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Feuilletages riemanniens a croissance polynoémiale

YVES CARRIERE

Introduction

A un feuilletage riemannien & d’une variété compacte est associé de maniére
naturelle son algebre de Lie structurale g. Cet invariant “‘algébrique” a été
introduit par P. Molino (cf. [Mo]) et joue un role essentiel dans I’étude de la
topologie de I’adhérence des feuilles de % (on fera a la section 0 un petit rappel
sur ce point). Le but de cet article est de mieux comprendre I’interaction existant
entre q et la géométrie (riemannienne a quasi-isométrie pres) des feuilles de F.

Le premier résultat que nous avons eu dans ce sens est que si & est un flot
riemannien (i.e. dim & = 1), alors g est abélienne (cf. [CC]-[C1] ou [C2]). 1I
semblait alors raisonnable de conjecturer que ce résultat pouvait se généraliser au
cas ou ¥ est encore supposé a croissance linéaire mais avec maintenant
dim # > 1. Malheureusement, les démonstrations que nous possédions utilisaient
fortement I’hypotheése dim &% = 1. En fait, la généralisation recherchée dépendait
directement de la conjecture suivante: % est a croissance polyndmiale si et
seulement si g est nilpotente [CG]. Nous répondons ici positivement a ces deux
conjectures apres avoir caractérisé, grace a un résultat récent de R. Zimmer [Z],
les feuilletages riemanniens ayant une algébre de Lie structurale résoluble.

Avant d’énoncer notre résultat, faisons un bref rappel (qui sera développé a la
section 0). Une variété riemannienne L est dite Folner (ou d’invariant
isopérimétrique de Cheeger nul ou fermée a I'infini ¢f. [Br], [Grl1]) s’il existe une
suite de sous-variétés a bord K, telle que lim vol (8K,,)/ Vol (K,,) =0. C’est le cas
lorsque L est a croissance polyndmiale (de degré d), c’est-a-dire lorsque le
volume Vol (B(x, n)) de la boule de rayon n centrée en un point x fixé de L croit
comme un polynéme (de degré d) en n. Ces deux propriétés étant invariantes par
quasi-isométrie, on peut donner la définition suivante: une feuille L d’un
feuilletage & d’une variété compacte M est Folner (resp. a croissance
polynomiale) si elle vérifie la propriété correspondante pour la métrique induite
par une (et donc par toute) métrique riemannienne sur M. On dira que % est
Folner (resp. a croissance polyndmiale) si toutes les feuilles de % le sont. On
notera d(%) le degré de croissance de ¥ (i.e. la borne supérieure des degrés de
croissance des feuilles de %):
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THEOREME. Soit F un feuilletage riemannien d’une variété compacte et g
son algebre de Lie structurale. Alors:
i) & est Folner si et seulement si q est résoluble
ii) & est a croissance polynomiale si et seulement si q est nilpotente
ili) Si g est nilpotente et si 8(q) désigne son degré de nilpotence, alors on a:
6(g) =d(%); en particulier, si la croissance de F est linéaire, g est abélienne.

On obtient comme corollaire direct de iii) le résultat de [C1 ou C2]:

COROLLAIRE A. L’algébre de Lie structurale d’un flot riemannien (i.e.
d’un feuilletage riemannien de dimension 1) sur une variété compacte est
abélienne.

Le point ii) joint au résultat de A. Haefliger (Corollaire 4.4 de [H2]),
démontré antérieurement dans [MS] pour le cas des flots riemanniens, donne
immédiatement le

COROLLAIRE B. Un feuilletage riemannien & a croissance polynémiale sur
une variété compacte M est minimalisable (i.e. il existe une métrique riemannienne
sur M telle que toutes les feuilles de ¥ sont minimales) si et seulement si la
cohomologie basique de ¥ est non nulle en degré maximum.

On ne sait pas encore si ce critere de minimalisabilité s’étend ou non a tous les
feuilletages riemanniens des variétés compactes.

La démonstration du théoréme est organisée de la fagon suivante. A la section
0, nous faisons un certain nombre de rappels sur la croissance, la condition
Folner et la construction de I'algebre de Lie structurale a I'issue desquels nous
montrons que la démonstration du théoreme se réduit sans difficulté a celle du

THEOREME AUXILIAIRE. Soit % un G-feuilletage de Lie a feuilles denses
sur une variété compacte. Alors:
i) F est Folner si et seulement si G est résoluble
ii) & est a croissance polynémiale si et seulement si G est nilpotent.
iii) Si G est nilpotent et si 6(G) désigne son degré de nilpotence, alors on a:
0(G) =d(F); en particulier, si la croissance de ¥ est linéaire, G est abélien.

Les sections 1, 2 et 3 sont exclusivement consacrées a la démonstration de ce
théoréme auxiliaire. Rappelons qu’un G-feuilletage de Lie &% sur une variété M
est donné localement par des submersions a valeurs dans un groupe de Lie G, les
changements de cartes transverses étant des translations a gauche de G (on peut
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aussi décider de les prendre a droite comme dans [Gh]). Un tel feuilletage relevé
dans le revétement universel M de M (supposée compacte) est défini par une
fibration D de M sur G appelée application développante, équivariante par
rapport a la représentation d’holonomie h de n;(M) dans G. L’image I de cette
représentation est appelée le groupe d’holonomie de ¥ (cf. par exemple [C1],
[E], [Gh], [HH] ou [T] pour des détails sur toutes ces notions).

Lorsque M est compacte, les propriétés d’étre a croissance polyndmiale ou
Folner sont des proprié€tés transverses. D’aprés A. Haefliger [H1], ces propriétés
peuvent étre lues sur le seul groupe d’holonomie I" agissant a gauche sur G. A la
section 1, nous montrons comment faire ceci concrétement. Le point i) du
théoréme auxiliaire se déduit alors de [CG] et d’'un théoréme de R. Zimmer [Z]
résolvant une conjecture de A. Connes et D. Sullivan. Nous pouvons ainsi
réduire la démonstration de ii) au cas ou G est résoluble. Cette démonstration
occupe la section 2 et constitue le coeur de notre article. Tous nos efforts ont
pour but de produire de la croissance de type surpolynémial dans le cas ou le
centre C(I') est discret. Malgré une apparente ressemblance entre notre probleme
et celui traité dans [Gr2], les difficultés que nous rencontrons sont d’une autre
nature. Le groupe de type fini I" étudi€é est déja un sous-groupe (dense) d’un
groupe de Lie G, mais en contrepartie, nous savons seulement que la croissance
“locale” de I' dans G est polyndmiale (cf. définition 2.2.1) ce qui est loin
d’entrainer trivialement que la croissance habituelle de I" est polynOmiale. A la
section 3, nous démontrons iii) en utilisant la théorie de Malcev ([Ma], [R]).
Nous concluons par un exemple montrant qu’il n’est pas possible d’améliorer le
résultat pour les feuilletages de Lie définis par une action libre de R”.

La démonstration que nous donnons ici se passe exclusivement au niveau
“transverse” et il nous semble qu’elle doit permettre d’obtenir un énoncé
analogue pour un pseudo-groupe d’isométries locales a génération compacte (cf.
[H2]). Seule la section 1 serait & modifier, mais nous n’avons cependant pas fait
une vérification rigoureuse des détails. De toute fagon, nous tenions a rester
dans le cadre ‘“‘géométrique” des feuilletages qui, nous I’espérons, est plus
accessible au lecteur.

Je remercie Etienne Ghys pour les nombreuses discussions que j’ai pu avoir
avec lui sur ce probleme. La collaboration que nous avons eue dans [CG] a
relancé ma volonté d’en venir a bout, Iarticle de R. Zimmer [Z] m’en a donné les
moyens.

0. Préliminaires et réduction au théoréme auxilaire

Pour commencer, indiquons comment P. Molino introduit 'algebre struc-
turale g d’un feuilletage riemannien &% d’une variété compacte M (cf. [Mo] pour
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les détails). Dire que & est riemannien revient a dire qu’il existe sur M une
métrique riemannienne g dont la partie orthogonale a % est invariante par
holonomie. On dit alors que g est quasi-fibrée (bundle like). Pour une telle
métrique, on considere M la variété fibrée sur M dont la fibre au-dessus d'un
point x est constituée des repéres orthonormés de 7T,(%)*. Cette variété est un
O,-fibré principal (g =codim %) que l'on appelle aussi variété des reperes
orthonormés transverses a %. La propriété de g permet de construire un
feuilletage & de M relevé de ¥ et ayant méme dimension Si 'on voit & comme
localement engendré par des flots (p,’, ..., @7, alors & est localement engendré
par les différentielles Doy, . . D(p, agissant sur les reperes orthonormés
transverses 3 %. Par construction, & est invariant par I'action de O, sur M et se
projette sur .

0.1. THEOREME [Mo)]. Le feuilletage ¥ est transversalement parallélisable
complet en particulier, les adhérences des feuilles de & fibrent M et la restriction
de ¥ a l'une de ces adhérences est un g-feuilletage de Lie.

Nous allons essayer de donner une idée de la facon dont apparait ’algebre de
Lie g. Dire que ¥ est transversalement parallélisable complet revient a dire qu’il
existe des champs de vecteurs complets X, . . . , X, (¢’ = codim %) transverses a
% qui en chaque point de M forment une base du fibré normal de & et dont les
flots associés sont des automorphismes de %. Etant donné un champ de vecteurs
X, appelons X sa partie normale a % On vérifie que les [X;, X ;] ont des
coefficients en les X; qui sont des fonctions basiques (i.e. constantes sur les
feuilles) de % et sont donc constants en restriction a 'adhérence L d’une feuille
L. Les parties des X, tangentes 2 L engendrent par conséquent une algebre de
Lie de dimension finie g qui fait de 93, i un g-feuilletage de Lie. L’algebre de Lie
g est (& automorphisme d’algebre de Lie prés) un invariant du feuilletage
riemannien ¥ que I’on appelle I’algébre de Lie structurale de ¥. L’invariance par
rapport au choix de L provient du fait que les flots associés aux champs
X, ..., X, engendrent un groupe transitif d’automorphismes de %. Ceci signifie
qu’étant donné deux feuilles L, et L, de %, il existe un difféomorphisme ¢ de M
preservant les feuilles de & et envoyant L, sur L,. En particulier, les feuilletages
%, et %, sont conjugués, d’olt I'invariance de g a automorphisme d’algébre de
Lie prés. D’autre part, pour une métrique riemannienne quelconque de M, le
difféomorphisme @ est une quasi-isométrie car M est compacte. Il s’en suit que
munies des métriques induites, L, et L, sont quasi-isométriques, d’ou le

0.2 LEMME. Pour les métriques induites par une quelconque métrique
riemannienne sur M, toutes les feuilles de % sont quasi-isométriques. En



Feuilletages riemanniens a croissance polyndmiale 5

particulier, toutes les feuilles ont la méme croissance et sont Folner si et seulement
si 'une d’entre elles I’est.

Pour pouvoir réduire la démonstration du théoréme a celle du théoréme
auxiliaire, il nous reste a comparer les invariants de quasi-isométrie (croissance et
condition Folner) de & et de %. La variété M étant munie de la métrique g, on
munit M d’une métrique g “relevée” de g au sens suivant: la projection
p:M— M réalise une isométrie locale entre les feuilles de ¥ et celles de Z.
Autrement dit, si L est une feuille de & et L =p(L) la feuille de F projetée,
pii: L— L est un revétement riemannien. En particulier, le degré de croissance de
L est dominé par celui de L et on vérifie que L est Folner si L I’est. On constate
par ailleurs sans difficulté que le revétement p,; est trivial si et seulement si L est
une feuille dont I’holonomie agit trivialement sur les reperes orthonormés
transverses. Comme il est bien connu que tout feuilletage d’'une vari€té compacte
a au moins une feuille sans holonomie, on peut choisir une feuille L, de # telle
que L,=p(L,) est sans holonomie. Alors p,;, est une isométrie. Ces remarques
et le lemme 0.2 conduisent au

0.3 LEMME. Les degrés de croissance d(F) et d(¥) sont égaux et F est
Folner si et seulement si & [’est.

Par conséquent, démontrer le théoréme pour & revient a le démontrer pour
% et on peut méme se contenter de le faire pour la restriction de & a I'adhérence
d’une feuille, c’est-a-dire pour un g-feuilletage de Lie a feuilles denses. 1l reste a
vérifier qu’il revient au méme de se donner un g-feuilletage de Lie ou de se
donner un G-feuilletage de Lie (au sens de I'introduction) ou G est le groupe de
Lie (simplement connexe) dont I’algebre de Lie est g. La démonstration du
théoréme se réduit ainsi a celle du théoreme auxiliaire.

Avant de commencer la démonstration proprement dite, faisons encore
quelques rappels sur les invariants de quasi-isométrie qui nous intéressent. On
trouvera des détails dans [Br], [CG], [Grl], [HH] et [P]. Soit % un feuilletage
(non nécassairement riemannien) sur une variété compacte M. Etant donné une
transversale T coupant toutes les feuilles, on considére le pseudo-groupe
d’holonomie (associé a cette transversale) Hr qui est constitué des
difféomorphismes locaux donnés par les applications de premier retour sur T en
suivant les feuilles de %. Une propriété de ¥ est transverse si elle peut étre lue
sur #r et ne dépend pas de la transversale T choisie (pour des détails et des
définitions précises cf. [H1]). Les propriétés d’étre a croissance polyndmiale ou
d’étre Folner sont transverses. De maniére précise, comme M est compacte, le
pseudo-groupe ¥ est engendré par un nombre fini de difféomorphismes locaux
hy, ..., h,de T. Pour un x de T, le type de croissance de 'orbite ¥;.x est le type
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de croissance de la fonction f,(m) égale au nombre de points obtenus a partir de x
en appliquant au plus m fois les h;. Le type de croissance de la feuille L passant
par un point x de T est celui de 'orbite #;.x (cf. [P] ou [HH] par exemple). En
particulier, on voit que pour & la propriété d’étre a croissance polynOmiale est
transverse. La condition Folner est aussi transverse et se lit sur #; de la fagon
suivante. Considérons toujours L la feuille passant par un point x de 7. Etant
donné un sous-ensemble fini § de l'orbite #;.x, on note 35 (le bord de S)
c’est-a-dire ’ensemble des points de § envoyés par au moins un h; a 'extérieur de
S. La feuille L est Folner si et seulement si #;.x est Folner, c’est-a-dire s’il existe
une suite d’ensembiles finis S, tels que lim Card 3S,,/Card S, =0 (cf. [Br]).

Pour terminer ces préliminaires, notons que si un feuilletage & est donné par
une action localement libre d’un groupe de Lie K, & est Folner si K est Folner
(par exemple si K est résoluble et admet un sous-groupe discret uniforme); % est
a croissance polynomiale si K est a croissance polynomiale (en particulier si K est
nilpotent, cf. [J] pour la description générale des groupes de Lie a croissance
polyndmiale).

1. Comment lire les invariants de quasi-isométrie de & sur I

Soit ¥ un G-feuilletage de Lie sur une variété compacte M. Nous appellerons
D :M— G l'application développante, h la représentation d’holonomie et I le
groupe d’holonomie de % (cf. [C1], [E], [Gh], [HH], [T]). Nous allons construire
un pseudo-groupe d’holonomie transverse particulier du feuilletage %.

Choisissons sur M un bon recouvrement U; (cf. [HH], [P]) i=1,..., m. Les
plaques P sont les composantes connexes des intersections d’un U; et d’une feuille
de . On peut toujours supposer que les U; sont assez petits pour étre des ouverts
trivialisants du revétement universel M — M. Choisissons des relevés U, des U,
dans M. Chaque plaque P de U, se releve en une plaque P. de U, Notons
T. = D(U)). Via I'identification entre U; et U,, I'application D : U;— T; induit une
carte f;: U;— T,. Les changements de cartes sont donnés par les translations a
gauche par y, ot y; = h(c;) avec c; € m,(M) tel que c;U;NU; #J. On a donc
obtenu un cocycle feuilleté définissant & (cf. [C1], [HH]) et le pseudo-groupe I
ayant pour support la réunion disjointe T des T; et engendré par les transforma-
tions y;;: T;— T; est 'un des pseudo-groupes transverses de &. La croissance des
feuilles de F est celle des orbites de I.

1.1. DEFINITION. Soit ay, . . ., a, des éléments de G et V un ouvert V < G.
Nous noterons I'(V, ay, ..., «,) le pseudo-groupe ayant pour support V et
engendré par les translations «; restreintes au départ et a 'arrivée a V.
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On voit que les orbites de I'(V, «;, . . ., «,) sont celles des éléments de V par
les translations «, . . ., @, qui ‘“vivent a tout moment dans V.

1.2. LEMME. Si V=L T et «ay, ..., a,sont des éléments quelconques de
I alors le type de croissance des orbites de I'(V, «y, . . ., a,) est dominé par celui
de ¥.

Démonstration. Pour chaque x € V, choisissons une plaque P(x) = U™, U; (il
peut y avoir au-dessus de x plusieurs ouverts U; et donc plusieurs plaques mais on
en choisit une). Appelons P(x) la plaque projetée dans M.

Etant donné un point x, € V il lui correspond une feuille L(x,) de & dans M.
Soit x un point de V dans ’orbite de x, par I'(V, «,, . . ., «,) a une distance d de
X, (relativement au systéme de générateurs «a, . . ., «,). La plaque P(x) est une
plaque de L(x,). Il s’agit d’estimer la distance 6(P(x,), P(x)) dans L(x,) entre les
plaques P(x,) et P(x) en fonction de d (une métrique riemannienne a été choisie
sur M et relevée dans M). Pour ceci, il nous suffit d’estimer la distance
O0(P(y), P(a;-y)) dans L(y) pourunye Vtel que o; -y € V.

Choisissons a,, ..., a, € m, (M) tels que h(a)= ;. On remarque que la
distance O6(P(y), P(a;.y)) dans L(y) est plus petite que la distance
5(a; - P(y), P(a; - y)) dans D™ '(a; - y). Mais si on appelle U ’ouvert relativement
compact constitué par la réunion des U; et des a; - U,, les diamétres des ensembles
D~'(z) N U sont évidemment bornés (on utilise le fait que D est une fibration et
un argument de continuité élémentaire). On en déduit 'existence d’'un nombre K
tel que pour tout i:

6(P(y), P(a; - y))<6(a; - P(y), P(a: - y)) <K.

En conclusion, si x est un point dans 'orbite de x, par I'(V, a4, ..., @,) 2 la
distance d relativement au systéme générateur a,, . .., @,, on a:

O0(P(xy), P(x)<Kd.

Comme la fonction x— P(x) est injective, on obtient la conclusion
désirée. W

1.3. LEMME. Si V désigne un ouvert relativement compact quelconque de G

el «y, ..., a, €I, alors le type de croissance des orbites de I'(V, «ay, . . ., a,) est
dominé par celui de %.

Démonstration. Le domaine |_J™, T, rencontre toutes les orbites de ’action de



8 YVES CARRIERE

I' sur G. Par la compacité relative de V, il existe un nombre fini d’éléments
Bi,...,Bneltelsque VoV =F, B (% T.)=,B; - T.. On choisit alors
pour chaque B; un élément b; dans 7,(M) tel que B; = h(b;) et a un point x e V'’
on associe une plaque P dans I'un des ouverts b, - U; au-dessus de x, puis la
plaque P(x) projetée dans M. On peut alors reprendre point par point la
démonstration du lemme précédent, le seul changement étant que I’application
x— P(x) n’est plus nécessairement injective mais a fibres finies, ce qui permet
encore de conclure que la croissance des orbites de I'(V', a,y, ..., «@,) est
dominée par celle de #. Comme V < V', il est clair qu’il en va de méme pour la

croissance des orbitesde I'(V, ay, ..., a,,). B

1.4. LEMME. Si a4, ..., a, est un systeme générateur de T, il existe un
ouvert relativement compact V < G tel que le type de croissance d’au moins une
orbitede I'(V, «y, ..., a,) est celui de %.

Démonstration. 11 est clair que la croissance des orbites de
(U~ T, 11, - - - » Ymm), OU les y; sont les changements de cartes transverses
choisis au début, est celle des feuilles de #. Comme «a, .. ., @, est un systéme
générateur, il existe un nombre [/ tel que chaque y,; s’exprime par un mot en les «;
de longeur au plus /. Considérons un point x de | /2, 7; qui est dans I'orbite par

(UL T, Y11, - -+ 5 Ymm) d’un point x, € /L, T; & une distance d relativement au
systéme Y11, ..., Ymm- En remplagant dans le morceau d’orbite qui joint x, a x,
y; par un mot en les a; de longueur au plus /, on obtient un morceau d’orbite
dans I'(V, «;, . .., a,) de longueur au plus /d joignant x, a x, ou I'on désigne par

V 'ouvert relativement compact

m
' U a/il'..aik.(u T;).
By 5 ees o0 r<n i=1
k=l
Il est alors clair que le type de croissance des orbites de I'(V, «;, . . ., a,)
domine celui de &. Par le lemme précédent, il y a égalité des types de

croissance. B

On sait a présent comment lire la croissance de ¥ a partir de la seule donnée
de I' dans G:

1.5. PROPOSITION. Soit ¥ un G-feuilletage de Lie d’une variété compacte.

Si ay, ..., «a, est un systeme générateur de son groupe d’holonomie I', alors pour
tout ouvert relativement compact V < G, le type de croissance des orbites de
r‘V,ay,...,a,) (cf. 1.1) est dominé par celui de %. De plus, si V est choisi

suffisamment grand, il y a égalité. En particulier, le type de croissance de ¥ ne
dépend que de I’action de I sur G [H1].
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On retrouve le fait que la croissance de ¥ est dominée par celle de I' [B]. En
particulier, si G est nilpotent alors & est a croissance polynomiale. Toute la
difficulté sera a la section suivante d’établir la réciproque lorsque I" est dense.
Notons qu’il y a un cas ou le type de croissance de & est égal a celui de I, le cas
ol G est compact (on peut alors prendre V = G tout entier).

Voyons maintenant comment on lit la condition que ¥ est Folner a partir de
la seule donnée de I dans G. Par application directe du théoréme 4 de [CG] on
a:

1.6. PROPOSITION. % est Folner & % est moyennable.

Reprenons le pseudo-groupe transverse I de F construit au début du
paragraphe. Dire que &% est moyennable revient a dire que la relation
d’équivalence mesurable %; induite par les orbites de I sur T est moyennable.
Nous renvoyons a [CG]|, [HK] pour les définitions et une bibliographie sur ces
notions. Soit R la relation d’équivalence mesurable sur G induite par I'action a
gauche de I sur G. La relation d’équivalence R ; restriction de R, a Tc G
s’identifie a R,. Il est important de noter que ceci ne serait pas nécessairement
vrai si I n’était pas un groupe d’holonomie. On obtient alors sans difficulté le fait
suivant: & moyennable > Vg € G, R, est moyennable. Recouvrant maintenant
un ouvert relativement compact quelconque V < G par une nombre finide T - g,
il vient que R, est encore moyennable des que # l'est. Soit alors V,, une suite
croissante de tels ouverts recouvrant G tout entier, on a R =lim, R,,,. Donc si #
est moyennable, il en est de méme de R obtenue comme limite de relations
moyennables. Réciproquement, si # est moyennable, il en est de méme de
Rr = R,r obtenue de R par restriction, donc F est moyennable. On a ainsi la

1.7. PROPOSITION. % est moyennable & R est moyennable, ou R est la
relation d’équivalence induite sur G par laction de I a gauche.

On a le théoréme suivant dG a R. Zimmer, d’abord démontré dans [CG] pour
le cas dim G =3.

1.8. THEOREME (R. Zimmer [Z]). Soit I un sous-groupe dénombrable
dense d’un groupe de Lie G. Alors la relation d’équivalence mesurable R induite
par laction a gauche de I sur G est moyennable si et seulement si G est résoluble.

Avec les deux propositions précédentes on obtient le point i) du théoréme
auxiliaire.

1.9. PROPOSITION. Si % est a feuilles denses (i.e. I est dense dans G), on

F Folner & ¥ moyennable & G résoluble.
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2. Croissance polynomiale

Le but de cette section est de démontrer la partie ii) du théoréme auxilaire.
Puisque I’hypothése de croissance polyndmiale implique la condition Folner,
d’apres le point i) déja démontré a la section précédente nous pourrons supposer
que G est résoluble.

Dans tout ce qui suit, un groupe de Lie G sera toujours implicitement muni
d’une distance d associ€ée a une métrique riemannienne invariante a gauche. La
norme correspondante || -|| est définie par ||g|| =d(e, g) ou e désigne I'élément
neutre de G. Ces notations seront conservées méme si on change de groupe de
Lie. La boule ouverte de centre e et de rayon R dans G sera notée Dg(G).
Rappelons que I'application commutateur (g,, g,) € G X G—[g,, §.] € G ayant
de fagon évidente une différentielle triviale en (e, e), on a la propriété suivante
signalée dans [T] par exemple:

2.0. PROPRIETE-DEFINITION. Pour tout ¢, 0<c <1, il existe R(c)>0
tel que

VR<R(c), lllgn glll<cligillligll, V81,82 € Dr(G).

On dit alors que Dg(G) est un domaine de contraction de commutateurs pour la
constante c.

2.1. Croissance locale d’un sous-groupe de type fini d’un groupe de Lie.

Soit I" un sous-groupe d’un groupe de Lie G muni d’un systeme générateur
i, ..., &, sOitmunmotm=q; - a;, 1siy<n; k=1,...,1

Nous dirons que r(m) =sup,_,,_,lla;, - - -a,]|| est le rayon d’action du mot m
dans le groupe de Lie G, le nombre [(m) = [ est la longueur de m au sens usuel.
Etant donné un nombre R > 0, nous désignerons par B, r(I') la boule de centre e
et de rayon L dans l'orbite de e par le pseudo-groupe I'(Dg(G), a4, ..., «,)
défini en 1.1. La boule B, r(I') n’est autre que I’ensemble des éléments de I' qui
peuvent étre décrits par un mot de longueur <L en les lettres «;, . . ., «, et dont
le rayon d’action est<R. On vérifie facilement que la définition suivante est
indépendante du systéme générateur choisi dans I

2.1.1. DEFINITION. Le type de croissance local de I est la donnée pour tout
R >0 du type de croissance en L de la fonction fr(L) = Card (B, g(I')). Si pour
tout R >0 ce type de croissance est polynomial, on dira que I' a une croissance
locale polynomiale.
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Si I' est le groupe d’holonomie d’'un G-feuilletage de Lie & d’une variété
compacte, d’apres la proposition 1.5, le type de croissance de fr(L) est dominé
par celui de & pour tout R >0. De plus, pour R suffisamment grand, ce type de
croissance est exactement celui de %. Ainsi, la démonstration du point ii) du
théoréme auxiliaire est ramenée a celle de la

2.1.2. PROPOSITION. Soit G un groupe de Lie résoluble et I' un sous-
groupe dense de G, engendré par «, ..., «, Si I' a une croissance locale
polynémiale, alors G est nilpotent.

La démonstration de cette proposition est un peu délicate. Le lecteur peut, s’il
le souhaite, en faire une premiere lecture en supposant que

G=GA={f(x)=ax+b,acR™™, beR}

le groupe des transformations affines de la droite réelle (qui est le groupe de Lie
résoluble non-nilpotent le plus simple). Ce groupe a pour groupe dérivé G' le
groupe des translations de la droite réelle et vérifie la propriété suivante:

Vge¢ G', [g, h] #e, VheG' —{e}

qui rend le lemme 2.2.1. évident. Les lemmes 2.1.3 et 2.2.2. sont aussi dans ce
cas plus faciles a lire, ce qui permet d’arriver assez vite a la démonstration du
lemme 2.2.3. et a celle de la proposition 2.3.1. qui conclut.

L’idée de la démonstration est de montrer que sous les hypotheses de la
proposition, le centre de I est non-discret, ce qui forcera G a avoir un centre de
dimension > 1. On conclura par récurrence. Pour ceci, il faut avant tout pouvoir
controler comment se comporte la croissance locale de I lorsqu’on passe de G a
un quotient H:

2.1.3. LEMME DE RELEVEMENT. Soit ¢ : G— H un morphisme surjectif
de groupes de Lie tel que:

1) K = Ker @ est abélien.

2) I'N K est uniforme dans K (i.e. K/I' N K est quasi-compact).
Alors

VR>0, 3R'>0, aeN tels que:B, x(@(I'))c @(B,. ('), VLeN

oui l'on a choisi pour systeme générateur de @(I') I'image @(«,), ..., ¢(a,) du
systétme générateur «,, . . . , «, de I. Autrement dit, le type de croissance locale de
@(T') est dominé par celui de T.
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Démonstration. Choisissons R, >0 tel que Dgr(H)c @(Dg,(G)). Puisque
I' N K est uniforme dans K abélien, il existe t,,..., 1, € ' N K engendrant un
réseau de K. Il existe un nombre R, > 0 tel que tout point de K est a une distance
au plus R, d’un point de ce réseau. Posons alors

.....

Ceci étant, considérons un point g e Dg (G) tel que @(g)e Dr(H), comme
Dr(H) = ¢(Dx,(G)), 38, € Dr,(G) tel que ¢(g,) = ¢(g). On a donc:

g7'g1€K et |lg7'g1ll <2R;

Il existe donc un mot y; en 74, . . ., 7, de longueur au plus & dépendant de Rj; tel
que ||vi'g 'gill <R,; en utilisant I'inégalité triangulaire, on en déduit que
llgv:ll <R, + R, de sorte que:

Vie{l,...,n}, llgy1a:|| < R;.
Prenant un mot @(a;) - - - (a,) dont le rayon d’action est <R, on le reléve en

un mot «; vy, &.,Y;, " * - @&, ou a chaque étape de la construction on a:

1) y, est un mot de longueur au plusa en 7y, ..., ;.
2) 8 = a;vi, - - - a; € Dg (G).

le mot obtenu a un rayon d’action d’au plus R'=R;+asup,—,_ .llt(. W
2.2. Préparatifs a la production d’une croissance surpolynomiale.

2.2.1. LEMME. Soit I un sous-groupe dense d’un groupe de Lie résoluble G.
Il existe €y>0 tel que: Ye>0, 0<e<g,, 3A=D.(G)NT, A+ {e} tel que
VyeD,(G)NT:

1) [y, A] = A.
2) [y, A]l={e} ou [y, t]#e, VT € A — {e}.

Démonstration. Choisissons g,> 0 tel que D, (G) est un domaine de contrac-
tion des commutateurs (voir 2.0). Soit G’ =[G, G], I'' =[I, I']. Le groupe G’ est
nilpotent, considérons le dernier groupe non trivial de la suite centrale dérivée de
G'":

G,=[G',[--[G'", G'] ‘](p commutateurs), p1=1{e}.
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Comme I est dense dans G, on vérifie qu’il en est de méme pour I'’ dans G’ ainsi
que pour chaque terme I, de la suite centrale de I"" dans le terme correspondant
G,. Ainsi I', est dense dans G, C(G') le centre de G'. Soit g € G, appelons
c(g) l'application de G, dans G,, définie par c(g)(h) = [g, k], on constate que:

a) Vg € G, c(g) est un endomorphisme de I’espace vectoriel G,
b) Vg,g' € G, c(g) et c(g') commutent

c) yeI'>c(y) préserve I,

d) Ve, 0<e<egy:ye D.(G)NTI > c(y) préserve D.(G) N T,

Fixons-nous un ¢, 0 <& <g, Soit & la famille des ensembles A« D,(G)N T,
A # {e} vérifiant 'hypothese 1) du lemme. D’apres d) et le fait que I, est dense
dans G,, D.(G)NI,e . Choisissons A,e o tel que l'espace vectoriel V,
engendré par A, dans G, soit de dimension minimale.

Soit alors y € D,(G)NT et supposons que A =c(y)(Ay) # {e}, c’est-a-dire
que V =c(y)(Vo) #{0}. Alors d’aprés b), A € o et I'espace vectoriel engendré
par A est V c V. D’apres la définition de A,, V =V, et donc c(y)(r) #e, VT € A,
t¥e. B

2.2.2. LEMME. Soit I un sous-groupe dense de type fini de R* pourvu d’un
systeme générateur «, . .., &,. Soit H un sous-groupe fermé de R*, H + R".
Alors 3R >0, a e N:

VLeN, By, ..., BLe B r(I), BB eH>i=].

Démonstration. Grace au lemme de relevement 2.1.3, on peut sans difficulté
se ramener au cas ou H NI = {0}. 1l s’agit alors de constater que pour R assez
grand, la croissance de Card (B; z(I')) est au moins linéaire. Ce qui est bien vrai
puisqu’il s’agit de la croissance d’un certain feuilletage linéaire a feuilles denses
sur un tore (voir §.3). W

Le lemme suivant résume ce dont nous aurons besoin pour produire de la
croissance locale surpolyndmiale dans le cas ou C(I') est discret.

2.2.3. LEMME. Soit I" dense dans un groupe de Lie résoluble G. On suppose
que le centre C(I') est discret. Si I est de type fini et a pour systeme générateur
ay,...,a«,, alors: 3e>0, R>0, aeN, AcD.,(G)NI, A+ {e} et une suite
YL € B,y g(I) telle que YL € N:

1) [y, AlcAet [y, 1]#¢, Ve A~ {e}.

b
2) llyill <=5

[ Va ot b>0et g=dimG.
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Démonstration. On obtient ce lemme en appliquant le lemme 2.2.1 pour ¢,
0<e<egytel que C(I')N D, (G) = {e}. L’ensemble A donné par ce méme lemme
a un centralisateur C(A) dans G contenant G’ et distinct de G. Soit ¢:G—
G/G' =R, on appelle H le groupe de Lie @(C(A)) et on applique le lemme
2.2.2 puis le lemme de relevement 2.1.3. pour obtenir une constante a’ € N telle
que pour tout LeN, 38, ..., BLe B, (), BB € C(A)=>i=].

Le principe des tiroirs de Dirichlet appliqué a Dg(G) nous dit alors qu’il
existe une constante b >0 indépendante de L telle que I'on peut choisir

i#je{l,..., L} avec ||BB | < ou g =dim G.

Ll/q

L’élément y, = 8,8, ainsi construit vérifie alors 1) et 2) en prenant 2a’ pour
valeurdea. B

2.3. Fin de la démonstration du théoréme auxiliaire ii)

La proposition 2.2.2 et donc le point ii) du théoréme auxiliaire ressortiront via
le lemme de relévement 2.1.3. et une récurrence de la

2.3.1. PROPOSITION. Soit I" un sous-groupe de type fini, dense dans un

groupe de Lie résoluble G. Si le centre C(I') est discret alors la croissance locale de
I est surpolynémiale.

Démonstration. Nous gardons les notations du lemme 2.2.3. En particulier,
y, désigne une suite de mots dont l'existence est garantie par ce lemme.
Rappelons que le rayon d’action r(y,) est plus petit que R et ||y, || <b/L"¥ ou R
et b sont des constantes positives et g =dim G. Partons de 6, € A — {e} de
longueur L, et de rayon d’action R,. Soit alors la suite §; € I' définie par la
relation de récurrence: &; = [y;24, 6;,-1], Vi >1. 1l est essentiel de remarquer que
I’assertion 1) du lemme 2.2.3. assure que ;#e, Vi. D’autre part on peut
supposer, quitte & diminuer € > 0 dans les lemmes préparatoires, que y; et §; sont
dans un domaine de contraction des commutateurs pour la constante ¢ = 1/b par
exemple (cf. 2.0). On a alors pour tout i, j, 1 <j <i:

1 - i) 1
ol <xhn=---=(C2Y o= =Ly (1)

De ces inégalités, on obtient pour tout i:

b 1
r(6) =sup (r(61-1) + 3+ 15 184l R + = o]
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d’ou I'on tire pour tout i:

b 1

r(é,.)sR+R,+Zs—2+;'—2||5,|1=R2<oo 2)
s=1 .

Considérons maintenant les éléments de I' de la forme &% --- 8% avec

Vj=<i:0=k;<j. Nous disons que, quitte a choisir 6, assez petit en norme (par
exemple en remplagant 6, par 8, pour N assez grand), deux suites (k,, .. ., k;)
et (kj, ..., k) distinctes donnent des éléments distincts. En effet, on aurait sinon
une équation de la forme:

Bl k= Sy - - KIS - Sk

ou t est le premier indice (nécessairement ¢ > 1) tel que k, # k,. De I'inégalité
triangulaire et de (1) on déduirait alors:

) i ! 2 x ! 2
ot 4i=2 3 6 -1(5) 1al<2 X 6-n(5) 18 <

s=t+1

la derniére inégalité provenant d’'une majoration élémentaire de la somme de la
série considérée pour tout ¢t > 1. Comme ||6,|| <||d,]||, ceci est impossible dés que
|6,]] est suffisamment petit du fait que la différentielle de I'exponentielle du
groupe de Lie G est une isométrie a ’origine.

Pour ce choix de &,, il y a i! éléments distincts de la forme 85'- - - 8% avec
Vi=i:0=k, <j. D’aprés (2), pour un tel élément, on a:

I x

. s s
PO - 8= 2, kIO + Ry = 2 5+ Ro= 2 S5+ Ry =Ry <0

s =0 s=1 s=1

D’autre part
Vi>1, [(8;)<20(6,_)) + 2(yp) <2(6;y) + 2ai* < - - - < 2(5,) + a2'i*

ce qui donne

(67! -+ 8F) < Z k,(8,) < 2 (s — DIS,) < (i — 1)il(d,) +a z g2+

s=1 s=1 s=1

et donc

1(6% -+ - My < (i — )il (8,) + a2 i < (a + 1(6)))2 %% = L(i).



16 YVES CARRIERE

Par conséquent, on a Card (B r,(I")) =i! qui croit plus vite que n’importe
quel polyndme en L(i). La croissance de fz,(L)= Card (B, g,(I')) est donc
surpolyndomiale en L. W

Nous n’avons pas réussi a produire une croissance de type exponentiel. Si &
est un G-feuilletage de Lie a feuilles denses sur une variété compacte et si G n’est
pas résoluble, alors d’aprés le théoréme auxiliaire i) &% n’est pas Folner et donc %
est a croissance exponentielle. La question suivante reste cependant ouverte:

2.3.2. Question. Existe-t-il un G-feuilletage de Lie & a feuilles denses sur
une variété compacte tel que la croissance de % n’est ni polynOmiale ni
exponentielle? S’il existe un tel exemple, G est nécessairement résoluble
non-nilpotent.

3. Feuilletages de Lie nilpotents

Pour démontrer le théoréme auxiliaire iii), nous sommes ramenés a étudier le

cas ou G est nilpotent. On peut aussi supposer (cf [C1]) que G est simplement
connexe de sorte qu’il reste a établir la

3.1. PROPOSITION. Soit ¥ un G-feuilletage de Lie a feuilles denses sur une
variété compacte. On suppose que G est nilpotent simplement connexe. On a alors
0(G)=d(F) o 6(G) est le degré de nilpotence de G et d(F) est le degré de
croissance de %.

Démonstration. Le groupe d’holonomie I' de & est nilpotent de type fini et
sans torsion comme sous-groupe de G nilpotent simplement connexe. D’apres
Malcev [Ma)], I' peut étre réalisé comme sous-groupe discret uniforme d’un
groupe de Lie nilpotent H tel qu’il existe un morphisme h:H— G dont la
restriction a I est l'identité. Comme I' est uniforme dans G, h est surjectif.
Posons K = Ker &; remarquons que dim K =1 car I est dense dans G. L’action
de K sur H a droite passe au quotient pour donner un feuilletage &' sur la variété
compacte M'=T\H; &' est transversalement de Lie G et a pour groupe
d’holonomie I, il a donc en particulier méme croissance que &. Cette croissance
n’est autre que celle de K. Le feuilletage &' est un classifiant de & au sens de A.

Haefliger [H1]. Sa construction est aussi indiquée dans [C2], [Gh] et [H1]. Il nous
reste a prouver le

3.2. LEMME. La probosition est vraie pour F'.
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Démonstration. Faisons une récurrence sur ¢ =dim G. Sig =1, il n’y a rien a
démontrer. Supposons le lemme vrai pour dim G <g, montrons le pour
dim G = q. Comme I est uniforme discret dans H, I' " C(H) I’est encore dans le
centre C(H) de H (cf [R]). Soit ye I'NC(H)\{e}, alors le groupe a un
parametre X engendré par y vérifie XN K ={e} car TN K = {e}. On a la suite
exacte:

1-K—-H =H/X—>G =G/h(X)—1

le groupe I; = I'/(y) est discret uniforme dans H, et s’envoie sur un sous-groupe
dense de G,. Le lemme pour dim G, =¢q — 1 donne 6(G,)<d(%). Si 6(G,) =
6(G) pour au moins un ye I' N C(H)\{e} on a terminé. Sinon h(C(H)) est le

dernier groupe non-trivial de la suite centrale dérivée de G. On considére alors la
suite exacte:

1> K,=K/KNC(H)— H,=H/C(H)— G,— 1

Comme K est normal dans H nilpotent, dim (K N C(H))=1 et donc dim K, <
dim K ce qui implique que le degré de croissance de K, est <d(%) — 1. Le groupe
I,=T/I'NC(H) est discret uniforme dans H, et s’envoie sur un sous-groupe
dense de G,. On applique encore une fois le lemme pour dim G, =q — 1 ce qui
donne 6(G))=6(G)—1=<d(F)—1s0it 6(G)<d(%¥). B

On peut se demander si la proposition ne peut pas s’améliorer lorsque ¥ est
donné par une action libre de R”: est-ce que dans ce cas G ne serait pas
nécessairement abélien? Nous allons voir qu’il n’en est rien dés que p =2. Si &
est un G-feuilletage de Lie donné par une action libre de R? sur une variété
compacte et si les feuilles sont denses, nous venons de voir que 6(G) =<2,
C’est-a-dire que G (et donc H) est abélien ou méta-abélien. Nous allons donner
un exemple ou G et H sont non-abéliens.

Il s’agit tout d’abord de construire un groupe de Lie nilpotent et méta-abélien
ayant un sous-groupe discret uniforme I. D’aprés Malcev ([Ma], [R]), il suffit de
construire une algebre nilpotente £ méta-abélienne ayant une base rationnelle.
On pose H =R>@D R ou le facteur R? est dans le centre de §. On a alors:

VY,ZeR? [Y,Z]=c(Y, Z)eR?

ou ¢ est une forme bilinéaire antisymétrique a valeurs dans R?. Se donner $
revient donc 4 se donner le 2-cocycle ¢ de R? a valeurs dans R?. Dire que 9
admet une base rationnelle revient a dire qu’il existe des bases de R* et R dans
lesquelles ¢ a des coefficients entiers. On peut toujours supposer que la base
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entiére choisie sur R? est la base canonique et noter les vecteurs de R? comme
vecteurs colonnes. Soit X,, X, la base choisie sur R? alors:

c(Y, Z) = (YA, 2)X, + (YA, Z)X,

ou A; et A, € M (Z) et sont antisymétriques.

3.3. LEMME. Supposons qu’il existe A,, A, € M,(Z), antisymétriques, A € R
irrationnel et Z € R? irrationnel (i.e. les composantes de Z sont linéairement
indépendantes sur Q) tels que:

(AI-AAz)Z=O et Al"’A.A2¢0

Alors il existe une action libre de R* sur une variété compacte, dont le feuilletage
associé est a feuilles denses et transversalement de Lie G un groupe non-abélien.

Démonstration. Avec les notations précédentes, on a alors:
VYERq, [Y, Z]=(tYAzz)(AX1 +X2)

par conséquent X = AX, + X, et Z engendrent un idéal & de 9. Soit K et H
les groupes de Lie correspondants a R et . Le groupe discret uniforme
I' =exp (Z>*® Z9) de H ne rencontre pas K (irrationnalité de A et de Z) et donne
un sous-groupe isomorphe dense dans G = H/K (méme raisons). La condition
A, —AA,#0 assure que G n’est pas abélien. On a ainsi une action libre de
K=R? sur la variété compacte M =T\H dont le feuilletage associé est
transversalement de Lie G a feuilles denses avec G non-abélien. W

3.4. LEMME. Si q =4, il existe A, A,, A, et Z vérifiant les hypothéses du
lemme 3.3.

Démonstration. Soient

0 1 00 0 0 0 1

-1 3 0 0 010
= 0 -3 0 1 A2_0—100
0 0 -1 0 -1 00 0

(A1 - A-Az)z =0 ou ‘Z= (ZI’ 25, 23, 24)
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équivaut a
2, — Az, =0; z;+(A—=3)z;=0; A=3)z,+2,=0 et Az;—2z3=0
ce systéme a des solutions non-triviales si A> — 34 + 1 =0, les solutions sont alors:

Y43
tZ:(Zl)ZZJ AZI’X)’ ZI’ZZGR

Comme A est algébrique de degré 2, il est irrationnel. De plus on vérifie que si z,
et z, sont choisis linéairement indépendants sur Q[A], les composantes de Z sont
linéairement indépendantes sur Q. Il est clair que A; —AA,#0. B

On peut vérifier qu’une telle construction est impossible si ¢ <3 ce qui
conduit a la proposition que nous donnons sans démonstration:

3.5. PROPOSITION. Soit ¥ un G-feuilletage de Lie a feuilles denses défini
par une action libre de R? sur une variété compacte M. Si dim M <5, G est abélien
et M a le type d’homotopie du tore de méme dimension.

Comme dans [C1] on en tire le

3.6. COROLLAIRE. Si & est un feuilletage riemannien d’une variété com-
pacte de dimension 4 défini par une action libre de R?, I'algébre structurale de F

est abélienne. Dans I’adhérence d’une de ses feuilles, ¥ est un feuilletage de Lie
abélien.

Conclusion

Le probléme majeur qui subsiste concernant les feuilletages riemanniens a
croissance polyndmiale sur les variétés compactes est celui de leur classification
topologique. D’apreés notre travail, il est essentiellement ramené a la classification
des feuilletages de Lie nilpotents 2 feuilles simplement connexes. Il est
raisonnable de penser qu’un tel feuilletage & est conjugué a son classifiant ' (cf.
3.1). Nous savons démontrer ce résultat si dim &% = 1 par une méthode suggérée
par E. Ghys. Pour le cas général, on est confronté a un probléme non-résolu
méme en codimension 1. La clef du probléme est alors la question suivante
laissée ouverte dans [S]: Existe-t-il sur un tore une forme fermée non singuliére
totalement irrationnelle qui soit non linéarisable?
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