohomology of the loop
space. This restriction on the indeterminacy has the effect of limiting our
consideration only to the action of the Steenrod algebra on suspension and
transpotence elements. Information about suspension elements can be pulled
back to the original H-space, since the suspension map is a monomorphism on
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odd dimensional indecomposables. The action of the Steenrod algebra on
transpotence elements is shown to be dependent on the degree of the Steenrod
operation and the degree of the Steenrod operation; in particular, for the
operations we will be considering, they will often map transpotence elements into
suspension elements.

Throughout the paper we will use the following conventions. The symbol X
will be reserved for a one connected H-space with the following properties:

(1) H«(X; Z,) is an associative ring.
(2) For r’ =r the module

1—21 QHZ"+2"*'I—1(X; Zz)

is a finite dimensional vector space.
(3) QH®*"(X; Z,) = 0.

These hypotheses hold for all finite one connected H-spaces that satisfy condition
1, and all known finite H-spaces admit an H-structure that satisfies condition 1.
We will use the following simplified notation

H*=H*(X;Z,) H.=H.X;Z,)
Q*=Q0H*(X; Z,)

If there are no coefficients, it will be understood that the coefficients are Z,.
In section 3 it will be useful to let

P* = PH*(QX).

In chapter one a universal example is constructed. Roughly speaking, a
Postnikov space E is constructed which has an element v e H*(E) with
Av=u ®u. The construction is designed to reflect information obtained from
inductive hypothesis 2(r). The reader is encouraged to read the proof of [6]
which is an excellent model to motivate the more general construction given here
in chaper one.

In chapter two we show that it may not in general be possible to lift our
H-space X to E. However, a result of Lin and Williams [9] allows us to map QX
to QF by an H-map f. The element o*v € PH*(QE) has nonzero c-obstruction
c(0*v) = o*u ® o*u. If x e Q¥*?"'*~1 and f*(0*u) = 0*x, then

c(f(o*v)) = 0*x ® o*x + c(f)*(a*v).
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It is shown that c(f)*(o*v) must “cancel” o*x ® o*x. In our situation c(f)* will
involve primary operations.

In chapter three, we show that our judicious choice of Steenrod factorizations
forces o*x to lie in the image of Sq”. This completes the proof of Theorem A
given the hypotheses of 2(r). Note that (1) was proved in [5]. Therefore by the
process described above, we obtain $£(1). ¥(1) implies ?(2) which implies F(2)
and so on.

The author would like to thank the mathematics departments at MIT and at
the University of Neuchatel, Switzerland where the bulk of the ideas were first
formulated.

§1. Construction of the Universal Example

Consider the following hypothesis 2?(r): For r' <r

QZ”+2"”I—1 — SqZ"lQZ"+2"I—1 forall >0
and

qu"Q2"+2"+11—1 =0.

THEOREM 1.1.(r). Assuming P(r), then for r > 1,

O.*Q2’+2’“k—-1 c SqZ'PHzmk‘z(QX)
and

Sq2’Q2'+2'”k—l = ().

The proof of Theorem 1.1(r) will occupy the next couple of chapters. In
chapter 1 we build the universal example. In chapter 2 we prove there is a lifting.
In chapter 3 the c-invariant is used to prove Theorem 1.1(r).

The proof is modeled on the proof that o*Q%*3cim Sq*. The reader is
encouraged to become familiar with the techniques of that proof [6].

We now build the second stage of the universal example E. Consider the
following commutative diagram of maps and spaces for r = 1.

K(Z,, 2%k + 1)

BBE, 8 >  BBE,
lBBp(, lBBﬁ()
K(Z,, k +2)- BB — K(Z,, 2k +2)

K(Z,, 2% +2)
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Here BBE,, BBE, are the fibres of BBw,, BBW, respectively.

BBW;(izwzk_,,z) = quﬁlksqz'k te Sqstqkik +2
BBW(?(i2r+2k+2) = qu,ﬂksqz,k st qukizk +2
BBh*(i2k+2) = quik+2.

By induction on r, it is easy to show that for 2<i=r

Sq*[Sq¥ *Sq** - - - 8q*)izx+2=0. (1.1)
Also

qursq1[5q2'+'k_ 8¢ i +2=0 (1.2)

S‘IZ[S‘IZM’(' - SqH Jins2 = (Sq7* - - SqHine 1) (1.3)

Looping the above diagram, we get

K(Z,,2*%)

2N

BE(, Bh R BE,,
1’7[)“ 1”[;0
K(Z>, k +1) B > K(Z,,2k+1)

\ A.
Bw,

K(Z,, 2"k + 1)
Equations (1.1) and (1.2) imply there are suspension elements Bv; € H*(BE,) for
2<i=rand for i =0 where Bj&(B0,) = $q%iy+ for 2=<i=<r and

B;S(B‘Do) = qursqlizﬁzk,

Equation (1.3) implies there is an element Bu, € H*(BE,) with Bjj(Bv,)=
Sq2i2r+2k and

ABo,=8q"* - - - 8q%iz1 ® Sq7* - - - 8¢ i 11. (1.4)

Now since r = 1, QE,= K(Z,, 2k — 1) X K(Z,,2"**k — 2) as H-spaces. Letting
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U,= 0*(Bv;), thenfor1=i=<r

0*({},') = a’iizk_] ® 1 + 1 ®Sq2'i2r+2k__2
0*(Vo) = aoine—1 @1+ 1® Sq¥Sq ip2y_,

where «a; € H(2).
If the a; are nontrivial, we can change Bv; by Bpg(a;is 1) so that

o*(0,) =1®@ Sq%iyu_,
forl=si=<r
0*(50) =] ® qursqliznzk_z .

Then since
r—1
SqZ’SqZ’ — z SqZ'“—Z'SqZ‘ + Sq2’—1sq2’Sql
i=1
it follows that
r—1 . _
> 8¢%"' %0, + Sq¥ v, € ker o* N\ PH*(E,).
i=1
But o*: QH®(Ey)— PH*"(QF,) is monic. Hence
r—1 \
> 8q7" 2+ Sq¥ 0, = 0.
i=1
Therefore

r—1
0*[2 Sq¥"'“?Bv,; + qu'“Bﬁ(,] =0.
i=1
Since o*: QH*(BE,)— PHY~'(E,) is also monic equation (1.4) implies
r—1
> Sq¥"'?Bv; + Sq* B,
i=1

is primitive decomposable and in ker Bj§.
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It follows that there is a primary operation « of odd degree such that

g Sq*"'"?Bv; + g% "By = [Bp(aiz )] (1.5)
Now define Bv, = (Bh)*(B®;). Then equation (1.5) implies

:21 Sq%"'"?Bv; + Sq7 "' Bvy = [Bpa(aSq i, )] (1.6)

aSq*i.., is a cup product square, therefore the right hand side of (1.6) is at
least a fourth power.

We have the following theorem.

THEOREM 1.2. There exist elements o*(Bv;) = v; € H*(E,) which satisfy

(1) Xi2i 87" ~?Bv, + Sq% ' Bu, is four fold decomposable,
(2) X2 8¢% "' %, + Sg% v, =0.

Further, suppose k =2l where | is odd and there is a generator x, € H'(X) with
height 27***', Then there is a map fy: X — E, with o*f%(v,) = Sq% @or2+(x;).

Proof. (1) and (2) follow from (1.6).

Note that @,-+2+(x;) is realized by a map into the following two stage system

A

k.

l;()

E() ) E()

A |

X == K(Zs,1) — K(Zs. k)

K(Z,, 2"%)

We(iz2) = (i,)*"""". Define f*(i;) = x,. We have

QE,=K(Z,,1 — 1) X K(Z,, 2%k — 2)

and

Qfg(izr*lkd) = @are2nlX)).
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But there exist maps Aq: E;— E, and
Qﬁ;‘(l ® ipr+2p42) = lprr2i2 € H*(QEO)'
Let f, = Aqfo. It follows that

O'*fg(U,) = Sjg(l ® qu,i2r+2k_2)
= Sq2’¢27+2+1(xl) Q.E.D.

The universal example E will be a loop space with an element v € H*(E) with
Av=uQu. If E is an H-space, let P,E denote the projective plane of E. Recall
there is an exact triangle with the property that if i(y) = u then A(u ® u) = y?, [2].

H*(P,E) —— IH*(E)
™~ %
IH*(E) ® IH*(E)

We will show there is such an element y € H*(PE). The following proposition
is a consequence of the Adem relations and calculations of binomial coefficients.

PROPOSITION 1.3.
(a) Let 8, =Sq> %+ 8q¥"*~27'Sq?"". Then

r—2
Sq27+2r+lk — quror + ZO (Sq2r+lksqzr_21 + Sq27+lk+2r,_21)8q21

(b) Let i<r —2. Then on elements of degree 2' +2" ' + 2’k

242 =200 2k 42 242 =2l @ 2k 4212042
Sq Sq = > Sq Sq

I=i-1

qu'—2*Sq2'—1+2'k= z qur—21+2'k5qz'—l—2'+zl.

I=i-1

(c) Leti<r—2. On elements of degree 2' + 2"k

r+1 2 r+1 .r+1 r_nl r_oi !
qu 25q7 "k = Z Sq? " 'k+2 zsqz 2+2'

I=<i-1
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Proof. (b) and (c) follow by direct application of the Adem relations and
computing binomial coefficients. For (a) note that

Sq2'+2’+'k - r-zzsqz”'k+2’—2‘sq2‘ + SqZ'SqZ""k

i=0

+ qur—l+27+|ksq27~l
and

qur—l+2r+lk — Sq2r+lksq2r—l + Sq2r5q2r+lk_2r—l

r—2
Sq* 'Sq¥ =D Sq¥?Sq*. Q.E.D.

i=0
We now define spaces BK, BK,, and a map Bw: BK— BK,. The fibre of Bw
will be BE and E will be the desired universal example. Let
r—2 )
BK = BEyX K(Z,,2" +2""'k) x [ K(Z,, 2" + 277" + 2'k)
i=1

r—1
x ] K(Z,,2 +27*'k)
i=1

r—2
BKy=K(Z,, 2 +2%) x [ | K(Z,,2' +2" + 2" k)

1=0)

r—1
x [1 K(Z, 2" +27"%k) X K(Z5,1+2" +2%%)
i=1

x [T T1 K@y, 2k +27+2)

i=r—-21l=si-1

x [1 [I Kz, 2"k +2"+2)

isr—-21l=si—1|

x [1 Tl K@Z,,27" 'k +2"+2)

i=r—11<i-1
Define Bw: BK — BK|, by

(BW)*(i2r+2r-+2k) = Ori2’+2’”k - BU,
o t, r 1 L .
(BW)*(12:+2r+27+|k) = Sq212r+2r+|k - qu +2 klz,+2, 1 ork

(BW)*(i21+2r+2k) = BU, - Sq2r+lki21+2,+lk 1 < l <r-— 1



30 JAMES P. LIN
(BW)*(i1+2'+2r+2k) = By,
(Bw)*(iZ’k+2’+2’) = qur_‘_2l+2’i21+2r—l+2rk
(BW)*(i2r+lk+zr+2') = Sq2'k+zr—:+zl_2,i+2'+2'_I+2rk

(BW)*(iér+lk+2’+21) = Sq2r~2l+2li21 +27H .

We have a diagram

K,
}
BE
|-
BK B BK,

Consider the element z € H*(BK,) defined by

r—2
_ 2. 2:+lk 2r 2r+lk+2r__21 .
= Sq Loryor+2y + Z (Sq Sq + Sq )lza+2r+2r+lk

i=0

r—1
r+i_ot. r—1.
+ z Sq2 2l2!+2’+2k + qu ]ll+2'+2'+2k
i=1

r+1 r { 14 N
+Sq2 . 2 qu 2K k2

I=i—-1

r+ r_t,. .
+ z qu k42 2(12r+lk+2r+zl + lér+lk+2r+zl) (1.7)

I=i—1
LEMMA 1.4. Modulo three fold decomposables,
(Bw)*(2) = (izr+2ru)™.

Proof. It is a lengthy but simple calculation. We have, using the formulas for
(Bw)*,

(BW)*[qurllzr_,_zﬁzk] = SqZ'O,izr_;.erk - qurBU,

r—2

(Bw)*[z (Sq% " '%Sq% % + Sq2'+l"+2"2')i2,+2r+2,+1,(]

i=0
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r—2
r+1 r r+1 r ot !,
=2, (8q77*Sq¥ 7% + Sg¥ T ) Sq% iy pen

i=0

-2

r

_ 2+ 1k 2r-=-2! 2+l 42r =2t 2V 2k
2, (87" *8q¥ 7% + Sq N S PO
13

=0

By Proposition 1.3(a) the sum of these two terms is

r—2
- 2 > 2tk Q22 2+ k420 =20 @ 27 4 2k
(iz42+1)" — §q° Bv, — 2 (Sq” “Sq +38q )Sq Loty 2r=14 2k

i=0

By Proposition 1.3(b) the last term in the above sum is cancelled by

r+ r_ol,. r+ . ko
(BW)*[ 2 qu "2 2(12'+]k+2'+21)+sq2 e 2 qu 21+2k12rk+2r+21].

I=i—1 I=i—1

Now consider

r—1
* 2r+|_2l. 2r—1-
(BW) [z Sq lzl+2r+2k + Sq ll+2'+2”2k]
i=1

~
|
-

qu’ﬂ-—z‘(BU,- - Sq2’+lki21+2r+lk) + qur_lBUO

-ﬁ.

Sq% Bu, + four fold decomposables

1

+ 2, 8¢ '72Sq”" *iy .y, by Theorem 1.2.

~
I

Tl.
P

By Proposition 1.3(c) the last term in the above sum is cancelled by

(BW)*[ 2 qurﬂknr_zliéfﬁk+2'+2']-

I<i-1

Therefore (Bw)*(z) = (iy4,+1)* + four fold decomposables. Q.E.D.
Looping Bw we have a diagram

QK,

1,

E

%

K—— K,
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PROPOSITION 1.5. There exists an element v e H*(E) with Av=u ® u and
J*(v) =(0%)*(2), u=p*(izr12+1x-1). Therefore a*(v) € H*(QE) has

c(o*v) =0*u @ o*u.

Proof. By Lemma 1.4 (Bp)*(iy,o+u)€ H*(BE) has the property that
(Bp)*(iy+2+u)’ is four fold decomposable. Since P,E < BE, let y be the image of
(Bp)*(iz+2+y) in H*(RE). Then since H*(P,E) has no 3-fold products, y>=0.
Further H*(P,E)— H*(E) maps y to a primitive u = p*(iy4+14-1). It follows
that there exists a v € H*(E) with the desired properties. Q.E.D.

§2. Construction of a lifting

As the reader may have surmised, the space E was constructed to facilitate the

lifting of a map X 2, Kto E. Such a lifting, however, does not obviously exist
because we do not know that 8,x = f3(v,). At best, we know that 8,x — f¥(v,) is
odd decomposable. Since Q" =0, we can conclude 6,x — f{,*(v,) is three fold
decomposable.

Our strategy will be to prove that there is a map f : X— K such that im (wf)*
is three fold decomposable. Recall that H*(P,£2X) has all three fold products
trivial. Therefore, there is a commutative diagram

2

|

P.OX — X — K — K,

This will be the goal of this chapter.
It will be convenient to recall the definition of w

W*(izrs2r2e—1) = Odor a1 — U, (2.1)
W* (i izrtii—1) = quli2'+2'+1k—1 - qur_l+2'kl'z'+zr—'+z'k—1 (2.2)
W*(igyor2kct) =V; — 8¢% Fiy oz for 1=i=sr-—1 (2.3)
w* (i 422) = Vg (2.4)
W*(ik s +2i-1) = qur-1“2‘+2li2'+2'—1+2'k—1 (2.5)
Wiz 42io1) = LY A PR TP (2.6)

W*(izrigszra2io1) = qu’_2‘+2[i2'+2'“k-—l- (2.7)
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Let £ € Q¥*?"'*~! have representative x. By downward induction on k, we
may assume that for k' >k

0*Q2’+2'”k'—1 - SqZ’PHZ”‘k'—z(QX).

Then 0*(6,x) = Sq*y for some y € PH* *~%(QX). If y is a transpotence element,
Theorem 1.2 implies there is a lift f,: X — E, such that o*[f&(v,)] = Sq%y. If y is

a suspension element, then choose f(,:X — K(Z,,2"" % — 1) Lo, E,. In either

case

0*(6,x) = Sq”y = o*[f3(v,)].

But o*:Q°— PH*"(QX) is monic. Therefore 6,x —f§(v,) is odd decom-
posable and therefore three fold decomposable. This defines f: X — K into the
factors K(Z,,2" + 2" 'k — 1)xE,,.

Now 2(r) implies

Sq%*x = 8q% *¥*xy.,» 1.2k + three fold decomposables.
Hence, let

f*(i2'+2"‘+2’k—l) = X414 20k —1-
Similarly,

fa(o) = 8% *x 3,211 + three fold decomposables.
So let

frpzvik—1) = Xopu1

§ince o =0, f{;‘(v(,) is decomposable. In the con_st_ruction for E,, E,,
fo(vo) = f&(h*(0,)). Applying the Cartan formula [4] to Afg(h*(D,)) yields

Af§(h*(o)) e EH* @ H* + H* ® EH* +im Sq” ™"
{f3(A*(00))} € P (H*//§H*) = 0.

Therefore f§(v,) is three fold decomposable.
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To complete the proof that im (wf)* is three fold decomposable we need the
following lemma.

LEMMA 2.1. Leti<r, | >0. Then if 2" appears in the dyadic expansion of n
then

Sq Q¥ =0

Proof. Write

n=24+4224 .- +214 24 2%y
form=0,0=i,<i,<---<i;_;.

Then modulo doubletons of degree < 2

Sq" = $q*'Sq**- - - Sq*'Sq*Sq*" ™.
A simple argument shows all doubletons of degree less than or equal to 2'
annihilate QZ*?"""'.  Now Sg?$q?"'"Q¥*¥'""1=0 by @(r). Hence

Sq"Q***""~1=0. Q.E.D.
Lemma 2.1 implies

2120 42! 2r 422l -2
Sq X 421427k —15 Sq X2 420+ 4 2rk—1

and Sq% ~¥*%x,, 14— are three fold decomposable. We have shown

THEOREM 2.2. There is a map f:X— K such that im (wf)* is three fold
decomposable.

§3. Analysis of indeterminacy

By Theorem 2.2, there is a lifting

1

PRX — X — K — Ko

Looping the entire diagram and using the fact that X is an H-retract of QP,QX
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we have a diagram

QK T QK — QK|

where fis an H-lifting.
Since QE,=K(Z,,k —1)x K(Z,,2"**k —2) and H*(QX) is even dimen-
sional, €2f has no c-obstruction.

It will be useful to use abbreviated notation here to identify certain
submodules of H*(£2X).

DEFINITION 3.1. Let P denote the submodule PH*(£2X). Let F, ¢ H*(£2X)
be the submodule generated by primitives, two fold products of suspensions and

divided squares of suspensions. Let D ¢ H*(£X) be the submodule of decom-
posables of H*(€L2X).

A theorem of Lin and Williams [9] shows if {a;} are the Steenrod operations
appearing in the expansion for z, equation (1.7), then

o*x @ o*xe D, a(POF,+FQ®P). (3.1)

Since H*(X) is bicommutative and even dimensional we have

Primitives and indecomposables in degrees congruent to two mod four
are isomorphic. (3.2)

If y,(u) is a divided square of a primitive u and Sq'u =0, then

Sq*'y(u) is a primitive plus a decomposable. (3.3)
By [5],
P¥ = EP?, hence Sq° maps primitives to decomposables. (3.4)

Let A= P2’+2’“k-2 B = P2’+2’k-—2'
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LEMMA 3.1. (a) If dega,=0mod4, then
a(POFL+FKOP)N(ARA)ca(PAP)
(b) If dega; =2 mod 4, then
a(POFL+FEQP)N(AQA)
is a sum of terms of the form
a,P ® B+ B,F, ® o, P
where «;, B; € H(2) and deg a; =0 mod 4 and deg B; =2 mod 4.

Proof. By (3.2) A consists of indecomposables. Now if o € #(2), x € P and
ax €A, then by (3.4) dega=0mod4 and degx=2mod4. Therefore, if
a,(P ® E) N (A ® A) is nontrivial it consists of sums of terms of the form ax ® By
where degree f=0mod 4 in case (a). Then y € F, and degy =2 mod 4. Since
there are no divided squares in this degree, y must be a primitive. Hence

Similarly
a,(F, ® P)N (A ® A) c a,(P ® P).

This proves (a).
Now in case (b) if deg a; =2 mod 4 then

consists of terms of the form a;x® B,y where dega,=0mod4 and
deg B; =2 mod 4. Similarly a;(F, ® P)N (A ® A) is spanned by terms of the form
Bz ® a,w where dega,=0mod4 and degpfB,=2mod4. This proves the
lemma. Q.E.D.

Now equation (1.7) implies the a; here the following form:

4" ' (3.5)
qu'ﬂksqz'—z' + Sq2'+‘k+zr_2' i<r-2 (3.6)
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Sq7"' '+ 8q¥"  i=r-1 (3.7)
Sq2'+lksq2'—2[+2’k l < r — 2 (3.8)
Sq2’+lk+2'—21 l <r-— 2 (3-9)

It will be useful to use the associativity of H, at certain points in the argument
although one suspects that there are proofs where the associativity of H, is not
needed. Let R = {x € H* | Ax € EH* ® H*}. Then recall the exact sequence [8]

0—»EH*—>R—>Q0*—0.

It follows that if ry, r, € R°* and r, — r, is decomposable, then in fact
r=r,. (3.10)

We will use this repeatedly.
LEMMA 3.2. Let y € H(2) have degree 2 +2*'m m =0. Then if j <i
yPH**2"'""2(QX) cim o*.

Proof. Lety e PH***""~2(QX). We may assume y is not a suspension. Then
Yy = @y(xy4,) for some generator x,,, of height 2'. Then y comes from a map
into the bundle £ which is the fibre of w: K(Z,,2l + 1)— K(Z,, 2'*'l + 27)

w*(i21+ll+2:) = (l‘21+])2‘.
But then yi,,, € ker w* so there is a © € H*(E) with

;*(ﬁ) = Y(i2‘+'1+zf—1)
K(Z,, pARY IS S 1)

-

Q — K(Z,, 20+ 1) —> K(Z5, 274+ 2Y

—— M

If f*p*(iy.1) = X2, then ¥ may be chosen so that o*f*()=yy. Q.E.D.
LEMMA 3.3. Let 6 be a doubleton of degrees 2' for i <r. Then for [ >0

g*Q¥+ ¥ N §PH*(QX) = 0.
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Proof. Let 6 =a,Sq”a;Sq”a, where dega;=0mod2"*".

PH*(QX) and

2427+
6z e 0*Q ,

degree a,z =2'"'m — 2 for some m > 0. We will show Sq”a,z is a suspension. If
@,z is not a suspension, then a,z = @,/(x;) for some j=i+ 1. But then Lemma

3.1 implies Sq* @,z is a suspension. We have then
3 4 I8 PP
a,8q% ayz € a*Q*** "1 for some n>0.

By ?(r), Sq*a,Sq*a,z =0. Hence 6z =0. Q.E.D.

PROPOSITION 3.4. ¢*Q?*¥"'* -1 §q? 'PH? '"*?*~2(QX) = 0.

Proof. Let ¥ € Q¥*?"'*~! and suppose o*x = Sq?"'y for some primitive y. By
P(r) y cannot be a suspension. SO y € @-1(x44;). We may assume x4, € R
since H* has a Borel decomposition with generators in R [5].

Therefore P(r) implies x4 ., = $Sq**x,4 . for some x,,., € R. Hence

r—1 r r—1
0= (x4+1)” =8¢""(xFics1)-

Applying Sq7', we get

0= qu'_’qu"‘(x%le) = (x2k+1)2"

SO x4+ has height either 27! or 2”. We will show that either case is impossible.

Case 1. x,,, has height 2. Consider the following commutative diagram

E, - E,

l l

K(Zy, 2k +1) —225  K(Z,, 4k + 1)

“ l lwz

K(szzr+lk+2r) ___2_;___1__) K(Zz,2r+lk+2,_l)

Sq
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where

Wi(lyoigsz) = (i2k+l)2,

w3 (iprvig 1) = (i4k+1)2'_l'

. r—1 .
This proves @ (x2x+1) =8q¢* @o-1(X4e41) = o*x. But a transpotence is not a
suspension so we have a contradiction.

Case 2. xy ., has height 2'~'. Consider the diagram

E, > FE,

‘, l

K(Zy, 2k +1) —2  K(Z,, 4k + 1)

Wy wh
v

K(Z:, 2k + 27"y ——=— K(Z,,2"'k+2"7")

Sq

WT(iZ’k 42r1) = (i2k+1)2r“]

W;(i2r+lk+2r—l) = (i4k+ 1)2"‘.

Then this implies

Qr-1(Xap41) = qurk¢2'“‘(x2k+l)
But then

o*x = qurhl(sz-l(xd,kH) = qurnlsqzrkq?z'*‘(xzkﬂ)
= 0@-1(X2k+1)

where 6 is'a doubleton of degree <2272

By Lemma 3.3 this implies o*x = 0 which is a contradiction since o*: Q***—
PH**(QX) is monic. Q.E.D.

LEMMA 3.5. Suppose Sq™x5.1 =0 and x5, is a generator of height 2'. Then
Sq*" @2(X2141)

IS a suspension.
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Proof. Let wy:K(Z,,2l +1)— K(Z,, 2l + m + 1) be defined by w{(iyims1) =
S$q™iy.,. Let E, be the fibre of w,. Define wy:E,— K(Z,,2""'1+2') by
w3 (iy+iy42) = pT(iz+1)?. Let E, be fibre wy. Then there is a lift

X —— K(Z,,20+1)
and QE,= QFE, X K(Z,,2""'1+2' —-2)
-Qf;[l ® qulmizmmz'—z] = U*f-;(vz) = 850" @(X2141)
where j3(v,) = 8q* iy 2. Q.E.D.
PROPOSITION 3.6. Let n =2 +2'+2""'m for some m =0
J<h=i=r, [=0.
Then PH***""~%(QX) N Sq"PH*(Q2X) = 0.

Proof. Sq" = Sq¥Sq?'Sq*"" ™ + & where & is a doubleton of degree less than
2. By Lemma 3.3, if the intersection is nonempty, there is a primitive y of degree

22—V 42+ —2 with Sq¥Sq”y #0.

Claim: Sq*'y is a suspension.

If y is not a suspension, then y = @(z) where degz =217+ 217+ — |
where u >0. We may assume z € R, so $§¢°" 77z =0 by ?(r). Hence by Lemma
3.5, Sq*"y is a suspension. Now the claim implies 0+#Sq¥Sq*'ye
Sq¥o*Q¥~¥+2"-1 But P(r) implies Sq¥Q*~¥+*""~1=0. Q.E.D.

Suppose u has dyadic expansion

iy g .. .0k < <<l

We define the dyadic length of u to be s.
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Now consider the indeterminacy described in equations (3.5) to (3.9).
LEMMA 3.7.

Sq? (PH*(2X) ® PH*(QX)) N (A ® A)
c Sq¥ PH*(RX) ® PH*(2X) + PH*(Q2X) ® Sq? PH*(QX).

Proof. By Proposition 3.3 A N Sq? 'PH*(QX)=0. If
(Sq*® Sq¥ ~*)(PH*(2X) ® PH*(2X)) N (A ® A)

is nontrivial, then since a #2"~', by Proposition 3.6, a cannot have dyadic length
greater than one. Hence «a is either zero or 2". Q.E.D.

LEMMA 3.8.

Sq¥ " “(PH*(2X) ® PH*(2X)) N (AR A)
c Sq**PH*(QX) @ Sq**PH*(2X).

Proof. 1f
[Sq** T *PH*(QX) @ S¢***PH*(Q2X)]N (A ® A)
is nontrivial, then for degree reasons 0 = o <2". But if a #0, either 2’k + a or

2'k — a has the form 2 +2'+2*'m for j<j,<r. By Proposition 3.6, o =
0. Q.E.D.

PROPOSITION 3.9.

(B ® B) N Sq¥ ?(PH*(2X) ® PH*(2X))
< Sq% 'PH*(2X) ® Sq¥ "PH*(2X)
+8q% "PH*(QX) ® Sq% 'PH*(2X)

if i=r—2. Ifi <r —2 the intersection is trivial.

Proof. 1If [Sq“'PH*(2X) ® Sq“*PH*(2X)] N (B ® B) is nontrivial and u, +
u,=2"-2', then by Proposition 3.6, both u, and u, must have dyadic length
1. Q.E.D.
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PROPOSITION 3.10.

(B ® B) N Sq¥ 2*¥*(PH*(QX) ® PH*(2X))
c Sq¥ 'PH*(Q2X) ® Sq% "PH*(QX)
+Sq¥ "PH*(QX) @ Sq¥ ' PH*(QX)

if l=r—2. If L <r —2 the intersection is trivial.

Proof. Again as in Proposition 3.9, if u;, +u,=2"—2'+2'k, by Proposition
3.6,

U= o, + 2r11
U, =a, + 272
where a, + a,=2"—2. Hence a, must be either Sq% ' or S¢° and a, is the

other. Sq*“=S8q*“Sq*"+ & where 8 is a doubleton of degree less than
2. Q.E.D.

THEOREM 3.11.

(a) (A®A)N(Sqg¥" '“Sq* ¥} (PH*(2X) ® PH*(22X))

< Sq¥ PH*(QX) ® PH*(22X) + PH*(2X) ® Sq* PH*(82X).
(b) (A ® A)N (Sq%" '*Sq¥ ~#+¥*)(PH*(2X) ® PH*(22X))

< Sq¥ PH*(2X) ® PH*(Q2X) + PH*(2X) ® Sq* PH*(L2X).

Proof. By Propositions 3.9 and 3.10 elements of the intersection belong to
Sq?*Sq* 'PH*(2X) ® PH*(2X) + twist.

But
Sq*"'Sq”* = Sq**Sq™" +[Sq”", Sq”)Sq”“ "

plus a doubleton of degree lgss than 2". Hence by Proposition 3.4

Sq%*Sq¥ 'PH*(2X) N A c Sq” PH*(2X). Q.E.D.



The vanishing of Steenrod squares on H-spaces 43

PROPOSITION 3.12.

(@) Fori=r—-2,(AQA)N Sq% "' +¥-2(PH*(QX) ® PH*(QX)) = 0.

(b) Fori=r—1, (A® A)NSq*" ~?(PH*(QX) ® PH*(2X)) =0.

Proof. Again Propositions 3.6 and 3.4 imply the intersections are trivial
unless i=r—2 for (a) and i=r—1 for (b). Then Sg¥ '**¥*~? must split as

Sq¥ " ® SqZ**¥ + twist. But Proposition 3.4, and Lemma 3.3 imply this is
trivial.

In (b) it must split as
Sq? ® Sq%".

Again Proposition 3.4 implies the intersection is trivial. Q.E.D.

COROLLARY 3.13. If o*x® o*x lies in the indeterminacy of degrees
congruent to zero mod 4 in equations (3.5) to (3.9), then 0*x € im Sq”.

Proof. By Lemma 3.7 if 0*x ® o*x € im S¢%(P ® P) we have o*x €im Sqg*.
By Theorem 3.11(a) if o*x ® o*x € Sq?"'*Sq? ?(P ® P) then o*x € Im S¢*. By
Proposition 3.12,

o*x ® o*x ¢ Sq7 ¥ X(P®P)
and
o*x ® 0*x ¢ Sq¥"'"%(P ® P).

By Theorem 3.11(b) if o*x ® o*x € Sq¥ " '*Sq* ~****(P ® P) then o*x €im Sq”.
Equation (3.9) is the same indeterminacy as in equation (3.6). Hence all the
indeterminacy of degree congruent to zero mod four yields o*xe
im S¢*. Q.E.D.

It remains to check the indeterminacy of degrees congruent to two mod four.
From equations (3.5) to (3.9) such indeterminacy has the form

Sq2’*‘kSq2’—-2 + Sq2'+‘k+2’—2' (312)
Sq? "2, (3.13)
ST hsgt -1, (3.14)
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For excess reasons,

o*x @ 0*x ¢ (Sq¥ *** (PR F,+ F,® P).
Similarly by Lemma 3.8 and Lemma 3.1(a) if

o*x @ o*x € g7 *Sq7 (P F,+ F, ® P)
then

(B®B)YNSqg* **?* (PR K+ F,® P)#0.

But this is also impossible for excess reasons. Finally, consider the indeterminacy
Sq*"'*Sq% % and Sq% "2

LEMMA 3.14.
(a) AN Sq6F2 =0.

(b) BN Sq°F,=0.

Proof. Since Sq'H*(22X) =0, Sq°F, = Sq°Sq*F,. For (a), by equation (3.4), if
S$q°F, N A #0 then Sq°Sq*y,(y) is nontrivial for some y with degree y =2""" +
2’k — 4. By (3.4) y = z% Therefore, since Sq*(z?) =0, it follows that Sq*y,(y) is
primitive plus a decomposable by (3.3). We conclude Sg2Sq*y,(y) is decom-
posable. An analogous argument proves (b). Q.E.D.

PROPOSITION 3.15. If r=3 and
o*x ® o*x € (5¢'%*Sq® + Sq"*)(P @ F, + F, ® P)
then o*x € im Sq°.

Proof. If o*x ® 0*x € $q"%*Sq°(P ® F, + F,® P) then by Lemma 3.8 and
Proposition 3.6

o*x ® o*x € (Sq%* ® §q*)Sq*(P @ F, + F, ® P).
Since Sq*P is decomposable we have

o*x @ 0*x € (Sq%* @ Sq%)(P ® Sq°F, + Sq*P ® Sq°F,)
+(Sq%* ® $Sq%)(Sq°F, ® P + Sq*F, ® Sq*P).
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It follows that

o*x € Sq%*Sq*P + Sq*Sq°F,.
By equation (3.11) and Proposition 3.4, if

P'%**5N 5q*Sq*P < im Sq°.
By Lemma 3.14

Sq**Sq°F, N P'%*¢ =,
We conclude o*x € im Sg°. Q.E.D.

Now suppose r >3 and

o*x @ o*x € (Sq% " “Sq? (P ®F, + F, ® P).
By Lemma 3.8

(0*x ® 0*x) € (S¢%* ® Sq**)Sq* (P F, + F, ® P).
Hence

(B®B)NSqg* *(POF,+F,® P)+0.
By Proposition 3.6,

(BRB)NSq* (PR F,+F,®P)
c(P®Sq”°FE) + (Sq” °FL,®P)

r—1
+ > 85q*P ® Sq¥ 2 7F, + Sq* "*°F, ® Sq*P.

=2

But S¢* ~2F, c Sq°F, and if i >2
SqZ’—Z'—2F2 c Sq()FZ
therefore by Lemma 3.14, we have

(B®B)NSq* (PR F,+ F,® P)
< (Sq*P ® Sq?~°F,) + (5¢° ~°F, ® Sq*P).

45
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But now BN Sq*~°F, is spanned by elements of the form Sq% %y,(0*xy-1x43).
Now since r>3, xp-1.3 Is annihilated by all Steenrod operations of degree
congruent to four mod 8 since Sq*QH¥*3(X) = 0. Therefore

Sq* ' T*0* (xy-1k43) = 0.

It follows that

5q% ~0y,(0*x2-1k43) = S¢*(Sq* T*) Y20 X214 43)
€ Sq*(P + decomposables) by equation (3.3)
€ decomposables by equation (3.4).

Therefore
BNS?°F,=0.

This proves
PROPOSITION 3.16.

o*x ® 0*x ¢ Sq7 *Sq* (P Q F, + F, ® P).

Now suppose
o*x @ o*x € Sq”" (P F,+ F,® P).
Again by Proposition 3.6,

(ARA)NSG”" " PRF,+F,®P)
c(P®Sq¥"'°F) + (S¢*"'?F, ® P)

r

+ D, (S¢*P ® Sq¥" "2 72F) + (8q¥" ¥ *F, ® Sq*P)

2

]

< (5¢°P ® Sq%"'7°E,) + (5q% "' ~°F, ® S¢*P)

by Lemma 3.14.
ANSqg?"'F,=0

by an argument analogous to the proof in Proposition 3.16.
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It follows that
PROPOSITION 3.17. 0*x ® 0*x ¢ Sq” " P F,+ £, ® P).
We can now prove
THEOREM 1.1(r). 0*QH**¥"'*~Y(X) c Sq* PH*(QX) and
Sq¥QH¥ ¥ -1(X) =0.
Proof. By the previous theorems, we conclude
0*x @ o*x € Sqg*P P + P @ Sq”P.
Therefore o*x € Sq* P. Now since Sq*Sq* is a doubleton of degree less than 2",

Sq*0*x = 0*(Sq*x) =0. But o* is a monomorphism on odd indecomposables.
Therefore Sq¥x is decomposable. Q.E.D.
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