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Feuilletages riemanniens à croissance polynômiale

Yves Carrière

Introduction

A un feuilletage riemannien 9 d&apos;une variété compacte est associé de manière
naturelle son algèbre de Lie structurale g. Cet invariant &quot;algébrique&quot; a été

introduit par P. Molino (cf. [Mo]) et joue un rôle essentiel dans l&apos;étude de la

topologie de l&apos;adhérence des feuilles de 9 (on fera à la section 0 un petit rappel
sur ce point). Le but de cet article est de mieux comprendre l&apos;interaction existant
entre g et la géométrie (riemannienne à quasi-isométrie près) des feuilles de 9.

Le premier résultat que nous avons eu dans ce sens est que si 3F est un flot
riemannien (i.e. dim^=l), alors g est abélienne (cf. [CC]-[C1] ou [C2]). Il
semblait alors raisonnable de conjecturer que ce résultat pouvait se généraliser au

cas où 3F est encore supposé à croissance linéaire mais avec maintenant
dim 3F &gt;\. Malheureusement, les démonstrations que nous possédions utilisaient
fortement l&apos;hypothèse dim 9=1. En fait, la généralisation recherchée dépendait
directement de la conjecture suivante: 3* est à croissance polynômiale si et
seulement si g est nilpotente [CG]. Nous répondons ici positivement à ces deux

conjectures après avoir caractérisé, grâce à un résultat récent de R. Zimmer [Z],
les feuilletages riemanniens ayant une algèbre de Lie structurale résoluble.

Avant d&apos;énoncer notre résultat, faisons un bref rappel (qui sera développé à la
section 0). Une variété riemannienne L est dite Fôlner (ou d&apos;invariant

isopérimétrique de Cheeger nul ou fermée à l&apos;infini cf. [Br], [Grl]) s&apos;il existe une
suite de sous-variétés à bord Kn telle que lim vol (dKn)/Vol (Kn) 0. C&apos;est le cas

lorsque L est à croissance polynômiale (de degré d)y c&apos;est-à-dire lorsque le
volume Vol (B(x, n)) de la boule de rayon n centrée en un point x fixé de L croît
comme un polynôme (de degré d) en n. Ces deux propriétés étant invariantes par
quasi-isométrie, on peut donner la définition suivante: une feuille L d&apos;un

feuilletage 9 d&apos;une variété compacte M est Fôlner (resp. à croissance

polynômiale) si elle vérifie la propriété correspondante pour la métrique induite
par une (et donc par toute) métrique riemannienne sur M. On dira que 9 est
Fôlner (resp. à croissance polynômiale) si toutes les feuilles de 9 le sont. On
notera d(3F) le degré de croissance de ^ (i.e. la borne supérieure des degrés de
croissance des feuilles de 9):
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THÉORÈME. Soit 2F un feuilletage riemannien d&apos;une variété compacte et g

son algèbre de Lie structurale. Alors:
i) 2F est Fôlner si et seulement si g est résoluble

ii) &amp; est à croissance polynômiale si et seulement si fl est nilpotente
iii) Si çj est nilpotente et si &lt;5(q) désigne son degré de nilpotence, alors on a:

ô(q) ^ d(2F)\ en particulier, si la croissance de 2F est linéaire, g est abélienne.

On obtient comme corollaire direct de iii) le résultat de [Cl ou C2]:

COROLLAIRE A. Valgèbre de Lie structurale d&apos;un flot riemannien (i.e.
d&apos;un feuilletage riemannien de dimension 1) sur une variété compacte est

abélienne.

Le point ii) joint au résultat de A. Haefliger (Corollaire 4.4 de [H2]),
démontré antérieurement dans [MS] pour le cas des flots riemanniens, donne
immédiatement le

COROLLAIRE B. Un feuilletage riemannien 2F à croissance polynômiale sur
une variété compacte M est minimalisable (i. e. il existe une métrique riemannienne

sur M telle que toutes les feuilles de 2F sont minimales) si et seulement si la

cohomologie basique de 2F est non nulle en degré maximum.

On ne sait pas encore si ce critère de minimalisabilité s&apos;étend ou non à tous les

feuilletages riemanniens des variétés compactes.
La démonstration du théorème est organisée de la façon suivante. A la section

0, nous faisons un certain nombre de rappels sur la croissance, la condition
Fôlner et la construction de l&apos;algèbre de Lie structurale à l&apos;issue desquels nous
montrons que la démonstration du théorème se réduit sans difficulté à celle du

THÉORÈME AUXILIAIRE. Soit 9 un G-feuilletage de Lie à feuilles denses

sur une variété compacte. Alors:
i) 9&gt; est Fôlner si et seulement si G est résoluble

ii) &amp; est à croissance polynômiale si et seulement si G est nilpotent.
iii) Si G est nilpotent et si ô(G) désigne son degré de nilpotence, alors on a:

Ô(G) ^ d{2F)\ en particulier, si la croissance de 2F est linéaire, G est abélien.

Les sections 1, 2 et 3 sont exclusivement consacrées à la démonstration de ce

théorème auxiliaire. Rappelons qu&apos;un G-feuilletage de Lie 2F sur une variété M
est donné localement par des submersions à valeurs dans un groupe de Lie G, les

changements de cartes transverses étant des translations à gauche de G (on peut



Feuilletages nemanniens à croissance polynômiale 3

aussi décider de les prendre à droite comme dans [Gh]). Un tel feuilletage relevé
dans le revêtement universel M de M (supposée compacte) est défini par une
fibration D de M sur G appelée application développante, équivariante par
rapport à la représentation d&apos;holonomie h de jz^(M) dans G. L&apos;image F de cette

représentation est appelée le groupe d&apos;holonomie de 3F (cf. par exemple [Cl],
[E], [Gh], [HH] ou [T] pour des détails sur toutes ces notions).

Lorsque M est compacte, les propriétés d&apos;être à croissance polynômiale ou
Fôlner sont des propriétés transverses. D&apos;après A. Haefliger [Hl], ces propriétés
peuvent être lues sur le seul groupe d&apos;holonomie F agissant à gauche sur G. A la
section 1, nous montrons comment faire ceci concrètement. Le point i) du
théorème auxiliaire se déduit alors de [CG] et d&apos;un théorème de R. Zimmer [Z]
résolvant une conjecture de A. Connes et D. Sullivan. Nous pouvons ainsi
réduire la démonstration de ii) au cas où G est résoluble. Cette démonstration

occupe la section 2 et constitue le coeur de notre article. Tous nos efforts ont

pour but de produire de la croissance de type surpolynômial dans le cas où le

centre C(F) est discret. Malgré une apparente ressemblance entre notre problème
et celui traité dans [Gr2], les difficultés que nous rencontrons sont d&apos;une autre

nature. Le groupe de type fini F étudié est déjà un sous-groupe (dense) d&apos;un

groupe de Lie G, mais en contrepartie, nous savons seulement que la croissance
&quot;locale&quot; de F dans G est polynômiale (cf. définition 2.2.1) ce qui est loin
d&apos;entrainer trivialement que la croissance habituelle de F est polynômiale. A la
section 3, nous démontrons iii) en utilisant la théorie de Malcev ([Ma], [R]).
Nous concluons par un exemple montrant qu&apos;il n&apos;est pas possible d&apos;améliorer le
résultat pour les feuilletages de Lie définis par une action libre de Up.

La démonstration que nous donnons ici se passe exclusivement au niveau
&quot;transverse&quot; et il nous semble qu&apos;elle doit permettre d&apos;obtenir un énoncé

analogue pour un pseudo-groupe d&apos;isométries locales à génération compacte (cf.
[H2]). Seule la section 1 serait à modifier, mais nous n&apos;avons cependant pas fait
une vérification rigoureuse des détails. De toute façon, nous tenions à rester
dans le cadre &quot;géométrique&quot; des feuilletages qui, nous l&apos;espérons, est plus
accessible au lecteur.

Je remercie Etienne Ghys pour les nombreuses discussions que j&apos;ai pu avoir
avec lui sur ce problème. La collaboration que nous avons eue dans [CG] a

relancé ma volonté d&apos;en venir à bout, l&apos;article de R. Zimmer [Z] m&apos;en a donné les

moyens.

0. Préliminaires et réduction au théorème auxilaire

Pour commencer, indiquons comment P. Molino introduit l&apos;algèbre

structurale g d&apos;un feuilletage riemannien 3F d&apos;une variété compacte M (cf. [Mo] pour
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les détails). Dire que 9* est riemannien revient à dire qu&apos;il existe sur M une

métrique riemannienne g dont la partie orthogonale à 9* est invariante par
holonomie. On dit alors que g est quasi-fibrée (bundle like). Pour une telle
métrique, on considère M la variété fibrée sur M dont la fibre au-dessus d&apos;un

point x est constituée des repères orthonormés de TX(3F)X. Cette variété est un
Oq-fibre principal (q codim 9*) que Ton appelle aussi variété des repères
orthonormés transverses à 3F. La propriété de g permet de construire un
feuilletage &amp; de M relevé de 9* et ayant même dimension. Si Ton voit 9* comme
localement engendré par des flots q&gt;),. cppt, alors &amp; est localement engendré

par les différentielles D&lt;pJ,. Dcppt agissant sur les repères orthonormés
transverses à 9*. Par construction, &amp; est invariant par l&apos;action de Oq sur M et se

projette sur 9.

0.1. THÉORÈME [Mo]. Le feuilletage &amp; est transversalement parallélisable
complet; en particulier¦, les adhérences des feuilles de &amp; fibrent M et la restriction
de &amp; à l&apos;une de ces adhérences est un ^-feuilletage de Lie.

Nous allons essayer de donner une idée de la façon dont apparaît l&apos;algèbre de

Lie g. Dire que ïP est transversalement parallélisable complet revient à dire qu&apos;il

existe des champs de vecteurs complets Xly. Xq&gt; (q&apos; codim &amp;) transverses à

!p qui en chaque point de M forment une base du fibre normal de &amp; et dont les

flots associés sont des automorphismes de §*. Etant donné un champ de vecteurs
X, appelons X sa partie normale à §*. On vérifie que les [Xn X;] ont des

coefficients en les Xx qui sont des fonctions basiques (i.e. constantes sur les

feuilles) de &amp; et sont donc constants en restriction à l&apos;adhérence L d&apos;une feuille
L. Les parties des Xt tangentes à L engendrent par conséquent une algèbre de

Lie de dimension finie g qui fait de ^i un g-feuilletage de Lie. L&apos;algèbre de Lie
g est (à automorphisme d&apos;algèbre de Lie près) un invariant du feuilletage
riemannien 3F que l&apos;on appelle l&apos;algèbre de Lie structurale de 9. L&apos;invariance par
rapport au choix de L provient du fait que les flots associés aux champs

Xlf Xq&lt; engendrent un groupe transitif &amp; automorphismes de !P. Ceci signifie
qu&apos;étant donné deux feuilles Lx et L2 de ^, il existe un difféomorphisme cp de M
préservant les feuilles de &amp; et envoyant Lx sur L2. En particulier, les feuilletages
&amp;\lx e* &amp;\l2 sont conjugués, d&apos;où l&apos;invariance de g à automorphisme d&apos;algèbre de

Lie près. D&apos;autre part, pour une métrique riemannienne quelconque de M, le

difféomorphisme ç est une quasi-isométrie car M est compacte. Il s&apos;en suit que
munies des métriques induites, Lx et L2 sont quasi-isométriques, d&apos;où le

0.2 LEMME. Pour les métriques induites par une quelconque métrique
riemannienne sur M, toutes les feuilles de $ sont quasi-isométriques. En



Feuilletages nemanniens à croissance polynômiale 5

particulierf toutes les feuilles ont la même croissance et sont Fôlner si et seulement

si Vune d&apos;entre elles l&apos;est.

Pour pouvoir réduire la démonstration du théorème à celle du théorème

auxiliaire, il nous reste à comparer les invariants de quasi-isométrie (croissance et

condition Fôlner) de &amp;* et de 3*. La variété M étant munie de la métrique g, on
munit M d&apos;une métrique g &quot;relevée&quot; de g au sens suivant: la projection
p:M-*M réalise une isométrie locale entre les feuilles de &amp; et celles de 9.
Autrement dit, si L est une feuille de &amp; et L=p(L) la feuille de 3* projetée,

p^l : L—&gt; L est un revêtement riemannien. En particulier, le degré de croissance de

L est dominé par celui de L et on vérifie que L est Fôlner si L l&apos;est. On constate

par ailleurs sans difficulté que le revêtement /7|£ est trivial si et seulement si L est

une feuille dont l&apos;holonomie agit trivialement sur les repères orthonormés
transverses. Comme il est bien connu que tout feuilletage d&apos;une variété compacte
a au moins une feuille sans holonomie, on peut choisir une feuille L() de &amp; telle

que Lo =/7(L()) est sans holonomie. Alors pt£0 est une isométrie. Ces remarques
et le lemme 0.2 conduisent au

0.3 LEMME. Les degrés de croissance d{3F) et d(&amp;) sont égaux et 3P est

Fôlner si et seulement si 2F l&apos;est.

Par conséquent, démontrer le théorème pour 3&lt; revient à le démontrer pour
&amp; et on peut même se contenter de le faire pour la restriction de &amp; à l&apos;adhérence

d&apos;une feuille, c&apos;est-à-dire pour un ^-feuilletage de Lie à feuilles denses. Il reste à

vérifier qu&apos;il revient au même de se donner un ^-feuilletage de Lie ou de se

donner un G-feuilletage de Lie (au sens de l&apos;introduction) où G est le groupe de
Lie (simplement connexe) dont l&apos;algèbre de Lie est ft. La démonstration du
théorème se réduit ainsi à celle du théorème auxiliaire.

Avant de commencer la démonstration proprement dite, faisons encore
quelques rappels sur les invariants de quasi-isométrie qui nous intéressent. On
trouvera des détails dans [Br], [CG], [Grl], [HH] et [P]. Soit &amp; un feuilletage
(non nécassairement riemannien) sur une variété compacte M. Etant donné une
transversale T coupant toutes les feuilles, on considère le pseudo-groupe
d&apos;holonomie (associé à cette transversale) fflT qui est constitué des

difféomorphismes locaux donnés par les applications de premier retour sur T en
suivant les feuilles de 5F. Une propriété de 3&gt; est transverse si elle peut être lue
sur fflT et ne dépend pas de la transversale T choisie (pour des détails et des
définitions précises cf. [Hl]). Les propriétés d&apos;être à croissance polynômiale ou
d&apos;être Fôlner sont transverses. De manière précise, comme M est compacte, le

pseudo-groupe fflT est engendré par un nombre fini de difféomorphismes locaux
h\, hn de T. Pour un x de T&gt; le type de croissance de l&apos;orbite df(T.x est le type
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de croissance de la fonction £ (m) égale au nombre de points obtenus à partir de x
en appliquant au plus m fois les h,. Le type de croissance de la feuille L passant

par un point x de T est celui de l&apos;orbite 3€T.x (cf. [P] ou [HH] par exemple). En
particulier, on voit que pour 9 la propriété d&apos;être à croissance polynômiale est

transverse. La condition Fôlner est aussi transverse et se lit sur XT de la façon
suivante. Considérons toujours L la feuille passant par un point x de T. Etant
donné un sous-ensemble fini 5 de l&apos;orbite XT.x, on note dS (le bord de S)
c&apos;est-à-dire l&apos;ensemble des points de 5 envoyés par au moins un ht à l&apos;extérieur de
S. La feuille L est Fôlner si et seulement si 3€T.x est Fôlner, c&apos;est-à-dire s&apos;il existe

une suite d&apos;ensembles finis Sn tels que lim Card 35n/CardSw 0 (cf. [Br]).
Pour terminer ces préliminaires, notons que si un feuilletage 9 est donné par

une action localement libre d&apos;un groupe de Lie Ky 9 est Fôlner si K est Fôlner
(par exemple si K est résoluble et admet un sous-groupe discret uniforme); 9 est
à croissance polynômiale si K est à croissance polynômiale (en particulier si K est

nilpotent, cf. [J] pour la description générale des groupes de Lie à croissance

polynômiale).

1. Comment lire les invariants de quasi-isométrie de 9 sur F

Soit 9 un G-feuilletage de Lie sur une variété compacte M. Nous appellerons
D\M-*G l&apos;application développante, h la représentation d&apos;holonomie et Fie
groupe d&apos;holonomie de 9 (cf. [Cl], [E], [Gh], [HH], [T]). Nous allons construire
un pseudo-groupe d&apos;holonomie transverse particulier du feuilletage 9.

Choisissons sur M un bon recouvrement Ut (cf. [HH], [P]) i 1, m. Les

plaques P sont les composantes connexes des intersections d&apos;un U, et d&apos;une feuille
de 9. On peut toujours supposer que les Ut sont assez petits pour être des ouverts
trivialisants du revêtement universel M-+M. Choisissons des relevés Û, des U,

dans M. Chaque plaque P, de Ul se relève en une plaque Pt de Û,. Notons
Tt D(Ût). Via l&apos;identification entre Û, et Un l&apos;application D : Û,—&gt; T, induit une
carte f:Ut-*Tt. Les changements de cartes sont donnés par les translations à

gauche par yl} où yl} h(cl}) avec cl} 6 nx(M) tel que ctJ0j H Û} =£0. On a donc
obtenu un cocycle feuilleté définissant 9 (cf. [Cl], [HH]) et le pseudo-groupe FT

ayant pour support la réunion disjointe T des Tt et engendré par les transformations

ytJ: 7;~&gt; T} est l&apos;un des pseudo-groupes transverses de 9. La croissance des

feuilles de 9 est celle des orbites de FT.

1.1. DÉFINITION. Soit au an des éléments de G et V un ouvert V a G.

Nous noterons F(V, au &lt;xn) le pseudo-groupe ayant pour support V et

engendré par les translations a, restreintes au départ et à l&apos;arrivée à V.
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On voit que les orbites de F(V, ax, an) sont celles des éléments de V par
les translations ax&gt; ocn qui &quot;vivent à tout moment dans V&quot;.

1.2. LEMME. Si V U^i Ttetalf...,an sont des éléments quelconques de

F alors le type de croissance des orbites de F(V, ax, an) est dominé par celui
de 9.

Démonstration. Pour chaque x e V, choisissons une plaque P(x) cUTli 0, (il
peut y avoir au-dessus de x plusieurs ouverts Ûl et donc plusieurs plaques mais on
en choisit une). Appelons P(x) la plaque projetée dans M.

Etant donné un point x0 e V il lui correspond une feuille L(x0) de 9 dans M.
Soit x un point de V dans l&apos;orbite de xQ par F(V, au an) à une distance d de

x0 (relativement au système de générateurs ax, an). La plaque P(x) est une
plaque de L(x0). Il s&apos;agit d&apos;estimer la distance ô(P(x0), P(x)) dans L(x0) entre les

plaques P(xQ) et P(x) en fonction de d (une métrique riemannienne a été choisie

sur M et relevée dans M). Pour ceci, il nous suffit d&apos;estimer la distance

ô(P(y), P{at • y)) dans L(y) pour un y € V tel que or, • y e V.

Choisissons aif an e tcx{M) tels que h(al) al. On remarque que la
distance ô(P(y), P(at. y)) dans L{y) est plus petite que la distance

à{al - P(y), P(&amp;t - y)) dans D~l(at • y). Mais si on appelle Û l&apos;ouvert relativement
compact constitué par la réunion des Ûl et des a} • Ûn les diamètres des ensembles

D~l(z)C\ Û sont évidemment bornés (on utilise le fait que D est une fibration et

un argument de continuité élémentaire). On en déduit l&apos;existence d&apos;un nombre K
tel que pour tout /:

ô(P(y), P{a, ¦ y)) « 6(a, ¦ P(y), P{a, ¦ y)) ^ K.

En conclusion, si x est un point dans l&apos;orbite de jc0 par F{V&gt; ax, an) à la
distance d relativement au système générateur ax, an, on a:

ô(P(xo),P(x)^Kd.

Comme la fonction x-*P(x) est injective, on obtient la conclusion
désirée. ¦

1.3. LEMME. Si V désigne un ouvert relativement compact quelconque de G
et (xi, ocn e F, alors le type de croissance des orbites de F(V, ax, an) est
dominé par celui de SP.

Démonstration. Le domaine U^=i T, rencontre toutes les orbites de l&apos;action de
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F sur G. Par la compacité relative de V, il existe un nombre fini d&apos;éléments

pl9...,pner tels que V &lt;= V Uf=i A &apos; (U^ V) U, ft • 7;. On choisit alors

pour chaque /3; un élément 6; dans jzx(M) tel que /37 h(bj) et à un point xeV
on associe une plaque P dans l&apos;un des ouverts b} • {/, au-dessus de x, puis la

plaque P(jc) projetée dans M. On peut alors reprendre point par point la
démonstration du lemme précédent, le seul changement étant que l&apos;application

jc—»P(x) n&apos;est plus nécessairement injective mais à fibres finies, ce qui permet
encore de conclure que la croissance des orbites de F(V, au an) est
dominée par celle de 9. Comme V c V, il est clair qu&apos;il en va de même pour la
croissance des orbites de F(V, ocx, an). ¦

1.4. LEMME. Si &lt;x1, an est un système générateur de F, il existe un
ouvert relativement compact V a G tel que le type de croissance d&apos;au moins une
orbite de F{V, aXi ocn) est celui de 9.

Démonstration. Il est clair que la croissance des orbites de

F(yj%\ Tn yn, ymm), où les ytJ sont les changements de cartes transverses
choisis au début, est celle des feuilles de 9. Comme au ocn est un système
générateur, il existe un nombre / tel que chaque yt] s&apos;exprime par un mot en les a,
de longeur au plus /. Considérons un point x de UI^i Tt qui est dans l&apos;orbite par
ALKa Tt, 7n, ymm) d&apos;un point jt0 e UT=i Tt à une distance d relativement au

système yu,. ymm. En remplaçant dans le morceau d&apos;orbite qui joint x() à jc,

yl} par un mot en les at de longueur au plus /, on obtient un morceau d&apos;orbite

dans F(V, a1} an) de longueur au plus là joignant jc0 à x, où l&apos;on désigne par
V l&apos;ouvert relativement compact

y «..•••«*-(ys)-

II est alors clair que le type de croissance des orbites de F(V, au an)
domine celui de 9. Par le lemme précédent, il y a égalité des types de

croissance. ¦
On sait à présent comment lire la croissance de 9 à partir de la seule donnée

de Tdans G:

1.5. PROPOSITION. Soit 9 un G-feuilletage de Lie d&apos;une variété compacte.
Si alt f an est un système générateur de son groupe d&apos;holonomie F, alors pour
tout ouvert relativement compact V c G, le type de croissance des orbites de

F(V, alf an) (cf. 1.1) est dominé par celui de 9. De plus, si V est choisi

suffisamment grand, il y a égalité. En particulier, le type de croissance de 9 ne

dépend que de Vaction de F sur G [Hl],
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On retrouve le fait que la croissance de 3F est dominée par celle de F [B] En

particulier, si G est nilpotent alors &amp; est à croissance polynômiale Toute la

difficulté sera à la section suivante d&apos;établir la réciproque lorsque F est dense

Notons qu&apos;il y a un cas où le type de croissance de 3F est égal à celui de F, le cas

où G est compact (on peut alors prendre V G tout entier)
Voyons maintenant comment on ht la condition que 3F est Folner à partir de

la seule donnée de F dans G Par application directe du théorème 4 de [CG] on
a

1 6 PROPOSITION &amp; est Folner « &amp; est moyennable

Reprenons le pseudo-groupe transverse FT de 3F construit au début du

paragraphe Dire que 3F est moyennable revient à dire que la relation
d&apos;équivalence mesurable 0iT induite par les orbites de FT sur T est moyennable
Nous renvoyons à [CG], [HK] pour les définitions et une bibliographie sur ces

notions Soit 01 la relation d&apos;équivalence mesurable sur G induite par l&apos;action à

gauche de F sur G La relation d&apos;équivalence 0lXT restriction de 0l&gt; à T c= G
s&apos;identifie à 0iT II est important de noter que ceci ne serait pas nécessairement

vrai si F n&apos;était pas un groupe d&apos;holonomie On obtient alors sans difficulté le fait
suivant 3F moyennable =^&gt; Vg e G, 0l\rK est moyennable Recouvrant maintenant
un ouvert relativement compact quelconque V a G par une nombre fini de T gn
il vient que 3ft]V est encore moyennable dès que &amp; l&apos;est Soit alors Vn une suite
croissante de tels ouverts recouvrant G tout entier, on a 01 hmn 0lïV Donc si 3F

est moyennable, il en est de même de 01 obtenue comme limite de relations
moyennables Réciproquement, si 01 est moyennable, il en est de même de

0iT- 0llT obtenue de 01 par restriction, donc 3F est moyennable On a ainsi la

1 7 PROPOSITION 3F est moyennable &lt;$01 est moyennable, ou 01 est la

relation d&apos;équivalence induite sur G par Vaction de F a gauche

On a le théorème suivant dû a R Zimmer, d&apos;abord démontré dans [CG] pour
le cas dim G 3

1 8 THÉORÈME (R Zimmer [Z]) Soit F un sous-groupe dénombrable
dense d&apos;un groupe de Lie G Alors la relation d&apos;équivalence mesurable 01 induite
par l&apos;action à gauche de F sur G est moyennable si et seulement si G est résoluble

Avec les deux propositions précédentes on obtient le point î) du théorème
auxiliaire

1 9 PROPOSITION Si 9 est a feuilles denses (î e F est dense dans G), on
a

3F Folner &lt;^&gt; 9 moyennable O G résoluble
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2. Croissance polynômiale

Le but de cette section est de démontrer la partie ii) du théorème auxilaire.
Puisque l&apos;hypothèse de croissance polynômiale implique la condition Fôlner,
d&apos;après le point i) déjà démontré à la section précédente nous pourrons supposer
que G est résoluble.

Dans tout ce qui suit, un groupe de Lie G sera toujours implicitement muni
d&apos;une distance d associée à une métrique riemannienne invariante à gauche. La
norme correspondante || • || est définie par ||g|| rf(e, g) où e désigne l&apos;élément

neutre de G. Ces notations seront conservées même si on change de groupe de

Lie. La boule ouverte de centre e et de rayon R dans G sera notée DR(G).
Rappelons que l&apos;application commutateur (gu g2)eG x G-+[gu g2]e G ayant
de façon évidente une différentielle triviale en (e, e), on a la propriété suivante

signalée dans [T] par exemple:

2.0. PROPRIÉTÉ-DÉFINITION. Pour tout c, 0&lt;c&lt;l, il existe R(c)&gt;0
tel que

VR&lt;R(c), ||b,,g2]||^c||g1|| ||g2||, Vgug2eDR(G).

On dit alors que DR(G) est un domaine de contraction de commutateurs pour la
constante c.

2.1. Croissance locale d&apos;un sous-groupe de type fini d&apos;un groupe de Lie.

Soit r un sous-groupe d&apos;un groupe de Lie G muni d&apos;un système générateur

alf an) soit m un mot m ah • • • al{, 1 ^ik ^ n; k 1, /.

Nous dirons que r(m) supfc==1 ,/ll^, * * *&lt;*JI est le rayon d&apos;action du mot m
dans le groupe de Lie G, le nombre l(m) / est la longueur de m au sens usuel.
Etant donné un nombre R &gt; 0, nous désignerons par BLR(F) la boule de centre e

et de rayon L dans l&apos;orbite de e par le pseudo-groupe F(DR(G), au an)
défini en 1.1. La boule BLR(F) n&apos;est autre que l&apos;ensemble des éléments de Tqui
peuvent être décrits par un mot de longueur =^L en les lettres au ocn et dont
le rayon d&apos;action est&lt;/?. On vérifie facilement que la définition suivante est

indépendante du système générateur choisi dans T,

2.1.1. DÉFINITION. Le type de croissance local de F est la donnée pour tout
R &gt; 0 du type de croissance en L de la fonction fR(L) Card (BL R(F)). Si pour
tout R &gt; 0 ce type de croissance est polynômial, on dira que F a une croissance
locale polynômiale.
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Si F est le groupe d&apos;holonomie d&apos;un G-feuilletage de Lie &amp; d&apos;une variété

compacte, d&apos;après la proposition 1.5, le type de croissance de fR(L) est dominé

par celui de 9 pour tout R &gt;0. De plus, pour R suffisamment grand, ce type de

croissance est exactement celui de 3*. Ainsi, la démonstration du point ii) du

théorème auxiliaire est ramenée à celle de la

2.1.2. PROPOSITION. Soit G un groupe de Lie résoluble et F un sous-

groupe dense de G, engendré par au ocn. Si Fa une croissance locale

polynômiale, alors G est nilpotent.

La démonstration de cette proposition est un peu délicate. Le lecteur peut, s&apos;il

le souhaite, en faire une première lecture en supposant que

G GA {/(jc) ax + b, aen + *fbeU}

le groupe des transformations affines de la droite réelle (qui est le groupe de Lie
résoluble non-nilpotent le plus simple). Ce groupe a pour groupe dérivé G&apos; le

groupe des translations de la droite réelle et vérifie la propriété suivante:

VgtG&apos;, [g,h]*e, VAeC&apos;-W

qui rend le lemme 2.2.1. évident. Les lemmes 2.1.3 et 2.2.2. sont aussi dans ce

cas plus faciles à lire, ce qui permet d&apos;arriver assez vite à la démonstration du
lemme 2.2.3. et à celle de la proposition 2.3.1. qui conclut.

L&apos;idée de la démonstration est de montrer que sous les hypothèses de la

proposition, le centre de Test non-discret, ce qui forcera G à avoir un centre de

dimension &gt; 1. On conclura par récurrence. Pour ceci, il faut avant tout pouvoir
contrôler comment se comporte la croissance locale de F lorsqu&apos;on passe de G à

un quotient H:

2.1.3. LEMME DE RELÈVEMENT. Soit &lt;p:G-&gt;H un morphisme surjectif
de groupes de Lie tel que:

1) K — Ker q) est abélien.

2) F(l K est uniforme dans K (i.e. KlF H K est quasi-compact).
Alors

V#&gt;0, 3/?&apos;&gt;0, aeN tels que:BLR(&lt;p(r))ç&lt;p(BaLtR.(r))9 VL e N

où Von a choisi pour système générateur de cp(F) Vimage &lt;p{&lt;X\)y (p{ocn) du
système générateur aXy an de F. Autrement dit, le type de croissance locale de
&lt;P(F) est dominé par celui de F.
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Démonstration. Choisissons Rt&gt;0 tel que DR(H) c q)(DRï(G)). Puisque

rn K est uniforme dans K abélien, il existe ru rke FH K engendrant un
réseau de K. Il existe un nombre R2 &gt; 0 tel que tout point de K est à une distance

au plus R2 d&apos;un point de ce réseau. Posons alors

R3 Rt + R2 + sup || or,||
i l, ,n

Ceci étant, considérons un point g e DR^(G) tel que &lt;p(g) € DR(H), comme
DR(H) c &lt;p(DRl(G)), 3g! e D^,(G) tel que (p(gl) ç&gt;(g). On a donc:

g-lgleK et ||g-lgl||&lt;2/?3

II existe donc un mot y, en T!, rk de longueur au plus ûr dépendant de i?3 tel
que Hyî^g^gill &lt;^2l en utilisant l&apos;inégalité triangulaire, on en déduit que
llgVill &lt;R\ + ^2 de sorte que:

Prenant un mot ^(o-,,) • • • ^(or,,) dont le rayon d&apos;action est&lt;/?, on le relève en
un mot oclxylxocl2yl2 • • • au où à chaque étape de la construction on a:

1) yh est un mot de longueur au plus a en ru xk.

2) gs ailYll--aheD
le mot obtenu a un rayon d&apos;action d&apos;au plus R&apos; Ri, + a sup,=l k ||r{||. ¦
2.2. Préparatifs à la production d&apos;une croissance surpolynômiale.

2.2.1. LEMME. Soit F un sous-groupe dense d&apos;un groupe de Lie résoluble G.

Il existe eo&gt;0 tel que: Ve&gt;0, 0&lt;£&lt;eo, 3AczDe(G)nr, A¥^{e} tel que
VyeDe(G)nF:

1) [y, A] a A.
2) [y, A] {e} ou [y, t] ^ e, Vt e A - {e}.

Démonstration. Choisissons eo&gt;0 tel que DF()(G) est un domaine de contraction

des commutateurs (voir 2.0). Soit G&apos; [G, G], F&apos; [F, F]. Le groupe G&apos; est

nilpotent, considérons le dernier groupe non trivial de la suite centrale dérivée de
G&apos;:

G&apos;p [C, [• • -[G&apos;, G&apos;] • • -](p commutateurs), G&apos;p+l {e}.
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Comme Test dense dans G, on vérifie qu&apos;il en est de même pour F&apos; dans G&apos; ainsi

que pour chaque terme F&apos;q de la suite centrale de F&apos; dans le terme correspondant
G&apos;q Ainsi F&apos;p est dense dans G^,czC(G&apos;) le centre de G&apos; Soit geG, appelons

c(g) l&apos;application de G&apos;p dans G&apos;p définie par c(g)(h) [g, h], on constate que

a) Vg e G, c(g) est un endomorphisme de l&apos;espace vectoriel G&apos;p

b) Vg&gt;g&apos; e G, c(g) et c(g&apos;) commutent
c) yeF^c(y) préserve F&apos;p

d) Ve, 0&lt;e&lt;eo y e Df(G) n T=&gt;c(y) préserve D£(G) H r;
Fixons-nous un £, 0 &lt; e &lt; e0 Soit ^ la famille des ensembles A a De(G) H Fpy

A ^ {e} vérifiant l&apos;hypothèse 1) du lemme D&apos;après d) et le fait que Fp est dense

dans G&apos;p, DE(G)r\Fpesé Choisissons AQes£ tel que l&apos;espace vectoriel Vo

engendré par Ao dans G&apos;p soit de dimension minimale
Soit alors yeDe(G)nr et supposons que A c(y)(A0) =£ {e}, c&apos;est-à-dire

que V c(y)(V0) ^ {0} Alors d&apos;après b), A e se et l&apos;espace vectoriel engendré

par A est V a Vo D&apos;après la définition de Ao, V Vo et donc c(y)(r) ¥=- e, Vr € A,
M

2 2 2 LEMME Soit F un sous-groupe dense de type fini de Rk pourvu d&apos;un

système générateur aly an Soit H un sous-groupe fermé de Rk, H^Uk
Alors 3R &gt; 0, a e N

VLeN, 3fiu ,PLeBaLR{F), fr/3;1 e H^i =j

Démonstration Grâce au lemme de relèvement 2 1 3, on peut sans difficulté
se ramener au cas où H D F {0} II s&apos;agit alors de constater que pour R assez

grand, la croissance de Card (BL R(F)) est au moins linéaire Ce qui est bien vrai
puisqu&apos;il s&apos;agit de la croissance d&apos;un certain feuilletage linéaire à feuilles denses

sur un tore (voir § 3) ¦
Le lemme suivant résume ce dont nous aurons besoin pour produire de la

croissance locale surpolynômiale dans le cas où C(F) est discret

2 2 3 LEMME Soit F dense dans un groupe de Lie résoluble G On suppose
que le centre C(F) est discret Si F est de type fini et a pour système générateur

«u &lt;xn, alors 3e &gt;0, R&gt;0, aeN, AczDe(G)DFy Ai={e} et une suite
Yl e BaL R(F) telle que VL e N

j-ûjOÙ b&gt;0etq
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Démonstration. On obtient ce lemme en appliquant le lemme 2.2.1 pour £,
0&lt; e &lt; e0 tel que C(F) n De(G) {e}. L&apos;ensemble A donné par ce même lemme

a un centralisateur C(A) dans G contenant G&apos; et distinct de G. Soit &lt;p:G—?

G/G&apos; Mk, on appelle H le groupe de Lie q&gt;(C(A)) et on applique le lemme
2.2.2 puis le lemme de relèvement 2.1.3. pour obtenir une constante a&apos; eN telle

que pour tout LeN, 3^, j8L e Ba,L&gt;R(F), fifi;1 e C(A)^i y.

Le principe des tiroirs de Dirichlet appliqué à DR{G) nous dit alors qu&apos;il

existe une constante b &gt; 0 indépendante de L telle que l&apos;on peut choisir

;#/e{l,. L} avec \\fifi;l\\ ^jjrq où q dim G.

L&apos;élément yL jSjS&quot;1 ainsi construit vérifie alors 1) et 2) en prenant 2a&apos; pour
valeur de a. ¦
2.3. Fin de la démonstration du théorème auxiliaire H)

La proposition 2.2.2 et donc le point ii) du théorème auxiliaire ressortiront via
le lemme de relèvement 2.1.3. et une récurrence de la

2.3.1. PROPOSITION. Soit F un sous-groupe de type fini, dense dans un

groupe de Lie résoluble G. Si le centre C(F) est discret alors la croissance locale de

F est surpolynômiale.

Démonstration. Nous gardons les notations du lemme 2.2.3. En particulier,
yL désigne une suite de mots dont l&apos;existence est garantie par ce lemme.
Rappelons que le rayon d&apos;action r(yL) est plus petit que R et ||yL|| ^ b/LVq où R

et b sont des constantes positives et g dimG. Partons de ôyeA — {e} de

longueur Lx et de rayon d&apos;action Rx. Soit alors la suite ôteF définie par la

relation de récurrence: ôt [y^, ôt-i], V/ &gt; 1. Il est essentiel de remarquer que
l&apos;assertion 1) du lemme 2.2.3. assure que ô^e, Vi. D&apos;autre part on peut
supposer, quitte à diminuer e &gt;0 dans les lemmes préparatoires, que yt et &lt;5{ sont
dans un domaine de contraction des commutateurs pour la constante c l/b par
exemple (cf. 2.0). On a alors pour tout i, y, 1 ^y &lt; /:

5,-,II - • • • -^ P.ll (1)

De ces inégalités, on obtient pour tout i:
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d&apos;où Ton tire pour tout i:

R + R + &apos;Z + \\ô\\ R\\l\\ 2 (2)
S=\S SI

Considérons maintenant les éléments de F de la forme ô^ • • • &lt;5f; avec

V/^/:0&lt;/c7 &lt;y. Nous disons que, quitte à choisir &lt;5, assez petit en norme (par
exemple en remplaçant ô1 par ôN pour N assez grand), deux suites (ku k,)
et (k[} k[) distinctes donnent des éléments distincts. En effet, on aurait sinon

une équation de la forme:

ut — ut+\ u, u, ul+\

où t est le premier indice (nécessairement t&gt;\) tel que kti^k\. De l&apos;inégalité

triangulaire et de (1) on déduirait alors:

lltf&apos;-*;ll ^ 2 É (s - l)(^) \\ô,\\ &lt; 2 X (s -

la dernière inégalité provenant d&apos;une majoration élémentaire de la somme de la
série considérée pour tout t &gt; 1. Comme ||&lt;5,|| &lt; ||ô,||, ceci est impossible dès que
llôjll est suffisamment petit du fait que la différentielle de l&apos;exponentielle du

groupe de Lie G est une isométrie à l&apos;origine.

Pour ce choix de &lt;5,, il y a i! éléments distincts de la forme ôj1 • • • &lt;5f; avec
Vy &lt;/:0&lt; kj &lt;/. D&apos;après (2), pour un tel élément, on a:

D&apos;autre part

Vi &gt; 1, l(ôt) ^ 2/(&lt;5,_,) + 2/(7,2,) ^ 2/(0,.,) 4- 2a/2&quot; ^ ^ 21(0,) + «27

ce qui donne

&apos;(ôî1 • • • ôf-) &lt; É M&lt;5v) « É (* - 1)W « (« - 1)1/(0.) + « É 2^2&quot;+1

et donc
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Par conséquent, on a Card (BL(l) r^F)) ^|f QU1 cro^ P^us Vlte &lt;lue n&apos;importe

quel polynôme en L(i) La croissance de /k,(L) Card (BL r^F)) est donc

surpolynômiale en L ¦
Nous n&apos;avons pas réussi à produire une croissance de type exponentiel Si 9

est un G-feuilletage de Lie à feuilles denses sur une variété compacte et si G n&apos;est

pas résoluble, alors d&apos;après le théorème auxiliaire 1) 5F n&apos;est pas Folner et donc 9
est à croissance exponentielle La question suivante reste cependant ouverte

2 3 2 Question Existe-Ml un G-feuilletage de Lie 5F à feuilles denses sur
une variété compacte tel que la croissance de 9 n&apos;est ni polynômiale ni
exponentielle9 S&apos;il existe un tel exemple, G est nécessairement résoluble

non-mlpotent

3. Feuilletages de Lie nilpotents

Pour démontrer le théorème auxiliaire m), nous sommes ramenés à étudier le
cas où G est nilpotent On peut aussi supposer (cf [Cl]) que G est simplement
connexe de sorte qu&apos;il reste à établir la

3 1 PROPOSITION Soit 9 un G-feuilletage de Lie a feuilles denses sur une
variété compacte On suppose que G est nilpotent simplement connexe On a alors
ô{G)^d{&amp;) où ô(G) est le degré de nilpotence de G et d(&amp;) est le degré de

croissance de 5F

Démonstration Le groupe d&apos;holonomie F de 3F est nilpotent de type fini et
sans torsion comme sous-groupe de G nilpotent simplement connexe D&apos;après

Malcev [Ma], F peut être réalisé comme sous-groupe discret uniforme d&apos;un

groupe de Lie nilpotent H tel qu&apos;il existe un morphisme h H-+G dont la

restriction à F est l&apos;identité Comme F est uniforme dans G, h est surjectif
Posons K Ker h, remarquons que dim K ^ 1 car F est dense dans G L&apos;action

de K sur H à droite passe au quotient pour donner un feuilletage 3F&apos; sur la variété

compacte Mf F\H, 5F&apos; est transversalement de Lie G et a pour groupe
d&apos;holonomie F, il a donc en particulier même croissance que 3F Cette croissance
n&apos;est autre que celle de K Le feuilletage 3F&apos; est un classifiant de 3F au sens de A
riaefliger [Hl] Sa construction est aussi indiquée dans [C2], [Gh] et [Hl] II nous
reste à prouver le

3 2 LEMME La proposition est vraie pour 9&apos;
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Démonstration. Faisons une récurrence sur q dim G. Si q 1, il n&apos;y a rien à

démontrer. Supposons le lemme vrai pour dim G &lt;q, montrons le pour
dim G q. Comme F est uniforme discret dans H, FD C(H) l&apos;est encore dans le

centre C(H) de H (cf [R]). Soit y e F H C(H)\{e}, alors le groupe à un
paramètre X engendré par y vérifie X D K {e} car F H K {e}. On a la suite

exacte:

le groupe i~J J7(y) est discret uniforme dans Hx et s&apos;envoie sur un sous-groupe
dense de Gx. Le lemme pour dim Gx =q-l donne ô(Gi)^d(&amp;). Si ô(Gi)
ô(G) pour au moins un y e F H C(H)\{e} on a terminé. Sinon h(C(H)) est le

dernier groupe non-trivial de la suite centrale dérivée de G. On considère alors la
suite exacte:

1-*Kx K/KH C(H)-*H2 H/C(H)-&gt;Gx^l

Comme K est normal dans H nilpotent, dim (K H C(H)) ^ 1 et donc dim Kx &lt;

dim K ce qui implique que le degré de croissance de Kx est ^d(^) — 1. Le groupe
F2 F/F n C(//) est discret uniforme dans //2 et s&apos;envoie sur un sous-groupe
dense de Gx. On applique encore une fois le lemme pour dim Gx q - 1 ce qui
donne ô(Gx) ô(G) - 1 ^ d(&amp;) - 1 soit Ô(G) ^ d(&amp;). M

On peut se demander si la proposition ne peut pas s&apos;améliorer lorsque 3* est
donné par une action libre de Up: est-ce que dans ce cas G ne serait pas
nécessairement abélien? Nous allons voir qu&apos;il n&apos;en est rien dès que p ^ 2. Si &amp;

est un G-feuilletage de Lie donné par une action libre de IR2 sur une variété

compacte et si les feuilles sont denses, nous venons de voir que &lt;5(G)=^2,
c&apos;est-à-dire que G (et donc H) est abélien ou méta-abélien. Nous allons donner
un exemple où G et H sont non-abéliens.

Il s&apos;agit tout d&apos;abord de construire un groupe de Lie nilpotent et méta-abélien
ayant un sous-groupe discret uniforme F. D&apos;après Malcev ([Ma], [R]), il suffit de

construire une algèbre nilpotente $ méta-abélienne ayant une base rationnelle.
On pose £ M2 © Uq où le facteur R2 est dans le centre de £&gt;. On a alors:

VY, Z e R«, [y, Z] c(Y, Z) e U2

où c est une forme bilinéaire antisymétrique à valeurs dans R2. Se donner Q
revient donc à se donner le 2-cocycle c de Rq à valeurs dans IR2. Dire que £
admet une base rationnelle revient à dire qu&apos;il existe des bases de R2 et Uq dans
lesquelles c a des coefficients entiers. On peut toujours supposer que la base
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entière choisie sur Uq est la base canonique et noter les vecteurs de Uq comme
vecteurs colonnes. Soit XXi X2 la base choisie sur M2 alors:

c(Y, Z) (tYAlZ)X1 + (tYA2Z)X2

où Ax et A2 e Mq(Z) et sont antisymétriques.

3.3. LEMME. Supposons qu&apos;il existe Aly A2e Mq(Z), antisymétriques, ÀeR
irrationnel et Z eUq irrationnel (i.e. les composantes de Z sont linéairement
indépendantes sur Q) tels que:

(Ax-XA2)Z 0 et Aî-kA2*0

Alors il existe une action libre de U2 sur une variété compacte, dont le feuilletage
associé est à feuilles denses et transversalement de Lie G un groupe non-abélien.

Démonstration. Avec les notations précédentes, on a alors:

vy e nq, [y, z] (tYA2z)(xx1+x2)

par conséquent X — XX\ + X2 et Z engendrent un idéal Si de $. Soit K et H
les groupes de Lie correspondants à Si et ^p. Le groupe discret uniforme
F exp (Z2 © Z9) de H ne rencontre pas K (irrationnalité de À et de Z) et donne

un sous-groupe isomorphe dense dans G H/K (même raisons). La condition

AX-IA2^Q assure que G n&apos;est pas abélien. On a ainsi une action libre de

K U2 sur la variété compacte M F\H dont le feuilletage associé est

transversalement de Lie G à feuilles denses avec G non-abélien. ¦
3.4. LEMME. 5/ # 4, il existe À, AlfA2 et Z vérifiant les hypothèses du

lemme 3.3.

Démonstration. Soient

(zuz2,z3,z4)
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équivaut à

z2 - Az4 0, 2, + (À - 3)z3 0, (A - 3)z2 + z4 0 et Az, - z3 0

ce système a des solutions non-triviales si A2 - 3A + 1 0, les solutions sont alors

tZ=\ZuZ2, Azl&gt;f)&gt;

Comme A est algébrique de degré 2, il est irrationnel De plus on vérifie que si zx

et z2 sont choisis linéairement indépendants sur Q[A], les composantes de Z sont
linéairement indépendantes sur Q II est clair que Ax - XA2 ^ 0 ¦

On peut vérifier qu&apos;une telle construction est impossible si q ^ 3 ce qui
conduit à la proposition que nous donnons sans démonstration

3 5 PROPOSITION Soit &amp; un G-feuilletage de Lie à feuilles denses défini

par une action libre de U2 sur une variété compacte M Si dim M ^ 5, G est abéhen

et M a le type d&apos;homotopie du tore de même dimension

Comme dans [Cl] on en tire le

3 6 COROLLAIRE Si &amp; est un feuilletage nemannien d&apos;une variété
compacte de dimension 4 défini par une action libre de R2, l&apos;algèbre structurale de ^
est abéhenne Dans l&apos;adhérence d&apos;une de ses feuilles, 9 est un feuilletage de Lie
abéhen

Conclusion

Le problème majeur qui subsiste concernant les feuilletages nemanniens à

croissance polynômiale sur les variétés compactes est celui de leur classification
topologique D&apos;après notre travail, il est essentiellement ramené à la classification
des feuilletages de Lie mlpotents à feuilles simplement connexes II est
raisonnable de penser qu&apos;un tel feuilletage 9 est conjugué à son classifiant 9&apos; (cf
3 1) Nous savons démontrer ce résultat si dim 9=1 par une méthode suggérée
par E Ghys Pour le cas général, on est confronté à un problème non-résolu
même en codimension 1 La clef du problème est alors la question suivante
laissée ouverte dans [S] Existe-t-il sur un tore une forme fermée non singulière
totalement irrationnelle qui soit non hnéansable9
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