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A non-immersion theorem for spaceforms

F. J. Pedit

Introduction

This note gives a uniform treatment of some non-existence results concerning
isometric immersions of spaceforms into spaceforms. Let M, M be spaceforms of
dim M m, dim M 2m - 1 and curvatures c, c. Then we prove the following

THEOREM. Let M be complète. Then there exists no isometric immersion

f:M-+Mif
(1) c&lt;c, c &lt; 0 and M is fuchsian,
(2) 0&lt;c&lt;c.

A hyperbolic spaceform is called fuchsian if the limit set of the fundamental

group nx{M) in the sphère at infinity of the universai cover contains more than

two (and hence infinitely many) points [2]. Part (1) of our resuit extends récent
work of F. Xavier [6] where the same statement is proven by a différent method
in case M U2m&quot;1 with the standard flat metric. Since every compact hyperbolic
spaceform is fuchsian our resuit also relates to early work of S. S. Chern and N.
H. Kuiper [1] where, in order to use compactness of M, M has to be

diffeomorphic to R2&quot;1&quot;1. Behind ail of this one clearly has in mind the problem of
whether m-dimensional hyperbolic space Hm can be isometrically immersed into
R2&quot;1&quot;1. The case m 2 was treated by D. Hilbert who showed that there are no
isometric immersions of H2 into R3 [4]. Part (2) proves again a resuit of J. D.
Moore [3] and we only add it since it fits canonically into our approach.

It is well known [4] that in the case c^c one always has isometric immersions

/ : M -» M for complète M.
Our method is based on the observation that an isometric immersion

/:Af-»M always cornes with a flat metric if c&gt;c. If M is complète this metric
will be complète and hence put restrictions on the fundamental group of M.

Basic facts

Let /, / be the riemannian metrics of constant curvatures c, c on M, M and

assume k c - c &gt; 0. If / : M -* M is an isometric immersion then /*/ / and we
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dénote by // € T(©2 T*M, ±fM) the 2nd fundamental form of/. Applying E.
Cartan&apos;s Theorem on exteriorly orthogonal symmetric bilinear forms to II (B kI e

F(©2 T*M, LfM 0 R) one gets [3]:
For every p e M there exists an open neighbourhood p eUcM, an orthonormal

coframe (co1,..., œm) on U and an orthonormal frame (em+1,... e^-i) of
1/M over (/ such that

with smooth functions bf: £/-&gt; R. Moreover, setting

the 1-forms aIa)l6Q1((7) are closed. Hence there exist (principal curvature)
coordinates x (x\ xm) : (/-&gt; Rm with dxl a^o)1.

Let /// e T(©2 T*M, R) be the 3rd fundamental form of/, i.e.,

III(X, Y) tr7 Ï(II(X, — //(—, Y)), X, Y e TM,

then we hâve

LEMMA. Let M be complète. Then Io -/// + / is a complète flat
riemannian metric on M.

Proof. Since k &gt; 0 and /// is positive semi-definite /0 ^ / and so /0 is complète.
To show flatness of 70 we express /0 in the above coordinates on U c M :

and so

/0 - /// + / - S (6? + k)(«&gt;&apos;)2 E (a,o&gt;&apos;)2

Hence /0 is flat.

Proof of the theorem

Assume there is an isometric immersion f:M-*M with M complète and

c~c&gt;0. Then by the Lemma (M, /0) is a flat complète riemannian manifold.
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Hence its fondamental group satisfies the exact séquence

where 0 ^ r ^ m and G is finite [5].
Now let c&lt;0 and M be fuchsian. Then nx(M) contains a free group on at

least 2 generators a, b € nx(M) [2], [6]. Since G is finite there are p, q e N with
ap, bq € Zr. But Zr is abelian, so apbq bqap which contradicts that a, b generate
a free group.

In case c &gt; 0 we know that the universal cover of M is 5m(l/c). But we also

hâve that the universal cover is Rm which gives a contradiction.
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