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Fibres normaux d&apos;immersions en dimension double, points
doubles d&apos;immersions lagrangiennes et plongements
totalement réels

Michèle Audin

II y a actuellement toute une activité autour des problèmes de plongements
lagrangiens dans Cn (une immersion/ : V-+Cn est lagrangienne si, en tout point x
de Vy iTxf(TxV) est l&apos;orthogonal de Txf(TxV)). La classification des immersions

lagrangiennes est un des effets de la méthode de [Gromov-1970] (voir aussi

[Lees-1976]). Le problème des plongements est autrement plus rigide, et va
sûrement donner des résultats surprenants. Par exemple, un sous-produit d&apos;une

nouvelle puissante théorie développée par [Gromov-1985] est: pour que V
possède un plongement lagrangien dans C&quot;, il faut que Hl(V; R) ne soit pas nul.

Dans cet article, je vais montrer que la topologie différentielle &quot;molle&quot; a

quand même des choses à dire sur le problème de l&apos;existence de plongements
lagrangiens. Je vais même l&apos;aborder sous un angle très grossier: pour que V
possède un plongement lagrangien dans Cn, il est nécessaire qu&apos;elle possède, dans
la même classe d&apos;homotopie régulière ordinaire, à la fois une immersion

lagrangienne et un plongement (ordinaire).
Un &quot;lemme de Whitney&quot; d&apos;élimination des points doubles a permis à

(toujours. .)[Gromov-1973] (voir aussi [Forstnertë-1986b]) de montrer que
cette dernière condition est suffisante pour que V possède un plongement
totalement réel (c&apos;est la version &quot;molle&quot; des plongements lagrangiens: on
demande seulement que Txf(TxV) et iTxf(TxV) soient transverses). Il se trouve

que les sous-variétés totalement réelles de Cn sont intéressantes en elles-mêmes:
elles permettent par exemple de construire des domaines d&apos;holomorphie (voir
[Stout-Zame-1985] par exemple).

La présente approche, fort grossière pour les plongements lagrangiens (elle
n&apos;imposera jamais des choses comme Hl{V\ IR)=#0) est ainsi suffisante pour
donner des caractérisations des variétés qui possèdent des plongements totalement

réels.
Pour présenter simplement les résultats de cet article, je partage la question

sous-jacente à la remarque &quot;grossière&quot; précédente en deux:

a) Combien y a-t-il de classes d&apos;homotopie régulière d&apos;immersions ordinaires
de la variété V dans Cn qui contiennent des immersions lagrangiennes?
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b) Comment décider, à la vue de la topologie de V, si ces classes contiennent
des plongements (ordinaires)?

Voici d&apos;abord des réponses à a):

0.1. THÉORÈME. Soit V une variété fermée de dimension n. Si n +1 n&apos;est

pas une puissance de 2, il existe au plus une classe d&apos;homotopie régulière
d&apos;immersions de V dans R2&quot; qui contient des immersions lagrangiennes.

Sans hypothèses supplémentaires, on ne peut pas supprimer l&apos;hypothèse de

dimension, puisqu&apos;on a aussi.

0.2. THÉORÈME. Pour tout entier q&gt; il existe une variété {orientable) V de
dimension n — 2q — 1, dont toutes les classes d&apos;homotopie régulière d&apos;immersions

dans Crt contiennent des immersions lagrangiennes.

C&apos;est le cas pour toutes les variétés orientables de dimension 1 (trivialement)
et 3. En particulier, toutes les variétés orientables de dimension 3 possèdent des

plongements totalement réels dans C3.

On a quand même

0.3. PROPOSITION. 5/ V est une variété stablement parallélisable de dimension

n # 1 e* 3, il existe une classe d&apos;homotopie régulière d&apos;immersions de V dans
Cn qui contient toutes les immersions lagrangiennes de V.

Passons maintenant à la question b). Soit/:F—»Cn une immersion lagran-
gienne, désignons par d(f) le nombre de points doubles d&apos;une approximation à

croisements normaux de /, comptés &quot;algébriquement&quot; comme dans [Whitney-
1944], ainsi: d(f) e Z si V est orientable et n pair, d(f) e Z/2 dans tous les autres

cas. La nullité de d(f) est une condition nécessaire et suffisante (même dans le

cas des surfaces dans ce contexte) pour que / soit régulièrement homotope à un
plongement, quand V est connexe.

Le cas où n est pair est bien classique (au moins si V est orientable). On
trouve

0.4. PROPOSITION. Soient V une variété de dimension n 2k et f : V-+ Cn

une immersion lagrangienne. Alors

d{f) (-1)*+1 ^P (mod2si V n&apos;est pas orientable)&apos;,

X(V) désigne la caractéristique d&apos;Euler. Si n est impair (n 2k 4-1), on peut
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espérer que la semi-caractéristique de Kervaire

Stin(V) É dim Hl(V; 1/2) mod 2

va jouer le même rôle, puisqu&apos;on a

0.5. THÉORÈME. Soient V une variété fermée de dimension n impaire et

/:V-»Cn une immersion lagrangienne. Alors d{f) XzniV) au moins dans les

cas suivants:
a) n =£ 1 et 3 et V est stablement parallélisable,
b) n 4h + 1 (h &gt; 1) et V est orientable,
c) n %h + 3 (h * 2q) et V est spin.
Voici quelques applications directes.

0.6. COROLLAIRE. Pour qu&apos;une variété connexe de dimension n possède
un plongement totalement réel, il faut et il suffit que son fibre tangent complexifié
soit trivialisable et que:

a) si n ss 0 mod 2, #(V) 0 (mod 4 si V n&apos;est pas orientable)&apos;,

b) si n 331 mod 4 et V orientable, XzaiV) 0.

0.7. COROLLAIRE. Si V est une variété stablement parallélisable mais pas
parallélisable, elle ne possède aucun plongement totalement réel, a fortiori aucun
plongement lagrangien.

Comme je l&apos;ai déjà dit, le cas des variétés orientables de dimension paire est
bien connu. Le cas des variétés stablement parallélisables (au moins pour n =£7)
est aussi facile (0.7 est un exercice, qui peut se faire avant ce qui le précède). Je

vais néanmoins les expliquer très en détail pour deux raisons: d&apos;abord, il n&apos;est pas
impossible que les lecteurs les plus intéressés par les résultats de ce travail soient
des consommateurs de plongements totalement réels, et pas des spécialistes de

topologie différentielle; ensuite, la démonstration de 0.3 que je vais donner est

une bonne introduction aux voies un peu détournées menant à 0.5 b par exemple.
Les démonstrations de 0.1, 0.2, 0.3, et 0.4 sont fondées sur la classification

des immersions de [Whitney-1944], [Smale-1959] et [Hirsch-1959] et sur celle
des immersions lagrangiennes par [Gromov-1970] et [Lees-1976]. Un résultat
intermédiaire peut-être intéressant est l&apos;énumération (quand n est impair) des

fibres normaux d&apos;immersions en dimension double (3.1.1),* basé sur un beau

*Ce résultat figure déjà dans: W. Sutherland, Whitehead squares in Thom complexes, Proc.

Edinburgh Math. Soc. 24 (1981) 221-229.
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théorème de [James-Thomas-1965]. J&apos;ai essayé d&apos;être complète en ce qui
concerne les plongements réels, mais bien sûr pas sur tout le folklore des

immersions en dimension double, dont il n&apos;apparaîtra ici que ce qui sera utilisé
dans les démonstrations.

Dans ce souci d&apos;être complète, j&apos;ai indu une liste d&apos;exemples de tout ce que je
connais en fait de plongements totalement réels et lagrangiens, voilà une partie
des exemples qui viennent directement des résultats précédents:

0.8. PROPOSITION. Les variétés suivantes possèdent des plongements
totalement réels:

a) les espaces projectifs réels P1, P3, P7 (et ceux-là seulement);
b) sauf en dimension 7, toutes les variétés parallélisables, en particulier tous les

groupes de Lie compacts;
c) les espaces homogènes U(n)/O(n)f SU(3)/SO(3), SU(4)/SO(4) et

U(n)/SO(n).
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Dans ce paragraphe, je démontre 0.1 pour les variétés de dimension paire, et

0.4.



Plongements totalement réels 597

1.1. Démonstration de 0.1 quand n est pair
Elle est folklorique et facile à partir de [Hirsch-1959], qui affirme que la

classe d&apos;homotopie régulière de / : Vn-* U2n est (pour n pair) bien définie par la
classe d&apos;Euler du fibre normal

e(Nf) e Hn(V; JinO/O(n)) Hn(V; ZWi) Z

ou Z^i est le faisceau de coefficients tordu par l&apos;orientation de V. Si / est

lagrangienne, la multiplication par i fournit un isomorphisme TV-+Nf, ce qui
suffit.

1.2. Démonstration de 0.4 quand V est orientable

1.2.1. PROPOSITION. Soit V une variété fermée orientable de dimension n
pairey et soitf : V—&gt; U2n une immersion. Alors

d(f) -He{Nf),[V}).

Démonstration de 1.2.1. On suppose / à croisements normaux, et on choisit
une section a du fibre normal Nf, transverse à la section nulle et dont les zéros ne
sont pas des (images inverses de) points doubles de /. On considère, pour e &gt; 0

fe(x)=f(x) D2n

définissant ainsi une approximation de/qui lui est transverse. On calcule ensuite
l&apos;intersection homologique 0=f*[V] -f*[V] en comptant les points d&apos;intersection

de/et fe. Il y a:

* d&apos;une part, les zéros de o, en nombre &quot;algébrique&quot; (e(Nf), [V]);
* d&apos;autre part, deux points d&apos;intersection pour chaque point double de /,

chacun avec le signe de ce point double.

Ainsi, 0=

Maintenant, si / est lagrangienne, on a un isomorphisme TV-*Nf, qui
multiplie l&apos;orientation par (-l)^&quot;1^2, donc e(Nf) (-l)n{&quot;-l)/2e(TV), soit si
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1.3. Démonstration de 0.4 quand V n&apos;est pas orientable
Elle est fondée sur la généralisation suivante d&apos;un théorème de Whitney et

Mahowald concernant les plongements (voir [Massey- 1969a]).

1.3.1. PROPOSITION [Lannes-1982]. Soit V une variété fermée de dimension

n paire, et soit f : V—&gt; U2n une immersion. Alors,

Dans cet énoncé, wt désigne la i-ème classe de Stiefel-Whitney normale de V
et l(e(Nf), [V]) est un nombre entier, considéré modulo 2. Je donnerai une
démonstraiton de 1.3.1 (due aussi à Lannes) dans 5.6.

Si /est lagrangienne, on remplace (comme plus haut) Nf par TV. Pour finir la
démonstration, il ne reste plus qu&apos;à montrer:

1.3.2. LEMME. Si V possède une immersion lagrangienne, le nombre

n-u [V]) est nul.

Démonstration de 1.3.2. Soit g:V&lt;-»Un+k (k assez grand) un plongement, et
&lt;P(g):Sn+k-»M la construction de Thom-Pontrjagyn (M est l&apos;espace de Thom
du fibre normal de g). Désignons par u e Hk{M\ Z/2) la classe de Thom mod 2, et
calculons dans H*(M; Z/2):

Comme V possède des immersions lagrangiennes, w\ 0. Donc:

-i, [V]) (GigrSq^iuwO, [S&quot;+*]&gt; =0.

(En tout état de cause, ivn.! 0 pour toutes les variétés V si n n&apos;est pas une

puissance de 2; et si n est une puissance de 2, on a par récurrence avec la

démonstration précédente que (wiWn-i&gt; [V]) - (*ï»

1.3.3. Remarque sur les surfaces. A priori, la nullité de d(f) n&apos;est pas
suffisante pour que/soit régulièrement homotope à un plongement, quand n 2.

D&apos;après [Massey-1969b], il faut et il suffit:

a) que d(f) 0, soit ici que x(V) soit divisible par 4;
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b) et en plus que -4 + 2x(V)&lt; &lt;e(iV/), [V]) ^4-2x(V), ce qui est
automatique si / est lagrangienne: il n&apos;y a pas de surface non-orientable dont la

caractéristique d&apos;Euler soit plus grande que 1.

Il existe bien des plongements totalement réels de toutes les surfaces
non-orientables dont la caractéristique d&apos;Euler est divisible par 4: si x(V)
-4k &lt;0, il y a un plongement lagrangien de V dans [Givental-1986]; et il y a un
plongement totalement réel (non lagrangien) de la bouteille de Klein dans

[Rudin-1981].

§2. Etude des variétés stablement parallélisables de dimension n =£ 1, 3, 7

Dans ce paragraphe, je montre 0.3 sauf en dimension 7. Il y aura une autre
démonstration incluant la dimension 7 plus bas, mais celle donnée ici est une
bonne introduction aux problèmes et méthodes utilisées dans la suite. Elle est

fondée sur la proposition suivante, qui est folklorique (voir par exemple
[Koschorke-Sanderson-1977]).

2.1. PROPOSITION. Soit f:V-&gt;Un+i une immersion d&apos;une variété orientable

de dimension n, et soit g la composition V—» Un+Î c U2&quot;. Alors, modulo 2,

d(g) est Vinvariant de Hopf de la parallélisation stable définie par f.

La démonstration de 2.1. que je donne ici est inspirée de-et donc
essentiellement due à-[Stong-1968]. On considère le diagramme commutatif de

groupes de cobordisme

N:

dans lequel:
* Q% est le groupe de cobordisme des immersions de variétés orientées de

dimension n dans Un+1 (ou des variétés stablement paralléiisées):
* Q°+\ est le groupe de cobordisme relatif des variétés de dimension n +1

donte le bord est orienté et muni d&apos;une immersion dans Rn+1;

* Q% est le groupe de cobordisme des immersions en codimension n des

variétés de dimension n;
* Q%+nx est le groupe de cobordisme des variétés de dimension n + 1 dont le

bord est muni d&apos;une immersion en codimension n ;
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* 3 désigne les applications &quot;bord&quot; et /* les applications induites par
l&apos;inclusion Rn+1clR2/t;

* l&apos;application de &quot;points doubles&quot; d est considérée dans Z/2 même si n est

pair.
Soit (Wn+i,f) représentant un élément de Q°+X:f est une immersion de dW

dans R2&quot;. L&apos;application classifiant le fibre normal de la paire (W, dW) est à

valeurs dans (BO, BO{n)). La restriction H*(BOtZ/2)-»H*(BO(n);Z/2) est

surjective et son noyau contient la classe wn+l, qu&apos;on peut donc considérer

comme un élément

wn+1 e Hn+\BOt BO(n); Z/2) ^ Hn+1(BO, Z/2).

En évaluant sur la classe fondamentale, wn+1 définit donc un homomorphisme:
wn+1:Q%f1—&gt;Z/2 nul sur l&apos;image du cobordisme non-orienté Q°+l~* Q°?x\ la
&quot;dernière&quot; classe de Stiefel-Whitney normale d&apos;une variété fermée est nulle.

Dans le livre de Stong (p. 102 ~) est défini de la même manière un
homomorphisme, compatible via/* avec le précédent:

Comme toutes les variétés stablement parallélisables sont des bords, la longue
suite exacte reliant fi? et fi£ se coupe:

L&apos;essertion que wn+l : fi^/ï-» Z/2 est l&apos;invariant de Hopf a donc un sens, et Stong
la démontre.

Pour démontrer 2.1, il suffit donc de vérifier que le diagramme

est commutatif. On vérifie aisément grâce à une construction de Thom-
Pontrjagyn que ivw+1 définit

* un isomorphisme fi^4w1-&gt;Z/2 si n est impair;

* la surjection fi^.&quot; s|-^Z/2 si n est pair.

Comme il y a assez peu d&apos;homomorphismes de Z/2 ou Z dans Z/2, il suffit de
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trouver un élément de l&apos;image de d sur lequel d vaut 1. Il est clair que
l&apos;immersion de Whitney est un exemple.

Les variétés stablement parallélisables étant en particulier orientables, le
théorème 0.3 a déjà été démontré au §1 quand n est pair. Je suppose donc
désormais que n est impair. Dans ce cas, il y a, d&apos;après la classification des

immersions de [Hirsch-1959], exactement deux classes d&apos;homotopie régulière
d&apos;immersions de V dans IR2&quot;:

Hn(V; JïnOlO{n)) Hn(V; 1/2) 1/2.

De 2.1 et de la solution du problème de l&apos;invariant de Hopf, on déduit:

2.2. COROLLAIRE. Soit V une variété stablement parallélisable de dimension

impaire n ^ 1, 3, 7. // existe sur V un fibre vectoriel non trivial de rang n {qui
est stablement trivial et) qui est le fibre normal des immersions de V dans U2n ayant
un nombre impair de points doubles. Le fibre normal des immersions ayant un
nombre pair de points doubles - en particulier des plongements - est trivial.

Démonstration de 2.2. Si / : V—» U2n est une immersion dont le fibre normal est

trivialisable, elle est régulièrement homotope à une immersion de la forme
V-&gt;Mn+l c U2n. De 2.1 et d&apos;[Adams-1960], on déduit que/a un nombre pair de

points doubles.

Whitney nous a appris à rejouter un point double à une immersion; il existe
donc une immersion/&apos; ayant un nombre impair de points doubles (qui n&apos;est donc

pas régulièrement homotope à/), et dont le fibre normal n&apos;est pas trivial.

On en déduit immédiatement le théorème 0.3 (sauf pour n 7). N.B.: de

toute évidence 2.2 est faux pour la sphère S7 par exemple, ainsi que 2.3.

2.3. COROLLAIRE. 5/ n est impair #1, 3 et 7, les immersions lagrangiennes
de la variété stablement parallélisable V dans Cn ont un nombre pair de points
doubles si V est parallélisable, et un nombre impair de points doubles sinon.

§3. Démonstration de 0.1 pour les variétés de dimension impaire

3.1. Réduction à un résultat énumératif sur des fibres instables

En dimension impaire, il n&apos;y a pas de classe caractéristique instable comme la
classe d&apos;Euler pour distinguer les fibres normaux des immersions dans U2n.
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D&apos;ailleurs, il est tout à fait possible que deux immersions aient des fibres normaux
isomorphes sans être régulièrement homotopes; par exemple sur les sphères Sn de
dimension n 3 ou 7, tous les fibres de rang n sont triviaux (en particulier
isomorphes entre eux); pourtant l&apos;immersion de Whitney, qui a un point double,
n&apos;est pas régulièrement homotope au plongement standard Sn c (Rn+1 c R2&quot;, qui
n&apos;en a pas. Que ces exemples aient des dimensions de la forme 2* - 1 n&apos;est pas un
hasard, puisque je vais démontrer

3.1.1. PROPOSITION.* Soit V une variété fermée et connexe, de dimension n
impaire. Si n + 1 n&apos;est pas une puissance de 2, il existe sur V deux fibres vectoriels
de rang n, non isomorphes entre eux, et stablement isomorphes au fibre normal
absolu NV de V.

Dans ce cas, les deux réductions de NV à la dimension n définies par les deux
classes d&apos;homotopie régulière d&apos;immersions de V dans U2n correspondent donc à

deux fibres normaux d&apos;immersions non-isomorphes. Un de ces fibres-au
plus-est isomorphe au fibre tangent TV. On en déduit évidemment 0.1 et plus
précisément

3.1.2. COROLLAIRE. Si V est une variété connexe de dimension n impaire,
et si n + 1 n&apos;est pas une puissance de 2, il existe au plus une immersion de V dans
M2&quot; dont le fibre normal est isomorphe au fibre tangent TV. D

3.2. Etude des fibres instables stablement isomorphes au fibre normal
Je vais démontrer ici la Proposition 3.1.1. La théorie des obstructions

(cochaîne de différence) dit que le groupe Hn(V; nnO/O(n)) Hn(V; Z/2) opère
sur l&apos;ensemble [Vf BO(n)] des classes d&apos;isomorphisme des fibres de rang n sur V.
L&apos;orbite de la classe d&apos;isomorphisme du fibre § est formée des classes

d&apos;isomorphisme des fibres stablement isomorphes à §. Pour compter ces classes

d&apos;isomorphisme, il suffit donc de connaître le stabilisateur de § dans Hn(V; Z/2).
[James-Thomas-1965] ont montré que ce stabilisateur est l&apos;image de

l&apos;application:

i=0

* Ce résultat figure déjà dans: W. Sutherland, Whitehead squares in Thom complexes, Proc.

Edinburgh Math. Soc. 24 (1981) 221-229.
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(quand n est impair #1 et 3) - les ht sont les générateurs de H*(SO; Z/2) définis

par [Borel-1954]. Voici une explication de ce résultat, dans le cas où £ est le fibre
normal Nf d&apos;une immersion / de V dans U2&quot;: cette immersion définit un
isomorphisme:

TV®%-»VxU2n (1)

Tout élément cp de [V, O] [F, O(2n)] définit un autre tel isomorphisme, la
composition:

TV 0 §-&gt; V x R2&quot;-&gt; V x U2n (2)

(x, v)-&gt;(x, &lt;p*(v)).

associe à q&gt; la classe de cohomologie de la cochaîne de différence reliant
les réductions de NV à la dimension n définies par (1) et (2). Dire que A(%) est

surjective, c&apos;est bien exactement dire que toutes les réductions possibles sont
réalisées par le même fibre £.

Il est clair que 3.1.1 est une conséquence directe de ce théorème de James et
Thomas et de:

3.2.1. LEMME. Soient V une variété de dimension n, et çp une application
continue de V dans SO. Si n + 1 n&apos;est pas une puissance de 2, alors A(NV) • cp 0.

[N.B. 4(§) - et c&apos;est heureux, vue son interprétation - ne dépend que de la classe

d&apos;isomorphisme stable de §.]

Démonstration de 3.2.1. Il s&apos;agit de vérifier que le nombre

est nul. Ce nombre ne dépend que de la classe de bordisme non-orienté de

l&apos;application &lt;p. Soit donc An:Jfn(SO)~* Z/2 l&apos;homomorphisme qu&apos;il définit
(N*(SO) désigne l&apos;homologie de SO pour le spectre MO, N*(pt) est déjà apparu
sous le nom de Q% dans la démonstration de 2.1). Désignons par u la classe de

Thom dans H*(MO; Z/2), et soit

ôn 2 uwt ® hn.t e Hn(MO a SO+; Z/2).

Grâce à Thom-Pontrjagyn, il suffit de vérifier que, si n +1 n&apos;est pas une
puissance de 2, ôn s&apos;écrit comme combinaison ^-linéaire d&apos;éléments de degrés
strictement inférieurs à n - où si est l&apos;algèbre de Steenrod mod 2.
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Remarquons maintenant que

2 uwr®hs+2k-û

en effet, d&apos;après [Borel-1954], on a Sqsht Csths+t, mais les coefficients bino-
miaux Ct sont tous impairs quand t 2* - 1.

Soit g [log2 n] ~ de façon moins pédante, c&apos;est dire que n 2q-l+p
(Q&lt;p&lt;2q). La formule précédente donne;

Ôn

1=1

Si p 2z 1 (c&apos;est-à-dire si n 4- 1 n&apos;est pas une puissance de 2), on a ainsi écrit ôn

comme une combinaison ^-linéaire d&apos;éléments de degrés strictement inférieurs
an. O

Retenons aussi que (*) montre, si n + 1 est une puissance de 2 (c&apos;est-à-dire si

p 0), que

ce qui nous servira pour étudier les variétés de dimensions 2q - 1.

§4. Etude des variétés de dimension 2q - 1

Dans ce paragraphe, je vais montrer 0.2 et donner une démonstration de 0.3

qui fonctionne aussi en dimension 7.

4.1. Démonstration de 0.2

Remarquons que la démonstration précédente et la remarque qui la suit
disent qu&apos;il existe, pour tout q ^ 3, une variété V de dimension n 2q - 1 dont
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toutes les immersions dans R2&quot; ont des fibres normaux (instablement) isomorphes
entre eux: en effet H*(MO; Z/2) est, comme chacun sait depuis [Thom-1954] un
^-module libre, donc H*{MO a 5O+;Z/2) aussi, et toute famille d&apos;éléments

{a®b} où a parcourt une ^-base de H*(MO; Z/2) et b une Z/2-base de

H*(SO; Z/2) en est une ^-base. En particulier, il existe une si-base contenant
les u®ht, et donc une ^/-base contenant ôn si n est une puissance de 2 d&apos;après la

remarque finale du §3. Donc il existe une variété V et une application q&gt; telles

que:

A(NV)cp * 0 e Hn{V; Z/2), n 2q - 1,

ce qui suffit pour n # 1 et 3 d&apos;après James et Thomas.
En fait, ces auteurs ont aussi vérifié que l&apos;espace projectif Pn est un exemple

explicite d&apos;une telle variété. Un calcul simple montre que (sauf si n 1, 3 ou 7)
cet espace projectif ne possède pas d&apos;immersions lagrangiennes (le dit calcul est
très simple quand n n&apos;est pas de la forme 2q — 1, puisqu&apos;alors TPn ®R C a des

classes de Chern non nulles et ne peut être trival; dans le cas n 2q — 1, qui nous
intéresse ici, c&apos;est un peu plus délicat: il faut connaître la /C-théorie complexe de
Pn. mais c&apos;est classique). L. Smith m&apos;a suggéré que ceci pouvait être lié à un
théorème de [Brown-1973], mais ce n&apos;est pas absolument clair pour l&apos;instant.

Le calcul effectué ci-dessus dans H*(MO a S0+; Z/2), si on le transfère dans

H*(Mk a SO+; Z/2), où MX est le spectre définissant le cobordisme lagrangien
non-orienté, montre de même:

4.11. REMARQUE. Pour tout qf il existe une variété V, de dimension
n=2&lt;y —1, possédant des immersions lagrangiennes dans C&quot;, et dont toutes les

immersions dans M2&quot; ont des fibres normaux isomorphes. D

Je renvoie à [Audin-1986a] où sont étudiés le spectre MX et sa cohomologie
mod2.

Pour montrer 0.2, il faut encore:
* Montrer qu&apos;on peut supposer que V est orientable;
* Montrer qu&apos;on peut supposer aussi que l&apos;isomorphisme entre les fibres

normaux provient bien d&apos;un isomorphisme de TV ® C.

Revenons aux commentaires sur le théorème de James et Thomas qui figurent
au début de 3.2, en supposant que V a les propriétés énoncées dans la remarque
4.1.1.

Une immersion lagrangienne / : V -&gt; Crt fournit un isomorphisme de fibres
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vectoriels complexes

V xCn.

Si q) est une application de V dans O(2n), elle fournit un isomorphisme de

fibres vectoriels réels

TV ® C-» F x C&quot; V x R2*-» V x R2&quot;. (*)

Si &lt;&lt;p*/iM, [V]&gt; 1 (n=2«-l&gt;7), cet isomorphisme décrit 1&apos; &quot;autre&quot;

immersion de F dans M2&quot;. Pour assurer que cette autre immersion est lagran-
gienne, le théorème de classification de [Gromov-1970]-[Lees-1976] affirme
qu&apos;il suffit que l&apos;isomorphisme (*) soit un isomorphisme de fibres vectoriels
complexes, autrement dit que &lt;p provienne de U(n) via l&apos;inclusion j : U(n) c
O(2n). Il suffit donc de vérifier:

4.1.2. PROPOSITION. Pour tout entier n impair, il existe une variété
orientable V de dimension n, telle que TV ®u C est trivialisable, et une application
%l&gt; : V-» U(n) vérificant (U°V)*hn, [V]) 1.

Démonstration de 4.1.2. (dans tout ce qui suit, n 2k-l). Considérons
l&apos;homomorphisme: j*:Hn(SO; Z/2)-*Hn(U;Z/2).

Dans la fibration universelle SO-+ESO-+BSO, la classe hn a pour transgression

*vn+1. Soit aneHn(U;I) tel que, dans la fibration U-*EU-*BU, la

transgression de an soit la classe de Chern ck. Par /&apos; : BU -^BSO, l&apos;image de wn+1

est la réduction mod 2 de ck, donc j*hn ocn (en appelant encore ocn la réduction
mod2).

En appelant Ln(U) l&apos;homologie de U pour le spectre MX définissant le

cobordisme lagrangien orienté (voir [Audin-1986a] pour ses propriétés), il suffit
de vérifier que l&apos;image de l&apos;homomorphisme, défini par crnmod2, an:Ln{U)-*
Z/2 contient 1.

J&apos;ai montré dans l&apos;ouvrage cité que H*(AfX, Z/2) est un ^-module &quot;simple&quot;

(suivant la terminologie de Wall); il s&apos;ensuit que H*(Mk a U+; Z/2) est aussi un
«rf-module simple et que les éléments de la cohomologie de U mod 2 qui peuvent
prendre des valeurs non nulles sur L*(U) sont les éléments de ker Sql qui ne sont

pas dans imSq1. Comme la cohomologie entière de U est sans torsion (c&apos;est

l&apos;algèbre extérieure sur les at - i impair), tous les éléments ocn sont concernés. D
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4.2. Démonstration complète de 0.3
Le Théorème 0.1, que nous avons démontré plus haut, contient 0.3 sauf pour

les dimensions 2* — 1 (q ^ 3). Si on veut démontrer 0.3 sans utiliser la solution
du problème de l&apos;invariant de Hopf, précisément réputé difficile dans ces

dimensions, il suffit d&apos;étudier ces dimensions.

4.2.1. PROPOSITION. Si V est une variété stablement parallélisable de

dimension impaire n^5 et q&gt;:V-^U une application continue, alors (q)*ant [V])
est un nombre pair.

Démonstration de 4.2.1. Considérons une décomposition cellulaire de V avec

une seule cellule en dimension n, et e:V-+Sn l&apos;application qui écrase le

(n — l)-squellette V^n~l) en un point. On a une cofibration

qui définit des suites exactes et un diagramme commutatif

K~l{Sn) -^ K~\V) &gt; K-[(V{n-l)) &gt; 0

-1 4 4
Hn(S&quot;;Z) -^* Hn(V\1) &gt; Hn{V{n~l)\Z)

où K est la JC-théorie complexe [Rappel: K~l{X) — [X, £/].] De toute évidence,
e* est un isomorphisme en cohomologie entière.

Comme V est stablement parallélisable, il existe une application stable a de F
dans Sn qui scinde (stablement) l&apos;application e. Rappelons sa construction: on
plonge V dans Un+k (k assez grand), et on applique une construction de

Thom-Pontrjagyn à ce plongement. Le fibre normal est trivialisable (k est assez

grand) et son espace de Thom est donc Sk aV+. On a donc une application
o;Sn+k-+Sk a V+ qui est un représentant de l&apos;application stable cherchée.

On peut réécrire le diagramme ci-dessus:

0 K~l(Sn) -£+ K-\V) K-l(V{n-l)) &gt; 0

-i ^ -i i
0 * H&quot;{S&quot;;T) * Hn(V;Z) » 0

L&apos;image de aH:K.-\V)-*HH{y\T) s&apos;identifie donc à celle de an:K-\S&quot;)

nnU-*Hn(Sn;ï). Autrement dit, il suffit de vérifier 4.2.1 quand V est une
sphère.
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Ecrivons n-2k-l. Par définition de an, il revient au même de calculer
l&apos;image de ck:jt2k(BU)&apos;^H2k(S2k;Z)J dont il est classique qu&apos;elle est formée des

multiples de (fc-1)! (par exemple par intégralité du caractère de Chern).
Comme 2k - 1 &gt; 5, (*: - 1)! est divisible par 2. D

4.3. Les dimensions 1 et 3
II est bien clair que 0.1 est faux en dimension 1: toutes les immersions sont

lagrangiennes. Comme le théorème de James et Thomas ne s&apos;applique pas en
dimension 3 non plus, il faut faire une étude spécifique. Prenons comme point de

départ le cas de la sphère S3, qui est bien connu:

4.3.1. PROPOSITION. [Gromov-1973]. Toutes les classes d&apos;homotopie

régulière d&apos;immersions de S3 dans M6 contiennent une immersion lagrangienne.

Cette proposition figure aussi dans [Kawashima-1981]. La démonstration
homotopique la plus simple est celle de Gromov, qui figure maintenant dans son
livre ([Gromov-1986]). La démonstration géométrique la plus simple consiste à

exhiber une immersion totalement réelle dans chacune des deux classes

d&apos;homotopie régulière d&apos;imiïiersions: il y a un plongement totalement réel de S3

dans [Ahern-Rudin-1985], et il y a une version lagrangienne de l&apos;immersion de

Whitney (pour toute dimension n) donnée par (jc, y)*-*(l + 2iy)x, où jceR&quot;,

yeM, et ||jc||2 +/ L

N.B. La démonstration homotopique donne le résultat opposé pour S7 bien plus
simplement que par la preuve générale de 0.3: une parallélisation &lt;p0 de S7 étant
fixée, à toute application t/&gt; :S7—» U, on associe une trivialisation de TS7 &lt;8&gt;R C, et
donc une classe d&apos;homotopie régulière (lagrangienne) d&apos;immersions

lagrangiennes. Les immersions ordinaires, elles, sont données par les éléments de

jt7(SO/SO(7)). Ainsi la classe d&apos;homotopie régulière ordinaire d&apos;une immersion
lagrangienne définie par rp est donnée par la composition:

S7-&gt; £/-? S0-» SOISOÇ)

mais ji7SO-* M7SO/SO(7) est l&apos;homomorphisme surjectif de Z dans Z/2, et
rt7U-+7t7SO est d&apos;indice 2; donc l&apos;image de n7U-*n7SOISOÇl) est nulle, donc
il y a une seule classe d&apos;homotopie régulière qui contient des immersions

lagrangiennes (et comme il y a un modèle lagrangien de l&apos;immersion de Whitney,
ce n&apos;est pas la classe du plongement).

Revenons aux variétés de dimension 3. Le corollaire suivant de 4.3.1 a déjà
été remarqué par [ForstneriC-1986b] (le même auteur a généralisé l&apos;exemple
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explicte de plongement totalement réel de S3 mentionné plus haut à beaucoup de

quotients de cette sphère, en particulier tous les lenticulaires dans [Forstnerië-
1986a]).

4.3.2. COROLLAIRE. Soit V une variété orientable de dimension 3. Toutes
les classes d&apos;homotopie régulière d&apos;immersions de V dans R6 contiennent des

immersions lagrangiennes. En particulier, V possède un plongement totalement
réel

Démonstration de 4.3.2. La variété V est parailélisable. Comme dans la
démonstration précédente, on doit donc considérer l&apos;image de l&apos;application

naturelle [V, U]-+[V, SO/SO(3)] qui entre dans un diagramme commutatif

[V, U] &gt; [V, SO/SO(3)]

,\

où e est défini en écrasant le 2-squelette comme dans 4.2. Comme SO/SO(3) est
2-connexe, le e* de droite est une bijection. La flèche horizontale du haut est
donc aussi surjective.

§5. Calculs de points doubles

Dans ce paragraphe, je vais montrer le Théorème 0.5 et la Proposition 1.3.1.

5.1. Les variétés stablement parallélisables
Quand V est stablement parallélisable, et dim V =£7, on peut déduire 0.5a) de

2.3 et d&apos;un théorème de [Bredon-Kosinski-1966] qui dit que (en dimensions

impaires #1,3,7) XzniV) est Tunique obstruction à la parallélisabilité de V.

Cette démonstration ne fonctionnant pas en dimension 7, je vais donner un

argument plus géométrique.
Soit / : V-» Un+Ï une immersion de V en codimension 1, et N N(f) :V-+Sn

son application de Gauss (une orientation de V étant choisie). Le couple (N,f)
définit une immersion de V dans Sn x Rn+1, avec évidemment N(x) • Txf(%) 0

(g € TXV), ce qui fait que la projection sur TSn {(/?, q) e Sn x Rrt+11 q epx) est

automatiquement une immersion lagrangienne/de Kdans TSn (TSn est considéré

comme une sous-variété de Rw+lxRn+1 Cn+1 et munie de la forme symplec-

tique qui est la restriction de &lt;o; elle-ci coïncide, au signe près, avec la structure

symplectique canonique de T*Sn si l&apos;on identifie TSn à T*Sn par la métrique

euclidienne).
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Soit maintenant F:Sn-*Cn une immersion lagrangienne. Suivant [Weinstein-
1977], elle se prolonge en une immersion symplectique (d&apos;un voisinage de la
section nulle) de T*Sn dans Cn. La composition

V-*Sn x Rrt+1-* TSn T*Sn-+Cn

est alors clairement une immersion lagrangienne, notée Ff.

5.1.1. PROPOSITION. d(Ff) d(f) + d(F)dzgN(f)mod2.

5.1.2. LEMME. d(f est Vinvariant de Hopf de la parallélisation stable définie
parf.

Je montrerai 5.1.2 dans 5.3. Admettons 5.1.1 pour un instant; voici comment
on en déduit 0.5a): Suppons n (impair) =£1 et 3. D&apos;après 0.3, toutes les
immersions lagrangiennes de V dans C&quot; ont le même nombre de points doubles
mod2, et de même pour celles de Sn. Grâce à l&apos;existence de l&apos;immersion

(lagrangienne) de Whitney, on a d(F) 1. Pour toute immersion lagrangienne

g : V—&gt; Cn, on a donc:

d(g) d(Ff) hopf (/) + deg N(f) Z

d&apos;après [Kervaire-1965] et [Kervaire-1957].

Démonstration de 5.1.1. On peut supposer que F est à croisements normaux,
que les préimages des points doubles de F sont des valeurs régulières de N et que

/ n&apos;a pas de points doubles au-dessus de ces préimages. On compte les points
doubles de Ff.

D&apos;après les hypothèses faites sur F et /, il y a d(f) points doubles de /y à

l&apos;extérieur d&apos;un voisinage (fibre) des points doubles de F. Chaque point double de

F crée de nouveaux points doubles pour Ff, autant (si a, b eSn et F{a) F(b))
que le produit du nombre de feuilles de N au-dessus de a par le nombre de

feuilles de N au-dessus de b. Ce produit est (mod 2) (deg N)2 deg N.

5.2 Stratégie de la démonstration de 0.5b) et c)
Elle va être beaucrop moins géométrique. On sait, si V est une variété de

dimension impaire ¥z2q — 1, qu&apos;il y a deux fibres différents sur V qui sont les

fibres normaux des immersions de V dans R2/l (3.1.1). Ces fibres sont stablement

isomorphes entre eux, et il s&apos;agit de les distinguer par des moyens instables.
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L&apos;idée est de remplacer l&apos;outil &quot;classe d&apos;Euler&quot; des dimensions paires par un
outil géométriquement analogue, bien que techniquement plus compliqué:
montrer que ces deux fibres n&apos;ont pas le même nombre de sections

indépendantes.
Plus précisément, je vais montrer que l&apos;un est le fibre normal des immersions

qui sont régulièrement homotopes à des immersions de la forme V-* U2n&quot;k cR2&quot;

pour un k bien choisi (et sous certaines hypothèses sur V), et que l&apos;autre a moins
de k sections indépendantes.

Pour décider lequel est le fibre normal des immersions lagrangiennes, il n&apos;y

aura plus qu&apos;à décider si F a ou n&apos;a pas k champs de vecteurs (tangents)
indépendants.

Cette démarche est complètement analogue à celle utilisée au §2 où V est
stablement parallélisable et k n - 1.

Voici comment se fait le choix de k:
a) On s&apos;assure que (sous les hypothèses faites sur F et n) F possède une

immersion dans U2n~k;

b) On calcule le nombre de points doubles des approximations à croisements

normaux de la composition V-*U2n~k c U2n. Si celui-ci ne dépend pas du choix
de l&apos;immersion donnée par a), on a gagné.

Les hypothèses du Théorème 0.2 sont celles où je sais achever ce programme.

5.3. La machinerie des calculs

Rappelons d&apos;abord quelques définitions et notations classiques.
Si X est un espace pointé, QX QTS^X désigne la limite de QnSnX-+

Qn+lSn*lX. C&apos;est un espace dont, par construction, les groupes d&apos;homotopie sont
les groupes d&apos;homotopie stable de X.

Q2X désigne la construction quadratique sur X; soit &amp;2X~ £®2 a (S&gt;2(X a
X) où £S2 est un espace contractile sur lequel le groupe S2 opère sans points
fixes, et le quotient est effectué grâce à cette opération conjointement avec
l&apos;échange des facteurs de X a X.

Si m € HP{X), P2u e H2p(&lt;Z2X) est la construction quadratique de Steenrod.
Stablement, Q2X est un facteur dans QX, autrement dit, il existe une

application stable r2\QX-^&gt;(Z2X, qui fait de H*{&amp;2X) un facteur direct dans

H*{QX).
Voici maintenant ce que je vais utiliser de [Vogel-1974]:
Si h:Vn-*Ym (m^n + l) est une immersion, on la transforme en un

plongement V-* Ym x Uk grâce à une application séparant les points multiples de

h. On effectue ensuite une construction de Thom-Pontrjagyn, obtenant
&lt;p:SkY-»SkM% où f est le compactifié d&apos;Alexandroff de Y et M£ l&apos;espace de

Thom du fibre normal § de h. Par adjonction, on en déduit une application
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&lt;P(h):f~* £2*S*MI?-* QM%. Vogel considère la variété de points doubles de h:

V2(h) {(x,y)eVxV\x*y et h(x)

où h est supposée à croisements normaux, et calcule la classe d&apos;hormologie, dans

H*Y, portée par V2(h).
Le cas qui nous intéresse est celui où m dim Y 2n 2 dim V, où la classe

portée par V2(h) est dans //0(Y); ces* &apos;e nombre de points doubles de h. Le calcul
de Vogel donne ici:

d(h) &lt; &lt;P(h)*rïP2(uh), [?]) où uh est la classe de Thom. (*)

N.B. On peut supposer que Y est une variété à bord, alors f= Y/dY et cette
formule a un sens; en tout état de cause je ne l&apos;utiliserai que pour Y Rm, et,
exceptionnellement pour Y= TSn tout de suite:

Démonstration de 5.1.2. On est parti d&apos;une immersion /: F—»R&apos;I+1, que je
vais supposer à croisements normaux; en particulier, le couple (N,f):V-+
Sn x Un+l est un plongement, qu&apos;on peut utiliser pour faire la construction de

Thom-Pontrjagyn généralisée pour /.
Considérons aussi, pour t € [0,1],

(tN,f):V-»SnxMn+1cz

Pour t 0, ce n&apos;est que la composition V-&gt; Un+l c (R2n c R2n+2. Pour t petit (et
donc pour tout t), c&apos;est un plongement qui l&apos;approche. L&apos;application (N,f) sert
ainsi à faire:

* d&apos;une part, la construction de Thom-Pontrjagyn pour/: V—» TSn;
* d&apos;autre part, la construction de Thom-Pontrjagyn pour/&apos; : V-» Rn+1 c: U2n.

D&apos;après (*), on a donc d(f d(f&apos;) et on applique 2.1. D

Désormais la variété Y n&apos;est autre que l&apos;espace euclidien R2n.

Comme S2^est muni d&apos;une application naturelle dans BS2&gt; le générateur de
la cohomologie mod2 de B82 se retrouve dans Hl(&amp;2X; Z/2) sous le nom de e.

On déduit facilement de (*) que

5.3.1. PROPOSITION. Soit g&apos;.V&quot;-»®2&quot;-&quot; (k^n-l) une immersion, et

f : F—» M2n~k-cz U2n la composition de g avec Vinclusion naturelle. Alors: d(f)
(&lt;P(g)*rZ(ekVP2ug),[S2n-k]). D
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5.4. Le Théorème 0.5 en dimensions 1 mod4
V est ici une variété de dimension n 1 mod 4 (et n ^ 5). Elle possède une

immersion g dans R2&quot;&quot;2, d&apos;après [Cohen-1985]. Je vais donc lui appliquer
la Proposition 5.3.1 avec k 2, c&apos;est-à-dire essayer de calculer:
(&lt;P{g)*r*2{e2KJP2uq), [S2&quot;-2]).

D&apos;après [Milgram-1974] et [Zarati-1978], dans H*(©2M£; Z/2), on a:

Sq2P2ug C2n.2e2 U P2ug + C^_3/&gt;2(^!wg) + (ug, Sq\),

où la notation (je, y) désigne le transfert du produit x x y:

xxyeH*(X aX) H*(EQ2 a X a X)-^ H*(Q2X).

Comme n lmod4, C2_2 est impair. Si on suppose en plus que V est
orientable, alors Sqlug 0. On obtient:

e2 U P2ug Sq2P2ug + (ug, ugw2).

Le terme Sq2P2ug va s&apos;annuler dans la cohomologie de la sphère. Il suffit donc
de calculer: 4&gt;(g)*r2(ugy ugw2). Si r:QX^&gt;X désigne l&apos;application stable
évidente (définie par l&apos;identité de QX), Zarati a montré dans le même article

que:

r*(x, y) r*(x Uy) -h r*x U r*y.

Le cup-produit va s&apos;annuler dans la cohomologie de la sphère; il reste:

d(f) (4&gt;(g)*r*(ug U ugw2), [S2n~2])

Le fait que le résultat ne dépende pas du choix de g fournit une autre
démonstration de 3.1.1 et de 0.1 pour les variétés orientables de dimension 1

mod4 (je ne sais pas si le terme provenant de Sqlug dans le calcul précédent
dépend de g si V n&apos;est pas orientable), avec la précision supplémentaire:

5.4.1. PROPOSITION. Soit V une variété orientable de dimension
n 4h + 1 ^ 5. // existe sur V deux fibres de rang n stablement isomorphes entre
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eux et tels que:
* Vun a deux sections indépendantes et est le fibre normal des immersions de V

dans R2* ayant (w2wn..2f [V]) points doubles;
* Vautre n&apos;a qu&apos;une section non nulle et est le fibre normal de toutes les autres

immersions de V dans R2&quot;. D

Démonstration de 0.5b). Soit maintenant h: V—*U2n une immersion dont le
fibre normal est isomorphe au fibre tangent TV (par exemple, h est lagrangienne
ou totalement réelle). Alors:

* Soit V a deux champs de vecteurs indépendants et h est régulièrement
homotope à une immersion provenant de R2/I~2, elle a alors (w2wn-2, [V]) points
doubles (wt wt);

* Soit elle n&apos;en a qu&apos;un (n est impair!) et h ne peut provenir de R2&quot;&quot;2. Elle a

donc (w2wn^2t [V]) + 1 points doubles.
Il y a maintenant un théorème d&apos;[Atiyah-Dupont~1972] qui permet de

décider si V a un deuxième champ de vecteurs. Il s&apos;applique aux variétés
orientables de dimension 1 mod4, sur lesquelles wn_x 0. Sous nos hypothèses,

wn^i wn^t 0: j&apos;ai déjà utilisé que V a une immersion dans R2&quot;&quot;2!

Atiyah et Dupont affirment alors que V a un deuxième champ de vecteurs si

et seulement si la semi-caractéristique réelle %n(V) - remplacer Z/2 par R dans

la définition - est nulle. Le nombre de points doubles de l&apos;immersion h est donc:

^ [V])

d&apos;après [Lusztig-Milnor-Peterson-1969].

5.5. Le théorème 0.5 en dimensions 3 mod 8
II est clair a priori que les calculs ne peuvent pas fonctionner aussi simplement

en dimensions 3 mod 4, puisque celles-ci contiennent toutes les dimensions
2q -1, où l&apos;on n&apos;a aucune chance de faire aboutir la stratégie exposée dans 5.2, à

cause de 0.2.
De fait, si n * 3 mod 4, on peut affirmer, grâce à [Cohen-1985] que la variété

V s&apos;immerge dans R2&quot;&quot;3, et pas moins si n 4 x 2q + 3, mais appliquer 5.3.1 avec
k 3 ne fonctionne pas aussi simplement que dans le calcul précédent: dans la
formule donnant Sq3P2ug, le coefficient de e2UP2ug est C^3 qui est pair, essayer
Sq2Sq1P2ug est voué au même échec.

Je vais donc essayer d&apos;appliquer 5.3.1 avec k 4. L&apos;hypothèse faite sur n
(n « Sh + 3, hi*2q) dit que le nombre de chiffres 1 dans l&apos;écriture de n en base 2

est au moins égal à 4. La solution de la conjecture des immersions fournit donc,
encore ici, une immersion g : V-» R2&quot;&quot;4.
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On calcule comme dans 5.4, avec

Sq4P2ug CU4e4 U P2ug + C2n.5e2 U P2Sqlug

+ C°n.6P2Sq2ug + (ug, Sq\)

L&apos;hypothèse faite sur n force C*_4 à être impair; si V est supposée Spin, Sg1^
et Sq2ug sont nuls. On obtient comme plus haut:

d(f) &lt;*(grr*{u8w4wH-A), [S2-4]) &lt;*4h&gt;m_4, [V])

dont le lecteur déduira aisément un analogue de 5.4.1, que je n&apos;écris pas.
Toujours d&apos;après [Atiyah-Dupont-1972], V a au moins 3 champs de vecteurs,

elle en a 4 si et seulement si Xz/2(^) 0. On conclut, comme dans 5.4, que les

immersions lagrangiennes de V ont (H&apos;4H&apos;n_4, [V]) +#Z/2(V) points doubles. Le
Théorème 0.5c) découle maintenant du

5.5.1. LEMME. Si V est une variété Spin de dimension impaire,
&lt;*4*»-4&gt;[V]&gt;=0.

qui est une conséquence des relations de Wu: dans la cohomologie de l&apos;espace

de Thom du fibre normal de V, on a:

Sq\uwn_4) uw4wn_4 + uw3Sqlwn-4 puisque w1 w2 0 et Sqlwn__4

M&gt;1ivrt_4 + (n — 5)vPn_3 0 puisque n est impair. Donc uw4wn__4 Sq4(uwn-4). O

5.6, Démonstration de 1.3.1

Elle vient du cours Peccot de Lannes dont j&apos;ai parlé dans l&apos;introduction.

Ici, n est pair, /: Vn—*U2n est une immersion, ^ Nf son fibre normal,
uf e Hn(Mt;; Z/2) est la classe de Thom mod2, qu&apos;on peut considérer dans

Hn(M%, Zw*), en particulier

[Massey-1969a] a calculé le carré de Pontrjagyn {n est pair):

0&gt; : Hn(MÇ; Z/2)-* //^(M§; Z/4)

et a trouvé:

9uf p4(uf U uf)
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où p4 est la réduction mod 4 et 2 : //^(MÇ; Z/2)-* H2n(MÇ; Z/4) est induit par la
&quot;multiplication par 2&quot; : Z/2 &lt;-* Z/4. Ainsi

L&apos;opération cohomologique 0&gt; n&apos;est pas une opération stable. Dans le langage
de 5.3, c&apos;est dire que:

n&apos;est pas nulle. Ce &quot;défaut de stabilité&quot; est-calcuié par [Zarati-1978] qui montre
que r*°0&gt;- &amp;or* =2r*P2- Toujours avec les notations de 5.3, on a donc, grâce

à(*):

2d{f)={2&lt;P{f)*r*2P2ufy{S2n])

Yr*9uf, [S2*]) -
Le deuxième terme est nul et l&apos;on applique la formule de Massey au premier pour
trouver:

[S2»])

{2&lt;t&gt;{f)*r*{ufwlwn_l)f[S2n])M)(). D

§6. Exemples

Dans ce paragraphe, je vais d&apos;abord démontrer les corollaires énoncés au §0,

puis je donnerai tous les exemples de constructions de plongements totalement
réels et lagrangiens que je connais. Ils sont tous basés sur des constructions assez

simples, pour lesquelles, même si je ne cite pas de référence (faute d&apos;en

connaître), je ne prétends pas à une grande originalité.

6.7. Démonstration des corollaires
Ils sont des conséquences directes du théorème de [Gromov-1973] et de 0.4

(pour 0.6); quant à 0.7, en voici la preuve:
a) En dimension n paire, soit Vn une variété orientée munie d&apos;une

immersion / dans Rw+1. Supposons #(F) 0, alors le théorème de Hopf affirme

que le degré de l&apos;application de Gauss de / est nul; or celle-ci renvoie le fibre
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tangent à la sphère Sn sur le fibre tangent à V, qui est donc trivialisé. Donc si V
n&apos;est pas parallélisable, alors x(V)^Q et V n&apos;a pas de plongement totalement
réel d&apos;après 0.4.

b) Si la dimension n de V est impaire, et si V est stablement parallélisable
sans être parallélisable, alors n # 1, 3, 7 et l&apos;on peut appliquer 2.3. De 0.5a), on
peut déduire que ïzri(V) est l&apos;unique obstruction (dans ces dimensions) à la

parallélisabilité de V, ce qui est un théorème de [Bredon-Kosinski-1966] dont la
démonstration repose sur la solution du problème de l&apos;invariant de Hopf et les
résultats de Kervaire, ce que nous avons utilisé aussi.

6.2. Le cas des produits
Comme 0.5 ne couvre pas toutes les dimensions impaires, ne dit rien sur les

variétés non orientables, et a une démonstration un peu compliquée, il n&apos;est pas
inutile de faire quelques remarques élémentaires. Elles seront basées sur le
lemme de position générale suivant:

6.2.1. LEMME. Soit f:Vn-*Cn+k (k&gt;l) une immersion isotrope d&apos;une

variété compacte. Alors, il existe une approximation de f parmi les immersions

isotropes, qui est un plongement. O

6.2.2. REMARQUE. Soit f:Vn-*Cn une immersion lagrangienne et soit
g : Wm—&gt; Cm un plongement lagrangien. Alors, il existe un plongement lagrangien
de Vn X Wm dans Cn x Cm, qui définit la même trivialisation de T(V x W) &lt;8&gt; C

quefxg.

Démonstration de 6.2.1. Considérons la composition r^C&quot;cCn+m, et soit
fe un plongement isotrope qui l&apos;approche. Un voisinage tubulaire de fe{V) est

(symplectiquement) isomorphe à un voisinage de la section nulle de T*V x Cm vu
comme fibre sur V (voir [Weinstein-1977]). On peut plonger V xW dans ce

voisinage tubulaire grâce à la section nulle de T*V et à g.

Le cas des plongements totalement réels est autrement moins rigide puisque
on a non seulement

6.2.3. REMARQUE. Soit f : Vn -&gt; Cn une immersion totalement réelle et soit
g;Wm—&gt;Cm un plongement totalement réel. Alors, il existe un plongement
totalement réel de Vn x Wm dans Cn x Cm qui définit la même trivialisation de

T(VxW)®C quefxg.

mais encore
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6.2.4. REMARQUE. [Stout-Zame-1985]. Si f:Vn-+Cn et g:Wm-+Cn
sont deux immersions totalement réelles et si x(V) 0, alors il existe un
plongement totalement réel de V x W dans Cn x Cm qui définit la même
trivialisation de T(V xW)®£ que f xg.

Pour démontrer 6.2.3, on remplace/par une immersion lagrangienne, comme
[Gromov-1970] nous autorise à le faire et on procède comme dans 6.2.2.

Démonstration de 6.14. On commence par plonger V x W dans T*V xCm
par ge :(x, y)^(eh(y)o(x)t g(y)) où s est petit (pour que ge soit une immersion
totalement réelle), h est une fonction qui sépare les points doubles de/(supposée
générique) et o une section partout non nulle de T*V (dont l&apos;existence est
assurée par la nullité de x(V))- On remplace ensuite / par une immersion
lagrangienne f:V-*Cn à qui l&apos;on fait subir le même traitement que dans la
démonstration de 6.2.2 pour obtenir le plongement cherché.

Par exemple, si l&apos;une des variétés est de dimension impaire, le produit a un
plongement totalement réel.

Dans le cas lagrangien, un cas particulier intéressant est celui où l&apos;une des
variétés est un tore, ou plus simplement un cercle. On a par exemple

6.2.5. REMARQUE. Les trois propriétés suivantes sont équivalentes:
a) V possède une immersion lagrangienne:
b) V x Tm possède une immersion lagrangienne;
c) V x Tm possède un plongement lagrangien.

Démonstration. Il est équivalent de donner une trivialisation de TV®Cou
une trivalisation de T(V x Tm) &lt;8&gt; C. L&apos;équivalence de a) et b) est donc un
corollaire immédiat du théorème de Gromov-Lees. L&apos;implication c)=£&gt;b) est

triviale, et a)4&gt;c) est conséquence de 6.2.2.

Voici une application. Considérons l&apos;espace homogène U(n)/O(n) (grassman-
nienne des lagrangiens), et l&apos;application U(n)/O(n)-*Sym(n, C) (espace
vectoriel complexe des matrices symétriques nxn) définie par passage au quotient
de U(n)~* Sym (n, C) A &gt;-»&apos;AA.

On se convainc facilement que c&apos;est un plongement lagrangien (voir [Audin-
1986a]). On en déduit que le revêtement double U(n)/SO(n) possède des

immersions lagrangiennes, et, comme celui-ci s&apos;écrit aussi S1 xSU(n)/SO(n),
qu&apos;il possède des plongements lagrangiens (l&apos;assertion 0.8c) sur SU(3)/SO(3) et

SU(4)/SO(4) est alors une application immédiate de 0.6).
A titre d&apos;autre application, remarquons que 6.2.2 permet de construire
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beaucoup de plongements lagrangiens différents (non régulièrement homotopes
parmi les immersions lagrangiennes) de la même variété, par exemple, pour
n 2* 2, il y a une infinité de classes d&apos;homotopie régulière d&apos;immersions

lagrangiennes de Tn dans Cn qui contiennent des plongements lagrangiens.

6.3. Des fibres en tores
Une généralisation immédiate de 6.2.5 (avec m 1) est la suivante:

6.3.1. REMARQUE. Soit £-*V un fibre en droites complexes tel que
TV ® C © £ soit trivialisable. Alors il existe un plongement lagrangien du fibre en
sphères S(Ç) dans Cn+\

Démonstration. La condition &quot;7V &lt;8&gt; C © g trivialisable&quot; impose à £ d&apos;être le
fibre dét V&lt;8&gt;C (en particulier 6.3.1 n&apos;a d&apos;intérêt par rapport à 6.2.5 que si V
n&apos;est pas orientable). Considérons maintenant la variété fibrée en cercles sur V:

W S(dét V © e1)-^ V.

Son fibre tangent est stablement p*(TV©détV), dont le complexifié est

trivialisé; donc W possède une immersion lagrangienne dans Cn+1.

Comme le fibre p a évidemment une section, V est une sous-variété de W, et
son fibre normal dans W est dét V. En particulier, V possède une immersion
isotrope dans C&quot;+1, avec un voisinage tubulaire de la forme r*V©(dét V ®
C) T*V © £. On peut approcher cette immersion par un plongement isotrope.
Un fibre en cercles assez petits S(§) de § est alors une sous-variété du bord de ce

voisinage tubulaire. Elle est lagrangienne dans Cn+1 parce que les fibres de S(%)

sont lagrangiennes dans §.

On peut bien sûr donner un énoncé analogue en remplaçant § par une somme
de fibres en droites complexes et S(%) par le fibre en tores associé.

Un cas particulier de 6.3.1 est traité dans [Kawashima-1981]; c&apos;est celui où est
donnée une immersion/ : Kw—&gt; Rn+1, le fibre £ étant alors le complexifié du fibre
normal de / (l&apos;immersion isotrope 1/w—&gt;Cn+1 construite plus haut n&apos;est dans ce

case que la composition Vn^&gt; Un+l c Cn+1).

Remarquons encore que, contrairement à ce qu&apos;affirment [Stout-Zame-
1985], Kawashima n&apos;a pas démontré que S1 x P2n a un plongement lagrangien,
heureusement: ceci impliquerait que P2n a une immersion lagrangienne (voir par
exemple 6.2.5), or sa caractéristique d&apos;Euler est impaire! J&apos;ai expliqué au début
de 4.1 comment montrer plus généralement que seuls P\ P3 et P7 ont des
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immersions lagrangiennes, on a vu qu&apos;ils ont tous des plongements totalement
réels d&apos;après 4.3.2 et 0.5a), de plus le cas de P3 est un des exemples explicites
donnés dans [Forstneriè-1986a].

Il y a bien un fibre en cercles sur Pn qui a des plongements lagrangiens, mais il
n&apos;est trivial que si n 1. Il va servir d&apos;illustration pour les exemples qui suivent,
aussi le voici (voir [Weinstein-1977]). Il s&apos;agit tout simplement de l&apos;application

S1 x Sn-*Cn+l(z, x)^zx (où Sn est considérée dans Rrt+1 c Cn+1), après passage
au quotient par l&apos;involution (z, jc)^(-z, -jc). Une façon plus compliquée de le
décrire tient dans le diagramme

£rt-,l _&gt;^ 52* + !^ £«+1

(1) *1
}

1*

Pn(R) —^ Pn(C)

où n est la fibration de Hopf, En+l l&apos;espace total du fibre induit sur Pn(U) - c&apos;est-

à-dire au choix, le quotient de S1 x 5&quot; considéré, ou le fibre en cercles de y &lt;2) C
où y-+Pn(U) est le fibre en droites canonique.

La forme de Kàhler a sur P&quot;(C) est obtenue par réduction de co, c&apos;est-à-dire

que i*û) Jt*a. De toute évidence, j est un plongement lagrangien et on a donc:
(i°j&apos;)&apos;*(o =jf*jt*a jr&apos;*/*a 0. Donc le plongement i°jf est lagrangien.

Je vais maintenant expliquer une généralisation de cette construction, due à

T. Delzant (elle est liée à la classification des opérations hamiltoniennes de Tn sur
les variétés symplectiques de dimension 2n de [Delzant-1986] même si elle n&apos;y

figure pas explicitement). L&apos;idée est de constuire un diagramme analogue au
précédent

En+k —L&gt; F2n+k c, Cn+k

(2) l |

où X&amp; est une variété algébrique réelle et X^ sa complexifiée, F2n~k est une
sous-variété coisotrope, n sa réduction symplectique est un Tk-fibre, et n&apos; le
jT*-fibré induit. Le plongement i°j&apos; sera lagrangien comme plus haut. La seule

chose à faire est de construire F et n\
Xr et Xc sont les variétés toriques (réelle et complexe) associées à un

éventail Z de Qn muni du réseau Zn des entiers (voir [Danilov-1978] pour les

variétés toriques). On suppose Z tel que Xu et Xc soient projectives, lisses et
complètes.
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On appelle n + k le nombre de cônes du 1-squelette de I, ce qui définit
l&apos;entier k apparaissant dans (2), k &gt; 1 (et s&apos;il vaut 1, on est dans le cas (1)). Soient

(vi,..., vn+k) des vecteurs entiers qui engendrent le 1-squelette et tous les cônes
de I (sur Z), et soit iï:Qn+k-»Q&quot; la projection qui envoie les vecteurs

(elt..., en+k) de la base canonique sur (vu vn+k). On définit un éventail S
de Qrt+* par:

les cônes de 2 sont les cônes (efJ,..., elr) tels que

(ufJ,.. vlr) soit un cône de I (*)

(on replie l&apos;éventail I).
Ainsi Ë est un éventail du premier &quot;quadrant&quot; et la variété torique complexe

qu&apos;il définit est un ouvert 9 de C+* (complémentaire d&apos;une famille finie de

sous-espaces vectoriels). 3F est, bien sûr, muni d&apos;une opération du gros tore
(C*)rt+*, et du sous-tore Te associé au noyau de n\ les hypothèses sont telles que
celui-ci opère librement sur 9*, le quotient étant précisément Xc. Il n&apos;y a plus
qu&apos;à choisir pour F l&apos;espace total du sous Tk-fibre associé.

L&apos;exemple le plus simple (k 1) est celui du diagramme (1). Le cas où
k n 2 fournit des plongements du tore T4 et de fibres en tores T2 sur la
bouteille de Klein qu&apos;on aurait pu obtenir par 6 3.1, mais aussi des choses plus
compliquées.

6.4. Remarques supplémentaires, avec des questions
Comme je l&apos;ai déjà mentionné, il y a des plongements lagrangiens de toutes

les surfaces non-orientables dont la caractéristique d&apos;Euler est divisible par 4,
sauf peut-être de la bouteille de Klein ([Givental-1986]). A part eux, et ceux
qu&apos;ils engendrent grâce à 6.2.2, je ne connais pas d&apos;autre exemple de variété qui
possède des plongements lagrangiens et dont la caractéristique d&apos;Euler ne soit pas
nulle. En fait, tous les exemples que j&apos;ai donnés dans ce paragraphe ont la

propriété d&apos;être fibres sur le cercle S\ même si certains d&apos;entre eux apparaissent
plutôt comme des 5^fibres.

En plus des questions évidentes que posent les restrictions de l&apos;énoncé 0.5

pour les plongements totalement réels, il y a donc une question générale pour les

plongements lagrangiens: Quelles variétés compactes ont des plongements
lagrangiens?

Par exemple, grâce à 6.2.2 et aux exemples de Givental, on peut trouver des

plongements lagrangiens de variétés de dimension 4 avec caractéristique d&apos;Euler

8k (k &gt; —1), alors que 0.4 n&apos;impose que % divisible par 4.

D&apos;autre part, tous les exemples de plongements que j&apos;ai donnés, comme ceux
de Givental, ont une classe de Maslov non nulle; grâce à [Gromov-1985] (voir
aussi [Sikorav-1986]), on sait que H\V\ R) doit être non nul, et donc contient
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assez de place pour que la question suivante puisse avoir une réponse négative:
Existe-t-il un plongement lagrangien dans C1 avec classe de Maslov nulle?

Le lecteur aura sans doute noté que les remarques précédentes fournissent

beaucoup d&apos;exemples de plongements lagrangiens du tore Tn. Or ceux-ci ont tous
la &quot;même&quot; classe de Maslov au sens suivant: il existe une base (et,..., en) de

Hl(Tn; Z) dans lacquelle la classe de Maslov s&apos;écrit 2ex. Est-ce vrai pour tous les

plongements lagrangiens de F1?
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