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Invariant theory of G2 and Spin7

Gerald W. Schwarz*

§0. Introduction

(0.0) Let G be a semisimple complex algebraic group. An invariant theory for
G is a faithful représentation &lt;f):G-+GL{V) together with generators and
relations for the algebras of invariants C[nV]G, n e N, where nV dénotes the
direct sum of n copies of V. Given an invariant theory for G, one can use the
symbolic method [W] to garner information about the invariants of any
représentation of G.

If G is one of the classical groups SLm, SOm, etc. with its standard

représentation on V Cm, then classical invariant theory (CIT) tells us generators

and relations for C[wV]c, n e N, i.e. CIT is an invariant theory for the
classical groups. There remains the problem of finding an invariant theory for the
non-classical simple connected complex algebraic groups, i.e. for the exceptional
groups G2, F4, E6, E7 and E8, and the spin groups Spinm, m ^7. The first cases to
consider are G2 and Spin7 (also denoted B3) which hâve faithful irreducible
7-dimensional and 8-dimensional représentations, respectively. In this paper we
establish an invariant theory for G2 and B3. Our results for G2 were announced in
[S4].

(0.1) The invariant theory for G2 fits into the following gênerai framework:
Let A be a finite dimensional central C-algebra, not necessarily associative. Let G
dénote the group of algebra automorphisms of A, and let tr(a)
(dim^l)&quot;1 trace(Ra) where Ra:A-*A is right multiplication by a eA. Then the
trace (i.e. tr) of any product of éléments in nA, neN, is an élément of C[nA]G.

Suppose that A Mk(C) kxk complex matrices. Then G PSLk acting on
A by conjugation. In this case, Procesi ([Prl], [Pr2]) and Rasmyslov [R] showed
that traces of products give ail the generators of C[/l4]g. Moreover, the relations

among thèse generators ail resuit from the Cayley-Hamilton identity-the
&quot;standard&quot; identity for M*(C).

?Research partially supported by the NSF. AMS(MOS) subject classifications 1980. Pnmary
14L30, 17A36, 20F29, 20G05.
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(0.2) Suppose that A is the usual (complex) Cayley algebra. Then the
automorphism group G is G2. We will show that traces of products of at most 4

éléments give generators of C[n^4]G. (J. Ferrar has informée us that he has also

proved this resuit.) Moreover, in analogy with the case of Mk(C), we show that
the relations among thèse generators are a resuit of the standard quadratic
identity and alternative laws for the Cayley algebra. The alternative laws are
the Cayley algebra&apos;s analogue to the associativity of M*(C). The faithful 7-

dimensional représentation of G2 is its action on the trace zéro Cayley numbers.

(0.3) Spin7 B3 is also connected to the Cayley algebra A: There is a

non-degenerate quadratic form ô on A and a 4-form e on A, both G2-invariant,
such that B3 is isomorphic to the subgroup of GL(A) preserving ô and 6. The
algebras C[n^4]B3 hâve generators of degrees 2 and 4 corresponding to ô and e

(see §2), and the relations are a conséquence of the identities of A.

(0.4) Let &lt;j&gt;:G-+GL(V) be faithful. A first main theorem (FMT) for (j&gt; (or
G) gives generators for the algebras C[wV]G, n e N. A second main theorem

(SMT) is a détermination of the relations among thèse generators. We use the
tools of &quot;modem&quot; invariant theory and commutative algebra to détermine a FMT
and SMT for G2 and for B3. Then we show that the generators and relations
arise, as sketched above, from the structure of the Cayley algebra. We would be

surprised and pleased if there were a purely &quot;Cayley theoretic&quot; way to establish

an invariant theory for G2 and B3.

(0.5) The contents of this paper are as follows: In §§1-2 we recall the
construction and basic properties of the Cayley algebra A and the actions of G2

and B3 on A. We list the generators which figure in the FMT&apos;s for G2 and B3. In
§3 we recall gênerai results on FMT&apos;s, and we apply them to establish the FMT&apos;s

for G2 and B3. In §§4-5 we recall results on SMT&apos;s, and we list proposed SMT&apos;s

for G2 and B3. We show that our proposed SMT for G2 (resp. B3) is correct if it
is correct for 6 (resp. 7) copies of the fundamental représentation &lt;j&gt; :G-*GL(V).
In §6 we show that our proposed SMT&apos;s resuit from the identities of A.

To establish the SMT for small numbers of copies of &lt;f&gt; we used Poincaré
séries techniques. For example, consider the case S C[6V]G where G G2. In
§7 we show that S is a finite free graded module over a subalgebra generated by
18 éléments of degree 2 and 10 éléments of degree 3. Thus the Poincaré séries

Pt(S) is (1 -t2)~ÎS(l -f3)~loE!=ofl/ where the al are in N and we assume that

at # 0. Moreover, / 24, and al at-n 0 &lt; i ^ 24.

Let 5&apos; dénote the algebra given by the generators and proposed relations for
S. In §9 we compute the Poincaré séries of an algebra 5&quot; which maps onto a
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certain associated graded algebra to S&apos;. (This involves finding finite free
resolutions of certain modules over polynomial rings.) We find that Pt(S&quot;)

(l-^-^l-^EÏoW where bt b24-t, 0&lt;*&lt;24. In §10 we compute
(rather easily) that af 6f for i&lt;12. It follows that Pt(S&quot;) Pt(S&apos;) Pt(S),
establishing the SMT for G2. The techniques used in the case of B3 are similar.

(0.6) I thank the Institute of Advanced Studies of the Australian National
University, the Institut des Hautes Etudes Scientifiques, and the Mathematisches
Institut der Universitàt Basel for their hospitality while this paper was being
researched. I thank R. Sharpe, G. Seligman, Th. Vust and J. Weyman for their
help and encouragement.

§1. The Cayley algebra, G2 and trace invariants

(1.0) We recall the construction and properties of the Cayley algebra and G2.

([Sf] is a gênerai référence for what follows.) We exhibit the trace invariants
which play a fundamental rôle in the invariant theory of G2.

(1.1) Let A be a finite dimensional simple central algebra over C (not
necessarily associative). Assume that A is an alternative algebra, i.e.

(1.2) x(xy) (x2)y; (yx)x=y(x2) x,yeA.

Let tr(jc) (dimi4)^x trace (Rx) as in (0.1), and let b(x,y)
(dimA)~l trace (Rx°Ry) for x, yeA. Then b is a non-degenerate symmetric
bilinear form satisfying b(xy, z) b(x, yz) for ail x, yf z eA ([Sf] p. 44). Since

tr (x) b(x, 1), we hâve b(x, y) tr (xy), hence

(1.3) tr(xy) tr(yx) x,yeA
(1.4) tr((xy)z) tr(x(yz)) x,y,zeA.

Define an endomorphism of A, x«-»Jc, by

(1.5) Jr 2 tr (jc) — jt, xeAf

where we hâve identified tr(x) with tr(jc)- le A. Assume further that A is a

quadratic algebra, i.e. assume that xx lies in the center of A for every xeA.
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Define norm (jc) to be tr (jcjc). Then

(1.6) x2 - 2 tr (jc)jc + norm (jc) 0 xeA.
(1.7) xy yx x,yeA.

The identity (1.6) is called the standard quadratic identity, and it is immédiate
from our assumptions. One can dérive (1.7) from (1.6).

(1.8) Up to isomorphism, there is only one non-commutative, non-associative

algebra A as above ([Sf] pp. 70, 73), the 8-dimensional Cayley algebra. It can be

constructed directly as follows: Let Au dénote the set of ordered pairs of
quaternions with co-ordinatewise addition and the foliowing multiplication:

(a, b)(c, d) (ac - db, da + bc),

where a»-&gt;â is the usual conjugation of quaternions. Then Au is a central simple
non-associative, non-commutative algebra of dimension 8 over M satisfying the

same identities as A. If x (a, b) e Am, then jc (â, —b) and tr (x) Re a, the
real part of a. Our algebra A can be taken to be the complexification of AR.

(1.9) Let K dénote the group of algebra automorphism of A. Then K acts

trivially on Cl, hence faithfully on j4&apos; Kertr. The Lie algebra of K is

isomorphic to that of G2 ([Sf] p. 82), hence K°, the identity component of K, is

isomorphic to G2, and the représentation G2- K°-*GL(A&apos;) must be the
irreducible 7-dimensional représentation. Since G2 has no outer automorphisms,
Schur&apos;s lemma implies that K/K° is generated by scalar multiplications. But the

only scalar which gives an automorphism of A is 1. Hence we hâve:

(1.10) PROPOSITION. G2=- Aut (A) acts irreducibly and faithfully on A\

From now on we will identify G2 with Aut

(1.11) The form B(x, y) tr (xy) is symmetric, non-degenerate and preserved

by G2. Hence the représentation of G2 on A&apos; is orthogonal. The form B is positive
definite on Au, hence a compact real form of G2 is Aut (Au).

(1.12) We end this section by exhibiting some important trace invariants of
A9: Let n e N and let (jci, xn) e nA&apos; be arbitrary. Define functions

(1.12.1) *y -



628 GERALD W SCHWARZ

(1.12.2) pljk -tr (xt(XjXk)) 1 &lt; î, /, k &lt; n,

(1.12.3) yyW skew tr (*,(*,(***/))) 1 ^ i, /, *, / &lt; n,

where the last fonction is skew symmetrized with respect to its arguments. Clearly
the ocljy etc. are in C|/t4&apos;]G2. Note that octJ ajr Since the xt are in A&apos;, we hâve

jc, —xr Thus

tr((*3*2)*i)

Similarly, ^8123 —18213. Hence the plJk are skew symmetric in their indices as are
the Ytjkb by définition.

In §6 we give a &quot;Cayley theoretic&quot; proof that the &lt;xip etc. generate the &quot;trace&quot;

invariants of nA\ In §3 we show that the ocip etc. generate C[&gt;l4&apos;]G2.

(1.13) Let W dénote the dual (A&apos;)* of A&apos;. We let ae (S2W)G\ p e A\W)°2
and ye(A4W)G2 dénote non-zero éléments corresponding to the invariants &lt;xtp

etc.

(1.14) Remark, Let H be the subgroup of GL(A&apos;) preserving a and j8 (or a
and y), and extend H to GL(A) so that H préserves 1. Then one easily shows

that H consists of automorphisms of Ay i.e. H G2.

§2. Spin7 and the Cayley aigebra

(2.0) We show that there is a natural action of B3 on the Cayley aigebra A.
We exhibit generators of the B3-invariants of several copies of A.

(2.1) We consider various Lie subalgebras of $o(A) (resp. Lie subgroups of
SO(A)) where A is given the symmetric bilinear form x, y ¦-» tr (xy). Let
1= {La:a eA&apos;} and r= {Ra&apos;.a eA&apos;} where La (resp. Ra) dénotes left (resp. right)
multiplication by a. Let çj2 Der (^4) dérivations of A. Clearly, ç\2 £ #o(A) and
q2 is the Lie aigebra of G2. We hâve ([Sf] p. 81)

(2.2)

Let

(2.3) a=q2+{L.-Ra:aeA&apos;}.

(2.4) b=
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By (2.2), the sums in (2.3) and (2.4) are direct. Let r\:b-+a be the linear map
which is the identity on g2 and sends 2La + Ra to La - Ra, a e A&apos;.

(2.5) LEMMA. a and b are Lie subalgebras of $o(A), and rj:b-+a is a Lie
algebra isomorphism.

Proof. Let x, y eA, and let z dénote yx — xy. From équations (3.2), (3.67),
(3.68) and (3.70) of [Sf] one obtains

3[Lxf Ry] 3[RX, Ly] Rz-L2-D,
3[Lx,Ly] -2/?2-L2 + 2D,

where D e g2, and

(The formulas above actually differ in sign from Schafer&apos;s since he writes

operators on the right rather than on the left.) We then obtain

\LX *\*j Ly **y\== Lz i\z ~t ZL)}

[2LX + Rxy 2Ly + Ry] Lz + 2RZ + 2D,

and the lemma foliows easily.

(2.6) Remarks. (1) There is another Lie subalgebra c g2 + {La + 2Ra\a e
A&apos;}, and a, b and c are permuted by the &quot;principle of triality&quot; of éo(A) ([Sf] p.
88).

(2) a annihilâtes le A, hence a can be considered as a subalgebra of £o(Af).
Since dim a dim ëo(Af) 21, we hâve a ëo(A&apos;).

The Lie algebra b » £o(7) acts irreducibly on A (since g2 s b already acts

irreducibly on A&apos; and A&apos; is not fa-stable), hence there is an irreducible
représentation p:B3-+SO(A) such that the induced mapping p*:3o(7)-»3oC&lt;4)
has image fa. By the classification of représentations of B3, p is the (8-

dimensional) spin représentation.
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(2.7) We now construct a B3-invariant function on A x A x A x A: Let

M:AxA-+A&apos;

(*&gt; y) &gt;-» i(xy - yx) + tr (x)y - tr (y)jc.

A rather tedious compilation shows that

M(bx, y) + M(xt by) t](b)M(x, y); beb; x,yeA.

Since rj(6) âo(A&apos;), we obtain a b-invariant (hence B3-invariant) function

F:AxAxAxA-*C
yu yi, y*&gt; y*^K (M(ylf y2)M(y3f y4)).

(2.8) We now exhibit the generators of C[/l4]B3: Let (yl9 ,yn)enA be

arbitrary. Then there are B3-invariant functions

(2.8.1) «y-
(2.8.2) c^^skewF^,^,^,^) l&lt;i, j, k, /&lt;«,

where the last invariant is skew symmetrized with respect to its arguments.
Write yt Jtj 4- tr (yt) • 1, so that jc, € &lt;/4&apos;; i 1,..., n. Then the B3-invariants

can be expressed in terms of the G2-invariants of the xr We obtain the following
two formulas, where the first is obvious and the second follows from proposition
(6.8) of §6:

(2.9) ôl;

(2.10) etjkl yl)kl - tr (yt)pjkl + tr (y,)fiM - tr {yk)Ptjl + tr (yi)Pyk.

Note that (2.10) implies that the eljki are not zéro! In §3 we will show that the ôtJ

and €l)M generate C[«A]B3.

(2.11) Let ôe(S2A*)B3 and ee(A4A*)B3 dénote non-zero éléments cor-
responding to the ôtJ and cykl.

(2.12) Remark. B3 is the subgroup of GL(A) preserving ô and c: Since b

maps le A onto ^4&apos;, one easily sees that the orbit B3 • 1 is open and closed in
X {x e A : norm (jc) 1}. Since J*f is irreducible, B3 • 1 X. The isotropy group
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H of B3 at 1 acts orthogonally on A1 and préserves fi e A3((A&apos;)*)Gl by (2.10).
Then H G2 by (1.14). It follows that no subgroup of GL(A) strictly larger than
B3 can préserve ô and e.

§3. First main theorems

(3.0) We begin by recalling properties of intégral représentations of GLn
(those lying in tensor powers of Cn) and some results of classical invariant theory.
We then establish the FMTs for G2 and B3.

(3.1) Let tpi(n) dénote the standard représentation of GLn on C&quot;, and let
t//f(n) A&apos;( Vi(*))&gt; * - 0- Note that x^t{n) 0 for i &gt; n and that Vo(«) is the trivial
1-dimensional représentation. Let N00 dénote the séquences in N which are
eventually 0. If (a) (alf a2,...) eN00, let ip(a)(n) dénote the highest weight
(Cartan) component in Sai(tpi(n)) ® • • - ® Sak(tl&gt;k(n)) where k is minimal such
that a; 0 iox j&gt;k. If k^n (hence t//(fl)(tt)=£0), we will also use the notation
Vî1 * * &quot; V£n(w) or VV &apos; &apos; &apos; Vîk(n) to dénote ^(a)(«). If (a) is the zéro séquence,
then t/&gt;(a)(n) Vo(rt)- We will confuse the ^(a&gt;(n) with their corresponding
représentation spaces, and similarly for représentations t/j(a) defined below.

(3.2) We embed CcC&quot;+1 as the subspace of vectors with last component
zéro. Then for (a) e N00 we hâve inclusions ii&gt;(a)(n) c xp(a)(n + 1) compatible with
the actions of GLncGLn+1. Thus GL limGLn acts on t/;(a) lim i/;(fl)(n). Let
Un dénote the subgroup of GLn consisting of upper triangular matrices with l&apos;s

on the diagonal, and set U UmUn. We identify GLny Un and ip{a)(n) with their
images in GL, U and t//(fl), respectively. If ^(fl)(n)^=0, then V\^)= V(a)(n)Un is

the space of highest weight vectors of ^(O)(«)-

(3.3) Let (a) e N°°. We define deg (a) E ial9 width (a) E an and ht (a) (the
height of (a)) is the least j &gt; 0 such that at 0 for i &gt;y. The height, etc. of tp{a)
and V&gt;(a)(n) are defined to be the height, etc. of (a). (In the language of Young
diagrams ([W]) Ch IV), our notions of width and height correspond to the width
and height of diagrams, and degree just counts the number of boxes in diagrams.)
If (fe)€^°°, then (a) + (fc) dénotes (ax + bu and tp{a)^(b) dénotes VW(*)-
We Write (a)&lt;(b) (and t/&gt;(«)&lt;*/&gt;(*&gt;&gt;&gt; etc.) if at&lt;bi for the greatest / such that
at * bh

(3.4) Let (a), (6), (c) e N00. We say that t//(c)(n) occurs in il&gt;ia)(n) ®
(resp. i/;(c) occurs in t/;(a) ® V^)) ^ ^e latter représentation contains a sub-
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représentation isomorphic to V(c)(w) (resp. t/;(c)). We identify isomorphic
représentations of GL (and GLn). Hence, for example, we hâve equalities

(n) ty\{n) + ty2(n) for ail n, and the equality t//, ® V&gt;, \p\ + t//2.

(3.5) PROPOSITION (see [S5], [V3]). Lef (a), (b), (c)eN~. Suppose that
V&gt;(c)(&gt;0 tfccMrs in ^(fl)(w) ® ty(b)(n) for some n. Then

(1) deg V(c) deg i/&gt;(«) + deg tpib).
(2) ht ^(a), ht tpih) &lt; ht V(c) ^ ht v^o + ht tpih).
(3) width ^(fl), width ^(fe)

&lt; width i/;(c) &lt; width t/&gt;(a) -f width V/(6).

(4) The multiplicity of ^(r&gt;(n) in ty{a)(n) ® t^(6)(w) w independent of n as long
as n ^ht i//(c).

(3.6) COROLLARY. T/iere are (c1), • •, (cr) € N&quot; (not necessarily distinct)
such that

(3.7) Let &lt;/):G^&gt;GL(V) be a représentation of the complex reductive
algebraic group G. At times we dénote &lt;$&gt; by (V, G), (0, G) or &lt;p(G). We
sometimes confuse &lt;p with V, so that C[0]G C[V]G dénotes the G-invariant
polynomial functions on V.

Let (a)€f^°°. As in (3.1), we obtain an irreducible représentation (space)

f GL(V), and by composition a représentation 0(fl) of G on

(3.8) Let 0 (F, G) where dimV m. Let P 5*(^i ® V*) and P(n)
5*(^i(^) ® V&apos;*) c P. Then P (resp. P(n)) is a graded direct sum oiGLxG (resp.
GLnxG) représentations. Let R PG and /?(«) P(n)G. Note that P(n)=-
C[nF], #(n) « C[nF]G and that P lim P(n), /? lim R(n). We will use notation
R(&lt;f&gt;) or /î(n, G), etc. if it is necessary to emphasize the relevant représentation
or group involved.

Cauchy&apos;s formula ([Pr2], [S5]) gives us

(3.9) Srf(^®F*)= 0 V(.)®V(.)(V).
deg(a)=d

Since t^(fl)(V*) 0 if ht (a) &gt; m, we may restrict the sum in (3.9) to those (a) with
ht (a) ^ m. We then obtain

(3.10) P=
h
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(3.11) R= 0 V(a)®V(fl)(V*)G,
ht(a)&lt;m

and similarly for P(n) and R(n).

(3.12) Let R(n)+ (resp. /?+) dénote the éléments of R(n) (resp. /?) with zéro
constant term. Since R(n) is finitely generated ([Kft] p. 95), R(n)+1(R(nY)2 is a

finite dimensional GLrt-representation ©f=i W)(n)- We can find invariants
ftexlf(at)(V*)G such that the représentation space il&gt;(a&gt;)(n)®ft^R(n) maps onto
the copy of V(a&apos;)(&quot;)in R(n)+/(R(n)+)2; 1 &lt; i &lt;p. Then the subspaces W)(w) ®/
minimally generate R(n), i.e. bases of thèse subspaces are a minimal generating
set for R(n).

(3.13) THEOREM ([W], [S5], [V3]). Suppose that

minimally générâtes R(n). If k&lt;n or n&gt;m dimF, then

minimally générâtes R(k). In particular, if n^m, then {t/V)®/}?=i minimally
générâtes R. D

Note that if ht (a1) &gt; ky then ty^k) ®/ is zéro.

(3.14) Let {i/V)(n) ®/}f-i be as in (3.13). We say that the éléments lying in
W)(*0 ®^ transform by î^(a«)(n)» an(i their height, width and degree are defined
to be the height, etc. of (a1). We say that the minimal generators of R(n)
transform by i/V)(n)&gt; • • • » */V)(n)- Kn^m, then R is generated by {W) ®/i}&gt;

and we say that the minimal generators of R transform by t/\fl/),. Wo- Note
that the représentations W)(w) are well-defined but that the subspaces
tp(a&apos;)(n) ®/i » etc. are usually not.

Let 0 ¥^ (ot e ip^ be a highest weight vector, and define h, oot®fn i
1,...,/?. We call the h, (minimal) highest weight generators of R (and of R(n),
n &gt; ht (a1))- AH éléments of ^(fl)(w) ®/ can be obtained from h, via the action of
the Lie algebra of strictly lower triangular n x n matrices. In Weyl&apos;s language
[W], a minimal generating set of R(n) can be obtained from the éléments h, by
polarization.

(3.15) Let 0#/t a&gt;®/eVV)(&gt;0^®^)(^*)G. Identifying R(n) with
C[nV]G in the standard way, one sees that h corresponds to an invariant
homogeneous of degree £,&gt;7 a, in the yth copy of V.

(3.16) EXAMPLE. Let G Om act as usual on V Cm, and let

(xlf..., xn) € nV be arbitrary. Then CIT tells us that the G-invariant functions
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are generated by the inner product invariants plJ-xl • xr Thèse invariants are a
basis for a copy of VÎ(n) ~ xl&gt;ï(n) ® (S2V*)G S2(Vi(«)® V*)GczR(n). A
highest weight generator h is pn. Note that h has the degree of homogeneity
given in (3.15), and that the other generators obviously are obtained from h by
polarization.

(3.17) From (3.11) we see that the minimal highest weight generators of R
hâve height at most m dim V. Sometimes one can improve on this estimate: We

say that a représentation ty^n) is irrelevant (for &lt;t&gt;) if V (&lt;*)(&gt;*) 0 or V(a)(n) does

not occur as a subrepresentation of P(n)/7?(n)+P(n)+. One similarly defines
when t/;(a) is irrelevant, and if ht(a)&lt;«, then \p{a) is irrelevant if and only if
V(a)(n) is also. Clearly, if ht (a)&gt;m, then \p{a) is irrelevant.

(3.18) Remarks ([S5]). (1) If \p{a) is irrelevant, then no éléments of a

minimal generating set of R transform by xp^ay

(2) If V(û) is irrelevant and (b)eNœ, then any irreducible représentation
oecurring in V(&lt;*)® V&gt;(&amp;) *s irrelevant. In particular, T/&gt;(fl)+(&amp;) is irrelevant.

(3) If tyk is irrelevant, then t/;n is irrelevant for any n&gt;k, and minimal
generators of R transform by représentations of height &lt;k.

(3.19) THEOREM ([W], cf. [S5]). Let &lt;p (V, G) where dim V m.

(1) Suppose that V admits a non-degenerate G-invariant skew form (Le. &lt;fi is

symplectic) and m &gt; 2. Then il&gt;k+t is irrelevant, where m 2k.

(2) Suppose that V admits a non-degenerate G-invariant symmetric bilinear
form (Le. &lt;j&gt; is orthogonal) and m &gt; 1. Then the représentation \pkipi is irrelevant if

(3.20) LEMMA ([S5]). The représentation il&gt;k is irrelevant if and only if
AkV*cz 2 Al(V*f AAk~l(V*).

In particular, xj&gt;m is irrelevant if and only if Al(V*)G¥*0 for some i with
1 &lt; i &lt; m.

(3.21) We now apply the results above to the détermination of the FMT for
G2 (see (3.24) for B3). Let &lt;f&gt;l (resp. &lt;t&gt;2) dénote the irreducible 7-dimensional
(resp. adjoint) représentation of G2. If a, b e M, let &lt;p\&lt;t&gt;2 or &lt;K02(G2) or
(&lt;pï&lt;t&gt;i, G2) dénote the Cartan component in S^^S*^ The 0Î02 exhaust the
irreducible représentations of G2. We use Q} to dénote a trivial représentation of
dimension /.
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(3.22) PROPOSITION. The représentation \p5 is irrelevant for (&lt;f&gt;lt G2).

Proof. From ([SI] Table 5b) we hâve

(1) 5^ 0?+0i, A20i «2 + ^1

Let 0 € (A3V*)G and y e (A4V*)G be as in (1.13), where (V, G) (tf&gt;i, G2). Let
Lp dénote left multiplication by /3 in A&apos;V*. Clearly Lp(y) /5 a y is a generator
of A7F* - 0t. We show that L^(A2F*) A5V*, and then (3.20) establishes the

proposition.
Recall that (K, G)-(F*, G) is orthogonal. By (1), (A2V*f G) (Wt 0

W2, G) where (W^, G) (&lt;&amp;, G). Let 6 be a non-degenerate SO(V)-invariant
symmetric bilinear form on A2V. Since the (Wt, G) are non-isomorphic, b

décomposes as a direct sum bx © b2 where bt e (S2Wt)G is non-degenerate. Let o
dénote the orthogonal projection from S2(A2V*) to A4V*. Then a(6) 0 since

(A4V*)SO{V) 0. If o{bx) 0 or o(b2) 0, then both are zéro, which would imply
that y is zéro, since y must be a linear combination of o(bt) and a(è2)- Hence

a(fef)#0;ï l, 2.

Suppose that 0 L,3(Wi)c A5V*. Since y lies in the image of Wi®Wi in
A4V*, it would follow that L/3(y) 0, a contradiction. By Schur&apos;s lemma,
Lp:Wt-*A5V* is injective. Similarly, L^:W2-&gt;A5V* is injective, and hence

Lp : A2V* —? A5V* is an isomorphism. D

(3.23) FIRST MAIN THEOREM FOR G2. Let (V, G) (^1, G2). T/ien a

minimal generating set of R transforms by \f&gt;l, xp3 and \p4 with corresponding
highest weight generators au, j3123 and y1234, respectively. In other words, for any
neN, R(n) is generated by the ocip filjk and yljkl of (1.12).

Proof Suppose that part of a minimal generating set of R transforms by ^(a).
If ht(a)&lt;3, then ^(a)=^? or t/&gt;3, since in [SI] we showed that R(3) is a

polynomial algebra on &lt;xn,..., &lt;x33 and j8123. By (3.19.2) and (3.22) the

remaining possibility is t/&gt;(fl) tp^V* where ht (b) &lt;3. In this case, a corresponding

highest weight generator h lies in C[4V]G and has degree exactly one in the
last copy of V (see (3.15)). Thus h corresponds to a covariant in C[3V]
transforming by V &lt;pi. By ([S2] Table 4, Theorem 1.1), as a module over
C[3V]G, the 0rcovariants of C[3V] « S&apos;^O are a free module on 7 generators.
It is easy to see that there are three generators each in Sl(34&gt;\) and in
3A20! c S2(30!), and that there is a generator in A3&lt;f&gt;1 c 53(30O (see (3.22.1)).
Hence deg (a) &lt; 4, i.e. xp(a) W
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(3.24) We now consider the case G B3. Let &lt;f*i dénote the usual
représentation of B3 Spin7 on C7, set 02 A20! and let 03 dénote the (8-
dimensional) spin représentation. As in (3.21), we dénote the irreducible
représentations of B3 by 0?0203 or (0?020i, B3), etc. where 0^050^ is the
Cartan component of Sa0, &lt;8&gt; Sh&lt;p2 ® S&gt;3; a,b,ce N.

(3.25) PROPOSITION. The représentation i/;6 is irrelevant for (03, B3).

Proof. We hâve ([SI] Table 3b)

(1) S24&gt;3= 4&gt;3+01, A203 02+0,
A&gt;3 0103 + 03, A&gt;3 03 + &lt;t&gt;\ + 01 + #1

Let e e(A4V*)c be as in (2.13), where (V, G) (03, B3). Exactly as in (3.22)
one can show that L€A2V* A6V*. D

(3.26) FIRST MAIN THEOREM FOR B3. Let (V, G) (03, B3). T/ien a
minimal generating set of R transforma by ty\ and t/&gt;4 with corresponding highest
weight generators ôn and cî234, respectively. In other words, for any n eN, R(n)
is generated by the ôtJ and etJkl of (2.8).

Proof Let t/&gt;(a) correspond to a subset of a minimal generating set of R. In
[SI] we showed that the ôv and €1234 generate R(4), hence by (3.19.2) and (3.25)
we may assume that x^(a} ^(^Vs where ht (6) ^3. A corresponding highest
weight generator h then lies in C[5V]° and is skew and of degree 1 in the last

two copies of V. Thus h corresponds to a covariant in C[3V] — S#(303)

transforming by 0! or 02 (since A203 0î + 02). From ([S2] Table 2, Theorem
1.1) we obtain that the 0rcovariants are a free module on three generators,
which are easily seen to be the three copies of 0, in 3A2&lt;^h ç S2(3#3). In this

case, then, deg ty{a) ^ 4, which is impossible.
The 02-covariants are a free module on six generators [S2]. There are three

generators in 3A203 c 52(303) (which again lead to the contradiction deg \jj{a) &lt;

4). Now &lt;^2 A30i, hence 02® 0j A30, ® 0j contains a copy of A2$i 02
(by contraction). Thus there are three copies of &lt;f&gt;2 in 3(S203 ® A2&lt;^) c 54(303),
and thèse are the other three generators of the 02-covariants. Hence deg \p^ 6
and t/&gt;(û)= t/&gt;,t/&gt;s.

Now tp^sG t//j ® ^;5 and A503 A303 0i03-f 03. Hence our highest
weight generator h is the contraction of the first copy of 03 V with the copy
lying in theexterior product of the five copies of V. But (3.25) implies that
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L€(V*) is the copy of V* in A5V*, hence h is not part of a minimal generating
set. (Brutally, h is a multiple of &lt;5ue2345 - &lt;512e1345 + • • • + &lt;515e1234.) D

§4. Second main theorems

(4.0) We discuss some gênerai facts concerning second main theorems. In §5

we apply them to the cases of G2 and B3.

Let &lt;f&gt; (Vf G) and m dim V as in (3.8)-(3.15). Let R S&apos;^i ® V*)G be

minimally generated by subspaces W)®/&quot; * 1, ...,p. Let T S&apos;(©W))&gt;

and let Jt:T~*R be the canonical (given our choice of the /,) GL-equivariant
surjection. Define T(n) S&apos;(© W)(w)) £ r- Then ^ induces jr(n) : T(n)-»R(n),
and /(n) Ker ;r(n) lies in / Ker n. We give éléments of t//(fl«) 3 V(a&apos;)(n) their
natural degree (=deg(af)) so that n and n(n) are degree preserving homo-
morphisms of graded algebras. We use notation T(G), I(n, (f&gt;), etc. if it is

necessary to emphasize the group or représentation involved.

(4.1) Given n\T—&gt;R a relation is, of course, an élément of /. It will be

convenient for us to use the same term to apply to irreducible subspaces of /:
A relation (of n\T—»/?) is an equivariant injection rç:t/&gt;(fr)—»/ for some (b).
Note that r\ : ip(b)-* T has image in / if and only if t]{h)el where h is a highest
weight vector of ty(by We call such éléments rj(h) e I highest weight relations. We
also refer to equivariant injections a:t/;(c)(n)-^/(n) as relations (of
n{n): T(n)-&gt;R(n)). A relation rj : ^(fe)-&gt;/ induces relations rj(n) : xpib)(n)-*I(n)
by restriction, and if o: %j&gt;{c)(n)-*I(n) is a relation with n &gt;ht (c), then there is a

unique relation r):ip(c)-+I with t]{n)-o. We use the notation (t/&gt;(*)&gt; rj) to
dénote relations r] : t/^)-»/, and similarly for I(n).

(4.2) Let r] : V^)-&quot;* T be an equivariant inclusion. If ht (b) &gt;m, then Imr/ç/
by (3.11), hence r\ is a relation. We call such relations gênerai. General relations
are ones which arise for dimensional reasons. We call a relation rç:t//(fe)-*/
spécial if ht (b) ^ m.

(4.3) It is now natural to consider a second main theorem for ^ to be a

collection of relations (tpibt)f r?;) whose images rj,(xp(bi)) generate /. Equivalently,
the images rj;(n)(i/;(fe0(n)) should generate I(n) for ail n.

(4.4) THEOREM ([S5]). Let V,GfT S&apos;(©?-i t/V)) e&apos;c- 6e « ûèwe- Then
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there are afinite number ofrelations (V(*&gt;o&gt; rjy), ; 1,. q such thaï
(1) ©; rij(tlf(i,j)) minimally générâtes I.
(2) ht (bJ) &lt; m + max ht (a1), j 1, q.

(4.5) COROLLARY. / is generated by any collection of relations (ipicj)t o})
such that E tfy(fc)(î/&gt;(c/)(fc)) générâtes l(k) for some k&gt;m 4- maxdeg(a&apos;). In
particular, k 2m suffices.

(4.6) Let Htr dénote the direct sum of the subspaces of T transforming by
représentations of height ^r. By (3.5), Htr is an idéal of T. Let Spc dénote the
subideal of / generated by the spécial relations. Then / Spc + /Jfw+i.

Assume now that generators of Spc (i.e. of /(m)) are known, and consider the
problem of finding generators of Htm+ly or more generally, of some Htri r e N.

(4.7) THEOREM ([S5]). Let r 5&apos;(©f=i t/&gt;(«&apos;)) andreN. Then the generators

of Htr lie in the sum of subspaces Sdlt/V) ® &apos; * &apos; ® ^rfpVV) where E dt &lt;

1 + max {0, r-t}y andt max {ht (a1) : dt &gt; 0}.

(4.8) COROLLARY ([V2]). The generators of Htr lie in the sum of subspaces
where E dt ^ r.

(4.9) EXAMPLE. Let (V, G) (Cm, Om) as in (3.16). Then T S&gt;i By
[W] (or lemma (7.3) below) there are no spécial relations, and by (3.5),
représentations occurring in 5yt//i hâve height ^j. Thus (4.8) implies that

I-Htm+l is generated by the height m +1 représentations in Sm+1(xpl), namely
Vm+i e Sm+1(t/&gt;i) ([SI] Prop. 2.4). A highest weight relation is det (ptJ)Zt\ where
the pl} are the basis of t/&gt;ï(m +1) given in (3.16). Note that theorem (4.4) also
shows that / is generated by relations of height &lt;m + 1.

§5. Some relations

(5.0) We first consider the case (V, G) (fa, G2). Then there is a surjection
n\T-*R where r S&apos;(^&gt;i +1//3 + ^4). We exhibit six irreducible subspaces

ReU,..., Relé of / Ker n. We use them to show that / is generated by Rel6 and
relations of height ^6. In §§9 and 10 we show that Relx(6),... ,Rel5(6)
generate /(6), giving our SMT for G2. In §6 we show that Rell5..., Rel6 follow
from the identities of the Cayley algebra. We dérive similar results for (&lt;t&gt;3, B3)

beginning in (5.11).
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(5.1) Let r):\l&gt;ia)-+ Sby\®Scil&gt;3®SdiH&gt;4 be an equivariant inclusion. In the
cases we consider, r\ will almost always be determined up to scalars by (a), b, c
and d (we will note the exceptions), so we will use the notation t/;(fl)(arft/3cyrf) to
dénote Tj(xp^)f and we will dénote a highest weight vector of rç(t/\fl)) by
K&apos;lP(a)(&lt;xbPcYd))- F°r example, there are copies t/&gt;it/&gt;5(ary) and tyiipsifï2) of ViVs
in T, and one can compute that they hâve highest weight vectors:

&lt;*ll72345 ~ #1271345 + #137l245 ~ ^1471235 &quot;+&quot; ^1571234-

(5.2) Let r(ip(a)) (resp. K^ca))) dénote the multiplicity of xj&gt;ia) in /? (resp. T).
Then xp{a) occurs in / with multiplicity t(xj)ia)) - r(ipia)). Consider, for example,
the cases of î/&gt;it/&gt;5 and if&gt;% Using the Littlewood-Richardson rule [McD] and

([SI] Table 2b) one can verify that ^it/&gt;5(ary) and ViVs(02) account for ail the

occurrences of Vilte in ^&gt; i-e- ^(ViV&apos;s)= 2. Similarly, there are occurrences
t^(*4), *3(^2) and ^l(y2) of f4f and f(V;24) 3.

To compute the multiplicities r(t//(fl)) we use the fact that r(t/;(fl))
dim
(tp6(

dim

r{\p

^)(^*)G dim^(û)(F)G
V), G) (0!,G2) and
t/Ji t/j^CV^) dim (0i &lt;&amp; (0i
1V5) 1. Also, K1//4)

C[W]G is regular. Clearly t(ipl

(use

dim 1/

i) 2,

3.11). Now
^), G) (A20
))°2 - dim 0?2

^(F)G dim ij

hence r(t/;4)

1^1 ® t/^5 ^
i&gt; G2) (02 +

=1-0=1
\)\{V)G r(t/;;

2.

&apos;lV5 +
0i, G

and
3) K1

2).

where
Thus

hence
since

(5.3) Our computations show that / contains single copies of t/&gt;i^5 and ^4.
We can specify thèse subspaces by Computing the corresponding highest weight
relations, which we now do for the case of t/h^s- Note that the highest weight
relation must be a linear combination of the highest weight vectors A(i//1t//5(ary))
and Â^xt/^QS2)) given in (5.1).

Let 1, i, j, k dénote the usual basis of the quaternions, and let l0, i0,...
dénote the Cayley numbers (0,1), (0,1),... (see (1.8)). As in (1.12), the alJf etc.

are functions of Cayley numbers xly x2, •. Let xx i, x2 /, x3 k, x4= l0,
and x5 i0, Then A(t/;1t/;5(ûry)) has value -1 and Â^^OS2)) has value 1. Hence

siP2)) is our highest weight relation.

(5.4) Using the techniques above we computed the highest weight relations
given in (5.4.1) through (5.4.10) below. They are presented as linear combina-
tions of highest weight vectors A(t//(fl)(ar*j8cyt&apos;)) which we list in Table I. We use
the notation Rel; or Rel; (G2) (resp. Rely (n) or Rel; (n, G2)) to refer to the

subrepresentation of / (resp. /(n)) with highest weight vector given in (5.4.j).



640 OERALD W SCHWARZ

Table I

3

4

5 A(v,V6(j8y))= 2 (-i
2si&lt;/=s6

6 J2
7

8

9 A(v2vA(r2))= S (-i)&apos;+/y.2,,y«

io S

12

13

14

15

16

17 (v3V7G

where V3V7 E V2 ® V4

In Table I, we use % (resp. yip i &lt;j) to dénote yabcd where a &lt; b &lt; c &lt; d and
{a, b, ct d, i} {1, 2, 3, 4, 5} (resp. {a, b, c, d, i, /} {1, 2, 3, 4, 5, 6}). Symbols
9ijk&gt; $i ^nd flq hâve analogous meanings.

(5.4.1)

(5.4.2)

(5.4.3)
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(5.4.4) A(t/;2(y2))

(5.4.5) A(^2^6(r2

(5.4.6) A(v&gt;8(y2)).

(5.4.7)

(5.4.8)

(5.4.9)

(5.4.10) 7A(t/&gt;3V7(*3y)) -
where VaV?032y) £ Va ® VU s S2Va ® t//4.

(5.5) Let /(G2) or just / (resp. J(n, G2) or just /(«)) dénote the idéal in T
(resp. T(n)) generated by Rel^ Rel6 (resp. Relj (n),.. Rel6 (n)). Now we
can state, but not yet prove:

(5.6) SECOND MAIN THEOREM FOR G2. /(G2) =/(G2).

Note that Rel^ ,Rel5 are spécial relations, while Rel6 is gênerai. Thus
&quot;most&quot; of the relations for G2 are spécial. For the classical groups most, if not ail,
relations are gênerai.

(5.7) At first glance, the relations Rely are somewhat bewildering. However,
one can make the following rough statements immediately. Since S2tyA ipj +
^2^6 + V&apos;s* relations Rel4, Rel5 and Rel6 imply that the y invariants ail satisfy
quadratic équations over the subalgebra generated by the a and fi invariants. In
other words, any monomial in the a&apos;s, j3&apos;s and y&apos;s can be reduced to ones of
degree 0 or 1 in the y&apos;s. Note that theorem (3.19) says that there must be
relations like Rel4 and Rel5 showing that t/&gt;4(y2) and t/&gt;2V6(Y2) are in the idéal of

Taking Rel1?... ,Rel5 into account one can see that, if n &lt;6, there is a

surjection

(5.8) 0 SYi(n) ® V*V&gt;J(/i)-&gt;K(n)*
2t+3j+4k=d

where R(n)d dénotes the éléments of R(n) of degree d. The mapping in (5.8) is

not injective, and in §§9-10 we will see that Rel8 and Rel9 account for the kernel.
The relations Rel7,..., Rel10 will be useful in our proof of theorem (5.6).

They are conséquences of Re^,. Rel6, i.e.

(5.9) PROPOSITION. Rel7, Rel8, Rel9 and Rel10 are in J.
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Proof. We first consider Rel9. From Littlewood-Richardson we know that
there is a unique copy of t^t^a/Sy) c V3O) ® */&gt;i VsCûT)- Thus tensoring Rel!
with ip3(P) and considering the subspace transfonning by ^4^5 we obtain a

relation involving ^4t^5(ûfj8y) (in a non-trivial way) and copies of ^4^5 in
S3%l&gt;3(p). But S3tl&gt;3 contains no copy of tp4tp5 (see [SI] Table 2b), hence

Similarly, the subspaces transforming by y2 in Reli ® t/&gt;4(7)&gt; Rel2 ®
and ReU ® ^ÏC^) giye relations indicating that ty\(a$)&gt; ip2(ay2), ty2{&lt;x2p2) and
V2(P2Y) ail hâve the same image in R. Thus Rel7 and Rel8 are in /. The subspace
of Rel3 ® tyiiP) transforming by ^3^7 is a nontrivial relation between the copies
of V3V7 ifl VKP2) ® ^4(7) and tyxtysiP2) ® ^4(7) (neither copy is a relation by
itself.) Then from Rel! ® ^4(7) and Rels ® V\(&lt;x) w^ see that ^3^7(^7) and

^3^i(P2Y) S ipiVsiP2) ® ^4(7) hâve the same image in /?. Hence Rel10c/. D

(5.10) THEOREM. /(G2) w generated by Rel6 and relations of height &lt;6.

7(G2) =/(G2) i//(6, G2) /(6, G2).

Proof. From theorem (4.7) and Littlewood-Richardson, one sees that,
modulo /, the idéal Ht7 is generated by:

VtV), q^i^P), ^3^7(^7) and

Note that a highest weight vector of ^7(^7) is the déterminant det e /?(7). As in
the proof of (5.9), the tp2 subrepresentations of Rel10 ® ^4(7) and ^h ® V;i(û&apos;2)

show that, mod/, t^7(a7) has det2 as highest weight vector. Similarly, Rel4®
t/&gt;3(j8), ReU ® tl&gt;iil&gt;4((xP) and Rel2 ® t/&gt;2(ar2) show that i^^ii^P) has highest
weight vector yi^det, modJ, and Rel10 shows that ^3^7(^7) has highest
weight vector /J123 det, mod/. Hence any représentation in T/J of height ^7 is in
the idéal of ^7(^7). In particular, any relation of height 7 is a conséquence of
relations of height ^6. Also, one easily sees that éléments of height &gt;7 in T/J lie
in the idéal of

£ t//3(j8) ® Vi Vs(*y).

Now Re^ ® ^3^) shows that ipiVsi&amp;PY) is a sum of copies of V1V8
S3it&gt;3(p), mod/. But one can check that 53^3 contains no copies of ^it/&gt;8&gt; hence

J. D

(5.11) We now describe analogous results for the case of B3. We omit ail
proofs since they are similar and even easier than in the case of G2.
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Let (V, G) (03, B3). Then there is a surjection n\T-+R with kernel /,
where T S&apos;(t/&gt;i + xp4). As in (5.1), irreducible représentations xp(a) in S*&gt;î®

Sct/&gt;4 are denoted t/&gt;(a)(ôV), and their highest weight vectors are denoted
Mt/&gt;(a)(&lt;5*€c)). Using the techniques of (5.2) and (5.3) we found relations with the
foliowing highest weight vectors:

(5.11.1) Â(t//2t//6(£2)) 4- A(t//2t/;6(&lt;52e)).

(5.11.2) Ktâ(ô5))-
(5.11.3) A(t/&gt;12(e3)).

(5.11.4)

The expressions for A(i/;2t/;6(e2)), A(i//2t//6(&lt;526)), A(V&gt;|(&lt;55)) and A(t//§(Ô62)) are as

in Table I, just replace ûr&apos;s by &lt;5&apos;s and y&apos;s by e&apos;s. We leave it to the reader to
write out expressions for A(t//12(e3)) and

(5.12) We use Rel; or Rel; (B3) to refer to the relations with highest weight
vector (5.11.J), 1 ^;&apos;^4; and similarly for Rel7 (n), etc. Let / /(B3) dénote the
idéal in T generated by Rel1?. Rel4; and similarly define J(n) =/(n, B3).

(5.13) SECOND MAIN THEOREM FOR B3. /(B3) /(B3).

In §§8-10 we show that 7(7) =/(7). This is sufficient to establish the SMT for
B3 because of the following resuit.

(5.14) THEOREM. 7(B3) is generated by /(B3) and relations of height &lt;7.

Hence /(B3) /(B3) if 7(7, B3) /(7, B3). D

§6. Generators and relations via the Cayley algebra

(6.0) We show that the relations Rel£ (G2) and Rel; (B3) are conséquences of
the identities satisfied by the Cayley algebra A. We also use thèse identities to
show that ail trace invariants of several copies of A&apos; are generated by the ones of

type ocy p, y. The only part of this section used in the rest of the paper is

proposition (6.8) which we used in establishing (2.10).

(6.1) Let a, b, c be éléments of A. Then polarizing the identities (1.2) and
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(1.6) we obtain:

(6.2) a(

(6.3)

(6.4) ab + ba 2 tr (a)b + 2 tr (6)û - 2 tr («6).

We use thèse identities to study monomial mappings from n copies of A&apos; to A:
Let (xi,..., xn) € n.4&apos; be arbitrary. As in (1.12), we set atJ —tr (*,*y), etc. Let
e and / be two expressions which are sums of terms p and tr (p)q where p and q
are products of the x,&apos;s. We write e ~/if the identities of A show that e —/equals
a sum of products each of which has a factor oclr For example, (6.4) gives

(6.5) *,(*,**) + (XjX^x, ~ -2ptjk,

and from (6.2), (6.3) and (6.4) one dérives that

(6.6) xXx,xk) and (jc,*,)** are skew in i, j, and /c, modulo ~.

(6.7) Let a, b,c eA. We use [a, 6] to dénote ab - ba and (a, b, c) to dénote

(a6)c — a(bc). It follows from the alternative laws (1.2) that (a, 6, c) is skew in its

arguments ([Sf]).
In the following proposition, the terms fin etc. hâve the same meaning as in

Table I of §5.

(6.8) PROPOSITION.

(1) 71234 ~

(2) X!(JC2(X^4)) ~ V1234

(3) {XXX2){X3XA) - 71234 ~ 0234*1 + 0134*2 + 0124*1 ~ 0123*4-

(4) *i((*2*3)*4) ~ -V1234 - Piy#\ - 0134*2 + 0124*3 - 0123*4-

1 1

in fact there is equality.

Proof. It follows from (6.2) and (6.4) that, modulo ~, *i(jc2(*i*4)) is skew in



Invariant theory of G2 and Spin7 645

its arguments, hence (1) holds. We also hâve

(6) xl(x2(x3x4)) ~ -
(7) xl((x2x^)xA) ~ -(x2x3)(xxx4) - 2/3123x4,

(8) x^x^x*)) ~ (x2x3)(xxx4) + 2pl23x4 -
(9) x2(*1(*4*3)) ~ (xxx4)(x2x3) - 20124*3 + 2/3134jc2,

where (6) follows from (6.5) and (6.6), we obtain (7) from (6.2) and (6.5),
équation (8) combines (6) and (7), and (9) results from (8) by interchanging xx
with x2 and x3 with x4. Now

(10) (x!X4)(x2x3) + (x2x3)(xxx4) - 2y1234

by (6.4), (8) and (1). The left hand sides of (8) and (9) are equal, mod ~, hence

(8), (9) and (10) combine to give (2). One then easily obtains (3) and (4) from (8)
and (6) after switching indices.

To establish (5) we need the following identity for alternative algebras ([Sf]
p. 79):

(11) [a, {by c, d)] (bc, a, d) + (cd, a, b) + (db, a, c) a, b,c,de A.

Substitute a xxx2, b jc3, c x4f and d x5f and let RHS (resp. LHS) dénote
the resulting right hand side (resp. left hand side) of (11). Then

(12) RHS (*3x4, x^, x5) + (x4x5, xxx2&gt; x3) + (x5x3, xxx2f x4).

(13) LHS [jt,Jt2, (x3, x4, x5)] ~ (xxx2)((x3x4)x5) + (xxx2)((x4x5)x3 + 2p345)

Skewing the term (jciX2)((^3^4)^5) of (13) with respect to xu x2&gt; x3 and x4 we

obtain 71234*5 by (3), and similarly for the terms (xxx2)((x4x5)x3), etc. Thus

(14) skewL//S~-|i(~l)l1&gt;lJCl-i 2 (-ir&apos;A,*,*,
1 1 l&lt;K/&lt;5

where we skew with respect to xu...,xs. Clearly skew RHS-0, hence
skew LHS 0 and the right hand side of (14) is 0, yielding (5).

Let C[nA&apos;]tr dénote the subalgebra of C[nA&apos;] generated by ail functions
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tr (p), where p is a product of the xr We give a &quot;Cayley theoretic&quot; proof of

(6.9) THEOREM. C[n^4&apos;]tr is generated by the invariants of type oc, p and y.

Proof. Let p be a product of k of the variables xt,..., xn. We may assume
that the je, occurring in p are distinct. If k ^ 3, then tr (p) is in the subalgebra of
the oc and p invariants. If k &gt; 4, then using (6.8.2) through (6.8.4) one can easily
show that p, modulo a, j8, and y invariants, is of the form qr where q or r is a

product of k&apos; of the xt, with 4 &lt;£&apos;&lt;£. For example, (x 1^2X^3(^4X5)) -
*3((*i*2)(*4*s)) modulo oc and p invariants. By induction, we reduce to the case

p qr where q or r is a product of 4 of the x/s. But (6.8.2), (6.8.3) and (6.8.4)
and the corresponding conjugated équations show that any product of 4 of the jc,&apos;s

is zéro modulo the oc, P and y invariants.

(6.10) THEOREM. The relations Re^ (G2),..., Rel6(G2) are conséquences

of the identifies of A.

Proof It is enough to dérive the highest weight relations

(5.4.1),. (5.4.6). Let LHS (resp. RHS) dénote the left (resp. right) hand side

of (6.8.5). Then (5.4.1) is the relation -tr(jc1(L//5)) + tr(jc1(/î//5)) 0, and

tr((x1x2)LHS)-tT((xlx2)RHS) Q combined with (6.8.3) yields the relation

~iKtyitysiPy)) ~ 0- The représentation xp2Vs has multiplicity two in T,

generated by faipsiPY) ai*d tyitysi^P)- Thus the identities of A imply (5.4.2).
From (6.8.5) again, we obtain tr (xï(LHS)x6) - tr (xl(RHS)x6) 0. Skewing

over the indices 2 through 6 and using (6.8), one obtains that jbMV&apos;iV&apos;ôC/fy)) ~0.
Since no subspace of 5*(Vi + ^3+ ^4) of positive degree in ipl transforms by
t^itpô, we see that (5.4.3) is obtainable from the identities of A.

Relations (5.4.4), (5.4.5) and (5.4.6) are obtained as follows: Let a—xxx2y
b =x3x4f c=x5x6. Then by (6.8.3),

712347x256 ~ tr ((6a)(ac))

and by (1.2) through (1.4),

tr ((ba)(ac)) tr (b(a(ac)) tr (b(a2c)),

where a2 (xlx2)(xîx2)~0. Thus 7123471256 ~ 0. The same argument works to
show that yi234~0, and as above, we see that (5.4.4) and (5.4.5) follow from the

identities of A.



Invariant theory of G2 and Spin7 647

Now

7123475678 ~

Skewing in xït... ,*5 and applying (6.8.5) we see that A(t/;8(y2)) must be an

expression in the a and j8 invariants. But no such expression can transform by
\j&gt;s, and we obtain (5.4.6).

(6.11) THEOREM. The relations Rel^Ba),... ,Rel4(B3) are conséquences
of the identifies of A.

Proof Let yt xt + tr (yg) •1, i 1,... n be as in (2.8)-(2.10). By (2.9) and

(2.10) the relations (5.11.J) can be expressed as polynomials in the tr(y,)
multipled by relations of the a, fi and y invariants of xlf..., xn. It is easy to see

that the relations of the G2 invariants thus obtained are in /(G2), (or use the SMT
for G2), and then we need only apply theorem (6.10).

§7. Poincaré séries of algebras of invariants

(7.0) We recall some gênerai properties of algebras of invariants and their
Poincaré séries. We examine closely the cases of R(n, G2) and R(n, B3).

(7.1) Let £ be a graded C-algebra. We use En to dénote the éléments of E
homogeneous of degree n. Assuming that dimc £„ &lt; °° for ail n, we define the
Poincaré séries Pt(E) to be £«=o (dimc En)tn.

(7.2) Let H be a reductive complex algebraic group and W a représentation
space of H. Let D C[W]H and set d dim D.

(7.3) LEMMA (see [Kft] pp. 100-101, [S3] p. 68). IfH° is semisimple or the

représentation (W, H°) is orthogonal, then d dim W - max^^ (dim Hw).

(7.4) If fu fr e D, let (fu fr) dénote the idéal fxD + • • - +/rD, and
let Z(fi,..., fr) dénote the zéro set of the fin W. A homogeneous séquence of
parameters (HSOP) for D is a séquence/!,... ,fd of non-constant homogeneous
éléments of D such that dim D/(fïf ...,/«*) 0. Noether normalization implies
that D always has an HSOP.

(7.5) THEOREM. Letfly..., frbe non-constant homogeneous éléments ofD.
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(1) D is a free graded C[/u... ,f^-module if and only if
D/{fu...,fr) d-r.

(2) Iffu ...,fdisan HSOP/or D, then

as graded C[fXi..., fd]-module, where D° D/(fu fd).
(3) // Z(/i,. ,/r) has codimension r in W, then D is a free C[f\,. ,fr]-

module.

Proof Part (1) is the fact that D is Cohen-Macaulay ([HR], [Stl]), and (2)
follows from (1). The hypothesis of (3) implies that C[W] is a free C[/i,... ,/J-
module (use (1) with H trivial group), and projecting equivariantly from C[W]
to C[W]H we obtain (3). D

(7.6) Fix an HSOP fx,...,fd for D. Then D° D/(/,,... ,/„) is a finite
dimensional algebra, hence

(7.7) Pf(D°)«2^
i=0

for some at € N, where we assume that at #0. Let e, deg/, i 1,... d. Then

(7.5.2) shows that

(7.9) PROPOSITION. A^ame that H is connected and semisimple. Then

(1) a, &lt;*,_„ 0&lt;/&lt;/.

(2) d&lt;-/ + Ee,&lt;dimW.
(3) / -dim W + E^/f codimw (W - W)^2, w/iere IV&apos; dénotes the union

of the orbits in W with finite isotropy.

Proof. By Murthy [Mur], D is Gorenstein, which implies (1) (cf. [Stl]). Parts

(2) and (3) are récent work of Knop [Kn] (cf. [St2]).

(7.10) After some preliminaries we find HSOP&apos;s for the algebras R(n, G2) and

R(n, B3): Let B{n) « QnC7]07 and C(n) « C[nC4]°4, n^l. By CIT (see (4.9)),

tâln)) where (^l(n)) dénotes the idéal of ^|(«)c5&gt;f(w),
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and similarly C(n) S*t^(n)/(t//§(n)). The canonical surjection

a:B(n) s S^Î(n)/(^i(n))^S&gt;î(n)/(^i(n)) - C(n)

is induced by the standard inclusion of C4 into C7. Let plJf 1 &lt; i, y &lt; n dénote the
usual inner product generators of B(n).

(7.11) LEMMA. Let n &gt; 3 and sef k 4n - 6. 77ie?n dim C(n) A: and there

are k linear combinations hïf... hk of the pl} such that

(1) Z(hlf... hk) has codimension k in nC7.

(2) The a(ht) are an HSOP/or C(n).

Proof. If n ** 3, then there are orbits in nC4 of dimension 6 dim O4, and

lemma (7.3) shows that dim C(n) k. The techniques of ([S2] pp. 8-10) show

that the zéro set of ail the ptJ has codimension k. Let

s

and let Z (C*)* {ztjr : 1 &lt; î &lt;y &lt; n and 1 &lt; r &lt; A:}. If {zyr} € Z, let fcr S zljrpip
r 1,..., k. Then there is a non-empty Zariski open subset Z&apos; of Z such that ail

the corresponding {hr} hâve a zéro set of codimension k (see [ZS] Vol. I pp.
266-267). Similarly, there is a Z&quot; such that the corresponding {o(hr)} are
HSOP&apos;s for C(n). Choosing coefficients in Z&apos;HZ&quot; gives the required

*i,..., hk. a
(7.12) Remark. One may replace B(n) by B\n) C[nCs]°* in (7.11) and

obtain the same conclusions.

(7.13) THEOREM. Letn&gt;A. Then

(1) dim/?(n, G2) 7n-14.
(2) R(n, G2) has an HSOP consisting of4n-~6 éléments ofdegree 2 and 3n-8

éléments of degree 3.

(3) degree Pt(R(n, G2)°) 10n - 36.

Proof It follows from ([S3] Cor. 7.4, Table V) that (n0u G2) satisfies the

hypothesis of (7.9.3) when n&gt;4. Hence (2) implies (3), and (7.3) shows that

dim R(n, G2) 7n - dim G2 In - 14, establishing (1).

Let k dim C(n) 4n - 6, and choose hu ,hk as in (7.11) (identifying

0i(G2) with C7 orthogonally so that the alf and ptJ are identified). Let R(n)&apos; (resp.

R(n)&quot;) dénote the subalgebra of R(n) generated by the a and j3 invariants (resp.
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/3 invariants and the h,). As observed in (5.7), R(n) is finite over R(n)&apos;, and by
Relg(/i) and our choice of the h,, R(n)&apos; is finite over /?(«)&quot;. Thus

R(n)/(hlr..., hk) is finite over R{n)Hl{hx,..., hk), where both hâve dimension
In - 14 - k 3n - 8 (use (7.11.1) and (7.5)). Now R(n)&quot;/(hu hk) is gen-
erated by the )8 invariants, hence by Noether normalization there are q 3n — 8

linear combinations A*+i,.... hk+q of the /S invariants which are an HSOP for
/?(n)7(Ai hk). Thus hu...,hk, hk+1,..., hk+q is our required HSOP for
R(n). a

(7.14) Remarks. We consider the Poincaré séries of R(n, G2) for 3 n &lt; 6.

(1)

(2) P,(J?(4, G2)) (1 - f2)-10(l - f3r4(l + O-

(3) P,(R(5, G2)) (1 - ï2)~14(l - r3)&quot;7(l +13 + 3t3 + 6r4

+ 3t5 + lt6 + St7 + If + ¦ ¦ ¦ +114).

(4) P,(R(6, G2)) (1 - rV18(l - r3)&quot;10(l + 3f2 + Wt3 + 2\t*

+ 30f5 + 75r6 + 120I7 + 165f8 + 220r9 + 315f10

+ 330/11 + 330f12 + 330f13 + • • • +124).

We will establish (3) and (4) in §10. Since R(3, G2) is regular, (1) is immédiate.
Note that the conclusion of (7.9.3) fails in this case. When n 4, the at) and f},)k

form an HSOP, and P,(R(4, G2)°) 1 +14 by Rel4 (4). Hence (2) is as claimed.

Using techniques as above one establishes:

(7.15) THEOREM. Letn^S. Then

(1) dimi?(ra, B3) 8«-21.
(2) There is an HSOP for R(n, B3) consisting of4n-6 éléments of degree 2

and 4n — 15 éléments of degree 4.

(3) degree P,(R(n, B3)°) 16n - 72.

(7.16) Remarks. We will show that

(1) P,(R(6, B3)) (1 - f2r18(l - f4)~9(l + 3^ + 12&apos;4 + 28t6

+ 57t8 + 78r10 + 92/12 + 7Stu +¦¦¦ + tM).

(2) P,(R(7, B3)) (1 - /2)-22(l + r4)~13(l + 6t2 + 43t4 + I88t6

+ 701/8 + 1966t10 + 4621/12 + 8708f14 + 13818r16

+ 17976f18 + 19782r20 + 17976/22 + • • • + f40).
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§8. Partial resolutions I

(8.0) Let R R(B3). Then R T/I where T S&apos;(VÎ + tp4). We want to show
that / /, where / /(B3) is generated by Re^ (B3),..., Rel4 (B3) (see (5.11)).

Let Mj be the idéal in T generated by S&apos;y\. Then the A4, induce decreasing
filtrations of R and T/J, and the associated graded algebras satisfy the relations

(8.1) 0=
(8.2) 0 vi &lt;= VÎ

which resuit from Reli (B3) and Rel2 (B3).
Let # dénote the idéal in T generated by the représentations in (8.1) and

(8.2). We show that the Poincaré séries of T(7)/K(7) is the one given in (7.16.2).
By (7.15.3), Pt(R(7)°) has degree 40, and in §10 we show that Pt(R(7)) equals
Pt(T(7)/K(7)) up to degree 20. Thus, by (7.9.1) and (7.15.2), P,(#(7))
Pt(T(7)/K(7))f and it follows that Pt(R(7)) Pt(T(7)/J(7))f establishing the SMT
for B3. In §§9-10 we use similar techniques to establish the SMT for G2.

(8.3) From now on we will often use the notation 0(fl), &lt;f&gt;jt etc. for ip(a)(n)f
tpl(n)t etc. Usually, n will be specified or clear from the context.

(8.4) Let D dénote T(7)/K(7). Then D 0/S,{)£&gt;y where D} is the S*0r
submodule of D generated by SJ&lt;f&gt;4 (n 7!). It follows from (8.1) and theorem
(4.7) (or from the CIT of SL4) that D, is generated by 0;4 c SJ&lt;t&gt;4.

In order to compute Pt(D), we compute resolutions of the S&apos;^-modules Dr
Thèse resolutions and those of §9 are among ones established in [PW]. The
particular cases we need follow easily and directly from Bott&apos;s theorem on the
cohomology of homogeneous vector bundles, as formulated by Lascoux [L], and
for completeness we sketch the détails involved.

(8.5) Let S be a polynomial algebra over C, and fl9. ,/r éléments of S. If
(/1, • • ,f,)±S and dimS/C/i, ,/r) dimS-r, then we say that/!,. ,/r is

a regular séquence in 5. (For non-polynomial rings the définition above must be

changed.)
Let $ be a représentation of GLn and 5 as above. We dénote the free

5-module S ®c &lt;t&gt; by {&lt;t&gt;}- If GLn acts on S (e.g. 5 S&apos;0?), then we may single
out those 5-module morphisms {0}-» (0&apos;} which are equivariant.

(8.6) THEOREM. Let n 7 and S - S&apos;(t&gt;\. There are equivariant free résolu-
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tions of the modules Dj as follows:

(1) O-»{0O}-&gt;A,-*O

(2) 0-&gt;{«4}-&gt;Di-*0.

(3) 0-&gt;{^i}-^{^}-^D2-^0.

(8.7) LEMMA. Le* n 3, fer S be a polynomial algebra over C, and /ef

£*{0i}-*{0o} — S be a morphism. Then, canonically associated to b, there are
complexes:

(i) o-*{*$}-*{^i}-&gt;{^,^103}-{*î0i + *!}-&gt;{*ï*2}-&gt;{*?}-^ {*o}.
(2) 0-+ {02^1}-&gt; {^1^203} ~&gt; {&lt;t&gt;l}-+ {0(&gt;}.

(3) O^{033}^{^3}^{^02}^{^}.

y] be the (symmetric) matrix of b relative to a basis of (pu and assume that
E btJS =£ S. Then (1) is exact if and only if the bip i ^y, are a regular séquence in 5,
and (2) and (3) are ejcacr if and only if the idéal of 2x2 minors [btJ]2 of [btJ\

contains a regular séquence of length 3.

Proof The Kozul complex of the btJ has {Am&lt;f&gt;\} in the mth position. One

easily computes that A20? #?02, A*0? 0i03 + 0i etc., yielding (1). The
exactness criterion is well-known. The complex (2) and its exactness criterion can
be found in [J]. Moreover, if (2) is exact, then S/[btJ]2 is Cohen-Macaulay of
dimension dimS — 3, and (2) is a resolution of S/[btJ]2. It follows that the dual

(2)* of (2) is exact. But, modulo a character of GL3, (2)* is (3).

(8.8) Remark. Let S S%0i in (8.7). Then there is a canonical morphism
b : {&lt;t&gt;\} -* {&lt;t&gt;o}y and the complexes of (8.7) are exact and equivariant (the
&quot;generic&quot; case).

(8.9) We use Bott&apos;s theorem and the séquences in (8.7) to establish (8.6): Let
W C7 and Y S2W*. Then C[Y] S&apos;(f&gt;l Let M dénote the trivial vector bundle

YxW, let Ar Grass^(M) and p:X—&gt;Y the canonical projection. There is an
exact séquence of vector bundles
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where L is the tautological bundle of X. Let 5£ and â dénote the sheaves of
e^-modules corresponding to L and g, and let M similarly correspond to M.
Given (a) e N00 we may construct vector bundles \pia){L) and t/&gt;(fl)(Ô) on X and

on Y (cf. (3.7)), and there are corresponding locally free sheaves
etc.

Let x 6 X. Then p(x) induces a symmetric bilinear form on Lx c W. Hence
there is a canonical section of (52L)*, and using (8.7.1) we form a complex of
sheaves %:

Similarly, there are complexes % and % corresponding to (8.7.2) and (8.7.3).

(8.10) LEMMA. The complexes %y % and % are exact.

Proof. It is enough to show that the complexes of global sections are exact on
affine open sets covering X. Let eu e1 be the standard basis of C7. Let
w (wlf w2, w3) where wt wl4e4 + • • • + wl7e7, i - 1, 2, 3, and let b e Y. Let
LbtW span {ex + wlfe2 + w2, e3 + iv3}cff and x(b, w) the corresponding point
of X above b. Then the x(b, w) form an affine open subset X&apos; of X. Let
bv b(ett e}). Then the bilinear form on LbtW has matrix [b&apos;tJ], 1 ^ i, ; ^ 3, where
6^ b(et H- wf, ey + w}) 6iy +^; and /7 is a polynomial homogeneous of degree 2

in the wpq and 6^ with r or s ^ 4. Clearly, the bfxl form a regular séquence in 6{X&apos;)

and the 2x2 minors of [b&apos;tJ] contain a regular séquence of length 3 (since this is

true for [btJ], 1 ^ î, ; ^ 3). Lemma (8.7) then gives the required exactness on X&apos;.

Finally, we need only observe that the GL7 translates of X&apos; cover X. D

(8.11) Let p* dénote the mapping of cohérent sheaves of të^-modules to
cohérent sheaves of Oy-modules induced by p, and as usual let Sî&apos;p* dénote the

right derived functors of p*. Let &amp;ia)tJ dénote \p{a)(^)®Ox^(St) where

(a) (alf a2, a3, 0,...). If w width (a) &lt;/, then ip{a) ® tpJ4 contains exactly one
factor of width y, namely t/^&apos;^^s1^?^?3, which we dénote by \l&gt;(a&gt;y

(8.12) PROPOSITION. Let ;&gt;0 and let ^(i?) be one of the sheaves

occurring in %x. Then

®&apos;P*&amp;(a),j V(«&apos;)(^) &apos;/&apos; 0 attd Widtk W &quot;&apos;

0 otherwise.

Proof. Lascoux [L] gives a formula for the sheaves fflp*tl&gt;ia)(£) &lt;8&gt;Cxil&gt;{b)(£)

which yields our proposition as a spécial case.
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Proof of Theorem (8.6). Take the exact sheaf séquence %, tensor it with
x^A(3) and apply proposition (8.12). Then we obtain that the p*^(fl),; form an

exact séquence of sheaves of Cy-modules. Taking global sections we obtain the
free parts of (8.6.3), (8.6.4) and (8.6.5) when j 2, j 3 and j ^ 4, respectively.
Note that exactness forces the morphisms t;:{04-202}—» {04} to be non-trivial,
and the t, are unique up to scalars since

i.e. {04} contains only one copy of 04~20i
For /^2, D, is {04} modulo the submodule generated by the product of

0lc{02J with 04~2 in S&apos;0?&lt;8&gt; (©;ao04) (see (8.4)). The product ends up in
&lt;t&gt;\ ® 04, and by (*) the product is 04~205 £ {04}- Hence D, is the cokernel of t,,
;&gt;2. D

(8.13) Remark. We used Bott&apos;s theorem to establish the complexes of (8.6)
and their exactness. To merely show that the complexes exist is easy. The exact

séquence O-»{04}-»- • • of (8.7.1) (with S S*02 and n =3) canonically gives
rise to a complex 0-&gt; {03}-» • • • for n =7. Let {0} be a term in the complex,
and let 0&apos; e 0 ® 04 be the sum of the subrepresentations of width j. Then the
complex {0} &lt;8&gt; 04-» • • • has » {0&apos;}-» • • • as a subcomplex, and in this

way one obtains (8.6.3), etc.

(8.14) It is now not difficult to compute the Poincaré séries of D ©£&gt;r Let
£o=0o+044-02-|.... j £1 0! + 040i + ---, etc. Then 5&apos;0?®£fc is the
direct sum of the kth terms of our resolution of D, 0 ^ k ^ 6. Note that each Ek is

a module over £o 5*04/(0206) ©/sO04. By CIT, E0^C[7C4]SL\ hence

dim£o=13 (use (7.3)), and EQ has an HSOP consisting of 13 éléments of
degree 4.

(8.15) PROPOSITION. Let Q(t) (1 -14)13. Then

(1) Q(t)Pt(E0) 1 + 22f4 4- 113r8 + 190f12 + 113r16 + 22f20 + t2A.

(2) Q{t)Pt{Ex) 196f10 -h 980f14 + 1176*18 + 392f22 + 28f26.

(3) Q(t)Pt(E2) 882*16 + 3234*20 + 2436f24 + 378J28.

(4) 0(0^(^3) S4^18 + 100&amp;22 + 2352I26 + 1176*30

+ 1176r22 + 2352r26 4-1008*30 + 84r34.

(5) Q(t)Pt(E4) *
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(6) Q(f)P,(Es) 28r26 + 392f30 + 1176f34 + 980f38 + 196f42.

(7) 2s

(8.16) Remark. The proposition suggests that the Ek are Cohen-Macaulay
£0-modules.

Proof of (8.15). It follows from theorem (7.9) that Q(t)Pt(E0) is a polynomial
of degree 24. Using the Weyl dimension formula ([Hu] pp. 139-140) and (7.9.1)
one easily computes that Q(t)Pt(E0) and Pt(E6) are as claimed.

We now show how to compute Q{t)Pt{Ex)\ the other cases are similar. Let
h(J) (1/12!)(12 +/) • • • (1 +y) for j e Z. Then

Q(t)-l(196t10 + • • • + 28t26) 2 rlo+4l(196/i(0 + • • • + 28h(i - 4)).

Set /(/) dim &lt;p4&lt;t&gt;l. Our formula for Pt{Ex) is équivalent to the claim that

f(i) I96h(i) + • • • + 28ft(i - 4), / &gt; 0.

By the Weyl dimension formula,

f(i) (23334352)&quot;1(/ + l)(i + 2)(i + 3)(/ + 4)2(i + 5)2(î + 6)2(i + 7)2(i + 8).

Now /(i) and the right hand side of (*) are polynomials of degree 12 in i, and
both are evenly divisible by (i +1) • • • (i + 8). Thus equality holds in (*) if it
holds when / 0,. 4, and this is easily checked.

(8.17) THEOREM. Pt(D) Pt(T(7)/K(7)) is the séries given in (7.16.2).

Proof. We know that

Using (8.15) one computes that Pt{D) is as claimed.

(8.18) Remark. From (8.6) one immediately obtains a resolution for
T(6)/K(6), and one computes as above that Pt(T(6)/K(6)) equals the séries given
in (7.16.1).
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§9. Partial resolutions II

(9.0) Let R !?(G2). Then R T/I where T S&apos;(^i + \p3 + ^/4). We want to
show that /=/, where / /(G2) is generated by Re^ (G2),... ,Rel6(G2) (see

(5.4)). Filtering R and T/J as in (8.0), we obtain associated graded algebras
which are quotients of T/K, where K is generated by:

(9.1) Vi^s^S2^.
(9.2) ^2^5 &quot;^ ipiipeÇ= V*3 ® V^4»

(9.3) S2^4.

(9.4) ^5 c S2\p2 ® 52t^3.

(9.5) V4I//5 ç i/&gt;2 ® t/&gt;3
&lt;8&gt; t/i4.

We compute the Poincaré séries of £ T(6)/K(6) using the techniques of §8.

We omit most of the proofs since they involve no new ideas.

(9.6) Let n 6, and let C, be the 5&apos;0i-submodule of E generated by

0;3cS;03, and let Z?; be the submodule generated by 0304 c 5y03 ® 04. Set

C=(Bj*0Cf and D ©/^0Z&gt;/. It follows from (9.1) through (9.5) that £
C®D. From (9.4), C, is isomorphic to {0^} modulo the submodule generated by
0y3~20| c 02 ® 03 c S202 ® 0^, 7 ^2. From (9.5) and (9.4), we see that Dy is

isomorphic to {0^04} modulo the submodules generated by 03~1040sc02®
0&gt;304, /&gt;1, and 03~20402e0| &lt;8&gt;0/304, / ^2. However, when;&gt;2, there is a

copy of 0^~&quot; 0405 in 0i ® 03 0405 ç= 0i ® 0i w 0304&gt; and its image in {0304/
is non-zero. Hence we need only divide {0^04} by the submodule of 0y3~10405 to
obtain Dr

(9.7) THEOREM. There are equivariant free resolutions of the S&apos;&lt;f&gt;2-modules

Cj and Dj as follows:

(3) 0-» {02}-* {03}-» C2-^0.

(5) O-»{04}-»A)-&gt;O.

(6) 0—* {0405}—^ {0304}—* D\—? 0.

(7) 0-
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Proof. Let W C6, and construct p : X-+ Y and vector bundles L, M and Q
as in (8.9), where now both L and Q hâve fiber dimension 3. As in (8.10), we
hâve exact sheaf séquences

o

Let ty(a)(&amp;) be a sheaf occurring above, and let ;&gt;0. If w width(fl)s/, let
(a&apos;) (0, 0, y - w, au a2, a3). Then, by [L], Wp*x\&gt;(a){2) ®Ox y&amp;SL) is W)(-«) if
i 0 and width (a) &lt;y, else 0. The proof concludes as that for (8.6).

(9.8) Let Mk (resp. Nk) be the direct sum of the jfcth summands of our
resolutions of ©C, (resp. ©D,), 0 ^ k ^ 3. As in §8 one establishes

(9.9) PROPOSITION. Let Q(t) (1 - f3)10. Then

(1) Q(t)P,(M0) 1 + 10f3 + 20t6 + 10ï9 + tn.

(2) Q(0P((Wi) 21t10 + I26t13 + l05t16.

(3) Q(t)P,(M2) 70t15 + I96tm + 70r21.

(4) Q(t)P,(M3) 6t&quot; + 45r20 + GOt23 + 15t26.

(5) Q(t)P,(N0) 15r4 + 60r7 + 45t10 + 6tn.

(6) fi(0/î(M) 70r9 + 196r12 + 70t15.

(7) Q(t)P,(N2) 105t14 + I26t&quot; + 2lt20.

(8) 18

(9.10) THEOREM. P,(E) P,(T(6)/K(6)) is the séries given in (7.14.4).

(9.11) Remark. One similarly obtains that P,(T(5))/K(5)) is the séries of

(7.14.3).

§10. Comparison of Poincaré séries

(10.0) We show that R(6, G2) has the same Poincaré séries (7.14.4) as

T(6)/K(6), establishing the SMT for G2 (see (10.4) for B3). The most straightfor-
ward approach would be to use Weyl&apos;s formulas to compute P,(ft(6)) (see [St2]),
but the intégrais involved are not easy to evaluate. We adopt a less direct

approach.
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(10.1) Let Q(t) « (1 - *2)18(1 - *3)10. Then Pt(R(6)) Q(tyl £?i0 aA
P,(T(6)/J(6)) GW&quot;1 £,*o V and Pt(T(6)/K(6)) GO)&quot;1 £?W where the c,

are as in (7.14.4) and dim (r(6)//(6)); &lt; dim (T(6)/*:(6)); for ail /. If a, c, for
/ &lt; 12, then one easily sees that at bt c7 for ail /, establishing the SMT for G2.

Let rj: jT(6)//(6)—»/?(6) be the canonical surjection, and let £
C[/i,... ,f2&amp;] where the ft e T(6) are homogeneous and map onto the HSOP of
R(6) given by Theorem (7.13). Then R(6)^E®CR(6)° is a free £-module,
hence there is an isomorphism of £-modules:

(10.2) r(6)//(6)-Kerrçe£®cK(6)°.

Let (Ker r}\ dénote the part of Ker rç homogeneous of degree i, and suppose
that at c, for i &lt;j. Then af bt and (Ker ?j), 0 for i &lt;j, and it follows from
(10.2) that at 4- dim (Ker rç); 6; ^ cr Now (Ker rç); is a direct sum of irreducible
représentations of GL6 of degree /, and we obtain

(10.3) PROPOSITION. Suppose that every irreducible représentation &lt;f&gt; of
GL6 with deg # / ^ 12 and dim (f&gt; ^ c; occurs with the same multiplicity in
T(6)/K(6) and /?(6). T/ien /(6) /(6). D

Given &lt;f&gt;, let r(&lt;p) dénote its multiplicity in R(6) and s(&lt;l&gt;) its multiplicity in
T(6)/K(6). In Table II we list the relevant &lt;p and their multiplicities r(&lt;p). In each

case we computed that r(&lt;j&gt;) s(&lt;p), establishing the SMT for G2. We used the

techniques of (5.2) to compute the r(&lt;f&gt;) and the resolutions (9.7) to compute the

(10.4) We now establish the SMT for B3: It is easy to use the method of
(10.3) to show that /(6, B3)=/(6, B3). Table III lists the relevant multiplicities,
where the c; now are the coefficients given in (7.16.1). Unfortunately, the method
is impractical for showing that 1(7) 7(7) since the coefficients c] are then in the
thousands! Instead, we begin by showing that the canonical map
a:T(7, B3)//(7, B3)-*/?(7, G2) is injective in degrees &lt;20 ^degPr(^(7, B3)°).

It follows that /?(7, B3) « F(7, B3)//(7, B3) in degrees &lt;20. Finally, we show that
Pt(T(l)IK(l)) Pt(T(l)U(l)) in degrees &lt;20, and the SMT for B3 follows.

(10.5) LEMMA. The natural mapping T(7, B3)-* T(7, G2) induces an injec-
tionx:R(l, B3)-»/?(7, G2).

Proof. Both R(7, B3) and R(7, G2) are intégral domains of dimension 35.
Thus t is injective if and only if the quotient field QR(7, G2) of R(7, G2) is finite
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Table II

Degree j
0
1

2
3

4

5

6

7

8

9

10

11

12

cj

1

0
3

10

21

30
75

120

165

220

315

330

330

Représentation

0o

04
05
06
0105
0105» 0106
0205
0305» 0106
0206
04
0405» 010206» 0106
0306
0106» 0206» 0406
05» 010206» 010306
0105» 0106» 0506
020306» 010406
0205» 010406» 010506
0306» 06
020406

Multiplicity

1

1

0
0
1

0
1

0
1

2

0
1

0
1

0
1

0
1

2

over QR(7, B3), i.e. if and only if QR(7, G2) is finite over the subfield generated
by the atJ and yljkh

Let det dénote the déterminant invariant in R(7, G2). Then Rello(G2) (see

(5.4)) shows that ail the éléments pljk det are in t(R(7, B3)), and we know that
det2 is a polynomial in the air Thus QR(7, G2)^QR(7, B3)[det] where det
satisfies a quadratic équation over /?(7, B3).

Table III

Degree ;

0

2

4

6
8

10

12

cj

1

3

12

28
57

78

92

Représentation

0o

06
0?06
0206
0406

fl
010506

Multiplicity

1

0
0
1

0
1

0
1
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Combining the lemma with the fact that 1(6, B3) =/(6, B3), we obtain

(10.6) COROLLARY. R(6, B3) naturally embeds in /?(6, G2). The subal-
gebra of R(6, G2) generated by the &lt;xtJ and yllM has relations Rel5 (G2) and
Rel7(G2).

(10.7) We say that a morphism of GL7-modules is injective mod ~ (resp.
surjective mod ~) if it is injective (resp. surjective) modulo représentations &lt;t&gt;

with height 0&lt;7 or deg0&gt;2O. By (10.6), o:T(l, B3)//(7, B3)-+R(7t G2) is

injective in degrees ^20 if and only if o is injective mod ~.
If 0 is a représentation of GL7, let [&lt;j&gt;] dénote the sum of the représentations

in {0} S&apos;0i ® 0 of height &lt;6. Let [$)&amp; dénote ©0(l)07 where [&lt;f&gt;] ®&lt;f&gt;(&apos;\

Let Ej dénote the S&apos;^i-module generated by the image of #4 c SJ&lt;t&gt;4 c T(7, B3) in

B3)//(7, B3).

(10.8) LEMMA. There are complexes of GLTmodules which are exact
mod ~-, except perhaps at their middle positions, as follows:

(1) 0-» [&lt;t&gt;4&lt;t&gt;5]&lt;p7^ [4&gt;3&lt;t&gt;A}&lt;t&gt;l ® [&lt;Po]&lt;t&gt;7 © &lt;p3&lt;t&gt;7-+ Eo + E2~+ 0.

(2) 0^ &lt;pl&lt;t&gt;S&lt;t&gt;l © fatâ&lt;p7~&gt; [fa&lt;t&gt;î]&lt;t&gt;7 © [^]07 © [tf&gt;4]tf&gt;7^ ^. + £l&quot;&gt; 0.

Proof. We will give the détails for establishing (1) and leave (2) to the highly
motivated reader. It is clear that the séquence O-»[0()]07—»£0—»0 is exact
mod ~ since ([SI] p. 171)

(3) S&apos;&lt;t&gt;\ ®&lt;t&gt;^&lt;t&gt;¥*--&lt;t&gt;¥\ a,,...,a7€lVI.

From theorem (4.7) we see that the height 7 éléments of E2 are generated by the

images of subspaces

&lt;M&gt;507 + 010607 + 07 + 030407 S 03 ® 04 S {04},

while Rel2(7, B3) (see 5.11) shows that the leftmost 3 factors already land in £0.
Thus 030407 c E2 générâtes the height 7 éléments, modulo £().

From (3) there is clearly a complex

{010304}&quot;* {03}-* {0()},

and tensoring with 04 and decomposing via Littlewood-Richardson, one sees
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that there is a subcomplex

(4) {&lt;t&gt;4&lt;Ps&lt;t&gt;l} -+ {030407} ~» {01}.

It follows from the injectivity of {0405}-» {0304&gt; when n 6 (see (9.7.6)) that
(4) yields a complex 0-* [0405107-* [0304]07-*£2 which is exact at [0405]07.

Finally, consider the éléments of {030407} of the form 002 with ht0&lt;6.
Using (4.7) again we see that the possibilities in degree &lt;20 are

020407 + 010507 + 0607 + 0307 £ 03 ® 030407-

The leftmost three terms are in 02 ® 040507, hence by (4) we gain only the term

(10.9) PROPOSITION, o is injective mod ~, and the complexes (10.8.1)
(10.8.2) are exact mod ~.

Proof. Let 0304(aj83) dénote the copy of 0304 in R(7, G2) which is of degree
1 in the atJ and degree 3 in the pvk (cf. (5.1)), and let (0304(arj33)) det dénote the
déterminant invariant multiplied by the sum of the représentations of height &lt;6

in the S&apos;0?-submodule of /?(7, G2) generated by &lt;t&gt;3&lt;t&gt;l(ap3). Terms (04(y))det2,
etc. are defined similarly.

Let 0-* F1-^F0 be the leftmost part of (10.8.1). The relations of R(6, G2) (see
also (9.7)) and the construction of (10.8.1) show that the canonical map
r(7, B3)-» r(7, G2) induces an injection mod ~:

(1) FOIFX -+ (0304(i8y)) det + (0O) det2 + (&lt;t&gt;W)) det2.

Thus (10.8.1) is exact mod- and a restricted to EQ + E2 is injective mod~.
Similarly, (10.8.2) is exact mod ~ and

(2) a : Ex + £3~&gt; (0304(^3)) det + (03(j8)) det + (04(y)) det2

is injective mod ~. Now représentations in £4, E5, etc. are zéro mod —, and the

right hand sides of (1) and (2) hâve zéro intersection (use the resolutions (9.7)).
Thus a is injective mod ~.

(10.10) PROPOSITION. As GLrmodules, T(1)IK{1) and T(7)//(7) are

isomorphic mod —.

Proof. Using the relations (8.1) and (8.2) and proceeding as in lemma (10.8),
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one constructs a complex

(1) 0-» [&lt;M&gt;5]07~&gt; [&lt;t&gt;3&lt;t&gt;4]&lt;l&gt;7 © [&lt;M07 © 0|*7-* A&gt; 0 D2^ 0

which is exact mod—, except perhaps at its middle position, where D; c
T(7)/K(7) is defined analogously to Ep ;^0. Since there is an equivariant
surjection from D$®D2 onto EQ +E2 and since (10.8.1) is exact mod~, we see

that D0®D2^E0 + E2 mod~. Similarly, D, ©Da^^+ £3mod ~, hence

T(7)/K(7) - T(7)//(7) mod ~.

Our proof that /(6, B3) =/(6, B3) showed that K(6, B3)**J(6, B3) as GL6-
representations. Hence (10.10) implies that Pt(T(7)/K(7)) Pt(T(7)/J(7)) m

degrees &lt;20, and as noted in (10.4), the SMT for B3 follows from the injectivity
mod ~ of o.
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