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Two-knot groups with torsion free abelian normal subgroups of
rank two

JoNATHAN A. HIiLLMAN

Abstract. We show that a torsion free abelian normal subgroup of rank two of a two-knot group
which is contained in the commutator subgroup must be free abelian, the centralizer of the abelian
subgroup is not contained in the commutator subgroup, and neither of the latter two groups is finitely
generated. Furthermore, we characterize algebraically the groups of 2-knots which are cyclic branched
covers of twist spun torus knots.

In [7] we showed that if a 2-knot group G has a torsion free abelian normal
subgroup A of rank r =2 then it is an orientable Poincaré duality group of formal
dimension 4 (or PDy-group), so r <4, and we determined the groups admitting
such a subgroup with r =3 or 4 (in which case A must be finitely generated). All
the known examples with r =2 derive from cyclic branched covers of twist spun
torus knots (or branched twist spun torus knots, for short) and have A free
abelian and not contained in the commutator subgroup G'. In Section 1 of this
paper we shall show that if r =2 and A is contained in G’ then A must be finitely
generated and that three of the four cases left open by Theorem 9 of [7] cannot
occur. (The remaining case seems highly unlikely, but we have been unable to
settle this). Our arguments to this end are similar in spirit to those of [7],
particularly in their reliance on the results in [1] on subgroups of PD-groups and
on groups with large abelian normal subgroups and small cohomological
dimension. In Section 2 we shall use work of Zimmermann [20] on realizing
geometrically outer automorphism classes of the fundamental groups of Seifert
fibred 3-manifolds to give an algebraic characterization of the groups of branched
twist spun torus knots, and we give a version of a theorem of Plotnick [13]
characterizing the closed 4-manifolds obtained by surgery on such knots among
fibred 4-manifolds.

1. Further restrictions on the groups

THEOREM 1. Let G be a 2-knot group with a torsion free abelian normal
subgroup A of rank 2 which is contained in G'. Then A is finitely generated.
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Proof. We may assume that A is maximal and is not finitely generated. For if
A, is a maximal abelian subgroup containing A then it is torsion free (since G is a
PDy -group), has rank 2 and is contained in G’, for otherwise G would have a
torsion free abelian normal subgroup of rank at least 3, and such 2-knot groups
do not have rank 2 abelian normal subgroups. (Cf. Section 3 of [7]). Now
c.dA=3=cd.Cs(A), so A=Cs(A) by [1; Theorem 8.8]. If c.d.C5(A) =4
then [G':A]=[G":Cs(A)]<[G:Cz(A)] <> so G would be virtually metabe-
lian, hence poly-(Z or finite), and A would be finitely generated. Thus we may
assume that c.d.Cg(A)=3 and so A=Cg(A). Therefore G/A is a finitely
generated subgroup of Aut(A) and hence of GL(2, Q). Now if G'/A were a
torsion group then it would be locally finite [9; page 105], so h.d.G' =h.d.A=2
and hence h.d.G =3, which would be absurd, as G is a PDJ-group. Therefore
there is an element g of G' which is of infinite order modulo A. The subgroup B
generated by g and A is solvable and c.d.B=3 since AcBcG'. The
Hirsch-Plotkin radical N of B contains A, so is not finitely generated, and
c.d.N <c.d.B = 3. Therefore N is abelian, so N = A and we may apply Theorem
7.15 of [1]. Thus L= H,(A;Z) is the underlying abelian group of a subring
Z[m™'] of Q, and the action of g on L is multiplication by a rational number a/b,
where ab and m have the same prime divisors. (Note that the action of B on A by
conjugation is determined by that of g). But g acts on A as an element of
GL(2, Q) <SL(2, Q) and so acts on L=A A A (cf. [15: page 334]) as det (g) =
+1. Therefore L =Z. It follows that our assumption was false and A must be
finitely generated. [

With Theorem 6 of [7] it follows that if the centre of every PDs-group is
finitely generated then all torsion free abelian normal subgroups of 2-knot groups
are finitely generated in the rank 2 case also. (Recall however that the group of
Fox’s Example 10 has commutator subgroup Z[}] and so finite generation does
not always hold in the rank 1 case).

If there is such a 2-knot group G as in Theorem 1, then the quotient G/A is
finitely presentable and maps onto Z, and so by a theorem of Bieri and Strebel it
is an HNN extension with finitely generated base and associated subgroups [2].
The preimage of the base in G is a finitely generated group of cohomological
dimension 3 which contains A as a normal subgroup and therefore the base is
finitely generated free-by-finite, by [1; Theorem 8.4]. Our strategy below is to
attempt to show that v.c.d.G/A is finite, and then to deduce a contradiction. (Cf.
the proof of Theorem 3. Note that it would suffice to show that G/A contains a
subgroup of finite cohomological dimension which is not free, for then its
preimage in G would have cohomological dimension at least 4 by [1; Theorem
5.6], and so be of finite index in G, by [18]. Peter M. Neumann has constructed
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an HNN extension with base (a, b | @’ = 1) and associated subgroups free of rank
5, and such that every subgroup of finite index contains the base, so some further
assumption is needed).

Theorem 2 is a substantial extension of the observation in [7] that there are no
such examples which are the groups of fibred 2-knots, or even with G’ a
PDs-group.

THEOREM 2. Let G be a 2-knot group with an abelian normal subgroup
A =77 which is contained in G'. Then G' is not finitely generated. If C;(A) has
infinite index in G then it is not finitely generated either.

Proof. We may assume that A is maximal. Now c.d.G'=3, so G'/A is
infinite. If G' is finitely generated then G'/A is finitely generated free-by-finite by
[1: Theorem 8.4], that is, there is a subgroup B of finite index in G’ such that
B/A is free. We may assume that B is characteristic in G’ and so normal in G.
There is then a subgroup H of finite index in G which contains B and is such that
H/B is infinite cyclic. The quotient H/A is then finitely generated free-by-infinite
cyclic and so c.d.H/A <2. But then H/A is a PD,-group by [1: Theorem 9.11]
(and a spectral sequence corner argument to identify the dualizing module). Since
the only PD,-groups with nontrivial finitely generated free normal subgroups are
solvable, G is virtually solvable. But then Cg.(A) would be abelian of rank 3, by
the argument of the first two paragraphs of Theorem 9 of [7], which contradicts
the maximality of A.

If Cs(A) is finitely generated and of infinite index in G, so it has
cohomological dimension 3, then C5(A)/A is finitely generated free-by-finite, as
above, while G/Cg;(A) is a subgroup of GL(2, Z) and so is also finitely generated
free-by-finite. Thus there is a subgroup B of finite index in C;(A) which is normal
in G and such that B/A is finitely generated free, and G/B is finite-by-free-by-
finite. But such a group G/B is in fact free-by-finite, and so G/A is f.g.free-by-
f.g.free-by-finite. Therefore v.c.d.G/A is finite and G/A has a nontrivial finitely
generated free normal subgroup, so we reach the same contradiction. Since
Cs(A)/Ci(A) is cyclic it follows that Cg.(A) cannot be finitely generated
either. O

In the next theorem we show that the first three cases allowed by Theorem 9
of [7] are impossible.

THEOREM 3. Let G be a 2-knot group with a maximal abelian normal
. subgroup A =17? which is contained in G'. Then C;(A) has infinite index in G,
but is not contained in G'.
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Proof. Suppose otherwise. Then either C;5(A)=G' or c.d.C5(A)=4, by
Theorem 9 of [7]. In each case C = Cs;.(A) has finite index in G', and we may
assume that C’ is a nonabelian free group, so AN C’'=1. Suppose first that
C =G'. Then A maps injectively to M = G'/G". Since M is finitely generated as a
module over Z[G/G'] = Z[t, t '], and since A maps to a submodule of M, it has a
submodule M, of finite index such that M, = A @ (M,/A) as an abelian group. Let
G, be the preimage of M, in G. Then G, is normal in G and G, =A X (G,/A).
Hence c.d.G,/A =1 by [1: Theorem 5.6] so is free and v.c.d.G/A is finite. If
C# G' then [G':C]=3 and we may apply the same argument to the Z[G/C]}-
module N =C/C’, obtaining a submodule N, =A X (N,/A), a subgroup C, =
A X (C,/A) and hence again v.c.d.G/A is finite. In each case we conclude that
G/A is virtually a PD,-group. Now Eckmann and Miiller have shown that each
virtual PD,-group with infinite abelianization maps onto some planar discon-
tinuous group, with finite kernel [4]. In this case the planar groups are virtually
surface groups and so have compact fundamental region. On considering the
presentations of such planar discontinuous groups, as given for instance in
Theorem 4.5.6 of Zieschang, Vogt and Coldewey [19], we see that no such group
has infinite cyclic abelianization. This gives a contradiction and so proves the
theorem. O

All our work thus far has required that the 2-knot group admit a torsion free
abelian normal subgroup. In [8] we shall show that the strategy of [7] may be
adapted to the case when the quotient of the knot group by its maximal locally
finite normal subgroup has such an abelian subgroup.

2. Branched twist spun torus knots

The commutator subgroup of the group of a cyclic branched cover of the
r-twist spun (p, q)-torus knot (with p, g relatively prime) is the fundamental
group of a Brieskorn manifold M(p, q,r), and is therefore finite only when
p~'+q '+ r!is greater than 1 [7]. The triples (2, g, 2) for g odd give rise to
groups with commutator subgroup cyclic of odd order, and these groups each
have an unique weight class. (Recall that a weight class in a group is the
conjugacy class of an element whose normal closure is the whole group). The
remaining 6 such triples lead to 3 nontrivial groups, with commutator subgroups
Q, T*, I* and having 1,2 or 4 weight classes (up to inversion) respectively. Of
the 7 possibilities, 6 are realized by twist spun torus knots; the 7th by the 2-fold
cyclic branched cover of the 5-twist spun trefoil knot [14]. With these observa-
tions, the next theorem determines the groups of branched twist spun torus knots.
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THEOREM 4. A group G which is not virtually solvable is the group of a
2-knot which is a cyclic branched cover of a twist spun torus knot if and only if it is
a high dimensional knot group, a PDj-group with centre of rank 2, some nonzero
power of a weight element being central, and such that G' is virtually representable
onto Z.

Proof. If K is a cyclic branched cover of the r-twist spun (p, g)-torus knot
then the closed 4-manifold M(K) obtained by surgery on the knot fibres over the
circle with fibre M(p, g, r) and monodromy of order r, and so the rth power of a
meridian is central [12]. Moreover the monodromy commutes with the natural
circle action on M(p, q, r) (cf. Lemma 1.1 of [10]) and hence preserves a Seifert
fibration. It follows that the meridian commutes with the centre of
n;(M(p, q, r)), which is therefore also central in G. Since (with the above
exceptions) w,(M(p, q, r)) is a PD;-group with infinite cyclic centre and which is
virtually representable onto Z, the necessity of the conditions is evident.

Conversely, if G is such a group then G’ is the fundamental group of a Seifert
fibred 3-manifold, M say, by the argument of [7; Theorem 6] with [6]. Moreover
M is “sufficiently complicated” in the sense of [20], since G’ is not virtually
solvable. Let ¢t be an element of G whose normal closure is the whole group, and
such that ¢ is central for some positive n (which we may assume minimal). Then
G = G/{t") is a semidirect product, G = G' XZ/nZ. By [20; Korollar 3.3] there
is a fibre-preserving selffhomeomorphism t of M inducing the outer automorphism
of G' determined by ¢, which moreover can be so chosen that its lifts to the
universal covering space M together with the covering group generate a group of
homeomorphisms isomorphic to G. The automorphism of M corresponding to the
image of ¢ in G has connected 1-dimensional fixed point set by Smith theory.
(Note that M = R?>). Therefore the fixed point set of the map 7 in M is nonempty.
Let P be a fixed point. Then P determines a cross-section y =P x S! of the
mapping torus of 7. We may perform surgery on y to obtain a 2-knot with group
G which is fibred with monodromy of finite order. We may then apply
Proposition 6.1 of Plotnick [12] to conclude that the 2-knot is a branched twist
spin of a knot in a homotopy 3-sphere. Since the monodromy repects the Seifert
fibration and leaves the centre of G’ invariant, the branch set must be a fibre, and
the orbit manifold a Seifert fibred homotopy 3-sphere. Therefore the orbit knot is
a fibre of a Seifert fibration of S> and so is a torus knot. Thus the 2-knot is a
branched twist spin of a torus knot. O

If G is a virtually solvable 2-knot group in which some power of a weight
element is central then by Theorems 13 and 14 of [7] either G’ is finite or G is
torsion free and virtually poly-Z; in the latter cases G must be either the group of
* the 6-twist spin of the trefoil knot or of the 3-twist spin of the figure eight knot, or
of the 2-twist spins of certain 3-branch Montesinos knots.
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We may also apply the work of Zimmermann and Plotnick when G is a high
dimensional knot group and some power of a weight element is central to show
that if the 3-dimensional Poincaré conjecture holds and if also G’ is the group of
a virtually Haken 3-manifold then G is the group of a branched twist spun prime
knot, while if instead G’ is the group of a hyperbolic 3-manifold then G is the
group of a branched twist spun simple (non-torus) knot. However we do not yet
have purely algebraic characterizations of such 2-knot groups. (Note moreover
that in Theorem 4 we were able to avoid the Poincaré Conjecture). We raise the
following question. Is a high dimensional knot group G which is a PD-group in
which some nonzero power of a weight element is central the group of a branched
twist spun prime knot?

Plotnick’s argument uses properties of S' actions on homotopy 4-spheres. We
might hope to avoid this by a homological argument to show that 7 has connected
fixed point set. The projection onto the orbit space would then be a branched
cyclic covering, branched over a knot, and a standard argument using the fact
that the normal closure of ¢ in G is the whole group would then show that the
orbit space is simply connected. Since M is Seifert fibred and 7 is fibre preserving,
the branch locus would then be a torus knot in the standard 3-sphere. However I
have been unable thus far to establish this connectedness directly.

We may ask to what extent does the group G determine the triple p, g, r and
the degree of the branched covering. Moreover, does any 2-knot group with a
rank 2 abelian normal subgroup satisfy the hypotheses of Theorem 4? In
particular, must such a subgroup be central? In [11], Plotnick shows that there are
infinitely many distinct conjugacy classes of weight elements in the group of a
Brieskorn homology sphere M(p, q, r), where p, g, r are relatively prime (and
excluding the case M(2, 3,5)). Such groups are central extensions of triangle
groups, and the latter are virtually torsion free [10]. Plotnick’s lemma 1 then
implies that there are weight elements such that no power is central. Now if H is a
perfect group of weight 1 and 4 is a weight element, then H X Z also has weight
1, and At is a weight element for it (where ¢ generates the Z factor). Moreover this
gives a bijection between weight elements of the two groups, and also between
conjugacy classes of such elements. (The groups of r-twist spun (p, q)-torus
knots, for such p, g, r, are such direct products). Therefore we may obtain many
2-knots whose groups are as in Theorem 4 but which are not themselves branched
twist spun, by surgery on such weight classes in the closed 4-manifolds obtained
by surgery on branched twist spun torus knots. Is there a 2-knot group which
contains a rank 2 free abelian normal subgroup and for which no nonzero power
of any weight element is central?

The closed 4-manifold M(K) obtained by surgery on a 2-knot K with group G
as in Theorem 4 is aspherical [7], and so the theorem implies that it is homotopy
equivalent to M(K,;) for some branched twist spun torus knot K,. It is a well
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known open question as to whether homotopy equivalent aspherical closed
manifolds must be homeomorphic. We shall show next that if K if fibred then
M(K) and M(K,) are homeomorphic. This is a version of Plotnick’s Proposition
6.1, starting from more algebraic hypotheses.

THEOREM S. Let K be a fibred 2-knot whose group G has centre of rank 2,
some power of a weight element being central, and has G' virtually representable
onto Z. Suppose that the fibre is irreducible. Then the closed 4-manifold obtained
by surgery on K is homeomorphic to one obtained by surgery on a branched twist
spun torus knot.

Proof. Let F be the closed fibre and ¢ : F— F the characteristic map. Then F
is a Seifert manifold by [6] and [16] (cf. Theorem 5). Now the automorphism of F
constructed as in Theorem S induces the same outer automorphism of 7,(F) as ¢,
and so these maps must be homotopic. Therefore they are in fact isotopic, by
[3, 17]. The theorem now follows. [J

The closed fibre of any fibred 2-knot with such a group is aspherical, and so is
a connected sum F#P, where F is irreducible and P is a homotopy 3-sphere. If
we could show that the characteristic map may be isotoped so that the fake 3-cell
is carried onto itself then we would have K = K,#K, where K, is fibred with
irreducible fibre and where K, has group Z. We could then use Freedman’s
Unknotting Theorem [5] to sidestep the 3-dimensional Poincare conjecture.

Using the Rigidity Theorem of Mostow, we can extend Theorem 5 to show
that if K is a fibred 2-knot with hyperbolic fibre and group G such that some
power of a weight element is central then M(K) is homeomorphic to M(K,) for
some branched twist spun simple non-torus knot K;. We raise the following
question. If X is a 2-knot such that G’ has one end and some nonzero power of a
weight element is central then is M(K) homeomorphic to M(K,) for some
branched twist spun prime knot K,;? Ideally we might expect that any 2-knot
whose group is a PD;-group and has finitely generated commutator subgroup
might be fibred, but at present we can only determine the potential fibre from the
group in the Seifert case. Work in progress suggests that there may be new
obstructions to fibering when the group has torsion.
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