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Fibrés normaux d’immersions en dimension double, points
doubles d’immersions lagrangiennes et plongements
totalement réels

MICHELE AUDIN

Il y a actuellement toute une activité autour des problémes de plongements
lagrangiens dans C"” (une immersion f : V — C" est lagrangienne si, en tout point x
de V, iT.f(T.V) est I'orthogonal de T,f(7T.V)). La classification des immersions
lagrangiennes est un des effets de la méthode de [Gromov-1970] (voir aussi
[Lees—1976]). Le probleme des plongements est autrement plus rigide, et va
stirement donner des résultats surprenants. Par exemple, un sous-produit d’une
nouvelle puissante théorie développée par [Gromov-1985] est: pour que V
posséde un plongement lagrangien dans C”, il faut que H'(V; R) ne soit pas nul.

Dans cet article, je vais montrer que la topologie différentielle “molle” a
quand méme des choses a dire sur le probleme de l'existence de plongements
lagrangiens. Je vais méme I’aborder sous un angle trés grossier: pour que V
possede un plongement lagrangien dans C”, il est nécessaire qu’elle posséde, dans
la méme classe d’homotopie réguliere ordinaire, a la fois une immersion
lagrangienne et un plongement (ordinaire).

Un “lemme de Whitney” d’élimination des points doubles a permis a
(toujours . . .)[Gromov-1973] (voir aussi [Forstneri¢—1986b]) de montrer que
cette derniere condition est suffisante pour que V posséde un plongement
totalement réel (c’est la version ‘“molle”’ des plongements lagrangiens: on
demande seulement que T, f(T,V) et iT.f(T,V) soient transverses). Il se trouve
que les sous-variétés totalement réelles de C" sont intéressantes en elles-mémes:
elles permettent par exemple de construire des domaines d’holomorphie (voir
[Stout-Zame-1985] par exemple).

La présente approche, fort grossiere pour les plongements lagrangiens (elle
n’imposera jamais des choses comme H'(V;R)#0) est ainsi suffisante pour
donner des caractérisations des variétés qui posseédent des plongements totale-
ment réels.

Pour présenter simplement les résultats de cet article, je partage la question
sous-jacente a la remarque ‘‘grossiére” précédente en deux:

a) Combien y a-t-il de classes d’homotopie réguliere d’immersions ordinaires
de la variété V dans C" qui contiennent des immersions lagrangiennes?

593
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b) Comment décider, a la vue de la topologie de V, si ces classes contiennent
des plongements (ordinaires)?
Voici d’abord des réponses a a):

0.1. THEOREME. Soit V une variété fermée de dimension n. Si n + 1 n’est
pas une puissance de 2, il existe au plus une classe d’homotopie réguliére
d’immersions de V dans R*" qui contient des immersions lagrangiennes.

Sans hypothéses supplémentaires, on ne peut pas supprimer ’hypothése de
dimension, puisqu’on a aussi.

0.2. THEOREME. Pour tout entier q, il existe une variété (orientable) V de
dimension n =27 — 1, dont toutes les classes d’homotopie réguliére d’immersions
dans C”" contiennent des immersions lagrangiennes.

C’est le cas pour toutes les variétés orientables de dimension 1 (trivialement)
et 3. En particulier, toutes les variétés orientables de dimension 3 possédent des
plongements totalement réels dans C°.

On a quand méme

0.3. PROPOSITION. Si V est une variété stablement parallélisable de dimen-
sion n#1 et 3, il existe une classe d’homotopie réguliére d’immersions de V dans
C" qui contient toutes les immersions lagrangiennes de V.

Passons maintenant a la question b). Soit f:V — C"” une immersion lagran-
gienne, désignons par d(f) le nombre de points doubles d’une approximation a
croisements normaux de f, comptés “algébriquement” comme dans [Whitney—
1944], ainsi: d(f) € Z si V est orientable et n pair, d(f) € Z/2 dans tous les autres
cas. La nullité de d(f) est une condition nécessaire et suffisante (méme dans le
cas des surfaces dans ce contexte) pour que f soit réguli¢trement homotope a un
plongement, quand V est connexe.

Le cas ou n est pair est bien classique (au moins si V est orientable). On
trouve

0.4. PROPOSITION. Soient V une variété de dimension n =2k et f :V—C"
une immersion lagrangienne. Alors

d(f) = (=1)**? l_(;l (mod 2 si V n’est pas orientable);

x(V) désigne la caractéristique d’Euler. Si n est impair (n =2k +1), on peut
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espérer que la semi-caractéristique de Kervaire
k
222(V) =Y, dim H'(V;Z/2) mod 2
i=0
va jouer le méme rodle, puisqu’on a

0.5. THEOREME. Soient V une variété fermée de dimension n impaire et
f:V—>C" une immersion lagrangienne. Alors d(f) = %2-(V) au moins dans les
cas suivants:

a) n#1 et 3 etV est stablement parallélisable,

b) n=4h+1 (h=1) et V est orientable,

c) n=8h+3 (h+#29) etV est spin.

Voici quelques applications directes.

0.6. COROLLAIRE. Pour qu’une variété connexe de dimension n posséde
un plongement totalement réel, il faut et il suffit que son fibré tangent complexifié
soit trivialisable et que:

a) sin=0mod2, x(V)=0(mod 4 si V n’est pas orientable);

b) si n=1mod 4 et V orientable, %7,(V)=0.

0.7. COROLLAIRE. Si V est une variété stablement parallélisable mais pas
parallélisable, elle ne posséde aucun plongement totalement réel, a fortiori aucun
plongement lagrangien.

Comme je I’ai déja dit, le cas des variétés orientables de dimension paire est
bien connu. Le cas des variétés stablement parallélisables (au moins pour n # 7)
est aussi facile (0.7 est un exercice, qui peut se faire avant ce qui le précede). Je
vais néanmoins les expliquer trés en détail pour deux raisons: d’abord, il n’est pas
impossible que les lecteurs les plus intéressés par les résultats de ce travail soient
des consommateurs de plongements totalement réels, et pas des spécialistes de
topologie différentielle; ensuite, la démonstration de 0.3 que je vais donner est
une bonne introduction aux voies un peu détournées menant a 0.5 b par exemple.

Les démonstrations de 0.1, 0.2, 0.3, et 0.4 sont fondées sur la classification
des immersions de [Whitney-1944], [Smale-1959] et [Hirsch—-1959] et sur celle
des immersions lagrangiennes par [Gromov-1970] et [Lees-1976]. Un résultat
intermédiaire peut-étre intéressant est I’énumération (quand n est impair) des
fibrés normaux d’immersions en dimension double (3.1.1),* basé sur un beau

*Ce résultat figure déja dans: W. Sutherland, Whitehead squares in Thom complexes, Proc.
Edinburgh Math. Soc. 24 (1981) 221-229.
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théoreme de [James—-Thomas-1965]. J’ai essayé d’étre compléte en ce qui
concerne les plongements réels, mais bien slir pas sur tout le folklore des
immersions en dimension double, dont il n’apparaitra ici que ce qui sera utilisé
dans les démonstrations.

Dans ce souci d’étre complete, j’ai inclu une liste d’exemples de tout ce que je
connais en fait de plongements totalement réels et lagrangiens, voila une partie
des exemples qui viennent directement des résultats précédents:

0.8. PROPOSITION. Les variétés suivantes possédent des plongements tota-
lement réels:

a) les espaces projectifs réels P', P?, P’ (et ceux-la seulement);

b) sauf en dimension 7, toutes les variétés parallélisables, en particulier tous les
groupes de Lie compacts;

c) les espaces homogenes U(n)/O(n), SU(3)/SO(3), SU(4)/SO4) et
U(n)/SO(n).
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§1. Etude des variétés de dimension paire

Dans ce paragraphe, je démontre 0.1 pour les variétés de dimension paire, et
0.4.
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1.1. Démonstration de 0.1 quand n est pair
Elle est folklorique et facile a partir de [Hirsch-1959], qui affirme que la
classe d’homotopie réguliere de f: V" — R?* est (pour n pair) bien définie par la

classe d’Euler du fibré normal
e(Nf)e H*(V,; n,0/0O(n))=H"(V;Z")=Z

ou Z" est le faisceau de coefficients tordu par l'orientation de V. Si f est
lagrangienne, la multiplication par i fournit un isomorphisme TV — Nf, ce qui
suffit. O

1.2. Démonstration de 0.4 quand V est orientable

1.2.1. PROPOSITION. Soit V une variété fermée orientable de dimension n
paire, et soit f : V — R*" une immersion. Alors

d(f) = —3(e(Nf), [V]).

Démonstration de 1.2.1. On suppose f a croisements normaux, et on choisit
une section o du fibré normal Nf, transverse a la section nulle et dont les zéros ne
sont pas des (images inverses de) points doubles de f. On considere, pour £ >0

L(x)=f(x) + eo(x) e R*

définissant ainsi une approximation de f qui lui est transverse. On calcule ensuite
I'intersection homologique 0 =f,[V] - f,[V] en comptant les points d’intersection
de fetf.Ilya:

* d’une part, les zéros de o, en nombre ‘“algébrique” (e(Nf), [V]);

* d’autre part, deux points d’intersection pour chaque point double de f,
chacun avec le signe de ce point double.

Ainsi, 0= (e(Nf), [V]) +2d(f). O

Maintenant, si f est lagrangienne, on a un isomorphisme TV — Nf, qui
multiplie Porientation par (—1)""""72, donc e(Nf)=(=1)""""2e(TV), soit si
n=2k:

an =y B0 o



598 MICHELE AUDIN

1.3. Démonstration de 0.4 quand V n’est pas orientable
Elle est fondée sur la généralisation suivante d’un théor¢me de Whitney et
Mahowald concernant les plongements (voir [Massey—1969a]}).

1.3.1. PROPOSITION [Lannes—1982]. Soit V une variété fermée de dimen-
sion n paire, et soit f : V — R?" une immersion. Alors,

d(f) = (mw,_y, [V]) + 2{e(Nf), [V]).

Dans cet énoncé, w; désigne la i-€me classe de Stiefel-Whitney normale de V
et 3(e(Nf), [V]) est un nombre entier, considéré modulo 2. Je donnerai une
démonstraiton de 1.3.1 (due aussi a Lannes) dans S5.6.

Si f est lagrangienne, on remplace (comme plus haut) Nf par TV. Pour finir la
démonstration, il ne reste plus qu’a montrer:

1.3.2. LEMME. Si V posséde une immersion lagrangienne, le nombre
(Wyw,_y, [V]) est nul.

Démonstration de 1.3.2. Soit g:V < R"** (k assez grand) un plongement, et
®(g):5"**— M la construction de Thom-Pontrjagyn (M est 'espace de Thom
du fibré normal de g). Désignons par u € H*(M; Z/2) la classe de Thom mod 2, et
calculons dans H*(M; Z/2):

Sq" " (uWy) = U, Wy + uw, Wi
= UWp -1 W15
Comme V posséde des immersions lagrangiennes, wi = 0. Donc:

(W1 Wn—1, [V]) = (D(g)*Sq" '(uy), [§"**]) =0. O

(En tout état de cause, w,_; =0 pour toutes les variétés V si n n’est pas une
puissance de 2; et si n est une puissance de 2, on a par récurrence avec la
démonstration précédente que (w,w,_,, [V]) = (W], [V]).)

~ 1.3.3. Remarque sur les surfaces. A priori, la nullit¢ de d(f) n’est pas
suffisante pour que f soit régulierement homotope a un plongement, quand n = 2.
D’apres [Massey-1969b], il faut et il suffit:

a) que d(f) =0, soit ici que x(V) soit divisible par 4;
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b) et en plus que —4+2x(V) = (e(Nf), [V]) =4—-2x(V), ce qui est auto-
matique si f est lagrangienne: il n’y a pas de surface non-orientable dont la
caractéristique d’Euler soit plus grande que 1.

Il existe bien des plongements totalement réels de toutes les surfaces
non-orientables dont la caractéristique d’Euler est divisible par 4: si (V)=
—4k <0, il y a un plongement lagrangien de V dans [Givental-1986]; et il y a un

plongement totalement réel (non lagrangien) de la bouteille de Klein dans
[Rudin-1981].

§2. Etude des variétés stablement parallélisables de dimension n # 1, 3, 7

Dans ce paragraphe, je montre 0.3 sauf en dimension 7. Il y aura une autre
démonstration incluant la dimension 7 plus bas, mais celle donnée ici est une
bonne introduction aux problémes et méthodes utilisées dans la suite. Elle est
fondée sur la proposition suivante, qui est folklorique (voir par exemple
[Koschorke—Sanderson-1977]).

2.1. PROPOSITION. Soit f:V—R"*' une immersion d’une variété orien-
table de dimension n, et soit g la composition V— R"*' = R*". Alors, modulo 2,
d(g) est I’invariant de Hopf de la parallélisation stable définie par f.

La démonstration de 2.1. que je donne ici est inspirée de —et donc essen-

tiecllement due a - [Stong-1968]. On considere le diagramme commutatif de
groupes de cobordisme

Q{:
N
QoI Q25 72

N A

O,n
n+1

dans lequel:

* QF est le groupe de cobordisme des immersions de variétés orientées de
dimension n dans R"*! (ou des variétés stablement parallélisées):

* QO est le groupe de cobordisme relatif des variétés de dimension n +1
donte le bord est orienté et muni d’une immersion dans R™**;

* Q" est le groupe de cobordisme des immersions en codimension n des
variétés de dimension n;

* Q2" est le groupe de cobordisme des variétés de dimension n + 1 dont le
bord est muni d’une immersion en codimension 7;
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* & désigne les applications ‘‘bord” et j, les applications induites par
inclusion R"*! c R?";

* ]’application de “points doubles” d est considérée dans Z/2 méme si n est
pair.

Soit (W™*!, f) représentant un élément de 22,3 :f est une immersion de 8W
dans R?". L’application classifiant le fibré normal de la paire (W, W) est a
valeurs dans (BO, BO(n)). La restriction H*(BO, Z/2)— H*(BO(n);Z/2) est
surjective et son noyau contient la classe w,.;, quon peut donc considérer
comme un élément

W,+1 € H"Y(BO, BO(n); Z/2) - H*"*}(BO, Z/2).

En évaluant sur la classe fondamentale, w,,; définit donc un homomorphisme
Woe1: 2277 — Z/2 nul sur 'image du cobordisme non-orienté Q2,,— Q9: la
“derniére” classe de Stiefel-Whitney normale d’une variété fermée est nulle.
Dans le livrte de Stong (p. 102~) est défini de la méme maniére un
homomorphisme, compatible via j, avec le précédent:

Wpaitt gr?-,f-f;'_) Z/Z

Comme toutes les vari€tés stablement parallélisables sont des bords, la longue
suite exacte reliant 29 et Qf se coupe:

0—> Q2,,— Q25> O —0.

L’essertion que w,.,: Q%77— Z/2 est 'invariant de Hopf a donc un sens, et Stong
la démontre.

Pour démontrer 2.1, il suffit donc de vérifier que le diagramme

Q: d

aI ™S 7
/W:H

Qn+l

est commutatif. On vérifie aisément grice a une construction de Thom-
Pontrjagyn que w,, ., définit

* un isomorphisme 9, — Z/2 si n est impair;

* la surjection Q%% =7—7/2 si n est pair.

Comme il y a assez peu d’homomorphismes de Z/2 ou Z dans Z/2, il suffit de
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trouver un €élément de l'image de 9 sur lequel d vaut 1. Il est clair que
I'immersion de Whitney est un exemple. [

Les variétés stablement parallélisables étant en particulier orientables, le
théoréme 0.3 a déja ét€ démontré au §1 quand n est pair. Je suppose donc
désormais que n est impair. Dans ce cas, il y a, d’aprés la classification des
immersions de [Hirsch-1959], exactement deux classes d’homotopie réguliere
d’immersions de V dans R*":

H"(V;x,0/0(n))=H"(V;Z/2)=12Z]2.
De 2.1 et de la solution du probléme de I'invariant de Hopf, on déduit:

2.2. COROLLAIRE. Soit V une variété stablement parallélisable de dimen-
sion impaire n ¥ 1, 3, 7. 1l existe sur V un fibré vectoriel non trivial de rang n (qui
est stablement trivial et) qui est le fibré normal des immersions de V dans R*" ayant
un nombre impair de points doubles. Le fibré normal des immersions ayant un
nombre pair de points doubles — en particulier des plongements — est trivial.

Démonstration de 2.2. Si f :V — R?" est une immersion dont le fibré normal est
trivialisable, elle est régulierement homotope & une immersion de la forme
V—R""!'cR*. De 2.1 et d’[Adams—1960], on déduit que f a un nombre pair de
points doubles.

Whitney nous a appris & rejouter un point double a une immersion; il existe
donc une immersion f' ayant un nombre impair de points doubles (qui n’est donc
pas régulierement homotope a f), et dont le fibré normal n’est pas trivial. O

On en déduit immédiatement le théor¢me 0.3 (sauf pour n=7). N.B.: de
toute évidence 2.2 est faux pour la sphére S’ par exemple, ainsi que 2.3.

2.3. COROLLAIRE. Si n est impair #1, 3 et 7, les immersions lagrangiennes
de la variété stablement parallélisable V dans C" ont un nombre pair de points
doubles si V est parallélisable, et un nombre impair de points doubles sinon. [J

§3. Démonstration de 0.1 pour les variétés de dimension impaire

3.1. Réduction a un résultat énumératif sur des fibrés instables
En dimension impaire, il n’y a pas de classe caractéristique instable comme la
classe d’Euler pour distinguer les fibrés normaux des immersions dans R*".
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Dr’ailleurs, il est tout a fait possible que deux immersions aient des fibrés normaux
isomorphes sans étre régulierement homotopes; par exemple sur les sphéres S” de
dimension n=3 ou 7, tous les fibrés de rang n sont triviaux (en particulier
isomorphes entre eux); pourtant I'immersion de Whitney, qui a un point double,
n’est pas régulierement homotope au plongement standard S” < R"*' = R**, qui
n’en a pas. Que ces exemples aient des dimensions de la forme 27 — 1 n’est pas un
hasard, puisque je vais démontrer

3.1.1. PROPOSITION.* Soit V une variété fermée et connexe, de dimension n
impaire. Si n + 1 n’est pas une puissance de 2, il existe sur V deux fibrés vectoriels

de rang n, non isomorphes entre eux, et stablement isomorphes au fibré normal
absolu NV de V.

Dans ce cas, les deux réductions de NV a la dimension n définies par les deux
classes d’homotopie réguliere d’immersions de V dans R?* correspondent donc 2
deux fibrés normaux d’immersions non-isomorphes. Un de ces fibrés—au
plus — est isomorphe au fibré tangent TV. On en déduit évidemment 0.1 et plus
précisément

3.1.2. COROLLAIRE. Si V est une variété connexe de dimension n impaire,
et si n + 1 n’est pas une puissance de 2, il existe au plus une immersion de V dans
R?" dont le fibré normal est isomorphe au fibré tangent TV. O

3.2. Etude des fibrés instables stablement isomorphes au fibré normal

Je vais démontrer ici la Proposition 3.1.1. La théorie des obstructions
(cochaine de différence) dit que le groupe H"(V'; x,0/0(n)) = H*(V; Z/2) opere
sur ’ensemble [V, BO(n)] des classes d’isomorphisme des fibrés de rang n sur V.
L’orbite de la classe d’isomorphisme du fibré £ est formée des classes
d’isomorphisme des fibrés stablement isomorphes a §. Pour compter ces classes
d’isomorphisme, il suffit donc de connaitre le stabilisateur de & dans H"(V'; Z/2).
[James-Thomas—1965] ont montré que ce stabilisateur est I'image de
I’application:

A(8):[V, O]=>H™"(V;Z/2)

AG)- = ngo @*h,,_; Uwi(E)

* Ce résultat figure déja dans: W. Sutherland, Whitehead squares in Thom complexes, Proc.
Edinburgh Math. Soc. 24 (1981) 221-229.



Plongements totalement réels 603

(quand n est impair #1 et 3) —les h; sont les générateurs de H*(SO; Z/2) définis
par [Borel-1954]. Voici une explication de ce résultat, dans le cas ol & est le fibré
normal Nf d’une immersion f de V dans R?': cette immersion définit un
isomorphisme:

TV E—-V xXR*" 1)

Tout élément @ de [V, O]=[V, O(2n)] définit un autre tel isomorphisme, la
composition:

TVOE-V XR” >V xR™ )
(x, v) = (x, @x(v)).

A() associe a g la classe de cohomologie de la cochaine de différence reliant
les réductions de NV a la dimension n définies par (1) et (2). Dire que A(&) est
surjective, c’est bien exactement dire que toutes les réductions possibles sont
réalisées par le méme fibré &.

11 est clair que 3.1.1 est une conséquence directe de ce théoréme de James et
Thomas et de:

3.2.1. LEMME. Soient V une variété de dimension n, et @ une application
continue de V dans SO. Si n + 1 n’est pas une puissance de 2, alors A(NV) - ¢ =0.

[N.B. A(&) - et c’est heureux, vue son interprétation — ne dépend que de la classe
d’isomorphisme stable de &.]

Démonstration de 3.2.1. 11 s’agit de vérifier que le nombre
(2 @*hai UW, [V]) €Z/2

est nul. Ce nombre ne dépend que de la classe de bordisme non-orienté de
Iapplication @. Soit donc A,:N,(SO)— Z/2 I'homomorphisme qu’il définit
(N .(S0) designe I'homologie de SO pour le spectre MO, N ,(pt) est déja apparu
sous le nom de Q¢ dans la démonstration de 2.1). Désignons par u la classe de
Thom dans H*(MO; Z/2), et soit

8, = uw, ®h,_, € H'(MO A SO*;Z/2).

Gréace a Thom-Pontrjagyn, il suffit de vérifier que, si n +1 n’est pas une
puissance de 2, 9, s’écrit comme combinaison -linéaire d’éléments de degrés
strictement inférieurs a n — ot  est I’algébre de Steenrod mod 2.
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Remarquons maintenant que

SqPu®hp_)= 2 Sq'u®Sq’hy_,

r+s=j

= Z uwr®hs+2k-—1;

r+s=j

en effet, d’aprés [Borel-1954], on a Sq°h, = Ch,,,, mais les coefficients bino-
miaux C sont tous impairs quand ¢ =2* — 1.

Soit g =[log, n] —de facon moins pédante, c’est dire que n=27—1+p
(0=p <27). La formule précédente donne;

—12i—-1

6n= 2 uWn_2i+1_]‘®h2‘_1+j+qu®h2‘1_1+ .. -+u®h,,
i=1 j=0
-1 .
=S Sg T W @by ,) + SqP(u ® hy_y). %)

i=1
Si p =1 (c’est-a-dire si n + 1 n’est pas une puissance de 2), on a ainsi écrit J,

comme une combinaison #-linéaire d’éléments de degrés strictement inférieurs
an 0O

Retenons aussi que (*) montre, si # + 1 est une puissance de 2 (c’est-a-dire si
p =0), que

(ANV) - @, [V]) = (@ h,, [V]),

ce qui nous servira pour étudier les variétés de dimensions 27 — 1.

§4. Etude des variétés de dimension 29 — 1

Dans ce paragraphe, je vais montrer 0.2 et donner une démonstration de 0.3
qui fonctionne aussi en dimension 7.

4.1. Démonstration de 0.2
Remarquons que la démonstration précédente et la remarque qui la suit
disent qu’il existe, pour tout ¢ =3, une variété V de dimension n =27 — 1 dont
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toutes les immersions dans R?” ont des fibrés normaux (instablement) isomorphes
entre eux: en effet H*(MO; Z/2) est, comme chacun sait depuis [Thom—-1954] un
#-module libre, donc H*(MO A SO™*;Z/2) aussi, et toute famille d’éléments
{a®b} ou a parcourt une f-base de H*(MO;Z/2) et b une Z/2-base de
H*(SO;Z/2) en est une #-base. En particulier, il existe une &/-base contenant
les u @ h;, et donc une -base contenant J, si n est une puissance de 2 d’apres la
remarque finale du §3. Donc il existe une variété V et une application @ telles
que:

ANVYp#0e H"(V; Z/2), n=27-1,

ce qui suffit pour n #1 et 3 d’aprés James et Thomas.

En fait, ces auteurs ont aussi vérifi€ que I’espace projectif P" est un exemple
explicite d’une telle variété. Un calcul simple montre que (sauf sin =1, 3 ou 7)
cet espace projectif ne possede pas d’immersions lagrangiennes (le dit calcul est
trés simple quand n n’est pas de la forme 29 — 1, puisqu’alors TP" @ C a des
classes de Chern non nulles et ne peut €tre trival; dans le cas n =27 — 1, qui nous
intéresse ici, c’est un peu plus délicat: il faut connaitre la K-théorie complexe de
P" ... mais c’est classique). L. Smith m’a suggéré que ceci pouvait étre lié a un
théoréme de [Brown—1973], mais ce n’est pas absolument clair pour I'instant.

Le calcul effectué ci-dessus dans H*(MO A SO*; Z/2), si on le transfére dans
H*(MA A SO*;Z/2), ou MA est le spectre définissant le cobordisme lagrangien
non-orienté, montre de méme:

4.11. REMARQUE. Pour tout q, il existe une variété V, de dimension
n=2%—1, possédant des immersions lagrangiennes dans C", et dont toutes les
immersions dans R*" ont des fibrés normaux isomorphes. O

Je renvoie a [Audin—-1986a] ou sont étudiés le spectre MA et sa cohomologie
mod 2.

Pour montrer 0.2, il faut encore:

* Montrer qu’on peut supposer que V est orientable;

* Montrer qu’on peut supposer aussi que l'isomorphisme entre les fibrés
normaux provient bien d’un isomorphisme de TV ® C.

Revenons aux commentaires sur le théoréme de James et Thomas qui figurent
au début de 3.2, en supposant que V a les propri€tés énoncées dans la remarque
4.1.1.

Une immersion lagrangienne f:V — C" fournit un isomorphisme de fibrés
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vectoriels complexes
TVR®C—-V xC"

Si @ est une application de V dans O(2n), elle fournit un isomorphisme de
fibrés vectoriels réels

TVRC-o>VXC'=VXR*">V xR*. (*)

Si (@*h,,[V])=1 (n=29-1=7), cet isomorphisme décrit I’ ‘“autre”
immersion de V dans R?". Pour assurer que cette autre immersion est lagran-
gienne, le théoréme de classification de [Gromov-1970}-[Lees—1976] affirme
qu’il suffit que I'isomorphisme (*) soit un isomorphisme de fibrés vectoriels
complexes, autrement dit que @ provienne de U(n) via linclusion j:U(n) c
O(2n). 11 suffit donc de vérifier:

4.1.2. PROPOSITION. Pour tout entier n impair, il existe une wvariété
orientable V de dimension n, telle que TV Qg C est trivialisable, et une application
y:V — U(n) vérificant {((jo¢)*h,, [V]) =1.

Démonstration de 4.1.2. (dans tout ce qui suit, n =2k —1). Considérons
’homomorphisme: j*: H"(SO; Z/2)— H"(U; Z/2).

Dans la fibration universelle SO— ESO— BSO, la classe h,, a pour transgres-
sion w,.;. Soit o, € H"(U;Z) tel que, dans la fibration U— EU— BU, la
transgression de «,, soit la classe de Chern c,. Par j': BU— BSO, I'image de w, .,
est la réduction mod 2 de ¢;, donc j*h, = a, (en appelant encore a, la réduction
mod 2).

En appelant L,(U) I'homologie de U pour le spectre MA définissant le
cobordisme lagrangien orienté (voir [Audin—1986a] pour ses propriétés), il suffit
de vérifier que I'image de ’homomorphisme, défini par a, mod 2, «,:L,(U)—
Z/2 contient 1.

J’ai montré dans 'ouvrage cité que H*(MA, Z/2) est un sf-module “simple”
(suivant la terminologie de Wall); il s’ensuit que H*(MA A U*; Z/2) est aussi un
#-module simple et que les éléments de la cohomologie de U mod 2 qui peuvent
prendre des valeurs non nulles sur L,(U) sont les éléments de ker Sq* qui ne sont
pas dans Im Sq'. Comme la cohomologie entiere de U est sans torsion (c’est
’algebre extérieure sur les a; — i impair), tous les éléments «,, sont concernés. [
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4.2. Démonstration compléte de 0.3

Le Théoré¢me 0.1, que nous avons démontré plus haut, contient 0.3 sauf pour
les dimensions 27 —1 (g =3). Si on veut démontrer 0.3 sans utiliser la solution
du probleme de linvariant de Hopf, précisément réputé difficile dans ces
dimensions, il suffit d’étudier ces dimensions.

4.2.1. PROPOSITION. Si V est une variété stablement parallélisable de
dimension impaire n =5 et @ :V — U une application continue, alors {(@*«a,, [V])
est un nombre pair.

Démonstration de 4.2.1. Considérons une décomposition cellulaire de V avec
une seule cellule en dimension n, et e:V-—S" l'application qui écrase le
(n — 1)-squellette V"~V en un point. On a une cofibration

vebo,y s §n
qui définit des suites exactes et un diagramme commutatif

K—l(sn) __e_'__) K—](V) _ K—-I(V(n—l)) — 0

H"($";2) = H"(V;Z) — H"(V"";Z)

ou K est la K-théorie complexe [Rappel: K~'(X) =[X, U).] De toute évidence,
e* est un isomorphisme en cohomologie enti¢re.

Comme V est stablement parallélisable, il existe une application stable o de V
dans S" qui scinde (stablement) I’application e. Rappelons sa construction: on
plonge V dans R"** (k assez grand), et on applique une construction de
Thom-Pontrjagyn a ce plongement. Le fibré normal est trivialisable (k est assez
grand) et son espace de Thom est donc S A V*. On a donc une application
0:8"**— §¥ A V* qui est un représentant de I'application stable cherchée.

On peut réécrire le diagramme ci-dessus:

0 —> K-'l(s") (‘3 K“l(V) — f-l(vw-“) — 50
0 — H"($";Z) —> H"(V;Z) — 0

L’image de a,:K '(V)— H"(V;Z) sidentifie donc a celle de a,,: K™'(§") =
n,U— H"(S";Z). Autrement dit, il suffit de vérifier 4.2.1 quand V est une
spheére.
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Ecrivons n =2k — 1. Par définition de «,, il revient au méme de calculer
Pimage de ¢, : 5 (BU)— H*(5%; Z), dont il est classique qu’elle est formée des
multiples de (k —1)! (par exemple par intégralité du caractere de Chern).
Comme 2k —1=5, (k —1)! est divisible par 2. O

4.3. Les dimensions 1et 3

Il est bien clair que 0.1 est faux en dimension 1: toutes les immersions sont
lagrangiennes. Comme le théoréme de James et Thomas ne s’applique pas en
dimension 3 non plus, il faut faire une étude spécifique. Prenons comme point de
départ le cas de la sphére S, qui est bien connu:

4.3.1. PROPOSITION. [Gromov-1973]. Toutes les classes d’homotopie
réguliére d’immersions de S° dans R® contiennent une immersion lagrangienne.

Cette proposition figure aussi dans [Kawashima-1981]. La démonstration
homotopique la plus simple est celle de Gromov, qui figure maintenant dans son
livre ([Gromov-1986]). La démonstration géométrique la plus simple consiste a
exhiber une immersion totalement réelle dans chacune des deux classes
d’homotopie réguliere d’immersions: il y a un plongement totalement réel de S°
dans [Ahern-Rudin-1985], et il y a une version lagrangienne de I'immersion de
Whitney (pour toute dimension n) donnée par (x, y)+~ (1+ 2iy)x, ou x e R",
yeR, et |Ix|*+y*=1. O

N.B. La démonstration homotopique donne le résultat opposé pour S’ bien plus
simplement que par la preuve générale de 0.3: une parallélisation @, de S’ étant
fixée, a toute application y : 87— U, on associe une trivialisation de 7'S” ®g C, et
donc une classe d’homotopie réguliere (lagrangienne) d’immersions lagran-
giennes. Les immersions ordinaires, elles, sont données par les éléments de
7,(SO/SO(7)). Ainsi la classe d’homotopie réguliere ordinaire d’une immersion
lagrangienne définie par y est donnée par la composition:

§"— U—>S0— S0/S0(7)

mais ;80— 7,50/SO(7) est 'homomorphisme surjectif de Z dans Z/2, et
n,U— 7,80 est d’indice 2; donc I'image de 7,U— 7,50/SO(7) est nulle, donc
il y a une seule classe d’homotopie régulie¢re qui contient des immersions
lagrangiennes (et comme il y a un modele lagrangien de I'immersion de Whitney,
ce n’est pas la classe du plongement).

Revenons aux vari€tés de dimension 3. Le corollaire suivant de 4.3.1 a déja
été remarqué par [Forstneri¢-1986b] (le méme auteur a généralisé I’exemple
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explicte de plongement totalement réel de S> mentionné plus haut a beaucoup de

quotients de cette sphére, en particulier tous les lenticulaires dans [Forstneri¢—
1986a]).

4.3.2. COROLLAIRE. Soit V une variété orientable de dimension 3. Toutes
les classes d’homotopie réguliére d’immersions de V dans R® contiennent des

immersions lagrangiennes. En particulier, V posséde un plongement totalement
réel.

Démonstration de 4.3.2. La variété V est parallélisable. Comme dans la
démonstration précédente, on doit donc considérer I'image de I'application
naturelle [V, U]— [V, SO/SO(3)] qui entre dans un diagramme commutatif

[V, U] —> [V, SO/SO(3)]

n,U —— m,50/S0(3)

ou e est défini en écrasant le 2-squelette comme dans 4.2. Comme SO/SO(3) est
2-connexe, le e* de droite est une bijection. La fleche horizontale du haut est
donc aussi surjective. O

§5. Calculs de points doubles
Dans ce paragraphe, je vais montrer le Théoréme 0.5 et la Proposition 1.3.1.

5.1. Les variétés stablement parallélisables

Quand V est stablement parallélisable, et dim V #7, on peut déduire 0.5a) de
2.3 et d’un théoréme de [Bredon-Kosinski-1966] qui dit que (en dimensions
impaires #1,3,7) %z2(V) est I'unique obstruction a la parallélisabilit¢ de V.
Cette démonstration ne fonctionnant pas en dimension 7, je vais donner un
argument plus géométrique.

Soit f : V— R"*! une immersion de V en codimension 1, et N =N(f):V —>§"
son application de Gauss (une orientation de V étant choisie). Le couple (N, f)
définit une immersion de V dans $" X R"*!, avec évidlemment N(x) - T,f(§) =0
(€ € T,V), ce qui fait que la projection sur 78" = {(p, ) € S" X R**!'|gep*} est
automatiquement une immersion lagrangienne f de V dans 7" (TS" est considéré
comme une sous-variété de R**!x R"*!'=C""' et munie de la forme symplec-
tique qui est la restriction de w; elle-ci coincide, au signe pres, avec la structure
symplectique canonique de T*S” si 'on identifie 7S" a T*S" par la métrique
euclidienne).
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Soit maintenant F:S$" — C" une immersion lagrangienne. Suivant [Weinstein—
1977], elle se prolonge en une immersion symplectique (d’un voisinage de la
section nulle) de T*S" dans C". La composition

V—oS"X% R”+1"’) TS" = T*sn_)cn
est alors clairement une immersion lagrangienne, notée F;.
5.1.1. PROPOSITION. d(F;)=d(f)+ d(F) deg N(f) mod 2.

5.1.2. LEMME. d(f) est linvariant de Hopf de la parallélisation stable définie
par f.

Je montrerai 5.1.2 dans 5.3. Admettons 5.1.1 pour un instant; voici comment
on en déduit 0.5a): Suppons n (impair) #1 et 3. D’apreés 0.3, toutes les
immersions lagrangiennes de V dans C” ont le méme nombre de points doubles
mod 2, et de méme pour celles de §”. Grace a l'existence de I'immersion
(lagrangienne) de Whitney, on a d(F)=1. Pour toute immersion lagrangienne
g:V—C" on a donc:

d(g) = d(F;) = hopf (f) + deg N(f) = %2.(V)
d’apres [Kervaire—1965] et [Kervaire-1957]. O

Démonstration de 5.1.1. On peut supposer que F est a croisements normaux,
que les préimages des points doubles de F sont des valeurs régulieéres de N et que
f n’a pas de points doubles au-dessus de ces préimages. On compte les points
doubles de F;.

D’apres les hypotheses faites sur F et f, il y a d(f) points doubles de F; a
’extérieur d’un voisinage (fibré) des points doubles de F. Chaque point double de
F crée de nouveaux points doubles pour F;, autant (si a, b € S” et F(a) = F(b))
que le produit du nombre de feuilles de N au-dessus de a par le nombre de
feuilles de N au-dessus de b. Ce produit est (mod 2) (deg N)’=degN. O

5.2. Stratégie de la démonstration de 0.5b) et c)

Elle va étre beaucrop moins géométrique. On sait, si V est une variété de
dimension impaire #27 -1, qu’il y a deux fibrés différents sur V qui sont les
fibrés normaux des immersions de V dans R (3.1.1). Ces fibrés sont stablement
isomorphes entre eux, et il s’agit de les distinguer par des moyens instables.
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L’idée est de remplacer 'outil “classe d’Euler”’ des dimensions paires par un
outil géométriquement analogue, bien que techniquement plus compliqué:
montrer que ces deux fibrés n'ont pas le méme nombre de sections
indépendantes.

Plus précisément, je vais montrer que I'un est le fibré normal des immersions
qui sont régulierement homotopes a des immersions de la forme V — R?**~* c R*"
pour un k bien choisi (et sous certaines hypotheéses sur V), et que I’autre a moins
de k sections indépendantes.

Pour décider lequel est le fibré normal des immersions lagrangiennes, il n’y
aura plus qu’a décider si V a ou n’a pas k champs de vecteurs (tangents)
indépendants.

Cette démarche est complétement analogue a celle utilisée au §2 ou V est
stablement parallélisable et k =n — 1.

Voici comment se fait le choix de k:

a) On s’assure que (sous les hypotheses faites sur V et n) V posséde une
immersion dans R?"*;

b) On calcule le nombre de points doubles des approximations a croisements
normaux de la composition V — R?**™* < R?". Si celui-ci ne dépend pas du choix
de I'immersion donnée par a), on a gagné.

Les hypotheéses du Théoréme 0.2 sont celles ou je sais achever ce programme.

5.3. La machinerie des calculs

Rappelons d’abord quelques définitions et notations classiques.

Si X est un espace pointé, QX = Q”S”X désigne la limite de Q"S"X—
"+1§"*1X, Cest un espace dont, par construction, les groupes d’homotopie sont
les groupes d’homotopie stable de X.

©,X désigne la construction quadratique sur X; soit ©,X = ES,; A G,(X A
X) ou ES, est un espace contractile sur lequel le groupe &, opeére sans points
fixes, et le quotient est effectué grace a cette opération conjointement avec
I’échange des facteurs de X A X.

Si u € H?(X), P,u e H¥(©,X) est la construction quadratique de Steenrod.

Stablement, ©,X est un facteur dans QX, autrement dit, il existe une
application stable r,: QX — ©,X, qui fait de H*(&,X) un facteur direct dans
H*(QX).

Voici maintenant ce que je vais utiliser de [Vogel-1974]:

Si h:V*"> Y™ (m=n+1) est une immersion, on la transforme en un
plongement V — Y™ X R* grice a une application séparant les points multiples de
h. On effectue ensuite une construction de Thom-Pontrjagyn, obtenant
@:5*Y— S*ME ot Y est le compactifié d’Alexandroff de Y et M& I’espace de
Thom du fibré normal & de h. Par adjonction, on en déduit une application
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®(h): Y — Q*S*ME— QME. Vogel considere la variété de points doubles de h:
Va(h) ={(x, y) €V XV |x#y et h(x) =h(y)}/S,,

ol h est supposée a croisements normaux, et calcule la classe d’hormologie, dans
H.,Y, portée par V,(h).

Le cas qui nous intéresse est celui ot m =dim Y =2n =2dim V, ou la classe
portée par V,(h) est dans Hy(Y); c’est le nombre de points doubles de h. Le calcul
de Vogel donne ici:

d(h) = (®P(h)*r3Py(us), [Y]) ol u, est la classe de Thom. (*)

N.B. On peut supposer que Y est une variété a bord, alors ¥ =Y/3Y et cette
formule a un sens; en tout état de cause je ne l'utiliserai que pour Y =R"™, et,
exceptionnellement pour Y = TS™ tout de suite:

Démonstration de 5.1.2. On est parti d’'une immersion f:V —R"*!, que je
vais supposer a croisements normaux; en particulier, le couple (N, f):V—
$" x R**! est un plongement, qu’on peut utiliser pour faire la construction de
Thom-Pontrjagyn généralisée pour f.

Considérons aussi, pour ¢ € [0, 1],

(tN, f): V> §" X R"*! c R*"*2,

Pour £ =0, ce n’est que la composition V —R"*' =« R*" =« R*"*2, Pour ¢ petit (et
donc pour tout t), c’est un plongement qui ’'approche. L’application (N, f) sert
ainsi a faire:

* d’une part, la construction de Thom-Pontrjagyn pour f: V — TS";

* d’autre part, la construction de Thom-Pontrjagyn pour f': V — R"*' c R*".

D’apres (*), on a donc d(f) = d(f’) et on applique 2.1. O

Désormais la variété Y n’est autre que I’espace euclidien R,

Comme &,X est muni d’une application naturelle dans BS,, le générateur de
la cohomologie mod 2 de B&, se retrouve dans H'(S,X; Z/2) sous le nom de .
On déduit facilement de (*) que

5.3.1. PROPOSITION. Soit g:V"—>R>** (k=n—1) une immersion, et
f:V—>R* *.c R la composition de g avec Uinclusion naturelle. Alors: d(f) =
((D(g)"‘r;(sk U qug)’ [SZn—kD' a
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5.4. Le Théoréme 0.5 en dimensions 1 mod 4
V est ici une variété de dimension n=1mod 4 (et n =5). Elle possede une
immersion g dans R*'7?, d’aprés [Cohen-1985]. Je vais donc lui appliquer

la Proposition 5.3.1 avec k=2, C'est-a-dire essayer de calculer:
(P(g)*r:(e°U Puy), [$*"7%)).
D’apres [Milgram—-1974] et [Zarati-1978], dans H*(S,ME; Z/2), on a:

Sq°Pyu, = C2_267 U Pyu, + Co_3Py(Sq'uy) + (u,, Sq°u,),
ou la notation (x, y) désigne le transfert du produit x X y:

xXyeH*(X AX)=H*(EG, A X A X) > H*(S,X).

Comme n=1mod4, C._, est impair. Si on suppose en plus que V est
orientable, alors Sq'u, = 0. On obtient:

£2U Pou, = Sq*Pou, + (ug, u,w,).

Le terme Sq’P,u, va s’annuler dans la cohomologie de la sphére. Il suffit donc
de calculer: PD(g)*r>(u,, u,w,;). Si r:QX— X désigne I'application stable
évidente (définie par l'identité de QX), Zarati a montré dans le méme article
que:

ra(x, y)=r*(xUy)+r*xur*y.
Le cup-produit va s’annuler dans la cohomologie de la sphére; il reste:

d(f) = (P(g)*r*(uy Uuwy), [S*°])
= (D(g)*r*(uyw2,2), [S*"7*])
= <W2wn_2, [V]).
Le fait que le résultat ne dépende pas du choix de g fournit une autre
démonstration de 3.1.1 et de 0.1 pour les variétés orientables de dimension 1

mod 4 (je ne sais pas si le terme provenant de Sq'u, dans le calcul précédent
dépend de g si V n’est pas orientable), avec la précision supplémentaire:

5.4.1. PROPOSITION. Soit V une wvariété orientable de dimension
n=4h +1=5. Il existe sur V deux fibrés de rang n stablement isomorphes entre
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eux et tels que:

* l’un a deux sections indépendantes et est le fibré normal des immersions de V
dans R?" ayant (W, W, _,, [V]) points doubles;

* Pautre n’a qu’une section non nulle et est le fibré normal de toutes les autres
immersions de V dans R*". O

Démonstration de 0.5b). Soit maintenant h:V — R?" une immersion dont le
fibré normal est isomorphe au fibré tangent TV (par exemple, h est lagrangienne
ou totalement réelle). Alors:

* Soit V a deux champs de vecteurs indépendants et h est régulierement
homotope 2 une immersion provenant de R**~2, elle a alors (w,w,_,, [V]) points
doubles (w; = w;);

* Soit elle n’en a qu’un (n est impair!) et h ne peut provenir de R**"2. Elle a
donc (w,w,_,, [V]) + 1 points doubles.

I y a maintenant un théoréme d’[Atiyah—Dupont-1972] qui permet de
décider si V a un deuxiéme champ de vecteurs. Il s’applique aux variétés
orientables de dimension 1 mod 4, sur lesquelles w,,_, =0. Sous nos hypoth?ses,
Wn_1=W,_, =0: j’ai déja utilisé que V a une immersion dans R**~?!

Atiyah et Dupont affirment alors que V a un deuxi¢me champ de vecteurs si
et seulement si la semi-caractéristique réelle fr(V) - remplacer Z/2 par R dans
la définition — est nulle. Le nombre de points doubles de I'immersion & est donc:

d(h) = QR(V) + (W2Wn~2, [V]> = 22/2(‘/)
d’aprés [Lusztig—Milnor—Peterson—-1969]. O

5.5. Le théoréeme 0.5 en dimensions 3 mod 8

I1 est clair a priori que les calculs ne peuvent pas fonctionner aussi simplement
en dimensions 3 mod 4, puisque celles-ci contiennent toutes les dimensions
27 — 1, ou I’on n’a aucune chance de faire aboutir la stratégie exposée dans 5.2, a
cause de 0.2.

De fait, si n =3 mod 4, on peut affirmer, grace a [Cohen—1985] que la variété
V s'immerge dans R**~3, et pas moins si n =4 X 27 + 3, mais appliquer 5.3.1 avec
k =3 ne fonctionne pas aussi simplement que dans le calcul précédent: dans la
formule donnant Sq°Pou,, le coefficient de £ U Pu, est C,_; qui est pair, essayer
5q*Sq* P,u, est voué au méme échec.

- Je vais donc essayer d’appliquer 5.3.1 avec k =4. L’hypothése faite sur n
(n =8h + 3, h #27) dit que le nombre de chiffres 1 dans I’écriture de n en base 2
est au moins égal a 4. La solution de la conjecture des immersions fournit donc,
encore ici, une immersion g: V — R
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On calcule comme dans 5.4, avec

Sq4P2ug = C:_484 U qug + C%,._SSZ U stqlug
+ C‘,’,-GPéquug + (ug, Sq*ug) + (Sq'ug, Sq’uy).

L’hypothese faite sur n force C;,_, a étre impair; si V est supposée Spin, Sq'u,
et Sq’u, sont nuls. On obtient comme plus haut:

a(f) = <¢(g)*r*(ugw4wn—4)’ [Szn_4]> = (W4Wn—4, [V]>

dont le lecteur déduira aisément un analogue de 5.4.1, que je n’écris pas.
Toujours d’apres [Atiyah—Dupont-1972], V a au moins 3 champs de vecteurs,
elle en a 4 si et seulement si %z,(V)=0. On conclut, comme dans 5.4, que les

immersions lagrangiennes de V ont (W,w,_4, [V]) + #22(V) points doubles. Le
Théoréme 0.5¢) découle maintenant du

5.5.1. LEMME. Si V est une wvariété Spin de dimension impaire,
(W4W,,_4, [V]) =0.

qui est une conséquence des relations de Wu: dans la cohomologie de ’espace
de Thom du fibré normal de V, on a:

Sq(uW,_s) = uWyW,_s + umsSq'w,_s puisque wy=w,=0 et Sq'w,_,=
Wi W,_4 + (1 — 5)W,_3 = 0 puisque n est impair. Donc uw,w, _, = Sq*(uw,_,). O

5.6. Démonstration de 1.3.1

Elle vient du cours Peccot de Lannes dont j’ai parlé dans I'introduction.

Ici, n est pair, f:V"—R? est une immersion, £ = Nf son fibré normal,
u, € H"(M§;Z/2) est la classe de Thom mod2, qu’on peut considérer dans
H"(ME&, Z™), en particulier

ur U uy = ue(E) e H"(ME, 2).
[Massey—1969a] a calculé le carré de Pontrjagyn (n est pair):

P:H"(ME; Z/2)— H*(ME; Z/4)

et a trouvé:

@uf = p4(uf U uf) = 2ufW1W,,_1,
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oll p, est la réduction mod 4 et 2: H**(ME&; Z/2)— H*"(ME; Z/4) est induit par la
“multiplication par 2”:Z/2 < Z/4. Ainsi

Pus = pao(use(§)) + 2uw, W, _,.

L’opération cohomologique & n’est pas une opération stable. Dans le langage
de 5.3, c’est dire que:

r¥o®— Por*: H*(—; 2/2)— H*(Q—; Z/4)

n’est pas nulle. Ce “défaut de stabilité” est-calculé par [Zarati-1978] qui montre
que r*o P — Por* =2r; P,. Toujours avec les notations de 5.3, on a donc, grace

a (*):

2d(f) = 29(f)*r} Puy, [S™])
= (D(f)*r*Pu, [$]) — (PD(f)*r*uy, [$*"]).

Le deuxiéme terme est nul et I’on applique la formule de Massey au premier pour
trouver:

2d(f) = (P(f)*r> pa(upe(8)), [S*"])
+ Qo) *r*(upm w,_,), [$*"])
= ps(e(Nf), [V]) +2{(ww,_, [V]). O

§6. Exemples

Dans ce paragraphe, je vais d’abord démontrer les corollaires énoncés au §0,
puis je donnerai tous les exemples de constructions de plongements totalement
réels et lagrangiens que je connais. Ils sont tous basés sur des constructions assez
simples, pour lesquelles, méme si je ne cite pas de référence (faute d’en
connaitre), je ne prétends pas a une grande originalité.

6.7. Démonstration des corollaires
 IIs sont des conséquences directes du théoréme de [Gromov—-1973] et de 0.4
(pour 0.6); quant a 0.7, en voici la preuve:

a) En dimension n paire, soit V" une variété orientée munie d’une
immersion f dans R"*'. Supposons x(V) =0, alors le théoréme de Hopf affirme
que le degré de I'application de Gauss de f est nul; or celle-ci renvoie le fibré
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tangent a la sphére $” sur le fibré tangent a V, qui est donc trivialisé€. Donc si V
n’est pas parallélisable, alors y(V)#0 et V n’a pas de plongement totalement
réel d’apres 0.4.

b) Si la dimension n de V est impaire, et si V est stablement parallélisable
sans étre parallélisable, alors n # 1, 3, 7 et I’on peut appliquer 2.3. De 0.5a), on
peut déduire que §z,(V) est I'unique obstruction (dans ces dimensions) a la
parallélisabilité de V, ce qui est un théoreme de [Bredon—Kosinski—1966] dont la
démonstration repose sur la solution du probleme de I'invariant de Hopf et les
résultats de Kervaire, ce que nous avons utilisé aussi.

6.2. Le cas des produits

Comme 0.5 ne couvre pas toutes les dimensions impaires, ne dit rien sur les
variétés non orientables, et a une démonstration un peu compliquée, il n’est pas
inutile de faire quelques remarques élémentaires. Elles seront basées sur le
lemme de position générale suivant:

6.2.1. LEMME. Soit f:V"—C"** (k=1) une immersion isotrope d’une
variété compacte. Alors, il existe une approximation de f parmi les immersions
isotropes, qui est un plongement. [

6.2.2. REMARQUE. Soit f:V"—C" une immersion lagrangienne et soit
g:W™—C™ un plongement lagrangien. Alors, il existe un plongement lagrangien
de V" X W™ dans C" X C™, qui définit la méme trivialisation de T(V X W)@ C
que [ X g.

Démonstration de 6.2.1. Considérons la composition V" L cr e, et soit
f: un plongement isotrope qui I’approche. Un voisinage tubulaire de f.(V) est
(symplectiquement) isomorphe & un voisinage de la section nulle de T*V X C™ vu
comme fibré sur V (voir [Weinstein—1977]). On peut plonger V X W dans ce
voisinage tubulaire grice a la section nulle de T*Vetag 0O

Le cas des plongements totalement réels est autrement moins rigide puisque
on a non seulement

6.2.3. REMARQUE. Soit f:V"— C" une immersion totalement réelle et soit
g§:W"—C™ un plongement totalement réel. Alors, il existe un plongement
totalement réel de V" x W™ dans C" X C™ qui définit la méme trivialisation de
T(VxW)®C quef xg.

mais encore
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6.2.4. REMARQUE. [Stout-Zame-1985]. Si f:V"—>C" et g:W"—C"
sont deux immersions totalement réelles et si y(V)=0, alors il existe un
plongement totalement réel de V XW dans C"xXC™ qui définit la méme
trivialisation de T(V X W) ® C que f X g.

Pour démontrer 6.2.3, on remplace f par une immersion lagrangienne, comme
[Gromov-1970] nous autorise a le faire et on procéde comme dans 6.2.2.

Démonstration de 6.2.4. On commence par plonger V X W dans T*V x C™
par g.:(x, y)—>(eh(y)o(x), g(y)) ou € est petit (pour que g, soit une immersion
totalement réelle), h est une fonction qui sépare les points doubles de f (supposée
générique) et o une section partout non nulle de T*V (dont I’existence est
assurée par la nullit€ de x(V)). On remplace ensuite f par une immersion
lagrangienne f:V—C" a qui I'on fait subir le méme traitement que dans la
démonstration de 6.2.2 pour obtenir le plongement cherché. [J

Par exemple, si 'une des variétés est de dimension impaire, le produit a un
plongement totalement réel.

Dans le cas lagrangien, un cas particulier intéressant est celui ou I’'une des
variétés est un tore, ou plus simplement un cercle. On a par exemple

6.2.5. REMARQUE. Les trois propriétés suivantes sont équivalentes:
a) V posséde une immersion lagrangienne:

b) V X T™ posséde une immersion lagrangienne;

c) V X T™ posséde un plongement lagrangien.

Démonstration. 11 est équivalent de donner une trivialisation de TV @ C ou
une trivalisation de T(V X T™) ® C. L’équivalence de a) et b) est donc un
corollaire immédiat du théor¢eme de Gromov-Lees. L’implication c)=>b) est
triviale, et a) = c) est conséquence de 6.2.2. O

Voici une application. Considérons I’espace homogene U(n)/O(n) (grassman-
nienne des lagrangiens), et I'application U(n)/O(n)— Sym (n, C) (espace vec-
toriel complexe des matrices symétriques n X n) définie par passage au quotient
de U(n)— Sym (n, C) A—"AA.

On se convainc facilement que c’est un plongement lagrangien (voir [Audin-
1986a]). On en déduit que le revétement double U(n)/SO(n) posséde des
immersions lagrangiennes, et, comme celui-ci s’écrit aussi S'x SU(n)/SO(n),
qu’il posséde-des plongements lagrangiens (I’assertion 0.8c) sur SU(3)/SO(3) et
SU(4)/SO(4) est alors une application immédiate de 0.6).

A titre d’autre application, remarquons que 6.2.2 permet de construire
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beaucoup de plongements lagrangiens différents (non régulierement homotopes
parmi les immersions lagrangiennes) de la méme variété, par exemple, pour
n=2, il y a une infinit€ de classes d’homotopie réguliere d’immersions lagran-
giennes de T" dans C" qui contiennent des plongements lagrangiens.

6.3. Des fibrés en tores
Une généralisation immédiate de 6.2.5 (avec m =1) est la suivante:

6.3.1. REMARQUE. Soit §—V un fibré en droites complexes tel que
TV @ C © & soit trivialisable. Alors il existe un plongement lagrangien du fibré en
spheres S(E) dans C**'.

Démonstration. La condition “TV @ C ©® & trivialisable” impose a £ d’étre le
fibré dét V @ C (en particulier 6.3.1 n’a d’intérét par rapport a 6.2.5 que si V
n’est pas orientable). Considérons maintenant la variété fibrée en cercles sur V:

W =S(détV @ &')2> V.

Son fibré tangent est stablement p*(TV @ dét V), dont le complexifié est
trivialisé; donc W posséde une immersion lagrangienne dans C**'.

Comme le fibré p a évidemment une section, V est une sous-variété de W, et
son fibré normal dans W est dét V. En particulier, V posseéde une immersion
isotrope dans C**!, avec un voisinage tubulaire de la forme T*V @ (détV ®
C)=T*V @ & On peut approcher cette immersion par un plongement isotrope.
Un fibré en cercles assez petits S(&) de § est alors une sous-variété du bord de ce
voisinage tubulaire. Elle est lagrangienne dans C"*' parce que les fibres de S(&)
sont lagrangiennes dans §. [

On peut bien sir donner un énoncé analogue en remplacant & par une somme
de fibrés en droites complexes et S(&) par le fibré en tores associé.

Un cas particulier de 6.3.1 est traité dans [Kawashima-1981]; c’est celui ol est
donnée une immersion f : V" — R"*!, le fibré & étant alors le complexifié du fibré
normal de f ('immersion isotrope V”— C"**! construite plus haut n’est dans ce
case que la composition V" — R"*! <« C™*1).

Remarquons encore que, contrairement & ce qu’affirment [Stout-Zame-
1985], Kawashima n’a pas démontré que S' X P*" a un plongement lagrangien,
heureusement: ceci impliquerait que P?* a une immersion lagrangienne (voir par
exemple 6.2.5), or sa caractéristique d’Euler est impaire! J’ai expliqué au début
de 4.1 comment montrer plus généralement que seuls P', P’ et P7 ont des
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immersions lagrangiennes, on a vu qu’ils ont tous des plongements totalement
réels d’aprés 4.3.2 et 0.5a), de plus le cas de P> est un des exemples explicites
donnés dans [Forstneri¢—1986a}.

Il y a bien un fibré en cercles sur P” qui a des plongements lagrangiens, mais il
n’est trivial que si n =1. 1l va servir d’illustration pour les exemples qui suivent,
aussi le voici (voir [Weinstein—1977]). 1l s’agit tout simplement de I’application
S x §"— C**!(z, x) > zx (ou S” est considérée dans R"*! = C"*'), aprés passage
au quotient par I'involution (z, x)— (—z, —x). Une fagon plus compliquée de le
decrire tient dans le diagramme

En+1 / S2n+l c; Cn+l

o |

P"(R) — P"(C)

ou x est la fibration de Hopf, E™*! ’espace total du fibré induit sur P*(R) - c’est-
a-dire au choix, le quotient de ' X §” considéré, ou le fibré en cercles de y @ C
ot y— P"(R) est le fibré en droites canonique.

La forme de Kéhler o sur P"(C) est obtenue par réduction de w, c’est-a-dire
que i*w = n*o0. De toute évidence, j est un plongement lagrangien et on a donc:
(i°j)*w =j"*n*0=n"*j*o =0. Donc le plongement i°j’ est lagrangien.

Je vais maintenant expliquer une généralisation de cette construction, due a
T. Delzant (elle est liée a la classification des opérations hamiltoniennes de 7" sur
les variétés symplectiques de dimension 2n de [Delzant-1986] méme si elle n’y
figure pas explicitement). L’idée est de constuire un diagramme analogue au
précédent

En+k ) F2n+k c; ‘C"+k

o | b

Xop — Xt
ol X}, est une variété algébrique réelle et X2 sa complexifiée, F?*~* est une
sous-variété coisotrope, & sa réduction symplectique est un T*-fibré, et ' le
T*-fibré induit. Le plongement i°j’ sera lagrangien comme plus haut. La seule
chose a faire est de construire F et 7:

Xr et Xc sont les variétés toriques (réelle et complexe) associées a un
éventail 3 de Q" muni du réseau Z" des entiers (voir [Danilov-1978] pour les
variétés toriques). On suppose 2 tel que Xy et X soient projectives, lisses et
completes.



Plongements totalement réels 621

On appelle n +k le nombre de cones du 1-squelette de X, ce qui définit
I’entier k apparaissant dans (2), k =1 (et s’il vaut 1, on est dans le cas (1)). Soient
(v1, . - - » Un4i) des vecteurs entiers qui engendrent le 1-squelette et tous les cOnes
de X (sur Z), et soit #:Q"**— Q" la projection qui envoie les vecteurs

(e1, - . -, €,4x) de la base canonique sur (v, .. ., U,,s). On définit un éventail =
de @"*** par:
les cones de = sont les cones (e;,, . . ., e;) tels que
(vi,, ..., v;) soit un cone de T (*)

(on replie I’éventail ).

Ainsi 3 est un éventail du premier “quadrant” et la variété torique complexe
qu’il définit est un ouvert ¥ de C"** (complémentaire d’une famille finie de
sous-espaces vectoriels). & est, bien siir, muni d’'une opération du gros tore
(C*)™*%, et du sous-tore T¢ associé au noyau de 7; les hypothéses sont telles que
celui-ci opere librement sur %, le quotient étant précisément X¢. Il n’y a plus
qu’a choisir pour F I’espace total du sous T*-fibré associé.

L’exemple le plus simple (k=1) est celui du diagramme (1). Le cas ou
k =n =2 fournit des plongements du tore T* et de fibrés en tores T2 sur la
bouteille de Klein qu’on aurait pu obtenir par 6.3.1, mais aussi des choses plus
compliquées.

6.4. Remarques supplémentaires, avec des questions

Comme je I’ai déja mentionné, il y a des plongements lagrangiens de toutes
les surfaces non-orientables dont la caractéristique d’Euler est divisible par 4,
sauf peut-étre de la bouteille de Klein ([Givental-1986]). A part eux, et ceux
qu’ils engendrent grace a 6.2.2, je ne connais pas d’autre exemple de variété qui
possede des plongements lagrangiens et dont la caractéristique d’Euler ne soit pas
nulle. En fait, tous les exemples que j’ai donnés dans ce paragraphe ont la
propriété d’étre fibrés sur le cercle S', méme si certains d’entre eux apparaissent
plutét comme des S'-fibrés.

En plus des questions évidentes que posent les restrictions de I'énoncé 0.5
pour les plongements totalement réels, il y a donc une question générale pour les
plongements lagrangiens: Quelles variétés compactes ont des plongements
lagrangiens?

Par exemple, griace & 6.2.2 et aux exemples de Givental, on peut trouver des
plongements lagrangiens de variétés de dimension 4 avec caractéristique d’Euler
8k (k= —1), alors que 0.4 n’impose que yx divisible par 4.

D’autre part, tous les exemples de plongements que j’ai donnés, comme ceux
de Givental, ont une classe de Maslov non nulle; grace a [Gromov-1985] (voir
aussi [Sikorav—1986]), on sait que H'(V;R) doit étre non nul, et donc contient



622 MICHELE AUDIN

assez de place pour que la question suivante puisse avoir une réponse négative:
Existe-t-il un plongement lagrangien dans C" avec classe de Maslov nulle?

Le lecteur aura sans doute noté que les remarques précédentes fournissent
beaucoup d’exemples de plongements lagrangiens du tore 7". Or ceux-ci ont tous
la “méme” classe de Maslov au sens suivant: il existe une base (e, ..., e,) de
H'(T"; Z) dans lacquelle la classe de Maslov s’écrit 2e,. Est-ce vrai pour tous les
plongements lagrangiens de T"?
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